

Transmission exaltée à travers des tamis à photons à

ouvertures annulaires nanométriques :

simulation et caractérisation

Yannick POUJET

Thèse dirigée par Fadi BAIDA et Jérôme SALVI vendredi 14 décembre 2007

Outil numérique
 Méthode de calcul
 Influence des paramètres géométriques
 Cavité Fabry-Pérot à miroirs nanostructurés
 Résultats expérimentaux

- Fabrication des structures annulaires
 - >Approche qualitative
 - ➢Résultats en microscopie optique en champ proche
 - Etude spectrale

Perspectives et conclusion

Outil numérique
 Méthode de calcul
 Influence des paramètres géométriques
 Cavité Fabry-Pérot à miroirs nanostructurés
 Résultats expérimentaux

- Fabrication des structures annulaires
- >Approche qualitative
- Résultats en microscopie optique en champ proche
- Etude spectrale

Perspectives et conclusion

1998 : Transmission extraordinaire à travers des ouvertures circulaires sub-longueur d'onde creusées dans un film d'argent

TW. Ebbesen et al., Nature 391, 667-669 (1998)

2002 : Nouvelle structure proposée par Baida et Van Labeke Annular Aperture Arrays (AAA)

Excitation des modes guidés de la structure (mode TEM en particulier)

F. Baida and D. Van Labeke, Opt. Commun. 209, 17-22 (2002)

J. Salvi et al., Optics Letters 30 (13), 1611-1613 (2005)

- ≻Outil numérique
 - Méthode de calcul
 - Influence des paramètres géométriques
 Cavité Fabry-Pérot à miroirs nanostructurés
- Résultats expérimentaux
 - Fabrication des structures annulaires
 - >Approche qualitative
 - Résultats en microscopie optique en champ proche
 - ≻Étude spectrale

Perspectives et conclusion

Méthode *Finite Difference Time Domain* (FDTD) : résolution numérique des équations de Maxwell

Simulation d'objets 3D Maillage non uniforme autour de la structure Conditions de bords données par : *Perfectly Matched Layers* (PML) de Bérenger

Dispersion du métal donnée par :

• un modèle de Drude $\mathcal{E} \ \omega = -\frac{\omega}{\omega \ \omega - \gamma}$ (argent, aluminium)

• un modèle de Drude-Lorentz $\varepsilon \omega = \varepsilon_{\infty}$ - (or)

 $+ \gamma \omega$

 $\Delta \varepsilon \omega$

-*w*

ω

 $\omega \omega - \gamma$

Introduction des différences finies centrées

CENTRE NATIONA

Méthode de calcul

A. Taflove and S.C. Hagness, Computational electrodynamics: the Finite-Difference Time-Domain method (2000)

A. Taflove and S.C. Hagness, Computational electrodynamics: the Finite-Difference Time-Domain method (2000)

Outil numérique
 Méthode de calcul
 Influence des paramètres géométriques
 Cavité Fabry-Pérot à miroirs nanostructurés
 Résultats expérimentaux
 Fabrication des structures annulaires
 Approche qualitative

- ➢Résultats en microscopie optique en champ proche
- Etude spectrale

Perspectives et conclusion

Influence de l'épaisseur

AAA $d_o = 200 \text{ nm},$ $d_i = 100 \text{ nm},$ p = 350 nm,pas de substrat, couche d'argent seule.

Cavité Fabry-Pérot formée par les faces supérieure et inférieure de l'ouverture annulaire

 λ_c = longueur d'onde de coupure du mode TE₁₁ pour un guide d'onde infini

Influence de l'épaisseur

Champ

FC

UNIVERSITÉ De Franche-Comté CENTRE NATION/

Influence du diamètre extérieur

Influence de la période

AAA $d_o = 200 \text{ nm},$ $d_i = 100 \text{ nm},$ h = 100 nm,substrat verre, couche d'argent.

Outil numérique
 Méthode de calcul
 Influence des paramètres géométriques
 Cavité Fabry-Pérot à miroirs nanostructurés

Résultats expérimentaux

- Fabrication des structures annulaires
- >Approche qualitative
- ➢Résultats en microscopie optique en champ proche
- Etude spectrale

Perspectives et conclusion

Cavité Fabry-Pérot

Mode guidé et résonance de cavité Fabry-Pérot

Cavité Fabry-Pérot

$$\mathbf{e}(\lambda) = \mathbf{d} + 2\mathbf{e}_{m}(\lambda) + 2\mathbf{e}_{g}(\lambda)$$

Cavité Fabry-Pérot

Outil numérique
 Méthode de calcul
 Influence des paramètres géométriques
 Cavité Fabry-Pérot à miroirs nanostructurés
 Résultats expérimentaux
 Fabrication des structures annulaires
 Approche qualitative

- Approche qualitative
- Résultats en microscopie optique en champ proche
- Etude spectrale

Perspectives et conclusion

Lithographie électronique

Lithographie électronique

AAA en or : $d_0 = 330$ nm, $d_1 = 250$ nm, p = 600 nm, h = 150 nm.

CENTRE NATIONA

Gravure ionique

➢FIB : 30 kV et 12 pA (faisceau de environ 10 nm de diamètre pour l'EPFL, 30 nm pour MIMENTO)

>Technique rapide et efficace pour obtenir des nano-structures

Gravure ionique

AAA : $d_o = 200$ nm, $d_i = 100$ nm, p = 350 nm, h = 100 nm, argent. Réalisée à l'EPFL

Images MEB (a): vue de 4 coaxes, (b): vue avec un tilt de 52°, (c): vue de la matrice

Gravure ionique

AAA : $d_o = 330$ nm, $d_i = 230$ nm, p = 500 nm, h = 100 nm, argent. Réalisée à l'EPFL

Images MEB (a): vue de 4 coaxes, (b): vue avec un tilt de 52°, (c): vue de la matrice

Gravure ionique

Images MEB

AAA : $d_o = 200$ nm, $d_i = 100$ nm, p = 350 nm, h = 100 nm, argent.

Réalisée à la centrale technologique MIMENTO

Outil numérique
 Méthode de calcul
 Influence des paramètres géométriques
 Cavité Fabry-Pérot à miroirs nanostructurés
 Résultats expérimentaux
 Fabrication des structures annulaires

>Approche qualitative

Résultats en microscopie optique en champ proche

Etude spectrale

Perspectives et conclusion

CENTRE NATION/

Approche qualitative

Images enregistrées à travers un microscope optique classique opérant en transmission (grossissement : x 50)

Approche qualitative

Outil numérique
 Méthode de calcul
 Influence des paramètres géométriques

Cavité Fabry-Pérot à miroirs nanostructurés

Résultats expérimentaux

- Fabrication des structures annulaires
- >Approche qualitative
- Résultats en microscopie optique en champ proche
- Etude spectrale

Perspectives et conclusion

Schéma expérimental : Reflection Scanning Near-field Optical Microscope

Spectres de transmission des structures étudiées

AAA en or : $d_0 = 280$ nm, $d_1 = 200$ nm, p = 500 nm, h = 100 nm.

AAA en or : $d_0 = 330$ nm, $d_1 = 250$ nm, p = 500 nm, h = 150 nm.

Filtrage par Transformée de Fourier

Y. Poujet et al., Photonics and Nanostructures-Fundamentals and Applications. 4, 47-53 (2006)
 Y. Poujet et al., à paraître dans Journal of Microscopy (2007)

Image théorique de l'intensité I du champ électrique au dessus de l'échantillon (30 nm)

= +

Champ proche optique : mode transmission

Schéma expérimental

F

NIVERSITÉ

CENTRE NATIONA

Champ proche optique : mode transmission

CENTRE NATIONA

UNIVERSITÉ De Franche-Comté

Champ proche optique : mode transmission

≻Outil numérique

Méthode de calcul

>Influence des paramètres géométriques

Cavité Fabry-Pérot à miroirs nanostructurés

Résultats expérimentaux

- Fabrication des structures annulaires
- >Approche qualitative

Résultats en microscopie optique en champ proche

Etude spectrale

Perspectives et conclusion

FC

UNIVERSITÉ De Franche-Comté CENTRE NATIONAL

F

UNIVERSITÉ De Franche-Comté CENTRE NATIONA

Etude spectrale

Etude spectrale

Influence de la dimension finie de la matrice

Y. Poujet *et al.*, *Optics Letters* **32** (20), 2432-2434 (2006) Bravo-Abad *et al.*, *Phys. Rev. Letters* **93**, 22741 (2004)

Etude spectrale

Influence de la polarisation

>Outil numérique>Méthode de calcul

>Influence des paramètres géométriques

Cavité Fabry-Pérot à miroirs nanostructurés

Résultats expérimentaux

- Fabrication des structures annulaires
- >Approche qualitative
- ➢Résultats en microscopie optique en champ proche
- Etude spectrale

Perspectives et conclusion

CENTRE NATIONAL

Perspectives

Utilisation de l'exaltation de champ dans la cavité annulaire pour l'étude de la <u>fluorescence</u> de molécule

Perspectives

Utilisation de l'exaltation de champ dans la cavité annulaire pour la génération de second harmonique

Perspectives

F. Baida, Applied Physics B 89, 145-149 (2007)

• Réalisation de nombreux objectifs : fabrication, simulation et caractérisation

Mise en évidence du mode guidé TE11

Obtention d'une transmission lumineuse de 90 % dans le visible

• Etude en fluorescence : début d'une collaboration avec l'Institut Fresnel de Marseille (équipe de Hervé Rigneault)

Influence du substrat

Etude spectrale

Champ proche

AAA en or : $d_0 = 330$ nm, $d_1 = 250$ nm, p = 500 nm, h = 150 nm.

Image topographique

Image optique

Pointe métallisée avec une nano-antenne

Champ proche

