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Introduction

The shape memory effect since its discovery haacattd the attention of scientist and
engineers with its amazing phenomena and the mierchanisms allowing a lot of promising
applications. During the years a number of modelcdptions were created to understand
better the behaviour of different alloys makingoagssible to tailor the critical parameters
important for technology.

In this thesis two models will be concerned. The aeveloped earlier in Debrecen
enabled to calculate the non-chemical energy termbe start and at the end of martensitic
transformation. Nevertheless not only theses paangsrelevant but the knowledge of the
dependence of the dissipative and elastic termb&@mransformed martensitic fraction in the
whole transformation range is important too. Consedjy an extension of the model was
needed. This new model was used to evaluate tlaenaesured on polycrystalline and single
crystalline CuAINi shape memory alloys.

The results of the measurements on single crystaslamples could be explained only if
two types of martensitic phases were taken intooast Indeed the Besangon-model
developed for simulation of the martensitic tramsfation counts with two different
martensitic phases, too, namely temperature arebsstinduced ones. After finding the
connection between these two models and took thigon@o account in the Debrecen-model
the determination of the input parameters for theukations became possible and comparison
between the measured and calculated hysteresis lkaapbeen made.

Introduction

L'effet mémoire de forme, depuis sa découvertettiséd’attention des chercheurs et
ingénieurs grace a ses spécificités et aux mécasismicroscopiques associées. La
connaissance de ces alliages a permis de dévelbppercoup d’applications prometteuses.
Pendant des années, de nombreuses expériencesété faites afin de mieux comprendre le
comportement spécifique de ces alliages.

Dans cette these, deux modeéles ont été utilisdsi @&veloppé a Debrecen (Hongrie) a
permis de calculer les termes d’énergie non-chimigu début et a la fin de transformation
martensitique. Nonobstant, non seulement ces terswmd® indispensables mais la
connaissance de la dépendance des termes dissigiadifastiques a la fraction de martensite
transformée est, elle aussi, importante. En coimiysine extension du modele s’est avérée
nécessaire. Ce nouveau modele a été utilisé afiatamaliser les mesures effectuées sur des
alliages a mémoire de forme CuAINi poly et mondatims.

Les résultats de mesures sur I'échantillon montadliis n'ont pu étre interprétés que si
le concept de deux types de phase martensitiquénestiuit. Le modéle de Besangon
(France), développé pour expliquer la transfornmatioartensitique, introduit ces deux
martensites différentes (la martensite auto-accodamie et la martensite induite par la
contrainte). On verra que cette partition n'‘a auaens crystallographique mais est
simplement utile dans une approche phénoménologiues qu’un lien ait été établie entre
ces deux modeles et que deux phases martensiitgréseté prises en compte dans le modéle
de Debrecen, la détermination des parameétres ra@saux simulations devient possible, et
la comparaison a pu étre réalisée entre les bobgktérésis mesurées et calculées.



Bevezetés

Az alakmemoria effektus a felfedezése O6ta tuddés@satmérndkoket riggozott le
bamulatos jelenségeivel és az ezeket tatdete\d mikroszinti mechanizmusaival. Az évek
soran sok modell leiras szlletett, a kulortbtipusu 6tvozetek viselkedéseire gt téve,
hogy és végssoron tervezhéveé valjanak a technikailag fontos kritikus paramgite

Eben a dolgozatban két modellel foglalkoztam. A i2ebnben korabban kidolgozott
lehetivé tette, hogy kiszamoljuk a nem-kémiai energidtagg@ martenzites atalakulas elején
€s végén. Azonban nem csak a végpontok a lényeghaakm a disszipativ €s rugalmas
energiatagoknak az atalakult martenzit hanyadtdib vliiggésének ismerete a teljes
tartomanyban is fontos. Tehat a sziikségessé wddide|l tovabbfejlesztése. Ezt az (j modellt
hasznéltuk polikiristdlyos és egykristalyos CuAldlakmemoéria 6tvozeteken mért adatok
kiértékelésére.

Az egykristadlyos mintakon végzett kisérlet erednadngsak Ugy lehetett magyarazni,
ha kétfajta marteznitfazist veszink figyelembe. Artanzites transzformacié szimulécidjara
kifejlesztett besanconi model is kétfajta martdakiszdmol, nevezeteserbrhérséklet és
feszultségindukaltakkal. Miutan a két modell kozdkapcsolat tisztdztuk és debreceni
modellben is kétféle jarulékkal szamoltunk, |évét valt, hogy a mérési adatok alapjan
meghatérozzuk a szimulacidhoz szikséges paraméteérekégezetil pedig 6sszehasonlitsuk
a szamolt és meért hiszterézis hurokokat.
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|.  Overview: Shape memory alloys, martensitic transfamation

The shape memory effect was discovered in 1951UHCA system, which was followed
by Cu based alloys in 1956-57 and by TiNi in 196&W]. The last one is the most widely
used shape memory alloy, because it has excelleshamical properties and can also be
applied in human bodies. Although the TiNi shapaenoey alloy is very useful in functional
applications, it is expensive and, due to the mebeefforts, the cheaply producible Cu based
systems can replace it in some cases.

[.1. Martensitic transformation

Martensite, the product of decomposition of thetenige, or a high temperature parent
phase, through a martensitic transformation, wasedbafter Adolf Martens (1850-1914), an
engineer bringing significant contribution to theld of metallography and describing firstly
the above mentioned transformation in steel.

The martensitic transformation takes place betvweensolid phases: the high symmetry
(mostly cubic) lattice structure, stable at higmperature, — called parent or austenitic phase
(A) — transforms into a structure with low symmefjyossessing several variants with
different orientations) stable at low temperaturaartensitic phase (M). Since only the lattice
structure changes during these transitions, th@atisments of atoms are less than the lattice
constant, i.e. it is a diffusionless transformatamd the velocity of interface shift is in the
order of the speed of sound, which means that tbpagation of the transformation is very
similar to the propagation of shock waves in materi[Nishiyama, Funakubo, Otsuka and
Waymann]

[.2. Thermodynamic aspect

1.2.1. Energy contributions

In general from austenite to martensite phase foemations the change of the Gibbs
free energy can be written (if we neglect the fiaiee term for nucleation) as [F, C&H]:

AG=AG,+AG,  with AG_=AG,+AG, (1.1)

HereAG.is the change in thehemicalGibbs-free energy of the two phases (the drivingdo
for the transformation), and there is a non-chehtoatribution,AG,,, composed of elastic
(AGe) and dissipativeAGgy) terms. The elastic energy accumulates as wetlaases during
the processes down and up just because the formattidifferent variants of the martensite
phase usually is accompanied by a development otlastic energy field (due to the
transformation strain). The dissipative energyligags positive in both directions and results
in the hysteretic behaviour.

Fig. 1.1 shows schematically the chemical free giesrof the two different phases and
the position of the equilibrium transformation tesmgture, below and above of which the
martensitic and austenitic phases are stable, ceeply.

-10-



G (T)) =G," (T,)

Denoting the transformed fraction Ry(§ =1, andé=0 correspond to pure martensite
and austenite phases, respectively) Fig. 1.2. titiss the hysteretic behaviour of the
transformation: a) is the transformation withowastic and dissipative contributions, b) no
elastic contribution is present (during coolingedo the dissipative energy assumed to be
independent o€, the transformation starts only at a certain uoai@ing, and in the opposite
direction it starts only at a certain overheating)general case: the elastic energy, which is
usuallyé-dependent, is positive in cooling down and negsitivthe heating up branches).

In thermoelastictransformations the interface term is generallyligége, but the
elastic term plays a determining role. For exanapla given under-cooling for further growth
of the martensite an additional under-cooling gpureed. Thus if the sample is further cooled
the particle of the M phase will grow further, wehiif the sample is heated it will become
smaller. Indeed irthermoelasticmaterials it was observed that once a particle éarrand
reached a certain size its growth was stopped racr@ased or decreased as the temperature
was decreased or raised. Thishie thermoelastic behavio(@the thermal and elastic terms are
balanced)

A

G

Figure I.1: Chemical free energies and the positidithe equilibrium temperature
g g g
1 oo — 11
0 [smemnnseasd I ) R
To T T T
a) b) c)

Figure 1.2: Martensitic fractiond) vs. temperature (T) considering the chemical aod-
chemical contributions
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[.2.2. Characteristic temperatures

Four temperatures are used to characterize theensitit transformation (at external

stress free state) which can be determined froreasored full hysteresis curve:

« M¢ — martensite start

« M{ - martensite finish

« AL - austenite start and

« A{ — austenite finish
temperatures as it can bee seen in Fig. |.2/c.ekample the martensite and austenite start
temperatures indicate the beginning of the fornmatibthe martensitic and austenitic phases,
respectively. The above temperatures depend oedghiibrium transformation temperature
and, in general, they contain contributions frora tton-chemical energies: this dependence
will be analyzed in Chapter Il and IlI.

The characteristic temperatures are measurable,th®itmost important one, the
equilibrium temperature, o] cannot be directly determined from a usual hgstetoop
measurement. Tong and Wayman [Tong Wayman] propthegdaking the arithmetic mean
value of My and A can be a good approximation fog. However, Salzbrenner and Cohen
[S&C] have shown that in general this is not a ectrapproximation. Furthermore these
authors have also indicated that under specialumistances (using single crystalline
specimens and special gradient heating techniduee )it can be determined even from this
approximate relation.

It is worth to note that the knowledge of the eipuilim transformation temperature is very
important for the simulations of martensitic trasfiations.

[.3. Mechanical properties of shape memory alloys

1.3.1. Shape memory effect

The shape memory alloys are really interesting w&itely used in a wide variety of
technological application because, as it is inalude their names, they remember their
shapes. This kind of memory effect arises fromnifagtensitic transformation, precisely from
the fact that the low temperature phase has matanta while the high temperature one
exists in only one form.

Let us consider a 2D case when the austenitic phasequare lattice and the martensite
is a rhomboid one. Cooling the austenite withowt external stress, the martensite evolves
randomly and it can transform back to austenitiagghreversibly during heating. But if an
external stress is applied, the variants with preteorientations will grow in expense of the
un-preferred ones. Furthermore, increasing theiegtress the balance between the two
types of martensite shifts further toward the prefg variant and finally the whole sample
transforms to a one variant state with a well medsa deformation. But, reheating the
sample it returns to the austenitic phase, havinly one variant, and thus the sample
recovers to its original shape. (Fig. 1.3); thighe so called oneay shape memory effedf
the shape memory material is trained, i.e. the @domvard and reverse transformations are
repeatedly applied several times, the sample wiibin in the same way, changing only the
temperature (although the magnitude of the defaomawill be less); this phenomenon is
calledtwo way shape memory effect

-12-
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Figure 1.3: Demonstration of the one way shape ngraiect

After austenite/martensite transformation, duehtodeformation strain, a characteristic
surface pattern (surface relief) can be observead iasllustrated in Fig. 1.3 in the event the
presented piece of material is at the surfacett&rinvestigation of this phenomenon a piece
of material has to be polished mechanically ortelglly in austenitic or martensitic phase,
and then it has to be cooled down or heated ugo#dtih Fig. 1.3 shows only the cooling
down case one can easily imagine that the reliefoEaseen after the “reverse” process, too.
Such kind of pattern can be seen in Fig. 1.4.

Figure 1.4: The characteristic relief on the suréaof a CuAINi sample
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The appearance and disappearance of the surfagkard also indications of the start
and the end of the forward and reverse martenditamsformation, respectively.
Unfortunately, using this method one can only deiee the start and the end of the
transformation. However, not only this method iprapriate to follow the transition. Since
the values of different physical quantities (e.gedfic electrical resistance, strain) of the
austenite and the martensite phases are differenmt €ach other, measuring on of them
versus the temperature a hysteresis loop will beméd. The shape of the hysteresis usually
characterizes the shape memory alloy itself; Fgahd Fig. 1.6 show examples for the case
of TiNi and CuZnAl alloys, respectively.

1.3.2. Pseudo-plasticity (Superplasticity)

Another feature of the shape memory materials cdnoes that fact that small loading
force is enough to reorient the martensite variantsthereby to deform the alloy. Depending
on the shape memory alloy this behaviour can résudt plateau on the stress-strain curves

(Fig. 1.7).

F sample T sample
T , b
J pe I B
0.1 MPa - 2 0.1 MPa
.40 =5 o 0.8
E -39 1 1 2 400 4 1 1 20 250 300 35 4 -
- .
0.50 4 1.5 GPa 1.1 1.5 Gpa
1.0 4
454
o 08
& 100 150 200 2 00 350 400 450 1 150 20 0 300 350 400 4
T (K)

Figure I.5: Measured hysteresis loops on near equac NiTi under constant hydrostatic
pressure (Figs. 2/a and 2/b of Ref. [Detal02])
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Figure 1.6: Measured hysteresis loops on CuzZnAl(Mmjer constant hydrostatic pressure
(Fig. 1 of Ref. [Detal00])

rearrangement: M — M,

elastic
unloading

elastic loading
of self accomodating
martensite - M;

Stress

v

Strain
Figure 1.7: The pseudo-plasticity behaviour (schémaurve)

1.3.3. Pseudo-elasticity (Superelasticity)

So far only stress free, thermally induced martensiansformations, like the one- and
two-way shape memory effects, were consideredsSireduced martensitic transformations
exist, too. This phenomenon can be explained bystress dependence of the martensitic
transformation. As illustrated in Fig. 1.8, althdughe temperature of the sample doesn’t
change, at a certain level of the applied stressptiase transformation takes place in the
alloy.

-15-



Load

v

A 4

Temperature

Figure 1.8: Stress dependence of the transformatomperatures and the way of the stress
induced martensitic transformation schematically

MG
A—M, —
L/
o =
n / MG —)A
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Figure 1.9: Typical stress-strain curves of a sg@sduced martensitic transformation
(schematic figure)
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The pseudo-elasticity, similarly to the pseudo4itéty, occurs at a constant
temperature, but in this case at the beginning gbecimen is completely composed of
austenite (above A Loading the shape memory alloy it is deformed &me martensitic
transformation starts. If the loading is ceased, itverse transition begins and finally the
sample recovers its original shape. So it tracet suway like in Fig. 1.8. This behaviour
expressed in the stress-strain diagrams chardutellig with a hysteresis effect (Fig. 1.9).

I.4. Applications

Nowadays the shape memory alloys are widely app#eseh in every day life. For
example one receives a wire of NiTi as orthodont&terial at the dentist, or the eyeglass
frame (Fig. 1.10) is made also of NiTi [W&S]. Ingke two applications different features of
the shape memory alloys are used.

Figure 1.10: Glass frames made of NiTi (Fig. 2 efRW&S])

Figure I.11: Vascular stent (Fig. 1 of Ref. [Det@]D
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In orthodontic applications of NiTi alloys the om&y shape memory effect is used:
cooling down the shape memory wire is fixed todleature and in the mouth it is heated up,
so it retransforms to austenite, recovers its palgshape and in this way provides a constant
tensional load (without any recalibration). Furthere, this effect works e.g. in thermostats
or in vascular stents too (Fig. .11) [Detal0Q].

Thanks to the superelasticity the eyeglass franmeregain its original shape, and the
same feature is utilized for example in bra undexs\{W&S] or in some medical tools (Fig.
1.12) [Detal00].

Besides the commercial applications the shape meailmys are present in the modern
technologies like the space shuttles [R&C] and ldairs bit from the science research like
micro-manipulators.

Furthermore, the shape memory alloys start to g wmeportant in the building trade,
because thanks to the superplasticity they caneappls energy dissipaters or dumpers, so
they can be very useful against earthquakes ariltinations caused by wind. [Getal]

I.5. Magnetic shape memory alloys

weRIF. W B0 ) e W SRR LI o)

Figure 1.12: Surgical innovations endoscopic instients use nitinol rods to actuate scissors,
graspers, etc. (Fig. 7 of Ref. [Detal99])
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Nowadays the magnetic shape memory alloys standhén centre of the many
investigations, because they can be switched bynatagfield due to the coupling between
the mechanical and the magnetic fields. For examelg fast actuators can be constructed
using them. The most promising magnetic shape memibwy is NiMnGa, but it has very
high switching field and it is hardly treatable base of its weak mechanical properties
(brittleness). Hence, in some laboratories scientid engineers are searching for a new
magnetic shape memory alloy or for an appropriatdification (e.g. by microalloying) of it.
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II.  Summary of the literature: motivation of my work

In this chapter two models, describe the martensitinsformation, will be presented.
For the reason that one can always know which mmdtllking about, | kept the original
notations of the authors as well as in the Chdptetoo.

[I.1. Analysis of hysteresis loops and results of BC measurements

11.1.1. Model for the description of the hystereticbehaviour

The model (Beke-Dardczi, in Refs. [Detal00] and t)@2]) provides a suitable way for
the determination of the non-chemical energy cbations from a measured thermal
hysteresis loop. It starts from the Gibbs free gnehange of the system during forward and
reverse transformations, provides expressionsh@itriansformation temperatures at the start
and finish temperatures. For the determinatiorhefrion-chemical terms, however one has to
know the value of J; where the chemical free energies of the paretitpgoduct phases are
equal to each other; in the absence of this thetiel@nergy contributions can only be
estimated exclusive a term containing s generalization for obtaining tliedependence of
the non-chemical terms and for the comparison efititegrals of the results obtained form
the hysteresis loops with DSC data will be describeChapter lll.

[1.1.1.1. Basic equations for the start and finishemperatures

The equilibrium line during the austenignartensite (A>M or forward)
transformation — using superscript down arrowsntticate the cooling down procegsfbr
A—M) —is defined by the following equation:

a!ggl!:Agcl‘Fel({)-‘-dl({):O’ (”1)

where it is assumed that the change in the cherfn@aknergy per molég.', is independent
of the transformed fractio®, (0<¢<1), and

Ag, =Ah' -TAs,' . (1.2)
In (11.1) e andd denote the derivatives of the elastic and dissipanergies.
HereAh.'=h"-h* (<0) andAs.'=s" -§* (<0) (the M phase is the low temperature phase)

are the free enthalpy and entropy changes, respctiFurthermore, at the “equilibrium
transformation temperature”, Tthe temperature of zero-change in the chemieal énergy)

Ag.' (T,) =0, i.e. T,=Ah'/As' =Ah'/As', (1.3)
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and e.g. at any temperature different frogn T
Ag, (M) =(T,-T)as,". (11.4)

If T<T, then there is an under-cooling ahgt' (T) is negative.

The temperature at which (Il.1) is equal to zero §s0 as well as fo=1 is the
martensite start (M and finish (M) temperature, respectively.

Similar considerations are valid for the martensigistenite (M~>A or reverse)
transformation, but since nafh.'=-Ah' andAs;,'=-As=-As.' — according to (I.4) -Ag.' <0
can be fulfilled only if T>T. Indeed again the temperature at which (Il.1) is zerg£1 as
well as for§=0 are the austenite startsA,, i.e. an overheating is necessary) and austenite
finish temperatures @\

Thus

M, =T,-% &
s 0 —ASC

1 1

M, =T,- % &
—As,

(11.5)

A =T + S *e
° -As,

dT +elT

=Ty +——2-.
A=Tot = o

c

where the 0 and 1 subscripts mean the pure austenitgouedmartensite phases (e.g.
d‘=d"(¢=0) and &=€'(¢=1)). Obviously if one measures the thermal hysteresis & fixed
external field (e.g. at a fixed uniaxial stresspr at a fixed hydrostatic pressure, p) in relation
(11.5) all quantities on the right hand side in principi#l be the function ofs (or p), too. In
this case however, we have an additional relation fer darivative of the equilibrium
transformation temperature: this is the Clausius-Clapegquation.

11.1.1.2. Clausius-Clapeyron equation

This relation can be derived from (11.2), if it is exteddby the form(s) of the energy
contributions ta\ge, related to the effect of the field(s) in questiont Example for the effect
of uniaxial stress:

Ag.' =Au, -T,As, -V,0e" =0, (11.6)

or for the presence of hydrostatic pressure
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Ag.' =Au' -T,As +pV" =0, (1.7)
c c 0 (o

wheree” or V' are the transformation strain and the relative volume chaogeto the
transformation, respectively an@ dWenotes the volume of the sample.
For the effect of uniaxial stress)field

%(Ag; )=o (1.8)

gives (assuming thatu, is independent af)

asT,) _ alov.e" (o)
oo do

(11.9)

If one also considers thef(c)=const and\s;=const, i.e. they don’t depend on the stress,
the (11.9) equation leads to the usual form:

tr
?;0 :—VAO‘; . (11.10)

(4

Similarly, in case of hydrostatic pressure (p) @aling again thatAs.=const and
VY=const,

tr
o _ V" (1.11)
op As,
and for external magnetic field (B)
tr
My =M ) (1.12)
0B As

C

where M', the change in magnetization due to the transfiomgand M'=const.).

[1.1.1.3. Integral quantities

The heats (Qand Q) of the forward and reverse transformations cambasured in a
calorimeter, e.g. in case of a heat compensatifferential scanning calorimeter (DSC)
measurement they will be equal to the area of dakp during A>M and M—A transitions,
respectively. (Fig. Il.1) This heat emission or @ipsion originates from the latent heat
(AH<0) — whose magnitude is the same for both dirastend only its sign is different — and
the non-chemical free energies.

D' and D mean the energy dissipated mainly due to theidricstresses required to
move interface during forward and reverse transétion, respectively, as well as 5 the
whole stored energy by the formation of the maitenphase and 'Ereleases during
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martensite/austenite transition and so helps #restormation. From this one can see that the
assumptions, which will be discussed in the negtiee, have physical background.

E A
IT| M—A

v

A—M

Figure 11.1: Schematic figure of a DSC curve copesding to martensitic transformation
(modified version of Fig. 7 of Ref. [O&P88])

Q =AH_+E' +D'

(1.13)
Q =-AH_.+E' +D’
One can compose the sum and the difference of tresds:
Ql _QT =2AHC+El _ET +Dl _DT

(1.14)

QT+Ql :ET +E1 +DT+Dl.

[1.1.1.4. Typical assumptions used in the evaluatics

In order to determine the elastic and dissipatigatiibutions from hysteresis loops
additional assumptions are needed. It is usualuragd for shape memory alloys, that
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€=6'=- &' (and g=e;'=- &'). Similarly it can also be assumed that al'= d,’ (and
di=dy'=d;"). Then from (I1.5)

d, +¢&
M¢=T, - —OAS =To = Tao = Teo

d, +
M =T, - _lASel =To = To = T
(11.15)

d —
Af :TO+ OASeO :TO+Td0 _Teoa

C

and

d -
A=Ty+— sel =To+ Ty ~Ta

c

result, where the g, Tq1, Teo and T, are the “non-chemical” temperatures correspontiing
the derivatives of dissipative and elastic ternteylcan be written as:

d d
Tow=—2— (20 ; Tu=—— (0
© = ps (=0) @ = as (=0
(11.16)
-_ % : -_&
T, = >0) ; T, = >0
@ -As, =0 ¢ -As, =0

Evaluating thermal hysteresis cycles the transfionaemperatures, i.e. the left sides
of (11.15), can be determined but terms on thetrgitles — except of the entropy change — all
are unknown; we have five unknowns and four equati®o not all of unknowns can be
calculated The evaluation is usually done by ush&se equations, but as one can see the
elastic term cannot be determined exactly, if tldue of the § isn't known from an
independent measurement (as it is so in many casegyvay from the right combination of
the (11.15) equations the dissipative terms carexectly determined but the expressions of
the elastic ones contain the value ef T

According to the above assumptions and due todatiettiat in relations (11.14) the E and
D quantities are the integrals of the differentjahntities treated above one can also assume:
E'=-E'=E(>0) and B=D'=D(>0) and so:

Q' -Q' =-2AH,.-2E
(1n.17)
Q' +Q' =2D.
It is important to note that the last equations strectly valid only in that case if the

system comes back to the same thermodynamic $tateazcycle, i.e. it does not evolve from
cycle to cycle. Ortin and Planes [O&P88] showedt tfial14/b) is only valid if the heat
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capacities of the phases;f(cand @,M) are equal to each other, but in general the redation
is true:

Q' +Q' =2D~-(c," —¢,")(TA~Ty) (11.17)

where Ta and Ty are the corresponding peak temperatures.
11.1.2. Effect of Hydrostatic pressure and tensilestress

11.1.2.1. Effect of hydrostatic pressure

11.1.2.1.1. CuzZnAl(Mn) alloys from Ref. [Detal00]

The authors investigated the effect of the hydtastpressure on the martensitic
transformation in two samples of a polycrystalli@e-22at%Zn-12at%Al-1at%Mn alloy.
They followed the transformation by the measurenoétihe electrical resistance (as it can be
seen in the Fig. I.6. in Chapter I) and the tramsfdion temperatures were determined from
0.1MPa to 1.5Gpa (Fig. 11.2).
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1 420 e e e
. ' ] o o g® —o— ¢
" %*r'-}-"” - ‘\*o 400 'é/‘ A a—A—A, .
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J @ E n As
360 360
] A ] e Af
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< 30 320—_ —w— Mf
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300 n — ] e
- . i T e 280 .f.ll\ o
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240 ‘J \v7v,v'——_,_,v_/»"v' 220 - v '*v,.v’ v
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Figure 11.2: The transformation temperatures asiadtion of hydrostatic pressure in
CuznAl(Mn) samples (Fig. 2 of Ref. [Detal00])

The (11.12) expressions were combined and the nelations were calculated for all
pressure levels:

Agdi* -Agy

1
—Z(A,-A, +M_-M,) =
2( s f s f) —ASC

(I1.15)
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1 Agdi* +Agy

—(A.+A. —-M_-M.) = .16
Z Bt A M M) == (11.16)

1 €, €

=(-A.+A . +M_-M,)=—""—= .17

RCATATM M) =" (11.17)
and

1 &

~(M_+A)=T, ——— 11.18

oMt A)=To— (11.18)

1 €

=M, +A)=T,———, 11.19

oM +A) =Ty -t (11.19)
whereAgqi=do, Agai =d1, &n=€; and @ has the same meaning.
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Figure 11.3: The pressure dependence of the (IL1B)9) expressions in CuAINi(Mn)
samples (The (5)-(9) equations of Ref. [DetalO@ tre (11.15)-(11.19) in order.)

They different behaviour in the low pressure raofserved for @ between the two

samples ((8) in the Fig. 1.3 (appearing also orvey7) in Fig. 1.3), was interpreted by the
differences of the microstructure and the histdrghe specimens. Additionally, they found
that the dissipative energy terms are much smeéer the corresponding elastic ones.

Furthermore, from power compensation DSC measuretherspecific entropy change

was calculatedAsc =—1.14 J/molK, therewith the knowledge of thkuwte change during the
transformation is also necessary to calculate tyerdstatic pressure dependence of the
equilibrium temperature,ol They found that there is no any shape changeerkta the phase
transformation (or at least it is less than 0.05f6}his material. Hence, according to the
Clausius-Clapeyron equationg iE independent of the hydrostatic pressure.
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11.1.2.1.2. NiTi alloys from Ref. [Detal02]

Dard6czi et al. have performed the same procedurerr{tal cycling under constant
hydrostatic pressure from 0.1MPa to 1.5Gpa on @vopes—F and J), similarly as in the case
of CuznAl(Mn), but now the compositions (and thégor) of the two specimens were a little
bit different. Moreover, they had to take into amebthe R transient phase, i.e. two
martensitic phase transformation took place oner afhother; namely B2R and R-»B19’
during cooling and B19»R and R-B2 during heating. Like before the resistance vs.
temperature curves (Fig. I.5. in the Chapter I) eveised to follow the transition and
determine the transformation temperatures (Fig).11.
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Figure 11.4: Transformation temperatures vs. hydabs pressure in NiTi alloys (Fig. 3/a and
b of Ref. [Detal02]

It can be seen that in the 0.2-1.5 GPa range tigdeteies are similar in both types of
samples, but in the low pressure range there da¢ivedy strong changes which are even
slightly different for the two specimens.

Furthermore, according to (11.15)-(11.19) the comdgions of the corresponding
temperatures were calculated (Fig. 11.5) and simiéandencies were observed between the
two samples. The sum and the difference of thepdiige contributions are approximately
zero, i.e. the dissipative contributions are nélegin B2/R transition, and at the same time
the difference of the elastic terms (11.17) and diféerence (11.15) and the sum (l1.16) of the
dissipative ones have the same order of magnitu&B19’ transformation.

The authors added two further equations to caleula¢ dissipative energies from the
transformation temperatures:
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1 A
“(A-M,)==00 (11.20)
2 —As,
1 Ag,,
~(A -M,) =Y (1.21)
2 —As,
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Figure 11.5: The pressure dependence of the (IL{15)9) expressions in NiTi alloys(The (5)-
(9) equations of Ref. [Detal02] are the (11.15)-19) in order.)

The entropy 4s) and volume (V) changes accompanied with the martensitic
transformations were determined at stress free $tatn DSC and elongation-temperature
curve measurements, respectively. SupposingA\th&/" is independent of pressure (p) the
Clausius-Clapeyron equation (11.8) leads to

tr

As

(9

To(p) =——p+T,(0). (1.22)

Thus Tp can be replaced in (11.18) and (I1.19):

Vee, +OH, (0) = -%(MS +A,)(=0S.) +V" p (11.23)
Vye, +4H, (0) = —%(Mf FA)(-DS,) +V' p, (11.24)

whereAH(0)=To(0)AS,(<0) is the enthalpy difference between the twosplkaat §0) and
ASF=AS V.
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Accordingly the authors were able to determinedissipative terms and the tendency
of elastic ones. Fig. 1.6 shows the pressure digece of the dissipative energies. It can be
seen that itAgq*) increases with the pressure for R/B19’ transfation, and it is practically
constant for the reverse (B19'/R) transformatiagy().
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Figure 11.6: Pressure dependence of the dissipativergies for R/B19’ transformation in two
NiTi samples (Fig. 9a-b of Ref.[Detal02])
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Figure I1.7: Elastic energies vs. pressure in saenpl(Fig. 7a-b of Ref.[Detal02])
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Figs. 1.7 and 1.8 show the elastic contributiorersus hydrostatic pressure for both
transformations and both specimens. It can be skannot only the tendencies but the slopes
of all four energies of F and J samples are similae exclusive differences are the values of
VoeotAH(0) and \bentAH:(0), but they come from the difference of the asditconstant
(AH(0)) of the two specimens. Moreover only the B2 satastic energy ¢an case of B2/R
transformation) decreases with increasing hydrizstatessure, and there is an opposite
tendency for the reverse transformation.
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Figure 11.8: The effect of hydrostatic pressuretba volume derivatives of elastic energy in
sample J (Fig. 8a-b of Ref.[Detal02])

11.1.2.2. Effect of tensile stress

11.1.2.2.1. NiTi alloys from Ref. [Betal04]

The procedure presented above was generalizedhéordétermination of the stress
dependence of the dissipative and elastic energystesing the results of measurements of
Tanaka et al. [Tetal99]. The authors investigategd transformations: for setl both B2/R
and R/B19’ transitions and in case of set2, onlg tB2/R one. The transformation
temperatures vs. applied stress can be seen iRigke 11.9 and 11.10, as well as Fig. 1.11
shows the stress dependence of the transformadtains
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Figure 11.9: Transformation temperatures in casesefl (Figs. 1a and 1b of Ref. [Betal04])
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Figure 11.10: Start and finish temperatures of B2r&nsition of set2 (Fig. 2 of Ref. [Betal04])

Again the analysis was based on equations (Il.8)tha general form of the Clausius-
Clapeyron equation (11.6), valid in case of extérsteess, was used to determine the shift of
To because the strain accompanied by the transfayme#@pends on the external stress. Since
To appears only in the elastic contributions, theigetive energies can be expressed from the
(11.20) and (11.21) equations without any changes:

Ag, (0) = -Ds[ A, (0) - M, (0)] 12 (11.25)

Agy (0) = -Ds[A(0) - M (0)]/2 (111.26)

but expressions for the elastic ones include artiaddl term which describes the stress
dependence ofl

e (o) = oVe" (o) + As [M (0) + A, (0)])/12 - As.T,(0) (1.27)

e (0) = Ve (0) + As,[M, (0) + A_(0))/2 - As.T, (0) . (11.28)
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Figure 11.11: Transformation strains vs. stress &lrthree transitions (Fig. 3 of Ref.

[Betal04])

Using these equations the stress dependence dethatives of the non-chemical free

energies can be calculated. It can be

seen thamadgmitude of the elastic terms could not be

determined because the value gf0) was not known.
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Figure 11.12: The calculated non-chemical energytciutions as functions of external stress
for B2/R transformations (Figs. 4a and 5 of Ref. [Be4§)

One can see in the Fig. 11.12, that the calculateergy terms for B2-R transformation
show very similar tendency in both series. The gasre energies are really close to zero

corresponding to the results obtained when theeffehydrostatic pressure was investigated
on NiTi [Detal02]. Furthermore, neither elastic terehow stress dependence and their values
are similar, but at every stress levegle® is valid.
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Figure 11.13: Stress dependence of non-chemicalgrasrduring R/B19’ transition (Fig. 4b
of Ref. [Betal04])

For R/B19’ transformation both the dissipative ahé elastic energies have stress
dependence. Even the two dissipative terms haverelift tendencyAgq increases while
Agqi shows a decreasing tendency with increasing s(fégs 11.13). On the other hand the
both elastic contributions are increasing functiohshe stress andnas bigger than g like
before, but the difference between them are higteer for B2/R transition.

11.1.2.3. Open questions

It is clear from the above examples that the amalys capable to determine the
derivatives of the non-chemical free energies ofrtemsitic transformation only at the
beginning and at the end of the martensitic traorsitThe derivatives were calculated only at
the start and finish temperatures, whereas theefrg@ts loop inevitably contains the
information on the whole forward and reverse tramshtions.

Furthermore one has to keep in mind that whilentfagnitude of the dissipative terms
could be determined, for the elastic ones onlytémelency could be estimated, because their
expressions contain the equilibrium transformati@mperature, J, whose value was
unknown.
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[I.2. Simulation of hysteresis curves

[1.2.1. Model for two-phase system

The R model ([Retal92], [R&L94], [R&L98]) provides us way to describe the
evolution of martensitic fraction during pseudogtastest after some parameters are
determined from the experimental curves. In aleéharticles the authors consider the stress
and strain fields very generally; it means thrematisional stress and strain matrices were
used; now | will present a simpler version in whizthth the stress and the strain are uniaxial.

[1.2.1.1. Free energy

Consider a piece of shape memory alloy (represgatablume element — RVE) which
at a reference state0 and T=T) is in austenite state. As soon as the applieteasing
stress reaches a certain level the martensite @peears, then it grows and the after a given
stress only martensite phase can be found in tieaepof shape memory alloys (forward
transformation); and if the stress decreases, @ahesverse process will take place, i.e. firstly
the austenite phase accommodates then the whole tBME into austenite phase. The
Helmholtz free energy of such a mixture:

O =1-2)P" +z0% + z(1- 2)D, (11.29)
where thed” (a=1,2) is the free energy of

the austenite phase (A)df1 and

the martensite phase (M)df2.

Furthermore the last term describes the interadimimveen the austenite and the martensite
phases, and;, so called configurational free energy is defiasd

D, =0, — TS, (1.30)

where U,, §, are the configurational internal energy and entrapspectively, and; is
expected non negative. Finally z is the martengiéictions which must comply with

0<z<1. (1.31)
The sign of the uniaxial description appears fjratl the expressions of the Helmholtz

free energies of the phases:

®7 =u,” -Ts,” +2_Ii?(£” g, " -¢,)? +CV[T -T, —TInTl} (1.32)

0
where @”" and §* are the internal energy and the entropy ofdtghase, Ep and ¢ are the

Young modulus, the mass density and the heat dggpgacirder (supposing they are the same
for each phase). Furthermasg & andg,' are the total intrinsic, the transformation anel th
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thermal strain and so the expression in the pagsethis the elastic strain of tih@hase £,°)
and due to the same Young moduyfse,’. The thermal strains can be given as

g =&, =a,(T-T,) (1.33)

whereoy is the thermal expansion coefficients supposirgsidume for both phases. Whatever
this strain contribution is practically negligibt®mparing to the transformation one which
has a value different from zero only for2:

g" =0 &' =y, (11.34)

wherey is the total pseudoelastic uniaxial strain (Figl4). Moreover the total strain of RVE
can be written as

E=(1-2)¢ +z¢&,. (11.35)
0 F 3
: Y ./
AM #
oY GMAS
MA
(CRa
g

Figure 14: Determination of from a stress-strain curve of martensitic transfiation
measured during isothermal experiment and the aftarsstic stresses

Substituting (11.32) expressions<1,2) into (11.29) the Helmholtz free energy ofghi
two-phase system is obtained:
O =u, - T8 - 27 (T) + (e~ 2y -y (T =T,) +
2p
T (1.36)
+C, [T -T,-TIn T_} +z(1-2)P,

0
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where @' and g* are the internal energy and the entropy of théeaite phase, respectively,
as well aStof(T), the chemical potential of phase transformatimontains the internal energy
and entropy changes of the system because of tieeemartensite phases:

1m,' (T) = Au* -TAs*
At =u,' —u,’ (11.37)
Ast=s,' -5,

Furthermore it is worth to examine the (11.36) eegsion. The partial derivatives of it
according to three variables (z,T a)grovide the next thermal equations:

6;13

g =p - =E(e-2/-a,(T-T,) (11.38)
<= _g;: =5 - ZAs* +aLpE(£‘— zy-a,(T-T,)) +c, |n_|_l0 +z(1-2)5, (11.39)
and
7 = _‘Ziz’ - +%(£— 2y -a,(T -T,)) - A-22)®, (11.40)

whereo, s andr’ are the stress, the specific entropy of RVE amdttiermodynamic force
associated to the phase transformation and if ¥pgession for stress is substituted into
(11.39) and (11.40), then one will receives sim@il forms:

0P 1 a,o T _
s=——=5, - ZAs*+—— +¢, In—+z(l- Z .41
7 =S , TN rA-25 (I1.41)
and
m == g 270, (11.42)
0z P

where now the three variables are z, T and

11.2.1.2. Transformation kinetics

Let us consider the first and second laws of thelynamics:

du= -+ (11.43)
0

Tds+da320 (11.44)
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where u=+Ts is the specific internal enerdglq is the heat exchange aade/p is the work
done on the system by the uniaxial loading. Hetlo&3) can be written as

9® 17 +9% 47+ 9% e + saT+Tds= - + T (11.45)
oT 0z o 0

which is simplified easily having regard to (11.3§)1.39) and (11.40) as well as the heat
exchange is expressed and it substituted into4{ll. 8o one obtained finally:

m'dz=0 (11.46)

Thus, it is understandable the meaning of thermadya force: The sign ofr'
determines the direction of the martensitic tramagtion, if it is non negative, thenxz, i.e.
the martensitic fraction can increase only — foodMaansformation — and the martensite phase
can shrink (dg0) if =’ less than or equal to zero — reverse transformatio

Neglecting the thermal expansion effect there ateparametersy( p, Au*, As*, U,,

S,) Which are necessary to know to determine thentbdynamic force using (11.42). The

total pseudoelastic uniaxial strain and the massitlecan easily measured and the other four
parameters can determined taking into accountthig equal to zero at the start of the
forward and reverse transformations. In fact, te@eemore ways to calculate these constants,
e.g. let us take stress-strain cycles measureiffertesht temperatures, and it will be true at for
every hysteresis:

AM
s

7' (o™, T,z2=0 =2

+(Au* —T,) - T(As* -5,) =0 (1.47)

yo A

7' (oM, T,z=1) = +(Au* +T0,) = T(AS* +5,) = 0 (11.48)

and considering the slopesddf's(T) ands™ (T) (Fig. 11.14):

dUAMs :E

a oy (As* -5,) (11.49)
do™s _p _

= (As* 1.50

pres y( S* +5;) (1.50)

So we have four unknowns and four independent emsti.e. the parameters can be
calculated from the start stresse$™(s ands™¢) which are known at least at two different
temperatures. Another way could be to measurettiretemperatures (Mand A) at least at
two different stress levels, nevertheless in tl@secone has to make a stress-strain curve
measurement to determipas well.
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Figure 11.15: The temperature dependence of the steesses

Nevertheless, the (11.46) inequality cannot detaarthe transformation kinetics, but it
decides what kind of process can take place. Toritbesthe evolving of martensitic fraction
the authors presumed that two functions eXg{x’,z) and¥?(z',z) which are constant for
partial and zero for external cycle during the fard/and reverse transformation, respectively
(Figs. 1.15 and 11.16):

W=7 —k'(2)
(11.51)
W2 =—7" +k?(2)

and the authors assumed that tfi&z)k(0=1,2) functions have the following mathematical
properties:

k'(0)=0; Iiml k' = +o0; Iiml(l— 2k =0; k'>0;
k*() =0; Iirr?) k? = —o0; Iirr?) zk* = 0; k? <0 (11.52)

dk?/dz>0 for 0<z<1
and take

k' =—(A +B,2)In(l-2)+C,z

(1.53)
k?=[A, -B,(1-2)]Inz-C,(1-2)

where A, B, and G are constants (&0, G>0) and their values can be determined from the
branches of martensitic transformation.
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Figure 11.16: Schematic figure about the stressuiceld martensitic transformation
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Figure 11.17: Schematic figure about thermal cybiesteresis loop
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[1.2.2. Model for three-phase system

The above written model is appropriate to descti® martensitic transformation if
either only self accommodated (thermal induced)rdy oriented (stress induced) martensite
shows up, and it is true for example in case dhisanal process, where only the oriented one
can evolve under external load, or in case of sthese anisothermal experiment, where the
martensite phase accommodates randomly. But iteeaily happen during thermal induced
martensitic transformation under stress that thds® martensite variants form
simultaneously.

Hence one has to take into account the possilbifigppearing more than one martensite
variant, i.e. now we have a three phase system.dékels of this improved Rmodel and
general, three-dimensional case can be found is.Re&L96, Getal00] and now | present
the one dimensional version as above.

11.2.2.1. Free energy

First of all it is worth to discuss about the masdite variants, let us assume the total
martensite fractiorg, is split into

zr, self-accommodated, which obtained under purartakprocess, and each variant has
its own complement, hence appearing of this maiteerdoesn’t draw down macroscopic
phase transition strain; and

Z;, oriented, result of external mechanical loadingd aassociated macroscopic
transformation strain.

Austenite

Self-accommodated Oriented

- ) -
martensite - martensite

Figure 11.18: Interrelations between the parent gmdduct phases (Fig. 1 of Ref. [L&L96])

Fig. 11.18 shows the interrelations between thetenite and martensite phases and the
martensitic fractions must comply with
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O0<z <1

: 11.54
O0<z, <1 ( )

O0<z=2z +z,<1 and {

Of course the Helmholtz free energy is similar lige29) but now there are two
additional terms: one concerns the plus martemsitk another one describes the interaction
between the martensite variants.

O=(1-2)P" +2, P’ +2, 0+ z(L-2)D, +2,2,D," (11.55)

where thed” (0=1,2,3) is the free energy of

the austenite phase (A)df1,

the self-accommodated martensite phase) (V=2 and

the oriented martensite phase jM o=3.
The z(1-z)p;; has the former meaning amgz,@;" describes the interaction between the two
types of martensite variants, now together thesetesms are called configurational energy.
The free energy expressions of the pure phasethareame like before (11.32p%£1,2,3).
However the situation ob; and@;™ is not so clear, it means that either they aresiciemed
as non-negative constants [L&L96] or ond;" is constant andp; has a temperature
dependence like (11.30) [Getal00] or both of theepend on the temperature [Letal06]. Now
the first case will be presented.

Let us regard the strains of all three phases.yewer's strain is composed of an elastic,
a transformation and a thermic part.

g,=g°+¢g, " +¢&, (11.56)

The elastic term and the thermal expansion, whigchbe written as (11.33), are the same
for all phases. Furthermore, as it was assumedtbalpriented martensite has transformation
strain different from zero:

tr tr
& =&, =0
L (1.57)
E =y
As well as the total strain of RVE can be writtemsequently:
E=(-2¢ +z,6,+2,&, (1.58)

And now following the analogy anyone can derive Helmholtz free energy of this
three-phase RVE:

® =, -Ts,! - 271, (T) +2—Ep(e—zgy—ao(r T, +
. (11.59)
+C, {T -T,-Tln T—} +2(1-2)®, +2,2,d,"

0

where nowr(T), the chemical potential of phase transformaticteiined as
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1," (T) = Au* -TAs*
Au* =u," —u,” =u," —u,’ (11.60)
AS*:Sol_SOZ :Sol_SO3
i.e. the same internal energy and the same entna@pgonsidered for both martensite phases.

The next step is the composing the partial dereatiof the Helmholtz free energy of
the system like before but now tiég does not depend dn

J:p%:E(e—zgy—ao(T—To)) (11.61)
s:—‘;if:sol—zAs*+CipE(.s—zgy—ao(T—TO))+<:V |nTl0 (1.62)
and
m'r = —g%’ =, -0-22), -z,®," (1.63)
(. 0P _

me = ' +%(£—zay—ao(T -T,) - @1-22)®, -z, ®,"  (11.64)

oz,

wherexr'; andx's the thermodynamic forces associated to the forrinsplf-accommodated
and oriented martensite phases, respectively. Aoakly substituting the stress expression
(11.61) into (11.62) the former expression (11.419 reobtained and into (11.64) a simplified
form is received:

f __aq) —

o= =T +V—Z—(1—22)¢n—qu>n“‘ (11.65)

As one can see the dependence of the thermodyriaroés is in accord with Fig. 11.18.
i.e. 't is independent froma while inz'; there are a thermal and a stress contributionedls w

11.2.2.2. Transformation kinetics

The initial point is the first two laws of thermatymics, and after a similar derivation
one obtains:

m'rdz + 1 odz, 20 (11.66)

and this inequality determines the processes clam pdace. For example it explains the
transition between the two martensite phases where@ of thermal induced martensite
becomes oriented, i.dz=-dz, and so
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(m'e-m't)dz, = m'0dz, 20

where
o =y—,oa—(zT -z,)0," (1.67)

is referred to the thermodynamic force associatedthiie reorientation of the self-
accommodated product phase, and it depends ortlanbtress really as Fig. 11.18 shows.

The number of parameterg, p, Au*, As*, ®@; and®;™) is six here too neglecting the
thermal expansion, thanks that the configuratiem&irgy does not depend on the temperature,
i.e. @y is constant. The same holds truer @indp and on the other four constant Leclercq and
Lexcellent [L&L96] gave the next relations usingtfact that the thermodynamic forces at
the start of the transformations (austeritemartensite and self-accommodatedoriented)
are equal to zero:

0_ A0
n:fﬂﬂ%rfﬁlgws (11.68)
2y(Ms _Tpe)
To
"= (11.69)
AM 0 0
ps = Y0 e | M A (11.70)
2'0 Tpe_Ms
AM
As*:TV‘T—I\jIO (1.71)
P pe s

where M? and A° are the martensite and austenite start tempesagireero stress’ s is
the yield stress on the isothermal martensiticsiammation performed atpe'EAfO (austenite
finish temperature at stress free state) tempera@s well as'© is the yield stress for
reorientation of self-accommodated martensite wésia

There are five different transitions, which canetgdtace, so following the presumption
of R_. model five functions exist which are constant fpartial and zero for full
transformation:

Yo =m'o—k%; W% =-m'e+k";
Whi=m'r -kTr; W =m'r-k'y; (11.72)
W =g To — k™
wheregs, T andTe superscripts mean the AlMhe A/Mr and the M— M, transitions, as well
the f and r subscripts show the direction of martensitic tfameation such as forward
(A—M) and reverse (M-A). In contradistinction to Rmodel thek’;, K, ks, k', and k™

functions don’t depend only on the martensitic fiag but on the stress and on the
temperature and take zero value at the beginninghate transitions. The functions, which
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were published in Ref. [L&L96], are extended frone kinetic forms proposed by Koistinen
and Marburger [K&M59] and Raniecki et al [Retal92].

k=20, (z,-2,") —A—Saln(l— z, + zam)
a

f

: (11.73)
_AS{(T_T*)%_f,eXF{_ b, (r ~M2))- exgl-b, (- ))}
k? =2®,(z, - z," -1) +A—iln(zg - ZJM)
& (11.74)
+As{_(T 1)+ Db, fr - A7) -exel-b, fr _Ag))}
T =20,(z -2 -2 nfl-z, +2,") (11.75)
ay
k! =2, (z - 1)+—|n( M) (11.76)
ar
and
k' :ZGJnng—g—sln(l z,) (11.77)

The parametera’, a°, &', &', a7, by, b, by andby, are identified from experimental
tests. The temperatufé is that for which a mechanical loading is ongoing, T can be the
temperature at the beginning of an isothermal machbloading or the actual temperature in
case of non-isothermal mechanical loading.

The 2™, zM, z™ and z" characterize the “memory” of the material, i.&" and z™ are
the initial values of zand z when a forward transformation begins ag and z“ are the
initial values of z and z likewise when a reverse transformation commenkeesice these
parameters are relevant in the case of partiakhgsits loop.

[1.2.3. About the models

11.2.3.1. Results of simulation

Let me introduce one example of the applicatiorthef above two models: firstly a
simulation of the pseudoelastic behaviour on equetdNiTi using R model is presented and
then the thermal induced martensitic transformaton NiTiCu and NiTi alloys will be
investigated applying the L—-L model.
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11.2.3.1.1. NiTi alloy from Ref. [R&L98]

In this article Raniecki and Lexcellent took int@caunt that the pseudoelastic
properties are different in cases of tension anmdpression. This asymmetry is described by
anf(y) function which has to comply with

f(y=0=1 and dar =0 (1.78)
dyy:O

where the value of provides information about the state of externachanical field; for
example for pure tensiogre+1, for pure compressiop=—1 and for pure shea=0. The total
strain (y) can be calculated

y=ylf(y) (11.79)

wherey is the total shear strain obviously. Thus, forsten 1) and for compressiond) the
total uniaxial strain can be given as:

yr =yLf(+D); ye =yLf(=]) (11.80)

To verify the validity of the predictions the authased the experimental data published
by Orgeas and Favier [O&F95] on NiTi. The calcutbfgarameters can be found in Table

.1, practically they considered a constéqtsince 5, =0.

Properties Value
p [kg/m? 6500
E [MPa] 55000
v (Poisson ratio) 0.29
Au* [J/kg] 23800
U, [J/kg] 1000
As* [J/kgK] 80
S, [J/kgK] 0
Y 0.061
f(+1) 1.05
f(-1) 0.744

Table 11.1: Values of parameters for equatomic Nillable I. of Ref. [R&L98])

Finally in Fig. 11.19 one can see that the corielatbetween the experimental data and
the hysteresis loop calculated according tav®del, and they show good agreement.
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Figure 11.19: The correlation between the experitnamd model prediction at T=333K (Fig.3
of Ref. [R&L98])

[1.2.3.1.2. NiTiCu alloy from Ref. [Getal00]

The authors investigated three shape memory alioy fiims and applying the L-L
model they calculated the strain—temperature hgsigioops at different stress levels which
were compared to the experiments.

It was showed that at constant stress the reotientaf self-accommodated martensite
doesn’t take place but only the creation and tha&halation of martensite. Finally two-two
relations were obtained for the forward and forréwerse transformations.

For A—M transformation:

z, :l—ex;{—}a—f<ao —,oAS* _§°(T—MS°)>} (1.81)

p(As* -5,) y

z :1—exp(—afT<MS° —T>) (1.82)

In case of M>A transition:

_ _w’ As*+5, [ o)_
z, —ex;{ o(bs” +§O)<p y (T A ) ao>} (11.83)
z, = expi- a'(T- As°>) (11.84)

-48-



The thirteen material parameters of the three slloyere determined by some
appropriate isothermal and anisothermal tests; tladiles can be seen in Table I1.2.

Parameters | Ti-43.0Ni-6.2Cu (at% Ti-48.7Ni (at%) Ti-51.5Ni (at%)
E [GPa] 55.6 55.56 55.7
p [kg/m?] 6500 6500 6500
M [K] 324 338 160
AL K] 341 360 215
Au* [J/kg] 38245 35931 10179
As* [J/kgK] 113.71 102.5 52.85
U, [J/kg] 17432 6515 3288
S, [J/kgK] 49.57 15.45 9.78
Dy 1200 900 1600
y 4.6 5 5.6
a 0.025 0.001 0.016
al 0.19 0.16 0.19
a° 0.07 0.05 0.03
a’ 0.082 0.036 0.082

Table I1.2: The values of the thirteen parameter$bth three alloys (summary of Tables 2, 3
and 4 of Ref. [Getal00])

In the conclusions it is announced that the mapoliyesis, i.e. distinguishing two types
of martensite, is appropriate to NiTi based alldyn$. However, at low stress levels the
model didn’t provide a good agreement with the expent, and the authors mentioned that
they had the same problem in the modelling of adasshape memory alloy.
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Figure 11.20: Measured and calculated strain-temgteire curves on Ti-43.0Ni-6.2Cu (at%)
thin film at different stress levels (Fig. 4a off H&etal00])

-850-



= 1 L — - — S
e (%) ——Modeling | | £ (%) Modelng
4 | + Expeniment | 4
a4 a=120 MPa 3 150 MPa |
j |
2 o
1+ 1
TK} |
o 0 . 1
250 350 400 450 500 250 00 350 400 450 500
5a = =
£ (%) —odaling
4
KT
2
1
o
250 350 400 450 500
5 - L P = B - —_— _— 1
€(%) bbb ——Modsling £(%) TR e odeiing |
44 44 + -+ + Experiment |
+
*  o=400 MFa
34 g ¥ +
+
- 2=
2 +
14 1
1] 0 ¥ T
250 250 300 as0 400 450 500

Figure 11.21: Measured and calculated strain-temgaeire curves on Ti-48.7Ni (at%) thin

film at different stress levels (Fig. 5a of Refef@00])

-51-



i . ) - [
£ (%) — hiedaling & d e (%) | e odeling
+_ Experiment |

+  Experiment {
o =210 MPa

a =150 MPa

120 170 220 27 320 ara 120 170 20 ar az0 aro

B — — i — =
£ (%) £ (%) | —pocating

i 4+ BEsperiment
o =370 MPa

120 170 220 270 320 aro 120 170 220 270 az20 a7

e _ing =
+ Experiment

o =470 MPa |

120 170 220 a7 f ) ara

Figure 11.22: Measured and calculated strain-temgaeire curves on Ti-51.5Ni (at%) thin
film at different stress levels (Fig. 6a of Refef@00])

11.2.3.2. Validity of models

Although the R model was developed to describe the stress inducadensitic
transformation behaviour of shape memory alloysrwbiely oriented martensite can form, it
allows us to calculate the thermal induced martendransformation case where the
conditions are so that only one type of martercate appear. It can be seen from the fact that
the equations of L—L lead to the ones gfiRonly one martensite is considered and if ithie
self-accommodated one, then théas to be equal to zero, i.e. thedp term vanishes in
expression of. | must to note that at stress-free state this teanishes automatically and so
the R model works correctly without changingo zero.
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Chapter Il
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Ill.  Experiment and evaluation

[11.1. Generalization of Beke-Dar6czi model for thewhole transformation

The anisothermal tests are usually made on diffesieape memory alloys to determine
only the transformation temperatures from the messshysteresis curves. Nevertheless these
curves contain information about the whole martengiansformation, i.e. one can follow up
both the forward and the reverse transition asatfon of transformed (martensitic) fraction,
&, and even thé dependence of the non-chemical energies can béelt [Petal05]

[11.1.1. Expressions for the up and down parts ofhie hysteresis loop

The starting relation is the (Il.1) equation, whishpasted here as (lll.1), because the
derivatives of the Gibbs free energy changing atiogrto the transformed fraction is equal to
zero not only at the starts end finish temperatbrésat any time during the transformation;
namely the martensitic phase transition is diffales and so a balanced state can find an
other equilibrium very fast after any temperaturéoading force changes, i.e. the derivatives
of the Gibbs free energy according to the martenB#ction is equal to zero through-AV
and M—A transitions:

agij =0’ +d" (&) +€' (£ =0 (1)

and a similar one is valid for MA, too:

Q(%):Agcf +d' (&) +e' () =0 (11.2)

Furthermore the expressions of the chemical terorst &hange either, because the
chemical free energy and the transformed fractioanges are linear to each other and the
derivation keeps the slope only, which can be gya&tived from the expression of chemical
Gibbs free energy of the two phase system:

G, = (1-§G, +&." (I11.3)
Thus using the relation about the enthalpy andegtchanges one receives:
Ag,' (T)=-Ag,' (T) =(T, -T)as, (111.4)

andAs:=s" -§" (<0) like before. Writing it in (Il.1) and in (112) two relations will be
received:

(T,-T)as, +d' (&) +€' (&) =0
(11.5)
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(T-T,)as, +d" (&) +e (&) =0

where T is the temperature at which the derivatiséshe chemical and the non-
chemical energies cancel each other and the direatid martensitic fraction dependence of
non-chemical ones result the usual hysteretic hebgvi.e. the temperature of the forward
and the reverse transformation can be expressék land the derivatives of non-chemical
energies whose transformed fraction dependenceasppethe temperature.

vt (@) re ()
T (f)—To+A—SC

(111.6)
1@ =T, -4 @*e @
As

c

The T(&) and T(&) functions are the inverses of the well knog(T) and&'(T) which
can be calculated from resistance-temperature @n fstrain-temperature curves using a
normalizing process which includes the eliminatiof thermal effect and the actual
normalizing, i.e£=0 at parent state adgl at martensitic state.

¢ j
el(m Y
gl
A
E\Tl(éf\
0 de e < i
T ° 1 &

Figure Ill.1: The well knowrd{(T) hysteresis loop and its inverse

Obviously the (lll.6) equations give back the riglas valid for start and finish
temperatures (11.5), if one uses the next notifore:

M,=T'©@):; M,=T'Q; A=T'@); A =T
d, =d*(0); d,'=d'(@®); d, =d'(0); d, =d' () (111.7)
& =€ 0); e =e®; & =€(0); ¢ =e@
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If thermal cycles is measured on shape memory alloyder different circumstances
(applied pressure, stress, etc.), one will expegethat the characteristic temperatures are
shifted and even the shapes of the hysteresis lieanare changed. Regarding the (111.6)
relations, which are valid in stress-free and u#ldading cases, the shape change can be
derived only from the external field dependenc¢hefelastic or the dissipative contributions,
because only they depend on the transformed frada the contrary, supposing the entropy
change isn't sensible to external load, a reasdheofemperature shifting is stress or pressure
dependence of the equilibrium temperature, whigheddence is described by the Clausius-
Clapeyron equation, but the magnitude change oh@mechemical energies can do theirs bit
from this shifting.

Let us compose the sum and the difference of thé)(expressions.

T () +T' (&) =2T, +[e' (&) —€e' (&) +d' (&) -d " (O)]/ As,
(111.8)
T () -T' (&) =[e' (&) +e (&) +d (&) +d' (O]/As,

These relations will have roles in the next twaises.

[11.1.2. Correlation between the differential and the integral quantities

As one can see there is an analogy between thespomding (11.14) and (I11.8)
equations, and if the connection between the difféal and integral quantities is cleared, this
analogy will become relations.

Since the small letters mean the differential giti@stthe next equations are relevant:

jAh; dé = —jAh; dé = iTOAscdg = AH_ (<0)
jdl(f)dE:D* (>0) de({)dE:D* (>0) (111.9)
[e ©de=E" (>0) [e (©de=E" (<0)

After all, one can get the next two equations wiieBcribe the correlation between the
measurable “differential” (&), T'(€)) and “integral” (Q, Q') quantities.

[Bs, (T (©+T (E)dE=Q -Q’
(11.12)
JASC(T‘ (&) -T'(£)dé=Q" +Q'

These equations allow us without any simplifier uasgtions to examine the self
consistency of this model.
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[11.1.3. Extending the typical assumptions

Like Chapter Il we meet the same problem, namedynitmber of variables {§g), €'(¢),
d"(©), d'(¢)) is more than the number of equations and evereiforget the determination of
To is not possible in lots of cases. So similar aggions have to be accepted like in case of
pure-phase evaluation (section 11.1.4.), i.e. tiveation dependence has to be eliminated:
e'(&)=-€'(¢)=e)>0 and d(&)=d'(&)=d)>0. Hence such relations are received which
resemble to the (11.12) ones:

T (@ =T+ L 1 1 -1

(9

(111.13)
T @ =T,- 3D 1 1 (o-T.(&)
As,
where
_d@) . Q)
Td(f)-TSC >0; Te(f)-TSC >0. (I11.14)

Now, to express the derivatives of the non-chenfies energies the assumptions have
to be applied to (I11.8) and after a little arrangent one receives the next:

A TH(H-T(E)
d(§) = -0, ——* =
(I1.15)

&(&) =As, T()*T(&) ;TT () -AsT,

[11.2. Measurements in polycrystalline samples

As continuance of the work of Beke and Daréczi @, Detal02, BetalO4] |
investigated the effect of tensile stress deperelemt the derivatives of non-chemical
energies during martensitic transformation on CuA#dfape memory alloy. Firstly the
dissipative and elastic terms were determined ire pphases [Detal04]; then the extended
evaluation method was used to have information atheuwhole transformation [Petal05].

[11.2.1. Anisothermal test under constant stress
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[11.2.1.1. Samples manufacturing

A copper based shape memory alloy was chosen éofutither tests. The Cu-24.0at%
Al-2.2at% Ni samples with 0.5at% B addition wereltee in arc melting equipment from
elemental components. Then the melt was snuffadtogan AbO; tube with 1.1 mm internal
diameter, so-cast428.5mm length wires were used for the experimefi® composition
was determined by energy dispersive X-ray specthgnire a scanning electron microscope.

[11.2.1.2. Experimental set-up

The equipments in which anisothermal test can bee dmder external constant stress
are not so diffused than the ones which are bailtigothermal tests. Hence we decided to
develop our own machines and so we can constratteit our wishes, the Fig. 111.2 illustrates
the heating—cooling, the loading and the straingueament systems.

/Jmmbmemr
pulley—1 \
: !!—>vacuun1
& pump
® ire-
g | wire shape
Y sample
o,
¢
0‘\\\\
weight I ™~ canthal
L wire

|ﬂ
N, vapour

Figure 111.2: Schematic figure about anisothermest equipment
The sample was oriented vertically to be sure ttiatgravity can not bend it which can
cause that the stress field won’t be uniaxial. renmore the sample was fixed by its bottom
and its other end was pull by a cord which was ggiithrough a pulley for the direction
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change and the appropriate weights for a certa@ssthung on its other end. Actually the
cord was used only on the pulley and the resteidhding system was made by bar steel. At
the boundary of the vacuum chamber and the outeosathere a packing-gland assured the
hermetic sealing in which an oiled bar moved.

The equipment was designed so that it allows usn&asure simultaneously the
resistance and the change of length of the samplesely as functions of temperature. A
copper-constantan thermocouple fixed to the middiéssample gave the temperature
information, the resistance of sample was deterthinsing the four-wire method and a
micrometer was used to measure the change of lelgthvoid the oxidation of sample and
the condensation of water on the sample, which ccdwdve changed its resistance, the
specimen was placed in a small vacuum chamber.

External heating—cooling system was applied: astasce furnace made by canthal wire
heated up the part of the chamber where the spacimzs located and vapour of liquid
nitrogen was blown into the furnace, so the coolias localised as well.

[11.2.1.3. Hysteresis curves

Using this equipment we investigated the thermalesy at constant stress up to 100
MPa, both the resistance-temperature and the elongsimperature curves were measured.
At low stresses the resistance hysteresis loops ma#tser usable to follow up the
transformation (Fig. 111.3/a) and the measuremednthe change of length was important to
determine the transformational strafi= I/l (Fig. 111.3/b).

b)
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Figure I11.3: a) Resistance and b) change of lengyteresis loops at 25.4MPa uniaxial
stress (wherdl is the change of length accompanied to the transibion)

Increasing the loading force both the resistanogtrature (Fig. Ill.4/a) and elongation
temperature (Fig. Ill.4/b) hysteresis curves opes door to determine the transformation
temperatures or even to perform the normalizatrocegss.

-61
" Because of a calculation error the stress valueme vabout 10 times smaller in the Refs. [Detal0dd a
[Petal05]. Here this error is corrected and theemdrfigures will be signed by a superscripted.star
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Figure Ill.4: a) Resistance vs. temperature anelongation vs. temperature hysteresis loops
at 67.2MPa uniaxial stress

As one can see that both on the resistance-teroperand on the elongation-
temperature hysteresis curves there are loopsdsesidthe hysteretic behaviour. In the case
of elongation these artifacts are derived fromghiéting of the cooling down and the heating
up branches to each other this effect probably soimen the fact that the steel bar couldn’t
move easily, i.e. a limit force was needed to puhimotion, or the different hydrostatic
pressure values cause the shifting. In the casesadtance the additional loop appears only in
martensite state and even its size is differediftarent stress levels, for example at 78.2MPa
its area is about the half of the hysteresis lobgeaat 25.4MPa any additional loop can not
be experienced. In conclusion the elongation-teatpes hysteresis loops are more
appropriate to be the bases of the evaluation psaesein spite of its weak resolution at low
stresses.

All measured hysteresis loops can be found in AdpeA.
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Figure 111.5: DSC curves measured at zero stress
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111.2.1.4. DSC measurement

As it was cleared in the previous chapter the @gtchange between the parent and the
martensitic phase during the martensitic transfdionas needed to the evaluation procedure.
To obtain this information a Perkin-Elmer DSC 7 wes®d to measure the absorption and
release of energy during the martensitic transftionaat stress free state. (Fig. 111.5)

[11.2.2. Evaluation in accordance with B-D model

[11.2.2.1. In the pure phases

[11.2.2.1.1. Measured parameters

First of all the start and finish temperatures;,(M¢, As and A) were determined, we
considered the start as well as the finish poiriere the hysteresis curve leaves as well as
returns the linear fitted on the pure phases, sy (Fig. I11.6). However this temperature
values are sensitive to the fitting and so +5K ewas considered. Finally the transformation
temperatures vs. stress functions can be seee Fidgh 111.7.
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Figure I11.6: Determination of transformation temjé¢ures from elongation-temperature
hysteresis curve
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Figure 111.7: Transformation temperatures at diféert stress levels stress

Almost all transformation temperatures show indrgasendencies at the whole stress
range except of the martensite finish temperatunehvbecomes decreasing from 57MPa.
The Ms and A temperatures are almost correspondent to eacin; otieebiggest difference,
where it is more than the error limit only, caneésgerienced at 35MPa.
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Figure 111.8: Transformation strain as a functior stress
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Due to the measurement of change of length thessstrdependence of the
transformational strain could be determined (Fig8) and as it can be seen that it depends
linearly on the uniaxial stress so the general fofrtlausius-Clapeyron relation (11.9) has to
be used to describe the stress dependence ofulidegm transformation temperature.

Ortin and Planes [O&P88] showed that the entromngks can be calculated from a
DSC curve as follows:

As.' —Mf dQ’
c i T
(11.16)
A s
ASCT = Jdi
A T

and if the heat capacity difference between themtaand the product phase is zerﬁ#cp"")
the magnitude of the entropy change is indepenident the direction of the transformation
and it is negative for A*M and positive for M>A. Nevertheless, if Fé;écp'\", then a
correction term appears between t®' and 4s;' likewise in case of dissipated energy
(n.17):

-
! T Mo_~ A
As, +4s' =(c," -c, )In_l_—M (111.17)

A

but now because of terim(Ty/Tx) this correction is negligible in most of case. lBating the
data from the DSC measurement (Fig. 111.5)

As'=—1,393*1F J/IKn? and 4s'=1,379*10 J/Knt

are obtained. Since the difference of their magiatis within error it is acceptable to neglect
the heat capacity correction and during the evalnat

As=112(Ast4s)=—1,386*1CF J/Knt=—1.026 J/Kmol

is used.

111.2.2.1.2. Stress dependence of non-chemical fremergies

Combining the relations of the transformation terapgres (11.12) one can obtain the
next expressions taking into account the stresertdgnce of the transformation equilibrium
temperature]o:

A (0) =M, (o)
2

dy(0) = -0s,

(I11.18)
A(0)-M (o)
2

d1 (U) = _ASC
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and

+0e" (0) - As. T, (0)

o) =5, (DM

(111.19)

A(0)+M (o)
2

&(0) = As, +0e" (0) - 8s,T, 0)

Now it is obvious that the derivatives of the disdive energy can be determined
exactly, but for lack of knowing(0) only the tendency of the elastic ones can be given

The derivatives of the dissipative and of the @asee energy calculated can be found
in Figs. II1.9 and 111.10. The transformed fractiolerivatives of the dissipative free energy
contribution até=0 (do) and até=1 (d;) are approximately constant at low stresses aey th
show small increasing above 55MPa ahdis bigger thand, for the whole stress range,
however the difference between them is almost widrror. In case of elastic contribution it
is experienced that it is bigger &l than&=0 just like by dissipated ones and both of them
do not change significantly with the stress.

o o
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Figure 111.9: The derivatives of dissipative freeeegies vs. uniaxial stress
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[11.2.2.2. During the whole transformation

[11.2.2.1.1. Normalization of measured hysteresis

Regarding the (ll1.6) equations to calculate the-obemical free energies one needs to
know the temperatures of the down and high branakesfunction of martensitic fraction, so
a normalization process has to be done, which sbo$itwo parts: eliminating the thermal
effects and converting the hysteresis loop betvieand 1.

As it follows from the section 111.2.1.3. the elat@pn-temperature curves are more
appropriate to perform the normalization procesg.(Fl.11), but at the lowest stress levels
the resolution of the elongation measurement doésliow us to follow the transformation.
So in this case the resistance-temperature hystéoep was used to have the normalized one
and fortunately in this case the above mentionelitiadal loop is treatable (Fig. 111.12).
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Figure 111.12: Normalized hysteresis loop from measl resistance-temperature curve at
8.4MPa

Performing this normalization process one rece(@$ functions of the down and up
branches; then inverting them thg&) and T(&) curves are obtained (Fig. I11.13). It is worth
to note that the determination of the down andexpperatures has bigger errors in the start
- 68
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(¢=0) and finish points&1) than in the middle of the transformation betwé&e0.1 and
£=0.9. It comes from that fact the start and finisimperatures are very sensitive to the base
lines, so the normalization process is responéilsléhe different error bars (Fig. 111.13).
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Figure I11.13: The temperature of the up and lovaibches as a function of martensitic
fraction (The size of error in the middle of tramrshation is equal to the size of the sy*mbols
and in the start and in the finish points it candemsidered as the error bar &t(£=0))

T

—
0,0 0

[11.2.2.1.1. Derivatives of the non-chemical free mergies

Knowing the T(&) and T(&) temperatures, the specific entropy change aniddakto
account the Clausius-Clapeyron relation the (I)l.¥guations allow us to calculate the
derivatives of the dissipative and elastic termsaafinction of martensitic fraction. The
summary of T(&) and T(&) is proportional to the derivatives of the eladtiee energy, as
well as their difference is proportional to thesijiative term, respectively; so the experienced
parallel branches pre-indicate constant dissipateatribution during the martensitic
transformation.

In the Fig. Ill.14 one can see that regarding thedformed fraction dependence of the
derivatives of elastic term the differences betwidendifferent stress levels are within error
limit and in the middle of the transformation therrespondence is perfect except of the
lowest stress, where the resistance-temperatuterbgss loop was used for the normalization
incidentally and it could cause the relatively Hifference from the rest curves. Furthermore,
it is worth to mention that the derivatives of takstic energy contribution have singular
points in the start and at the finish temperatuegs] this behaviour leads thereto that the
transformation paths tend tangentially to the bases of the pure phases as Planes et al
observed [Petal89].

In case of dissipative contribution the differetedween the different stress levels are
significant. It can be predicated that the derixegiof the dissipated free energy are constant
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independently of the uniaxial stress, only arouradtart and finish points one can experience
different behaviour but where the error limit igdeér.
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Figure Il1.14: Derivatives of elastic contributiatetermined irrespective of an additive
constant vs. martensitic fraction
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Figure I11.15: Changing of the derivatives of thissipative terms during the transformation
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Using the fact that the derivative of the elast@efenergy cannot be negative a lower
bound can be given for{0) from (l11.15) and using the Clausius-Clapeyemjuation:

T'(€0)+T'(§,0), 0e"(0)
2 As. '

c

T,(0) 2 (111.20)

and in the case @=78.2MPa and=0 the left side of (I11.20) is the biggest, sg(d)>393.8K.

[11.2.2.1.2. The non-chemical free energies

Until this point the derivatives of the differemeaxgy contributions were investigated,
i.e. their slopes were determined as a functiamasfsformed fraction. Nevertheless these data
didn’t provide us information about the amount lvé dissipated energy and about the stored
or released elastic one. However due to know thévateves of these terms along the
transformation one can calculate the transformedtiftn dependence of the elastic and
dissipative free energies:

& 14
D) = j d(2)dz E() = j e(z)dz (I1.21)

To calculate the elastic free energy one shouldvktiee exact value of its derivatives,
i.e. theTy(0). If the above mentioned lower bound value is useel,could receive a good
estimation E’) for the elastic energy (Fig. 111.16)
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Figure 111.16: The elastic energy vs. martensitiaction (estimated result)
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Figure 111.17: The dissipated energy vs. martegsitaction

Let us consider the limit conditions to determirtee tdirection dependence: the
dissipative energy is zero at the start of the &dvand the reverse transition‘(8:0)=0,
D'(¢=1)=0) and the same amount of energy dissipatémbin directions (¢=1)=D'(£=0));
on the other hand in austenite phase there is astielenergy in the system ‘(E=0)=0,
E'(¢=0)=0) as well as the whole stored elastic enengynd the forward transformation is
released during the reverse oné(§€1)=E'(¢=1)). In conclusion the next relations can be
written:

D(E)=D"(§)=D"(1-¢); E€)=E'(§)=E'(§) (In.22)

111.2.2.1.3. Correlation between the differential and integral quantities

According to the section Il.1.2. one can examime évaluation processes performed on
the hysteresis and on the DSC curves without amyplgying conditions. In Figs. 111.18 and
[11.19 the open squares mean the values deternfinedstress free DSC measurement, while
the solid ones are were calculated from the hysiem@rves at different stress levels. They
show very good accordance, so it can be declasgtihr model is self-consistent.
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Figure 111.18: The full dissipated energy duringetbomplete martensitic (forward and
reverse) transformation calculated from DSC (ope*uase) and from hysteresis (solifd
squares) measurement
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Figure 111.19: The minus two times the elastic egyeand the free-enthalpy calculated from
DSC (open square) and from hysteresis (solid sqareasurement
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[11.3. Measurements in single crystalline sample

[11.3.1. Anisothermal test under constant stress

As it could be seen the lack of knowing didn’t allow us to determine the exact value
of the elastic terms. Salzbrenner and Cohen [S&t&8] already shown that using a single
crystalline sample and gradient heating-coolingrttetensitic transformation can be guided
such a way when only one interface moves alongdneple, so in this case the whole sample
turns into the same martensitic variant; so elastiergy doesn’t store in the system and one
receives a hysteresis curve like in Fig. 1.2/b, dgds equal to the arithmetic mean of the
temperatures of the two perpendicular branchesand A=Ay).

Performing a similar measurement on a single citysaCuAINi alloy we can be able
to determine the equilibrium transformation tempene@ Nevertheless we used a uniform
heating and cooling system instead of a gradies, dmut we applied uniaxial stress to
promote a certain martensitic variant and so tealrahat only one variant can form, which
should have been led to a rectangular hysteresjs(léig. 1.2/b).

[11.3.1.1. Samples manufacturing

A single crystalline CuAINi was ordered and we reed a cylindrical sample with
50mm length and 5.2mm diameter, its orientation {#49],. The sample was cut from this
rod using an electro discharge machine and thé diimaensions were 0.3725nfrin square
cross and 45.7mm in length.

111.3.1.2. Experimental set-up

The experiment was performed in the same devicg. (Hi2) like before but now a
computer was used for the data acquisition, andwsth more points were measured during a
cycle like in case of polycrystalline sample. Ferthore the vacuum was changed top N
atmosphere. The heating/cooling rate was approeipa@Kmin®. The measurement was
started at the highest stress level and then #uirig force was decreased cycle by cycle.

[11.3.1.3. Hysteresis curves

In the Fig. 111.20 one can see that the number e&sured points allow us to follow the
transformation very accurately. As well as theradsshifting between the branches of the
elongation-temperature curve. Nevertheless in ésestance-temperature hysteresis loop one
can see an artifact, namely the base lines of tistenite and martensite phases are not
coincident for heating and for cooling.
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Figure I111.20: a) Resistance and b) change of l&éngysteresis loops at 171.5MPa uniaxial
stress (wherdl is the change of length accompanied to the tr@mnsétion)
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Figure Il1.21: a) Resistance and b) change of léngysteresis loops at 42.4MPa uniaxial
stress (wherdl is the change of length accompanied to the ti@nsation)

Regarding the hysteresis loop measured at the tastress level (Fig. 111.21) it becomes
visible the difference between the high and lowesdes. In case of high stress the
perpendicular parts can be found at the martessited and at the austenite finish points,
while at low stress levels the vertical parts carfdund after the start points of forward and
reverse transformation. The explanation of these different behaviours will be written
below.

All measured hysteresis loops can be found in AgpeB.

[11.3.2. Evaluation in accordance with B-D model

[11.3.2.1. Normalization of hysteresis curves

Like before the measured hysteresis loops hadatestorm to transformed fraction-
temperature plane to perform the evaluation procdss procedure was the same like in case
of polycrystalline sample, i.e. firstly the thernsfect was eliminated and then the hysteresis
loop was normalized to 1. Although | above mentiiigat on the resistance-temperature an
artifact could be experienced, after the normatathe two normalized hysteresis showed
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very well correspondence (Fig. 111.22). So jusklikefore the elongation-temperature curves
were taken for the further processes since thare any unusual effect on them.

Normalized hysteresis loop from elongation

; . 171.5MPa
from electrical resistance —=—

1,0 1

0,8 -
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] %

f

}

umanas @9

0,2 1
0,0 - \L—
T T T T T T T T T T ' T T 1
0 20 40 60 80 100 120 140

T[°C]

Figure I11.22: Correspondence between the normalilagsteresis curves

111.3.2.2. Determination of Tg

[11.3.2.2.1. Low and high stress hysteresis loops

The above mentioned difference between the highl@amdatress curves can be seen on
the normalized hysteresis loops (Fig. 111.23), ngntbe forward branches are the same for
both stresses: the transformation starts with agreticular part and than the branch leans;
but the reverse ones are different: the verticel gan be found at the start and at the finish at
low and at high stress levels, respectively.

In case of high stress the martensite phase acatesuland grows freely at the
beginning of cooling (A>M transition), i.e. there is no any elastic enesgyring which is
indicated by the perpendicular part as Salzbremmer Cohen proved [S&C79]; then the
product phase cannot grow more freely (in case oitiple nucleus the martensitic plates
overlap or the elastic energy cannot run out tostiiéace and so the system cannot relax), so
the elastic energy storing begins and it continuonsl the whole sample turns into
martensite. During the reverse transformation #ieasing of the stored elastic energy helps
to accumulate the austenite phase, so first themastensite plates start to revert, and after
the whole elastic energy released the transformditioshes perpendicularly. Practically the
high stress hysteresis consists of two parts: ol part is similar to that described by
Salzbrenner and Cohen (see Fig. 1a in Ref. [S&Ci®]n bulk single crystalline specimen
with single-interface transformation (thermal gextdi heating/cooling), while the upper one
resembles to that observed for multiple-interfa@mgformation (uniform heating/cooling)
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and it is similar to the hysteresis obtained inypolstalline sample. Since the rectangular
hysteresis indicates that no elastic energy starimgleasing the relation

T,=(M, +A)/2 (In.21)

is a good approximation.
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Figure 111.23: Normalized hysteresis curves (twaleg were measured at 89.9MPa, both of
them can be seen in App. B)

On the other at low stresses the forward transfbomdakes place the same way, but
the reverse transformation starts without any ielastergy releasing; it means the austenite
doesn’t nuclei where the elastic energy storedeats the nucleation starts where the first
martensite plates appeared during>M transition. In fact this behaviour can be obsdrve
where the chemical energy is much smaller tharother contribution, i.e. the phases start to
nuclei in the easy places (e.qg. tips, edges), isxdase some kind of blocking effect doesn’t
allow the nucleation of the austenite where theasihg elastic energy would help the
transition. So the same part of the specimen bebgam$rward and the reverse transformation
as well as besides the leading force (chemical &eergy change) only the dissipative
contribution presents and supposing that the dévas of the dissipative terms are the same
in the start points (M As) for the equilibrium temperature

T,=(M_+A)/2 (n.22)

is valid.
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Between the high and low stress levels there ishanalistinction which regarding the
forming martensite variants, namely there is atlistress which there is no preferred
martensite below, i.e. the martensite accommodatelamly. According to Leclercq and
Lexcellent [L&L96] the macroscopic strain of thdfssccommodated martensite is zero, this
demand has to be valid in case of polycrystallihape memory alloys where the random
effect is supported by the randomly oriented autgegrains. However now its value is
different from zero44%) (Fig. 111.24), so it has to say that in casesioigle crystal the self-
accommodated martensite does its bit from the nsaomc shape change related to the
martensitic transformation. Furthermore in Fig.24l one can see that the high and low stress
curves are distinguished very well and the middi® fpoints seem to be the transition
between the two type hysteresis as it can be se#dreanormalized hysteresis curves (Fig.
[11.23); in this region the system was frustrateue tself-accommodated and oriented
martensite variants compete with each other.

111.3.2.2.2. Accordance with the Clausius-Clapeyrorrelation

Due to know the equilibrium transformation temperatat each stress levels we can use
the Clausius-Clapeyron equation to determine thieopy change between the austenite and
martensitic phases since the transformationalrstvai stress function (Fig. 111.24) can be
determined from the measured hysteresg= — 1.169 x 18 JK'm>= — 0.843 Jmet. This
value is not equal to the value received for pglstalline sample but they are in the same
order of magnitude; nevertheless the differenceotssurprising because the composition of
the two samples was different from each other.

g- " & -measured
s] © ¢ -extrapolated

E:lr [OA}]
| |

o

a1 * L+ L & _1 * _ T A J % 3F 7 FE_1% 3
0 20 40 60 80 100 120 140 160 180
o [MPa]
Figure 111.24: Transformational strain vs. stress
Now we can calculate the equilibrium transformatemperature (J) at all stress levels

and even we can determine it in stress free saiteg the extrapolated value (open square in
Fig. 111.24). Taking as a basis the value of & the highest stress level and using the well
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known Clausius-Clapeyron equation one receives iy good accordance between the
measured and the calculated values (Fig. 111.25).

v T=(M_+A)/2

T,=(M+A,)/2
370 = T from Clausius-Clapeyron equation
360 ) »
350 Ve

340 /
330 /

< 3204 A
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I_ 1 e ”'
300 -
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B e
-20 0 20 40 60 80 100 120 140 160 180
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Figure I11.25: Measured and calculated equilibriunansformation temperatures

111.3.2.3. Non-chemical energies

Let us perform the same calculation like in caspadycrystalline sample, i.e. from the
normalized hysteresis curves the non-chemical é&®man be calculated and due to knaw T
even the value of the elastic energy can be giwtronly its tendency. Nevertheless one has
to take into account the differences between thedod high stress hysteresis loops, so these
two cases have to be treated separately.

[11.3.2.3.1. High stress case

As above firstly the high stress hysteresis cuaresevaluated since this case is a little
similar to the polycrystalline one, it is so muchet that the same simplifier conditions can be

used (d§)=d"(¢)=d'(¢) and e§)=e'(&)=—¢'(5)).
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Figure I11.26: The martensitic fraction dependerufehe derivatives the dissipated energy at
three different stress levels

In the Fig. 111.26 one can see that the derivatiokethe dissipated energy are constant up
to £&=0.7 to a close approximation and then only the. 3MI®a curve start to differ from the
constant value significantly which falls into theidtrated region as it was mentioned above.
Finally it seems to be a good approximation if dakes the derivatives of the dissipative
terms as constant during the martensitic transfboma
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Figure 111.27: Derivatives of elastic energy vsamsformed fraction
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The derivatives of the elastic contribution (Fidl.27) show more specified stress
dependence. The higher is the applied stress,idigers the elastic free region as well as the
faster the elastic energy storing and releasing.

111.3.2.3.2. Low stress case

Due to the unusual shape of the low stress hystetesps the former simplicity
conditions cannot applied, namely they suppose that hysteresis branches should be
approximately parallel to each other which is moetin this case. Instead the branches are
investigated separately and a relatively strongditmm helps us to perform it. We take the
derivative of the dissipative energy as constamt & value is the same for forward and
reverse transformation (d5d)=d'(&)) — from the polycrystalline measurement and frtbie
result for the high stress case this assumptiomsegppropriate). This constant can be
calculated from the perpendicular parts of the tines. Actually the equality part of this
condition was already assumed when the equilibrivemsformation temperature was
calculated as the arithmetic mean of the martesitie and austenite start temperatures.

Thus €(&) can be calculated from (lll.6Fig. 111.28) and we can see that the elastic
energy storing starts &=0.5 for all curves, i.e. the half of the samplansforms into
martensite freely, then in the case of the two Ewatress €&) runs in the same way
practically but at 89.9MPa different behaviour sserved which can be explained by that this
stress level belongs to the frustrated region (Hi@4).
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1 =— 89.9MPa
35 ;
30 .
= 25 s :-
E -
= 20 ] ; Py
— 15- - F
i 1 S o
£ 10 et g
_§ | -:_._| !;.I
[0}] 5 | | Tt .—’/-
g i al
04 - —
-5 T ¥ T T T d T T T T T
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Figure 111.28: The derivatives of elastic free eggrduring forward transformation at low

stresses @wi{é)=€"(9))

Nevertheless in the case of the reverse branchawe to take into account the above
mentioned blocking effect, which is a dissipatieatired term, for this purpose the
dissipative can be written as follows for the reectransformation:
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d" (§)=d" () +v(©) (In.23)

where d'(£) means the derivatives of the total dissipatedgnel (&) is the usual dissipation
term which comes mainly from the friction betwebla habit plane and the lattice defects and
v(&) represents the blocking effect.

The equation (111.6)is modified considering (111.23):

THE) =T, _dT @) +vyE) +e' (®) (111.24)
As

(4

Regarding this relation both(¢) and é(&) are unknowns. However the elastic
contribution can be calculated fror(& using a similar assumption like before, whateter
leak of the parallelism of the hysteresis brancldesiotes that in this condition the
transformed fraction will be modified, too. Congitg that the forward and reverse
transformation start at the same place of the samel can assume that the whole AM and
MA transitions are the mirror images of each other,for the elastic term

e' (&) =—-e (%) (11.25)

assumption is acceptable. Thus the derivativeeebtocking effect energy can be calculated
from (111.24) (Fig. 11.29). A similar case can lmbserved like by €): between the 42.4MPa
and the 64.7MPa curves the correspondence is ey, @nd the other two ones at 89.9MPa
show different tendency.
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Figure 111.29: Calculatedy (related to blocking effect) as a functiontof
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[11.3.2.3.3. Stress dependence
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Figure 111.30: The constant value of the derivatdfethe dissipative energy vs. stress

This far the stress dependence appears only irdifferent shapes of the hysteresis
curves. In this section it will be shown how thearbing applied stress affects the values of
certain quantities and if the different hysterésps cause detectable changing.
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Figure 111.31: Stress dependence of the integralgities
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As it was mentioned above it is a good approxinmaifidhe derivative of the dissipative
energy is considered as a constant during theftnanation. From the perpendicular parts the
value of this constant can be calculated and inRige 30 one can see these values as a
function of applied stress. It shows increasing dadreasing tendencies in the low and the
high stress range, respectively.

The full dissipated energy during forward or reeetsansformation and the full stored
elastic energy in martensitic state can be seé&iginlll.31 as a function of applied stress. The
dissipative energy decreases while the elastic iocesases with increasing stress. At
89.9MPa the full stored energy has a jumping pitisen come from the above mentioned
frustrated state.

Furthermore in Fig. 111.32 one can see how theipi&sd blocking effect energy (is
equal to the integrated ¢€£) from O to 1) changes with the stress. Of counsevalue of" is
zero at the highest three stress levels and folotestresses a constant value can be given
except of the 89.9MPa point which is very differénim the two others because it belongs to
the frustrated region.

" [J/mol]

0 - [ = n
-2 I . I L I & I L I X I L) I N I i
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Figure 111.32: The dissipated blocking effect enedyring the whole reverse transformation
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Chapter IV

Simulation



V. Simulation

IV.1. Comparison between the models used in Besantand Debrecen

As it can be seen above the model, which was dpedlon Debrecen by Beke and
Dardczi [Detal00] which was improved by me [Petdl@&om now DE model), is suitable to
evaluate the measured hysteresis curves and soniletethe non-chemical free energies as
well as in case of single crystalline sample theildgium transformation temperature. While
the R model [Retal92], which was improved in Besancon Uexcellent and Leclercq
[L&L96] (from now BE model), is more appropriate perform simulations on the stress or
thermal-induced martensitic transformations. THuseems to be a good idea to find out the
relations between the two descriptions and so #ha evaluated by DE model are used in the
calculation of BE one.

IV.1.1. One martensite type

Let us consider firstly the improved DE model. Wl known initial point for forward
transformation (A>M) is:

ﬂgzi)mgcwe (2)+d' (2 =0. (IV.1)

The derivative of the free energy change accordinghe martensitic fractionz) is zero.
Substituting the relation for the chemical enerdyarmge (11.4) and using the Clausius-
Clapeyron equation (I1.9), assuming that the entrapange does not depend on the applied
stress, one arrives at:

(T -T)as, -0’ +d' (2 +€' (2) =0, (V.2)
A similar relation can be given for the reversasition (M—A):
(T-To@)as, +oe* +d' (2 +€ (2 =0. (IV.3)

Since currently this model can treat only one tgbmartensite we should compare it to
the R model, which consider one martensite, too.

As | above mentioned Raniecki et al [Retal92] sthfrom the Helmholtz free energy of
the two-phase system of a unit mass and, negletttsnthermal extension, it can be written as
follows :

O=ug TS 2w M)+ (e=2)"
? T , (IV.4)
+C, {T -T,-TlIn T_} +z(1-2)P,

0
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whereus' andsy* are the internal energy and the entropy of theeaite phase and
7o/(T) is the chemical potential of phase transformatimontaining the internal energy and
entropy changes of the system due to the evolvetenste phases:

1," (T) = Au* -TAs*
At =uyt -u,’, (IV.5)
Ast=s,' -5,

It vanishes at the temperature of thermodynamiclibgum between the austenite and
martensite phases:

0=Au*-T,(0Q)As* =  m,'(T)=(T,(0)-T)As*. (IV.6)

Let us take the functions (11.51), which descrilbe transformation-kinetics and are
equal to zero for whole cycles, and substituteetiression o' (11.42) and replace,'(T) by
(IvV.6):

-(T, (O)—T)As*—y—pa+ 1-22)®, +k°(2) =0 (IV.7)

whereo=1 and 2 means the-AM and M—A transformations, respectively.

Comparing (IV.2) and (IV.3) to (IV.7) we see thhetfirst two terms are the same and
somehow the last two ones have to be equal to @hehn. Nevertheless the relations between
the BE and DE models can be given:

As, = -pAs*; y=¢";
d' (&) +e' (&) = 1-229, +k'(2) (IV.8)
d'€)+e' (§)=-(1-22d, -k*(2)

Let us examine the last two relations: the leftesidhere are the non-chemical
contribution (dissipative and elastic) from DE, iehion the right side an interaction
component and a function afare present. Using the propertiesk@) functions (11.52) one
receives the next relations:

d' (0)+e' (0) =, d'M+e @) =-0, +o
(IV.9)
d' (0)+e ()=, —oo d' @Q+e @) =-0,

The interaction component changes its sign=8t5 but such kind of behaviour wasn’t
supposed and experienced neither d¢x) nor for e(z) in former experiments. So it can
predicated that thie(z) function has to eliminate this behaviour somehow.
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IV.1.1. Two martensite types

In case of thermally induced martensitic transfdramat a constant stress according to
BE model two kinds of martensites are distinguishiea achieve the relations as above the
DE model has to be improved to take into accouatekistence of two different martensite
types.

Let us suppose that the ratio of the self-accomneadand the stress induced martensite
variants is constant during the transformatiorthgomartensitic fraction can be written as

z2=2,+2,=n:2+n,2, (IV.10)

wherenr andng denote the thermally and stress induced fractfahe martensite and
e.0.N=Vut/Vm, Vu=Vur+tVme and z=\/V, with V=V y+Va. Obviouslynr+ns=1. Since it
was assumed that the ratio of the two differenttemaite variants is constant the possibility
of the reorientation process is ruled out.

Indeed, to calculate the derivatives of the elaatid the dissipative contributions related

to the different variants, one needs the relatietwben the f{zr) and T(z;) (inverses of
zr(T) and z(T)) functions:

T(9=n;T;(N; 29 +n,T;(n,2). (IV.11)
For the elastic and the dissipative terms simg#ations can be given:

&2) =n.&(nN;2) +n,e,(N,2), (IV.12)
d(2) =n;d; (;2) +n,d, (N, 2). (IV.13)

Writing these relations into (IV.2) and (IV.3) redmg the direction of the
transformation one receives for-AV

(ro (O) _TT (HTZ))ASC +dTL (HTZ) "'erl (HTZ) =0

(IV.14)
tr
(T, (0) =T, (N, 2)As, —cf]— +d,' (N,2)+e,' (1,2) =0,
and for M—A
(TT (r]TZ) _To (0))ASC + dTT (r]TZ) + erT (HTZ) =0
(IV.15)
tr
(T, (N.2) - T, (O)) s, —of]— +d,' (n,2)+e,' (1,2) =0,
where
Str
eV (IV.16)
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i.e. from the&"(c) function and the total pseudoelastic straj) the ratio of the two
martensitic variants can be determined.

From the above applied typical assumptions to eft® the direction dependence
(e'(e)=-€'(&)=e)>0 and d(&)=d'(&)=d(£)>0) and from (IV.12) and (IV.13) equations similar
conditions are received:

d,' ()=, (z) = dr (z):d,' (2,) =4, (2,) =, (2,)
(IV.17)

eTl (ZT) = _eTT (ZT) =eT(ZT) ;eoL (Zo) = _ecT (Zo) =e0(zc)’

and so from the sums and the differences of theogpiate (IV.14) and (IV.15) equations:

dT (ZT) = _AZSC [TTT (ZT) _TTL (ZT)]
(IV.18)
er(20) =-09T, 0+ T (20) + T+ (20,
as well as
d,(2,) =~ SE T, (2) T, (2,)
(IV.19)

As,
2

€,(2,) = =0s.T, (0) + oy + —=[T," (2,) + T, (2,)].

These relations are very similar to the case of roadensite variant. As it can be seen
the effect of the constant external stress app@dysin the expression of the derivative of the
elastic free energy related to the stress inducadiemsitic variant directly.

As above let us take the functions (I1.72) which are equal to zero for whaxternal
cycles:

(T, (0) -T)As* -z, ®," - 1- 22)®, —k"a =0 (IV.20)
(T, (0) - T)As* +V—§ —2.®," - (1-22)®, —k% =0, (IV.21)

where a=f and r means the forward {AM) and reverse (M»A) transformations,
respectively.

Finally, comparing (IV.14), (IV.15) to the previousguations similar relations are
received like in case of one martensite variant:
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d,' (z,)+e ' (z)=2,P," +(1-22)D, +k
d, ' (z,)+e, (z,)=2®,"+(1-22)P, +k°;
d,"(z)+e ' (z)=-2,®," - 1-22)P, -k,
d,' (z,)+e,' (z,) =-z,®," - @1-22)®, -k’

(IV.22)

andAs, =—pAs * is still true.

One can find the same problem like before, i.e.itiieraction component changes its
sign and thé& functions have to eliminate this behaviour hese, t

IV.2. Simulation on polycrystalline CuAINi

Using the measured data on the polycrystalline GliAhe k functions can be
determined after (IV.22) relations and then theespondence between the measured and the
calculated curves can be investigated. Neverthefesshe sake of simplicity let us neglect
the interaction between the martensitic variagtg"€0) and thek functions depend only on
the martensitic fractions explicitly.

IV.2.1. Parameter determination

IV.2.1.1. Thermodynamic constants

Firstly the thermodynamic parametersuf, As*, U,, S,) have to be determined from

the martensite and austenite start temperatures ainthese points the thermodynamic forces
are equal to zero:

' (O,M.°,z=0)= V—;’ +(Au* -T,) - M °(As* —§,) = 0 (IV.23)
' (0,A°,z=1) = V—; +(Bu* +T,) - A° (As* +5,) =0, (IV.24)

wherep (mass density) can be measured and the valyasofaken from Sittner and Novak
[S&NO0O]. Table IV.1 contains these and the caladaguantities.

v [%] p [kg/m’] Au* I’ [ As* [IIKm?] | @, [J/nT] 5, [J/KmY

6.64 7168 1.538*10 4.128*10 4.419*10 1.134*10

Table 1V.1: Mechanical and thermodynamic parameters

It is worth noting that the values of the entropicange between the two phases
calculated form the transformation temperatures*) is almost four times bigger than one
calculated from the DSC measuremeis:). Probably the difference comes from the fact that
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the determination of the transformation temperatuge not so simple and probably the
interaction between the martensite variants cabeateglected.

IV.2.1.2. Kinetic coefficients

To calculate thé& functions one has to separate the hysteresis asc@ding to the two
different martensite variants. Supposing that thecHic resistance of the two martensite
types are the same normalizing the resistance-tetyse curve the(T) function can be
received. As well as the elongation hysteresis eymovides thez,(T) since the thermally
induced martensitic variant does not cause macpasshape change and the maximum value
of z, at a constant stress can be giver"§s)/y. Of coursez(T) is equal to their difference.
Finally, from their inverses the separated elaatid dissipative terms can be determined
according to (IV.18) and (IV.19). To have an exaalue of the elastic contribution the(D)
has to be known, here it was taken as the ratid\wf and As* according to (IV.6):
To(0)=372.58K; although this value is lower than tbeer limit from the previous chapter,
the different specific entropy change during the tewaluation processes can cause this
discrepancy since it appears in the relation toutate T(0).

As it was mentioned above tkdunctions depend only on the martensitic fractieribe
dependence was taken from the one martensite vaaae; similar form like (11.53) to fulfil
the condition (11.52), i.e. at the beginning ofi@rd transformation thk functions have to
be equal to zero and at the end they go to infadtevell as for reverse transition theones
are zero at the beginning, too, and they convesghd negative infinite — nevertheless the
sign change of the interaction term has to be ahiei, too. So let us take the next formula:

K =250, +a,’ In(l—ﬁJ =250, +1(z)

N+ N+ N+
k¢ = Zicbit +af0 In(l_ij = 2i¢)it + fo(zo)
. ) N,

(IV.25)

KT = 2(;—T —1}% va |n;—T = z(Z—T —1Jcpit 1 (z)
T T T

k= Z(i_qu)“ -'-arclni"'brcy :Z(i_l}pit +15(2;) -
No No o

In Figs. IV.1 and IV.2 one can see how frendr functions fit to the curves calculated
from the measured data at two different stresddeve
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As it can be seen the fitting for the forward bitaex are very good but in the reverse
case it is obvious that the formula does not dbscwell the evolution of the martensitic
transformation.

It is worth mentioning that the aboldormulae are very similar to (11.73-76) except for
the temperature dependence. Nevertheless the BElrdimth't take the stress dependence of
the coefficients into account, but according to g IV.3 it is not negligible. The forward
coefficients do not confirm it since they are alinognstant, but the reverse ones slightly
increase with the stress.

IV.2.2. Correspondence between the measured and toalculated curves

Finally all the thermodynamic constants and thesk@ncoefficients are available to
perform the simulation of the hysteresis loops emthpare them to measured ones. Figs 1V.4
and 5 show the measured and the simulated evolaofidhe two martensite type in case of
two different stress levels. Furthermore in Figé6land 7 the comparison of the measured
and calculated hysteresis can be seen. (All okthasves can be found in the Appendix C.)

35.3 MPa = z_measured

10- e measured

z_simulated

8 0,8 z, simulated
8
&= 0,6
O
=
o 04+
c
£
o 02-
=

0,0 e

" J ' 1 ! T 4 T T T T T
300 320 340 360 380 400 420
T K]

Figure 1V.4: Measurement and simulation of the atioh of stress and thermal induced
martensite variants at 35.3 MPa
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Figure IV.5: Measurement and simulation of the atioh of stress and thermal induced
martensite variants at 78.2 MPa
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Figure IV.6: Measured and calculated anisothermydteresis loops at 35.3MPa
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Figure IV.7: Measured and calculated anisothermgdteresis loops at 78.2MPa

As it was expected from the fitting of tHeandr functions the calculated forward
branches show quite good agreements with the mesue especially at high stress; on the
contrary for the reverse branches the calculatidns not follow the measurements.
Nevertheless the start temperatures for both tiveafiel and the reverse transformations were
very well reproduced by the calculations.

I\V.2.3. Further steps

IV.2.3.1. The case of single crystalline CuAlNi

Elie Gibeau has made calculation on the singletaltyse CuAINi using the BE model.

In Figs. IV.8 and 9 the comparison can be seendsiwhe calculation and the measurement.
In the low stress case (Fig. 1V.8) the agreemenmjuite good, but at high stress (Fig. 1V.4)
even the calculated and measured start temperadueegery different to each other. These
two cases can not be treated in the same wawasitliscussed in the Chapter lll.

In fact, the transformation in this single crystal sample includes jumping steps
indicated by perpendicular parts on the measurstehgsis in both directions, i.e. big amount
of martensite or austenite phase turns into therotne completely freely without any
influence on the elastic field. This behaviour guef it is well-founded, to use continuous
function to describe the transformation kineticaylme some kind of probability function
should be used.

Furthermore it is worth to consider the possibilihat in case of thermal induced
martensite type has a not-zero extension, it mealysMT martensite can cause macroscopic
length change. In this way a new approach can wengithere is a limit stress, below and
above which only thermal and stress induced matteran form during anisothermal test,
respectively. So the low and high stress casebeaeparated. Nevertheless, this assumption
needs further experiments.
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Figure IV.8: Measured and calculated hysteresis/esron single crystalline CuAlINi at
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Figure IV.9: Measured and calculated hysteresissesron single crystalline CuAINi at
143.8MPa
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IV.2.3.2. More reliable simulations

Besides the further test on single crystal it wdaddworth to measure the anisothermal
hysteresis curves with better resolution and toemeine the extension related to the
martensitic transformation from measured stressrsturve. In this case all thefunctions
can be calculated and the possibility would be epeto fit them in the whole interval for
example with amn(p-x)+In(x) function, since both thieandr functions tend toee and tox at
x=0 and at x=p, respectively, as it was writteiRef. [Petal89].
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Conclusion

1. From measurements of elongation-temperature anstarse-temperature hysteresis
curves on Cu—-24.0at% Al-2.2at% Ni-0.5at% B poly@alise shape memory alloy |
determined the stress dependence of the derivatiffdbe elastic and the dissipative
energy contributions, according to the transfornfeattion, on the austenitic and
martensitic side (i.e. in the points of transfonmatemperatures: MM As and A, where
e.g. My and M are the temperatures related to the appearingeofrtartensitic and the
disappearing of the austenitic phases, respec}ivehe values of the dissipative terms at
the beginning and the end of the martensitic ti@nshtion increase with increasing
stress. Since the equilibrium temperaturg, Was not known | could give only the
tendency of the elastic energy contribution: in hbgihases they do not change
significantly with the uniaxial stress. Furthermahe derivatives of both the dissipative
and the elastic contributions are higher in thetemasitic side than in the austenitic one.
2. | extended the evaluation method used in [1] irhsuaevay that it gives the derivatives of
the non-chemical free energy contributions not oatythe start and the end of the
transformations but during the transition (i.e.ytl@an be given as the function of the
transformed fraction), too. We showed that theséuesg can be calculated after
normalizing of the measured hysteresis loops. Euntbre, | demonstrated that the
integral quantities measured in DSC and integrakhe differential ones, received from
the measured hysteresis curves, agreed very welltHe analysis is self-consistent. |
determined the transformed fraction dependenceefull dissipated energy and the full
stored and released elastic energy (calculatekdeamtegral of the appropriate differential
guantities) [2, 3].
3. Determination of the equilibrium transformation fgenature in single crystalline sample
a) The analysis mentioned in paragraphs 1. and 2.extended for single crystalline
samples. It was shown that the equilibrium tramsfiiron temperature,gl'can also be
determined form such experiments [3]. From the iBetaanalysis of the data
measured we illustrated that it is possible to measysteresis loops with vertical
parts (perpendicular to the temperature axis) eveve use usual uniform heating-
cooling and not a gradient one. As a function eidiog we got two different types of
hysteresis curves, from whiclydould be determined by two different ways [4, 5].

b) Since the elongation-temperature hysteresis wasnaéasured, it allowed calculating
the equilibrium transition temperature using thauSlius-Clapeyron equation, too, and
they showed really good correspondence with ddtalleded as described in a). [4, 5]

4. Using the input parameters obtained from the erpamial curves on the basis of the
extended Debrecen-model (inclusion of two differgyges of martensitic phases [6])
calculations have been carried out for the hystetebps from the Besangon model. In
accordance with the experimental data | also asduimeg the kinetic parameters in the
Besancon-model are not constant but depend on ttesss(pressure) as well. The
calculated hysteretic curves were compared to thgeremental ones and a good
agreement was obtained.
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Conclusion

1. Des courbes d’hystérésis «élongation-températuresésistance électrique-température»
sur des alliages a mémoire de forme Cu 24.0at%2dt2Ni 0.5at%B ont été réalisées.
Pendant des essais de traction, la dépendance&deses des termes d’énergies élastique
et dissipative a la fraction de martensite a étantifiée (i.e. aux températures de
transformation: M M; Ag et A). Les valeurs des termes dissipatifs en débuh dinede
transformation martensitique augmentent avec laraiote de traction appliquée. Comme
la température d’équilibregIn’est pas connue, j'ai pu seulement suivre létion des
termes d'énergie élastique: dans tous les deux ephats ne changent pas
considérablement avec la contrainte uniaxiale. Mes,ples dérivées des termes de
I'énergie élastique et dissipative sont plus élewdans la phase martensitique que dans la
phase austénitique.
2. La méthode d'évaluation utilisée dans [1] a éténdite, ce qui donne maintenant les
valeurs des dérivées des termes d’énergie librechomiques, non seulement, au début et
a la fin de transformation martensitique, mais gpeadant la transition (i.e. elles peuvent
étre exprimées comme des fonctions de la fractiomdrtensite). Nous avons montré que
ces valeurs pouvaient étre calculées grace a Imalisation des boucles hystérétiques
mesurées. De plus, jai aussi montré que les aiéantitégrales mesurées par DSC et les
intégrales extraites des courbes hystérétiques messusont en bon accord, c'est-a-dire
gue l'analyse est “auto-cohérente”. La dépendaned’@hergie dissipée totale et de
I'énergie accumulée ou libérée totale a la fractlermartensite a été déterminée [2, 3].
3. Détermination de la température d’équilibre de nansformation de phase dans les
échantillons monocristallins
a) L’analyse mentionnée dans les ler et 2éme paraggapBté étendue aux échantillons
monocristallins. Nous avons montré que la tempésatiéquilibre, 5, peut étre
déterminée [3]. De l'analyse détaillée des réssilitabus en avons déduit qu'il est
possible de mesurer des boucles hystérétiques ns&me des parties verticales
(perpendiculaire & l'axe de température), méme agisnutilisons un systeme de
chauffage-réfrigération uniforme et non avec gmadieNous avons obtenu deux
différents types de courbes hystérétiques fonaiomiveau de contrainte appliquée,
ainsi Tp a pu étre déterminée par deux facons différedtes]|

b) Comme la courbe d’hystérésis «élongation-tempésatarété obtenue expérimentale
ment, on a pu calculer la température d’équilibmeulisant I'équation de Clausius-
Clapeyron, et il y a un trés bon accord avec léswva calculées dans a) [4, 5].

4. En utilisant les paramétres déduits des courbeérimpntales sur la base du modéle de
Debrecen étendu (deux types de martensites [&)cdeuls avec le modéle de Besangon
ont été effectués pour ces courbes hystérétiques. aécord avec les données
experimentales, j'ai présumé que les parametreégigires dans le modele de Besangon ne
sont pas constants mais dépendent de la valear dentrainte de traction (compression)
appliquée. Les courbes hystérétiques calculéest@ntomparées avec celles obtenues
expérimentalement et une bonne correspondanceadbi&téue.
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Befejezés

1. A megnyulas-timérséklet és ellendllasimérséklet hiszterézis gorbék méré&déb
Cu—-24.0at% Al-2.2at% Ni-0.5at%B polikristalyos atenmodria otvozetben meghata-
roztam a rugalmas és disszipativ energiajaruléktMakult anyaghanyad szerinti
derivaltjainak feszultség-figgését a martenzit ész#enit oldalon (azaz az MM; Ag €s
A: pontokban, ahol példaul Mes M martenzit fazis megjelenéséhez illetveimétséhez
tartozé ldmérsékleteket jeldlik). A disszipativ tagok a marites atalakulas kezdetén és
végén noveky fesziltség hatdsara ndvekednek. A rugalmas ef@ngikonak azonban
az egyensulyi atalakulasbimérséklet, §, ismeretének hianyaban csak a menetét tudtam
megadni: egyik fazsiban sem valtozik jelesgn az egytengdlyfesziltség hatasara.
Tovabba mind a disszipativ mind a rugalmas jarkétterivéltjaira az érvényes, hogy a
martenzit oldali értékek mindig nagyobbak az ausrtddaliaknal. [1,3]

2. Az [1]-ben haszndlt kiértékelési eljarast duitettem olyan mddon, hogy az ne csak a
martenzites atalakulds kezdetén és végén, hanefpelkos megadja a rugalmas és
disszipativ jarulékok &talakult anyaghanyad szedativaltjait. Megmutattuk, hogy ezek
az értékek a meért hiszterézisgorbék normalasa uté&@zadmolhatok. Tovéabba
bebizonyitottam, hogy a DSC-ben mért integralis my&®gek és a hiszterézis hurkokbdl
szamolhaté differencialis mennyiségek jol egyezndieghataroztam a folyamat soran
disszipalodott, valamint a tarolt és felszabaduffatmas energiak (mint a differencialis
mennyiségek integraltjai) atalakult anyaghanyadistidiggését. [2, 3]

3. Az egyensulyi atalakulasidimérséklet meghatarozasa egykristalyos mintakban
a) Az 1. és 2. pontban emlitett analizist Kkiterjesitet egykristadly alakmemoria

Otvozetre. Megmutattuk, hogy az egyensulyi ataksiullomérsékletet, ¢, is
meghatarozhato ilyen mérésék3]. A mérések részletes kiértékelésekor azt lapt
hogy szokasos, nenbmérséklet-gradienst alkalmazdjtést/fitést hasznéalva is lehet
olyan hiszterézis gorbéket mérni, melyeken filgges szakaszok talalhatok. A
terhelés fuggvényében két kulonBdipusu hiszterézis alakot kaptunk, amelyikd
To kiszdmitasara mas-mas maodon nyilt 16kég. [4, 5]

b) Mivel a megnyulas-fesziiltség fluggvényt is mérteahebség nyilt az atalakuldsi
egyensulyi Bmérsékleteket a Clausius-Clapeyron egyegildtbkiszamitani, amelyek
nagyon j0 egyezést mutattak az a) pontban emkiette[4, 5]

4. Felhasznalva a tovabbfejlesztett debreceni modelpjén (kétféle martenzit varidns
figyelembe vétele [6]) a kisérleti gorbéklkapott bemeé paramétereket szamolasokat
végeztem a hiszterézis hurokokra a besangoni madapjan. A mérési adatokbol
adddoan azt is feltételeztem, hogy a besanconi ithedeszered kinetikus paraméterek
nem konstansok, hanem a feszlltség (nyomastolliggehek. A szamitott hiszterézis
gOrbéket 6sszevetettem a mért adatokkal, és j&zégy&aptam.
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Appendix A

Measured hysteresis curves on CuAlNi polycristalample.
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Appendix B

Measured hysteresis curves on CuAlNi singlecristalsample.
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Appendix C

Calculated and measured hysteresis loops of therelift types of martensit phases.
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Martensitic fraction
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