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Introduction 
 
The shape memory effect since its discovery has attracted the attention of scientist and 

engineers with its amazing phenomena and the micro mechanisms allowing a lot of promising 
applications. During the years a number of model descriptions were created to understand 
better the behaviour of different alloys making also possible to tailor the critical parameters 
important for technology. 

In this thesis two models will be concerned. The one developed earlier in Debrecen 
enabled to calculate the non-chemical energy terms at the start and at the end of martensitic 
transformation. Nevertheless not only theses points are relevant but the knowledge of the 
dependence of the dissipative and elastic terms on the transformed martensitic fraction in the 
whole transformation range is important too. Consequently an extension of the model was 
needed. This new model was used to evaluate the data measured on polycrystalline and single 
crystalline CuAlNi shape memory alloys. 

The results of the measurements on single crystalline samples could be explained only if 
two types of martensitic phases were taken into account. Indeed the Besançon-model 
developed for simulation of the martensitic transformation counts with two different 
martensitic phases, too, namely temperature and stress induced ones. After finding the 
connection between these two models and took them also into account in the Debrecen-model 
the determination of the input parameters for the simulations became possible and comparison 
between the measured and calculated hysteresis loops had been made. 

 
 

Introduction 
 
L’effet mémoire de forme, depuis sa découverte, a attiré l’attention des chercheurs et 

ingénieurs grâce à ses spécificités et aux mécanismes microscopiques associées. La 
connaissance de ces alliages a permis de développer beaucoup d’applications prometteuses. 
Pendant des années, de nombreuses expériences en ont été faites afin de mieux comprendre le 
comportement spécifique de ces alliages. 

Dans cette thèse, deux modèles ont été utilisés. Celui développé à Debrecen (Hongrie) a 
permis de calculer les termes d’énergie non-chimique au début et à la fin de transformation 
martensitique. Nonobstant, non seulement ces termes sont indispensables mais la 
connaissance de la dépendance des termes dissipatifs et élastiques à la fraction de martensite 
transformée est, elle aussi, importante. En conclusion, une extension du modèle s’est avérée 
nécessaire. Ce nouveau modèle a été utilisé afin de rationaliser les mesures effectuées sur des 
alliages à mémoire de forme CuAlNi poly et monocristallins. 

Les résultats de mesures sur l’échantillon monocristallin n’ont pu être interprétés que si 
le concept de deux types de phase martensitique est introduit. Le modèle de Besançon 
(France), développé pour expliquer la transformation martensitique, introduit ces deux 
martensites différentes (la martensite auto-accommodante et la martensite induite par la 
contrainte). On verra que cette partition n’a aucun sens crystallographique mais est 
simplement utile dans une approche phénoménologique. Après qu’un lien ait été établie entre 
ces deux modèles et que deux phases martensitiques aient été prises en compte dans le modèle 
de Debrecen, la détermination des paramètres nécessaires aux simulations devient possible, et 
la comparaison a pu être réalisée entre les boucles hystérésis mesurées et calculées. 
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Bevezetés 
 
Az alakmemória effektus a felfedezése óta tudósokat és mérnököket nyőgözött le 

bámulatos jelenségeivel és az ezeket lehetıvé tevı mikroszintő mechanizmusaival. Az évek 
során sok modell leírás született, a különbözı típusú ötvözetek viselkedéseire lehetıvé téve, 
hogy és végsı soron tervezhetıvé váljanak a technikailag fontos kritikus paraméterek. 

Eben a dolgozatban két modellel foglalkoztam. A Debrecenben korábban kidolgozott 
lehetıvé tette, hogy kiszámoljuk a nem-kémiai energiatagokat a martenzites átalakulás elején 
és végén. Azonban nem csak a végpontok a lényegesek, hanem a disszipativ és rugalmas 
energiatagoknak az átalakult martenzit hányadtól való függésének ismerete a teljes 
tartományban is fontos. Tehát a szükségessé vált a modell továbbfejlesztése. Ezt az új modellt 
használtuk polikiristályos és egykristályos CuAlNi alakmemória ötvözeteken mért adatok 
kiértékelésére. 

Az egykristályos mintákon végzett kísérlet eredményeit csak úgy lehetett magyarázni, 
ha kétfajta marteznitfázist veszünk figyelembe. A martenzites transzformáció szimulációjára 
kifejlesztett besançoni model is kétfajta martenzittel számol, nevezetesen hımérséklet és 
feszültségindukáltakkal. Miután a két modell közötti kapcsolat tisztáztuk és debreceni 
modellben is kétféle járulékkal számoltunk, lehetıvé vált, hogy a mérési adatok alapján 
meghatározzuk a szimulációhoz szükséges paramétereket és végezetül pedig összehasonlítsuk 
a számolt és mért hiszterézis hurokokat. 
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I. Overview: Shape memory alloys, martensitic transformation 
 

The shape memory effect was discovered in 1951 in Au-Cd system, which was followed 
by Cu based alloys in 1956-57 and by TiNi in 1963 [O&W]. The last one is the most widely 
used shape memory alloy, because it has excellent mechanical properties and can also be 
applied in human bodies. Although the TiNi shape memory alloy is very useful in functional 
applications, it is expensive and, due to the research efforts, the cheaply producible Cu based 
systems can replace it in some cases. 

 

I.1. Martensitic transformation 
 

Martensite, the product of decomposition of the austenite, or a high temperature parent 
phase, through a martensitic transformation, was named after Adolf Martens (1850-1914), an 
engineer bringing significant contribution to the field of metallography and describing firstly 
the above mentioned transformation in steel. 

The martensitic transformation takes place between two solid phases: the high symmetry 
(mostly cubic) lattice structure, stable at high temperature, – called parent or austenitic phase 
(A) – transforms into a structure with low symmetry (possessing several variants with 
different orientations) stable at low temperature – martensitic phase (M). Since only the lattice 
structure changes during these transitions, the displacements of atoms are less than the lattice 
constant, i.e. it is a diffusionless transformation and the velocity of interface shift is in the 
order of the speed of sound, which means that the propagation of the transformation is very 
similar to the propagation of shock waves in meterials. [Nishiyama, Funakubo, Otsuka and 
Waymann] 

 

I.2. Thermodynamic aspect 
 

I.2.1. Energy contributions 
 

In general from austenite to martensite phase transformations the change of the Gibbs 
free energy can be written (if we neglect the interface term for nucleation) as [F, C&H]: 

 

ncc GGG ∆+∆=∆  with denc GGG ∆+∆=∆     (I.1) 
 

Here ∆Gc
 is the change in the chemical Gibbs-free energy of the two phases (the driving force 

for the transformation), and there is a non-chemical contribution, ∆Gnc, composed of elastic 
(∆Ge) and dissipative (∆Gd) terms. The elastic energy accumulates as well as releases during 
the processes down and up just because the formation of different variants of the martensite 
phase usually is accompanied by a development of an elastic energy field (due to the 
transformation strain). The dissipative energy is always positive in both directions and results 
in the hysteretic behaviour. 

Fig. I.1 shows schematically the chemical free energies of the two different phases and 
the position of the equilibrium transformation temperature, below and above of which the 
martensitic and austenitic phases are stable, respectively. 
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Denoting the transformed fraction by ξ (ξ =1, and ξ=0 correspond to pure martensite 

and austenite phases, respectively) Fig. I.2. illustrates the hysteretic behaviour of the 
transformation: a) is the transformation without elastic and dissipative contributions, b) no 
elastic contribution is present (during cooling, due to the dissipative energy assumed to be 
independent of ξ, the transformation starts only at a certain undercooling, and in the opposite 
direction it starts only at a certain overheating), c) general case: the elastic energy, which is 
usually ξ-dependent, is positive in cooling down and negative in the heating up branches). 

In thermoelastic transformations the interface term is generally negligible, but the 
elastic term plays a determining role. For example at a given under-cooling for further growth 
of the martensite an additional under-cooling is required. Thus if the sample is further cooled 
the particle of the M phase will grow further, while if the sample is heated it will become 
smaller. Indeed in thermoelastic materials it was observed that once a particle formed and 
reached a certain size its growth was stopped and increased or decreased as the temperature 
was decreased or raised. This is the thermoelastic behaviour (the thermal and elastic terms are 
balanced). 

 
Figure I.1: Chemical free energies and the position of the equilibrium temperature 

 

 
 

Figure I.2: Martensitic fraction (ξ) vs. temperature (T) considering the chemical and non-
chemical contributions 
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I.2.2. Characteristic temperatures 
 
Four temperatures are used to characterize the martensitic transformation (at external 

stress free state) which can be determined from a measured full hysteresis curve: 
• Ms

0 – martensite start 
• M f

0 – martensite finish 
• As

0 – austenite start and 
• A f

0 – austenite finish  
temperatures as it can bee seen in Fig. I.2/c. For example the martensite and austenite start 
temperatures indicate the beginning of the formation of the martensitic and austenitic phases, 
respectively. The above temperatures depend on the equilibrium transformation temperature 
and, in general, they contain contributions from the non-chemical energies: this dependence 
will be analyzed in Chapter II and III. 

The characteristic temperatures are measurable, but the most important one, the 
equilibrium temperature, T0, cannot be directly determined from a usual hystersis loop 
measurement. Tong and Wayman [Tong Wayman] proposed that taking the arithmetic mean 
value of Ms and Af can be a good approximation for To. However, Salzbrenner and Cohen 
[S&C] have shown that in general this is not a correct approximation. Furthermore these 
authors have also indicated that under special circumstances (using single crystalline 
specimens and special gradient heating technique) the T0 can be determined even from this 
approximate relation. 
It is worth to note that the knowledge of the equilibrium transformation temperature is very 
important for the simulations of martensitic transformations. 
 

I.3. Mechanical properties of shape memory alloys 
 

I.3.1. Shape memory effect 
 

The shape memory alloys are really interesting and widely used in a wide variety of 
technological application because, as it is included in their names, they remember their 
shapes. This kind of memory effect arises from the martensitic transformation, precisely from 
the fact that the low temperature phase has more variants while the high temperature one 
exists in only one form. 

Let us consider a 2D case when the austenitic phase is a square lattice and the martensite 
is a rhomboid one. Cooling the austenite without any external stress, the martensite evolves 
randomly and it can transform back to austenitic phase reversibly during heating. But if an 
external stress is applied, the variants with preferred orientations will grow in expense of the 
un-preferred ones. Furthermore, increasing the applied stress the balance between the two 
types of martensite shifts further toward the preferred variant and finally the whole sample 
transforms to a one variant state with a well measurable deformation. But, reheating the 
sample it returns to the austenitic phase, having only one variant, and thus the sample 
recovers to its original shape. (Fig. I.3); this is the so called one way shape memory effect. If 
the shape memory material is trained, i.e. the above forward and reverse transformations are 
repeatedly applied several times, the sample will deform in the same way, changing only the 
temperature (although the magnitude of the deformation will be less); this phenomenon is 
called two way shape memory effect. 
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Figure I.3: Demonstration of the one way shape memory effect 
 

After austenite/martensite transformation, due to the deformation strain, a characteristic 
surface pattern (surface relief) can be observed as it is illustrated in Fig. I.3 in the event the 
presented piece of material is at the surface. For the investigation of this phenomenon a piece 
of material has to be polished mechanically or electrically in austenitic or martensitic phase, 
and then it has to be cooled down or heated up. Although Fig. I.3 shows only the cooling 
down case one can easily imagine that the relief can be seen after the “reverse” process, too. 
Such kind of pattern can be seen in Fig. I.4. 

 

 
 

Figure I.4: The characteristic relief on the surface of a CuAlNi sample 
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The appearance and disappearance of the surface relief are also indications of the start 
and the end of the forward and reverse martensitic transformation, respectively. 
Unfortunately, using this method one can only determine the start and the end of the 
transformation. However, not only this method is appropriate to follow the transition. Since 
the values of different physical quantities (e.g. specific electrical resistance, strain) of the 
austenite and the martensite phases are different from each other, measuring on of them 
versus the temperature a hysteresis loop will be formed. The shape of the hysteresis usually 
characterizes the shape memory alloy itself; Fig. I.5 and Fig. I.6 show examples for the case 
of TiNi and CuZnAl alloys, respectively. 
 

I.3.2. Pseudo-plasticity (Superplasticity) 
 

Another feature of the shape memory materials comes from that fact that small loading 
force is enough to reorient the martensite variants and thereby to deform the alloy. Depending 
on the shape memory alloy this behaviour can result in a plateau on the stress-strain curves 
(Fig. I.7). 

 

 
 

Figure I.5: Measured hysteresis loops on near equiatomic NiTi under constant hydrostatic 
pressure (Figs. 2/a and 2/b of Ref. [Detal02]) 
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Figure I.6: Measured hysteresis loops on CuZnAl(Mn) under constant hydrostatic pressure 
(Fig. 1 of Ref. [Detal00]) 

 

 
Figure I.7: The pseudo-plasticity behaviour (schematic curve) 

 

I.3.3. Pseudo-elasticity (Superelasticity) 
 
So far only stress free, thermally induced martensitic transformations, like the one- and 

two-way shape memory effects, were considered. Stress induced martensitic transformations 
exist, too. This phenomenon can be explained by the stress dependence of the martensitic 
transformation. As illustrated in Fig. I.8, although the temperature of the sample doesn’t 
change, at a certain level of the applied stress the phase transformation takes place in the 
alloy. 
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Figure I.8: Stress dependence of the transformation temperatures and the way of the stress 

induced martensitic transformation schematically 
 

 

 
 

Figure I.9: Typical stress-strain curves of a stress induced martensitic transformation 
(schematic figure) 
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The pseudo-elasticity, similarly to the pseudo-plasticity, occurs at a constant 
temperature, but in this case at the beginning the specimen is completely composed of 
austenite (above Af). Loading the shape memory alloy it is deformed and the martensitic 
transformation starts. If the loading is ceased, the reverse transition begins and finally the 
sample recovers its original shape. So it traces such a way like in Fig. I.8. This behaviour 
expressed in the stress-strain diagrams characteristically with a hysteresis effect (Fig. I.9). 

 

I.4. Applications 
 
Nowadays the shape memory alloys are widely applied even in every day life. For 

example one receives a wire of NiTi as orthodontic material at the dentist, or the eyeglass 
frame (Fig. I.10) is made also of NiTi [W&S]. In these two applications different features of 
the shape memory alloys are used. 

 

 
 

Figure I.10: Glass frames made of NiTi (Fig. 2 of Ref. [W&S]) 
 

 

 
 

Figure I.11: Vascular stent (Fig. 1 of Ref. [Detal00]) 
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In orthodontic applications of NiTi alloys the one way shape memory effect is used: 
cooling down the shape memory wire is fixed to the denture and in the mouth it is heated up, 
so it retransforms to austenite, recovers its original shape and in this way provides a constant 
tensional load (without any recalibration). Furthermore, this effect works e.g. in thermostats 
or in vascular stents too (Fig. I.11) [Detal00]. 

Thanks to the superelasticity the eyeglass frame can regain its original shape, and the 
same feature is utilized for example in bra underwires [W&S] or in some medical tools (Fig. 
I.12) [Detal00]. 

Besides the commercial applications the shape memory alloys are present in the modern 
technologies like the space shuttles [R&C] and do theirs bit from the science research like 
micro-manipulators. 

Furthermore, the shape memory alloys start to be very important in the building trade, 
because thanks to the superplasticity they can applied as energy dissipaters or dumpers, so 
they can be very useful against earthquakes or the vibrations caused by wind. [Getal] 

 

I.5. Magnetic shape memory alloys 
 

 
Figure I.12: Surgical innovations endoscopic instruments use nitinol rods to actuate scissors, 

graspers, etc. (Fig. 7 of Ref. [Detal99]) 
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Nowadays the magnetic shape memory alloys stand in the centre of the many 
investigations, because they can be switched by magnetic field due to the coupling between 
the mechanical and the magnetic fields. For example very fast actuators can be constructed 
using them. The most promising magnetic shape memory alloy is NiMnGa, but it has very 
high switching field and it is hardly treatable because of its weak mechanical properties 
(brittleness). Hence, in some laboratories scientists and engineers are searching for a new 
magnetic shape memory alloy or for an appropriate modification (e.g. by microalloying) of it. 



 - 20 - 

References 
 

[O&W98] K. Otsuka and C. M. Wayman: Shape Memory Materials, 1998 Cambridge 
University Press 
[F87] H. Funakubo: Shape Memory Alloys, 1987 Gordon and Breach Science Publisher 
[N78] Z. Nishiyama: Martensitic transformation, 1978 Academic Press 
[C&H96] R. W. Cahn, and P. Hasen, (Eds.) Physical Metallurgy North Holland, Amsterdam, 
1996 
[S&C79] R. J. Salzbrenner and M. Cohen: On the thermodynamics of thermoelastic 
martensitic transformation Acta Metallurgica 27 (1979) p. 739 
[Detal02] L. Daróczi, D.L. Beke, C. Lexcellent and V. Mertinger: Effect of hydrostatic 
pressure on the martensitic transformation in near equiatomic TiNi alloys, Philos. Mag. B 82 
(2002) p. 105 
[Detal00] L. Daróczi, D.L. Beke, C. Lexcellent and V. Mertinger: Effect of hydrostatic 
pressure on the martensitic transformation in CuZnAl(Mn) shape memory alloys, Scripta 
materialia 43 (2000) p. 691 
[Getal06] G. Song, N. Ma, H.-N. Li: Applications of shape memory alloys in civil structures, 
Engineering Structures 28 (2006) p. 1266 
[R&C03] A. Razov and A. Cherniavsky: Application of SMAs in modern spacecraft and 
devices, Journal de physique. IV 112 (2003) p. 1173 
[W&S00] Ming H. Wu and L. McD. Schetky: Industrial applications for shape memory 
alloys, Proceedings, SMST-2000, Pacific Grove, California, p. 171-182 
[Detal99] T. Duerig, A. Pelton and D. Stöckel: An overview of nitinol medical applications 
Material Science and Engineering A 273-275 (1999) p. 149-160 
[Setal06] O. Söderberg, A. Sozinov, Y. Ge, S-P. Hannula and V.K. Lindroos: Giant 
magnetostrictive materials, Handbbok of magnetic materials 16 (2006) p. 1 



 - 21 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter II 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Summary of literature: motivation of 
my work 

 



 - 22 - 

II.  Summary of the literature: motivation of my work 
 
In this chapter two models, describe the martensitic transformation, will be presented. 

For the reason that one can always know which model is talking about, I kept the original 
notations of the authors as well as in the Chapter IV, too. 

 

II.1. Analysis of hysteresis loops and results of DSC measurements 
 

II.1.1. Model for the description of the hysteretic behaviour 
 
The model (Beke-Daróczi, in Refs. [Detal00] and [Detal02]) provides a suitable way for 

the determination of the non-chemical energy contributions from a measured thermal 
hysteresis loop. It starts from the Gibbs free energy change of the system during forward and 
reverse transformations, provides expressions for the transformation temperatures at the start 
and finish temperatures. For the determination of the non-chemical terms, however one has to 
know the value of T0, where the chemical free energies of the parent and product phases are 
equal to each other; in the absence of this the elastic energy contributions can only be 
estimated exclusive a term containing T0. Its generalization for obtaining the ξ-dependence of 
the non-chemical terms and for the comparison of the integrals of the results obtained form 
the hysteresis loops with DSC data will be described in Chapter III. 

 

II.1.1.1. Basic equations for the start and finish temperatures 

 
The equilibrium line during the austenite→martensite (A→M or forward) 

transformation – using superscript down arrows to indicate the cooling down process (↓ for 
A→M) – is defined by the following equation:  

 

( )
0)()( =++∆=

∂
∆∂ ↓↓↓

↓

ξξ
ξ

deg
G

c ,      (II.1) 

 
where it is assumed that the change in the chemical free energy per mole, ∆gc

↓, is independent 
of the transformed fraction, ξ (0≤ξ≤1), and  

 
↓↓↓ ∆−∆=∆ ccc sThg .        (II.2) 

 
In (II.1) e and d denote the derivatives of the elastic and dissipative energies. 

Here ∆hc
↓=hM-hA (<0) and ∆sc

↓=sM -sA (<0) (the M phase is the low temperature phase) 
are the free enthalpy and entropy changes, respectively. Furthermore, at the “equilibrium 
transformation temperature”, T0 (the temperature of zero-change in the chemical free energy) 

 

0)( 0 =∆ ↓ Tgc ,  i.e. ↑↑↓↓ ∆∆=∆∆= cccc shshT //0 ,  (II.3) 
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and e.g. at any temperature different from T0  
 

( ) ↓↓ ∆−=∆ cc sTTTg 0)( .        (II.4) 

 
If T<To then there is an under-cooling and ∆gc

↓(T) is negative. 
The temperature at which (II.1) is equal to zero for ξ=0 as well as for ξ=1 is the 

martensite start (Ms) and finish (Mf) temperature, respectively. 
Similar considerations are valid for the martensite→austenite (M→A or reverse) 

transformation, but since now ∆hc
↑=-∆hc

↓ and ∆sc
↑=-∆sc=-∆sc

↓ – according to (II.4) – ∆gc
↑<0 

can be fulfilled only if T>T0. Indeed again the temperature at which (II.1) is zero for ξ=1 as 
well as for ξ=0 are the austenite start (As>T0, i.e. an overheating is necessary) and austenite 
finish temperatures (Af).  
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where the 0 and 1 subscripts mean the pure austenite and pure martensite phases (e.g. 
d↓0=d↓(ξ=0) and e↑1=e↑(ξ=1)). Obviously if one measures the thermal hysteresis loop at fixed 
external field (e.g. at a fixed uniaxial stress, σ, or at a fixed hydrostatic pressure, p) in relation 
(II.5) all quantities on the right hand side in principle will be the function of σ (or p), too. In 
this case however, we have an additional relation for the derivative of the equilibrium 
transformation temperature: this is the Clausius-Clapeyron equation. 

 

II.1.1.2. Clausius-Clapeyron equation 

 
This relation can be derived from (II.2), if it is extended by the form(s) of the energy 

contributions to 
gc, related to the effect of the field(s) in question. For example for the effect 
of uniaxial stress: 

 

000 =−∆−∆=∆ ↓↓ tr
ccc VsTug σε ,      (II.6) 

 
or for the presence of hydrostatic pressure  
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00 =+∆−∆=∆ ↓↓ tr
ccc pVsTug ,      (II.7) 

 
where εtr or Vtr are the transformation strain and the relative volume change due to the 
transformation, respectively and V0 denotes the volume of the sample.  
 For the effect of uniaxial stress (σ) field  

 

( ) 0=∆
∂
∂ ↓

cg
σ

         (II.8) 

 
gives (assuming that ∆uc is independent of σ) 

 
( )

σ
σεσ

σ ∂
∂

−=
∂

∆∂ )()( 0
tr

oc VTs
       (II.9) 

 
If one also considers that εtr(σ)=const and 
sc=const, i.e. they don’t depend on the stress, 

the (II.9) equation leads to the usual form: 
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Similarly, in case of hydrostatic pressure (p) and taking again that 
sc=const and 

Vtr=const, 
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and for external magnetic field (B) 

 

c

tr

s

M

B

T

∆
−=

∂
∂ 0 ,         (II.12) 

 
where Mtr, the change in magnetization due to the transformation (and Mtr=const.). 

 
 

II.1.1.3. Integral quantities 

 
The heats (Q↓ and Q↑) of the forward and reverse transformations can be measured in a 

calorimeter, e.g. in case of a heat compensation differential scanning calorimeter (DSC) 
measurement they will be equal to the area of the peaks during A→M and M→A transitions, 
respectively. (Fig. II.1) This heat emission or absorption originates from the latent heat 
(∆Hc<0) – whose magnitude is the same for both directions and only its sign is different – and 
the non-chemical free energies. 

D↓ and D↑ mean the energy dissipated mainly due to the friction stresses required to 
move interface during forward and reverse transformation, respectively, as well as E↓ is the 
whole stored energy by the formation of the martensite phase and E↑ releases during 
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martensite/austenite transition and so helps the transformation. From this one can see that the 
assumptions, which will be discussed in the next section, have physical background. 

 

 
Figure II.1: Schematic figure of a DSC curve corresponding to martensitic transformation 

(modified version of Fig. 7 of Ref. [O&P88]) 
 

↓↓↓ ++∆= DEHQ c  
           (II.13) 

↑↑↑ ++∆−= DEHQ c  

 
One can compose the sum and the difference of these heats: 
 

↑↓↑↓↑↓ −+−+∆=− DDEEHQQ c2  

           (II.14) 
↓↑↓↑↓↑ +++=+ DDEEQQ . 

 

II.1.1.4. Typical assumptions used in the evaluations 

 
In order to determine the elastic and dissipative contributions from hysteresis loops 

additional assumptions are needed. It is usually assumed for shape memory alloys, that 
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eo=eo
↓=- eo

↑ (and e1=e1
↓=- e1

↑). Similarly it can also be assumed that do= do
↓= do

↑ (and 
d1=d1

↓=d1
↑). Then from (II.5) 
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result, where the Td0, Td1, Te0 and Te1 are the “non-chemical” temperatures corresponding to 
the derivatives of dissipative and elastic terms. They can be written as: 
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Evaluating thermal hysteresis cycles the transformation temperatures, i.e. the left sides 

of (II.15), can be determined but terms on the right sides – except of the entropy change – all 
are unknown; we have five unknowns and four equations, so not all of unknowns can be 
calculated The evaluation is usually done by using these equations, but as one can see the 
elastic term cannot be determined exactly, if the value of the T0 isn’t known from an 
independent measurement (as it is so in many cases). Anyway from the right combination of 
the (II.15) equations the dissipative terms can be exactly determined but the expressions of 
the elastic ones contain the value of T0. 

According to the above assumptions and due to the fact that in relations (II.14) the E and 
D quantities are the integrals of the differential quantities treated above one can also assume: 
E↓=-E↑=E(>0) and D↓=D↑=D(>0) and so: 

 

EHQQ c 22 −∆−=− ↓↑  
           (II.17) 

DQQ 2=+ ↓↑ . 
 
It is important to note that the last equations are strictly valid only in that case if the 

system comes back to the same thermodynamic state after a cycle, i.e. it does not evolve from 
cycle to cycle. Ortin and Planes [O&P88] showed that (II.14/b) is only valid if the heat 
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capacities of the phases (cp
A and cp

M) are equal to each other, but in general the next relation 
is true: 

 

))((2 MA
A

p
M

p TTccDQQ −−−=+ ↓↑      (II.17) 

 
where TA and TM are the corresponding peak temperatures. 

 

II.1.2. Effect of Hydrostatic pressure and tensile stress 
 

II.1.2.1. Effect of hydrostatic pressure 

 

II.1.2.1.1. CuZnAl(Mn) alloys from Ref. [Detal00] 
 
The authors investigated the effect of the hydrostatic pressure on the martensitic 

transformation in two samples of a polycrystalline Cu-22at%Zn-12at%Al-1at%Mn alloy. 
They followed the transformation by the measurement of the electrical resistance (as it can be 
seen in the Fig. I.6. in Chapter I) and the transformation temperatures were determined from 
0.1MPa to 1.5Gpa (Fig. II.2). 

 
Figure II.2: The transformation temperatures as a function of hydrostatic pressure in 

CuZnAl(Mn) samples (Fig. 2 of Ref. [Detal00]) 
 
The (II.12) expressions were combined and the next relations were calculated for all 

pressure levels: 
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where 
gdi=d0, 
gdi

*=d1, em=e1 and e0 has the same meaning. 
 

 
Figure II.3: The pressure dependence of the (II.15)-(II.19) expressions in CuAlNi(Mn) 

samples (The (5)-(9) equations of Ref. [Detal00] are the (II.15)-(II.19) in order.) 
 
They different behaviour in the low pressure range observed for e0 between the two 

samples ((8) in the Fig. II.3 (appearing also on curve (7) in Fig. II.3), was interpreted by the 
differences of the microstructure and the history of the specimens. Additionally, they found 
that the dissipative energy terms are much smaller than the corresponding elastic ones. 

Furthermore, from power compensation DSC measurement the specific entropy change 
was calculated: 
sc =–1.14 J/molK, therewith the knowledge of the volume change during the 
transformation is also necessary to calculate the hydrostatic pressure dependence of the 
equilibrium temperature, T0. They found that there is no any shape change related to the phase 
transformation (or at least it is less than 0.05%) in this material. Hence, according to the 
Clausius-Clapeyron equation, T0 is independent of the hydrostatic pressure. 
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II.1.2.1.2. NiTi alloys from Ref. [Detal02] 
 
Daróczi et al. have performed the same procedure (thermal cycling under constant 

hydrostatic pressure from 0.1MPa to 1.5Gpa on two samples–F and J), similarly as in the case 
of CuZnAl(Mn), but now the compositions (and the origin) of the two specimens were a little  
bit different. Moreover, they had to take into account the R transient phase, i.e. two 
martensitic phase transformation took place one after another; namely B2→R and R→B19’ 
during cooling and B19’→R and R→B2 during heating. Like before the resistance vs. 
temperature curves (Fig. I.5. in the Chapter I) were used to follow the transition and 
determine the transformation temperatures (Fig. II.4). 

 
Figure II.4: Transformation temperatures vs. hydrostatic pressure in NiTi alloys (Fig. 3/a and 

b of Ref. [Detal02] 
 
It can be seen that in the 0.2-1.5 GPa range the tendencies are similar in both types of 

samples, but in the low pressure range there are relatively strong changes which are even 
slightly different for the two specimens. 

Furthermore, according to (II.15)-(II.19) the combinations of the corresponding 
temperatures were calculated (Fig. II.5) and similar tendencies were observed between the 
two samples. The sum and the difference of the dissipative contributions are approximately 
zero, i.e. the dissipative contributions are negligible in B2/R transition, and at the same time 
the difference of the elastic terms (II.17) and the difference (II.15) and the sum (II.16) of the 
dissipative ones have the same order of magnitude in R/B19’ transformation. 

The authors added two further equations to calculate the dissipative energies from the 
transformation temperatures: 
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Figure II.5: The pressure dependence of the (II.15)-(II.19) expressions in NiTi alloys(The (5)-

(9) equations of Ref. [Detal02] are the (II.15)-(II.19) in order.) 
 
The entropy (
sc) and volume (Vtr) changes accompanied with the martensitic 

transformations were determined at stress free state from DSC and elongation-temperature 
curve measurements, respectively. Supposing the 
sc/V

tr is independent of pressure (p) the 
Clausius-Clapeyron equation (II.8) leads to 
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Thus T0 can be replaced in (II.18) and (II.19): 
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where ∆Hc(0)=T0(0)∆Sc(<0) is the enthalpy difference between the two phases at T0(0) and 
∆Sc=∆scV0. 
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Accordingly the authors were able to determine the dissipative terms and the tendency 
of elastic ones. Fig. II.6 shows the pressure dependence of the dissipative energies. It can be 
seen that it (∆gdi*) increases with the pressure for R/B19’ transformation, and it is practically 
constant for the reverse (B19’/R) transformation (∆gdi). 

 
Figure II.6: Pressure dependence of the dissipative energies for R/B19’ transformation in two 

NiTi samples (Fig. 9a-b of Ref.[Detal02]) 

 
Figure II.7: Elastic energies vs. pressure in sample F (Fig. 7a-b of Ref.[Detal02]) 
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Figs. II.7 and II.8 show the elastic contributions versus hydrostatic pressure for both 

transformations and both specimens. It can be seen, that not only the tendencies but the slopes 
of all four energies of F and J samples are similar. The exclusive differences are the values of 
V0e0+
Hc(0) and V0em+
Hc(0), but they come from the difference of the additive constant 
(
Hc(0)) of the two specimens. Moreover only the B2-side elastic energy (e0 in case of B2/R 
transformation) decreases with increasing hydrostatic pressure, and there is an opposite 
tendency for the reverse transformation.  

 
Figure II.8: The effect of hydrostatic pressure on the volume derivatives of elastic energy in 

sample J (Fig. 8a-b of Ref.[Detal02]) 
 

II.1.2.2. Effect of tensile stress 

 

II.1.2.2.1. NiTi alloys from Ref. [Betal04] 
 
The procedure presented above was generalized for the determination of the stress 

dependence of the dissipative and elastic energy terms using the results of measurements of 
Tanaka et al. [Tetal99]. The authors investigated three transformations: for set1 both B2/R 
and R/B19’ transitions and in case of set2, only the B2/R one. The transformation 
temperatures vs. applied stress can be seen in the Figs. II.9 and II.10, as well as Fig. II.11 
shows the stress dependence of the transformation strains. 
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Figure II.9: Transformation temperatures in case of set1 (Figs. 1a and 1b of Ref. [Betal04]) 

 

 
Figure II.10: Start and finish temperatures of B2/R transition of set2 (Fig. 2 of Ref. [Betal04]) 

 
Again the analysis was based on equations (II.5) and the general form of the Clausius-

Clapeyron equation (II.6), valid in case of external stress, was used to determine the shift of 
T0 because the strain accompanied by the transformation depends on the external stress. Since 
T0 appears only in the elastic contributions, the dissipative energies can be expressed from the 
(II.20) and (II.21) equations without any changes: 

 
2/)]()([)( σσσ sfcdi MAsg −∆−=∆       (II.25) 
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but expressions for the elastic ones include an additional term which describes the stress 
dependence of T0: 
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Figure II.11: Transformation strains vs. stress for all three transitions (Fig. 3 of Ref. 

[Betal04]) 
 
Using these equations the stress dependence of the derivatives of the non-chemical free 

energies can be calculated. It can be seen that the magnitude of the elastic terms could not be 
determined because the value of T0(0) was not known. 

 

 
Figure II.12: The calculated non-chemical energy contributions as functions of external stress 

for B2/R transformations (Figs. 4a and 5 of Ref. [Betal04]) 
 
One can see in the Fig. II.12, that the calculated energy terms for B2-R transformation 

show very similar tendency in both series. The dissipative energies are really close to zero 
corresponding to the results obtained when the effect of hydrostatic pressure was investigated 
on NiTi [Detal02]. Furthermore, neither elastic terms show stress dependence and their values 
are similar, but at every stress levels em>e0 is valid. 
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Figure II.13: Stress dependence of non-chemical energies during R/B19’ transition (Fig. 4b 

of Ref. [Betal04]) 
 
 
For R/B19’ transformation both the dissipative and the elastic energies have stress 

dependence. Even the two dissipative terms have different tendency: ∆gdi
* increases while 

∆gdi shows a decreasing tendency with increasing stress (Fig. II.13). On the other hand the 
both elastic contributions are increasing functions of the stress and em is bigger than e0, like 
before, but the difference between them are higher than for B2/R transition. 

 
 

II.1.2.3. Open questions 

 
It is clear from the above examples that the analysis is capable to determine the 

derivatives of the non-chemical free energies of martensitic transformation only at the 
beginning and at the end of the martensitic transition. The derivatives were calculated only at 
the start and finish temperatures, whereas the hysteresis loop inevitably contains the 
information on the whole forward and reverse transformations. 

Furthermore one has to keep in mind that while the magnitude of the dissipative terms 
could be determined, for the elastic ones only the tendency could be estimated, because their 
expressions contain the equilibrium transformation temperature, T0, whose value was 
unknown. 
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II.2. Simulation of hysteresis curves 
 

II.2.1. Model for two-phase system 
 
The RL model ([Retal92], [R&L94], [R&L98]) provides us a way to describe the 

evolution of martensitic fraction during pseudoelastic test after some parameters are 
determined from the experimental curves. In all three articles the authors consider the stress 
and strain fields very generally; it means three dimensional stress and strain matrices were 
used; now I will present a simpler version in which both the stress and the strain are uniaxial. 

 

II.2.1.1. Free energy 

 
Consider a piece of shape memory alloy (representative volume element – RVE) which 

at a reference state (σ=0 and T=T0) is in austenite state. As soon as the applied increasing 
stress reaches a certain level the martensite phase appears, then it grows and the after a given 
stress only martensite phase can be found in that piece of shape memory alloys (forward 
transformation); and if the stress decreases, then a reverse process will take place, i.e. firstly 
the austenite phase accommodates then the whole RVE turns into austenite phase. The 
Helmholtz free energy of such a mixture: 

 

itzzzz Φ−+Φ+Φ−=Φ )1()1( 21       (II.29) 

 
where the Φα (α=1,2) is the free energy of  

the austenite phase (A) if α=1 and 
the martensite phase (M) if α=2. 

Furthermore the last term describes the interaction between the austenite and the martensite 
phases, and Φit, so called configurational free energy is defined as 

 

00 sTuit −=Φ          (II.30) 
 

where 0u , 0s  are the configurational internal energy and entropy, respectively, and Φit is 
expected non negative. Finally z is the martensitic fractions which must comply with 
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The sign of the uniaxial description appears firstly in the expressions of the Helmholtz 

free energies of the phases: 
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where u0

α and s0
α are the internal energy and the entropy of the α phase, E, ρ and cV are the 

Young modulus, the mass density and the heat capacity in order (supposing they are the same 
for each phase). Furthermore εα, εα

tr and εα
T are the total intrinsic, the transformation and the 
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thermal strain and so the expression in the parentheses is the elastic strain of the α phase (εα
e) 

and due to the same Young modulus ε1
e=ε2

e. The thermal strains can be given as 
 

)( 0021 TTTT −== αεε         (II.33) 

 
where α0 is the thermal expansion coefficients supposing the same for both phases. Whatever 
this strain contribution is practically negligible comparing to the transformation one which 
has a value different from zero only for α=2: 
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where γ is the total pseudoelastic uniaxial strain (Fig. II.14). Moreover the total strain of RVE 
can be written as 
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Figure 14: Determination of γ from a stress-strain curve of martensitic transformation 

measured during isothermal experiment and the characteristic stresses 
 
Substituting (II.32) expressions (α=1,2) into (II.29) the Helmholtz free energy of this 

two-phase system is obtained: 
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where u0
1 and s0

1 are the internal energy and the entropy of the austenite phase, respectively, 
as well as π0

f(T), the chemical potential of phase transformation, contains the internal energy 
and entropy changes of the system because of the evolved martensite phases: 

 

2
0

1
0

2
0

1
0

0

*

*

**)(

sss

uuu

sTuTf

−=∆

−=∆

∆−∆=π

      (II.37) 

 
Furthermore it is worth to examine the (II.36) expression. The partial derivatives of it 

according to three variables (z,T and ε) provide the next thermal equations: 
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and 
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where σ, s and πf are the stress, the specific entropy of RVE and the thermodynamic force 
associated to the phase transformation and if the expression for stress is substituted into 
(II.39) and (II.40), then one will receives simplified forms: 
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and 
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where now the three variables are z,T and σ. 

 

II.2.1.2. Transformation kinetics 

 
Let us consider the first and second laws of thermodynamics: 
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where u=Φ+Ts is the specific internal energy, δq is the heat exchange and σdε/ρ is the work 
done on the system by the uniaxial loading. Hence (II.43) can be written as 
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which is simplified easily having regard to (II.38), (II.39) and (II.40) as well as the heat 
exchange is expressed and it substituted into (II.44). So one obtained finally: 

 
0≥dzfπ          (II.46) 

 
Thus, it is understandable the meaning of thermodynamic force: The sign of πf 

determines the direction of the martensitic transformation, if it is non negative, then dz≥0, i.e. 
the martensitic fraction can increase only – forward transformation – and the martensite phase 
can shrink (dz≤0) if πf less than or equal to zero – reverse transformation. 

Neglecting the thermal expansion effect there are six parameters (γ, ρ, ∆u*, ∆s*, 0u , 

0s ) which are necessary to know to determine the thermodynamic force using (II.42). The 

total pseudoelastic uniaxial strain and the mass density can easily measured and the other four 
parameters can determined taking into account that π

f is equal to zero at the start of the 
forward and reverse transformations. In fact, there are more ways to calculate these constants, 
e.g. let us take stress-strain cycles measured at different temperatures, and it will be true at for 
every hysteresis: 
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and considering the slopes of σ

AM
s(T) and σMA

s(T) (Fig. II.14): 
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So we have four unknowns and four independent equations, i.e. the parameters can be 

calculated from the start stresses (σ
AM

s and σMA
s) which are known at least at two different 

temperatures. Another way could be to measure the start temperatures (Ms and As) at least at 
two different stress levels, nevertheless in this case one has to make a stress-strain curve 
measurement to determine γ as well. 
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Figure II.15: The temperature dependence of the start stresses 

 
Nevertheless, the (II.46) inequality cannot determine the transformation kinetics, but it 

decides what kind of process can take place. To describe the evolving of martensitic fraction 
the authors presumed that two functions exist: Ψ

1(πf,z) and Ψ2(πf,z) which are constant for 
partial and zero for external cycle during the forward and reverse transformation, respectively 
(Figs. II.15 and II.16): 
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and the authors assumed that the kα(z) (α=1,2) functions have the following mathematical 
properties: 
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and take 

 

)1(ln)]1([

)1ln()(

222
2

111
1

zCzzBAk

zCzzBAk

−−−−=

+−+−=
      (II.53) 

 
where Aα, Bα and Cα are constants (Aα>0, Cα≥0) and their values can be determined from the 
branches of martensitic transformation. 
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Figure II.16: Schematic figure about the stress induced martensitic transformation 
 

 
Figure II.17: Schematic figure about thermal cycle hysteresis loop 
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II.2.2. Model for three-phase system 
 
The above written model is appropriate to describe the martensitic transformation if 

either only self accommodated (thermal induced) or only oriented (stress induced) martensite 
shows up, and it is true for example in case of isothermal process, where only the oriented one 
can evolve under external load, or in case of stress-free anisothermal experiment, where the 
martensite phase accommodates randomly. But it can easily happen during thermal induced 
martensitic transformation under stress that these two martensite variants form 
simultaneously. 

Hence one has to take into account the possibility of appearing more than one martensite 
variant, i.e. now we have a three phase system. The details of this improved RL model and 
general, three-dimensional case can be found in Refs. [L&L96, Getal00] and now I present 
the one dimensional version as above. 

 

II.2.2.1. Free energy 

 
First of all it is worth to discuss about the martensite variants, let us assume the total 

martensite fraction, z, is split into 
zT, self-accommodated, which obtained under pure thermal process, and each variant has 

its own complement, hence appearing of this martensite doesn’t draw down macroscopic 
phase transition strain; and 

zσ, oriented, result of external mechanical loading and associated macroscopic 
transformation strain. 

 

 
 

Figure II.18: Interrelations between the parent and product phases (Fig. 1 of Ref. [L&L96]) 
 

Fig. II.18 shows the interrelations between the austenite and martensite phases and the 
martensitic fractions must comply with 
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Of course the Helmholtz free energy is similar like (II.29) but now there are two 

additional terms: one concerns the plus martensite and another one describes the interaction 
between the martensite variants. 
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where the Φα (α=1,2,3) is the free energy of  

the austenite phase (A) if α=1, 
the self-accommodated martensite phase (MT) if α=2 and 
the oriented martensite phase (Mσ) if α=3. 

The z(1-z)Φit has the former meaning and zTzσΦit
m describes the interaction between the two 

types of martensite variants, now together these two terms are called configurational energy. 
The free energy expressions of the pure phases are the same like before (II.32) (α=1,2,3). 
However the situation of Φit and Φit

m is not so clear, it means that either they are considered 
as non-negative constants [L&L96] or only Φit

m is constant and Φit has a temperature 
dependence like (II.30) [Getal00] or both of them depend on the temperature [Letal06]. Now 
the first case will be presented. 

Let us regard the strains of all three phases. Everyone’s strain is composed of an elastic, 
a transformation and a thermic part. 
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The elastic term and the thermal expansion, which can be written as (II.33), are the same 

for all phases. Furthermore, as it was assumed only the oriented martensite has transformation 
strain different from zero: 
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As well as the total strain of RVE can be written consequently: 
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And now following the analogy anyone can derive the Helmholtz free energy of this 

three-phase RVE: 
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where now π0

f(T), the chemical potential of phase transformation is defined as 
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i.e. the same internal energy and the same entropy are considered for both martensite phases. 

The next step is the composing the partial derivatives of the Helmholtz free energy of 
the system like before but now the Φit does not depend on T: 
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and 
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where πf

T and πf
σ the thermodynamic forces associated to the forming of self-accommodated 

and oriented martensite phases, respectively. Analogously substituting the stress expression 
(II.61) into (II.62) the former expression (II.41) is reobtained and into (II.64) a simplified 
form is received: 
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As one can see the dependence of the thermodynamic forces is in accord with Fig. II.18. 

i.e. πf
T is independent from σ while in πf

σ there are a thermal and a stress contribution as well. 

II.2.2.2. Transformation kinetics 

 
The initial point is the first two laws of thermodynamics, and after a similar derivation 

one obtains: 
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TT
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and this inequality determines the processes can take place. For example it explains the 
transition between the two martensite phases when a piece of thermal induced martensite 
becomes oriented, i.e. dzT=–dzσ and so 
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is referred to the thermodynamic force associated to the reorientation of the self-
accommodated product phase, and it depends on only the stress really as Fig. II.18 shows. 

The number of parameters (γ, ρ, ∆u*, ∆s*, Φit and Φit
m) is six here too neglecting the 

thermal expansion, thanks that the configurational energy does not depend on the temperature, 
i.e. Φit is constant. The same holds true of γ and ρ and on the other four constant Leclercq and 
Lexcellent [L&L96] gave the next relations using the fact that the thermodynamic forces at 
the start of the transformations (austenite ↔ martensite and self-accommodated → oriented) 
are equal to zero: 
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where Ms

0 and As
0 are the martensite and austenite start temperatures at zero stress, σAM

s is 
the yield stress on the isothermal martensitic transformation performed at Tpe≥Af

0 (austenite 
finish temperature at stress free state) temperature, as well as σTσ is the yield stress for 
reorientation of self-accommodated martensite variants. 

There are five different transitions, which can take place, so following the presumption 
of RL model five functions exist which are constant for partial and zero for full 
transformation: 
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where σ, T and Tσ superscripts mean the A/Mσ, the A/MT and the MT→Mσ transitions, as well 
the f and r subscripts show the direction of martensitic transformation such as forward 
(A→M) and reverse (M→A). In contradistinction to RL model the kσf, k

σ
r, k

T
f, k

T
r and kTσ 

functions don’t depend only on the martensitic fraction, but on the stress and on the 
temperature and take zero value at the beginning of phase transitions. The functions, which 
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were published in Ref. [L&L96], are extended from the kinetic forms proposed by Koistinen 
and Marburger [K&M59] and Raniecki et al [Retal92]. 
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The parameters af

σ, ar
σ, af

T, ar
T, aTσ, bf, br, bm’  and bm are identified from experimental 

tests. The temperature T* is that for which a mechanical loading is ongoing, i.e. T* can be the 
temperature at the beginning of an isothermal mechanical loading or the actual temperature in 
case of non-isothermal mechanical loading. 

The zσ
m, zσ

M, zT
m and zT

M characterize the “memory” of the material, i.e. zσ
m and zT

m are 
the initial values of zσ and zT when a forward transformation begins and zσ

M and zT
M are the 

initial values of zσ and zT likewise when a reverse transformation commences. Hence these 
parameters are relevant in the case of partial hysteresis loop. 

 
 

II.2.3. About the models 
 
 

II.2.3.1. Results of simulation 

 
Let me introduce one example of the application of the above two models: firstly a 

simulation of the pseudoelastic behaviour on equatomic NiTi using RL model is presented and 
then the thermal induced martensitic transformation on NiTiCu and NiTi alloys will be 
investigated applying the L–L model. 
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II.2.3.1.1. NiTi alloy from Ref. [R&L98] 
 
In this article Raniecki and Lexcellent took into account that the pseudoelastic 

properties are different in cases of tension and compression. This asymmetry is described by 
an f(y) function which has to comply with 
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where the value of y provides information about the state of external mechanical field; for 
example for pure tension y=+1, for pure compression y=–1 and for pure shear y=0. The total 
strain (γ ) can be calculated 
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where γ is the total shear strain obviously. Thus, for tension (γT) and for compression (γC) the 
total uniaxial strain can be given as: 
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To verify the validity of the predictions the authors used the experimental data published 

by Orgeas and Favier [O&F95] on NiTi. The calculated parameters can be found in Table 
II.1, practically they considered a constant Φit since 0s =0. 

 
Properties Value 

ρ [kg/m3] 6500 

E [MPa] 55000 

ν (Poisson ratio) 0.29 

∆u* [J/kg] 23800 

0u  [J/kg] 1000 

∆s* [J/kgK] 80 

0s  [J/kgK] 0 

γ 0.061 

f(+1) 1.05 

f(–1) 0.744 

Table II.1: Values of parameters for equatomic NiTi (Table I. of Ref. [R&L98]) 

 
Finally in Fig. II.19 one can see that the correlation between the experimental data and 

the hysteresis loop calculated according to RL model, and they show good agreement. 
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Figure II.19: The correlation between the experiment and model prediction at T=333K (Fig.3 

of Ref. [R&L98]) 
 
 

II.2.3.1.2. NiTiCu alloy from Ref. [Getal00] 
 
The authors investigated three shape memory alloy thin films and applying the L–L 

model they calculated the strain–temperature hysteresis loops at different stress levels which 
were compared to the experiments. 

It was showed that at constant stress the reorientation of self-accommodated martensite 
doesn’t take place but only the creation and the annihilation of martensite. Finally two-two 
relations were obtained for the forward and for the reverse transformations. 

For A→M transformation: 
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In case of M→A transition: 
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The thirteen material parameters of the three alloys were determined by some 
appropriate isothermal and anisothermal tests, their values can be seen in Table II.2. 

 
Parameters Ti-43.0Ni-6.2Cu (at%) Ti-48.7Ni (at%) Ti-51.5Ni (at%) 

E [GPa] 55.6 55.56 55.7 

ρ [kg/m3] 6500 6500 6500 

Ms
0 [K] 324 338 160 

As
0 [K] 341 360 215 

∆u* [J/kg] 38245 35931 10179 

∆s* [J/kgK] 113.71 102.5 52.85 

0u  [J/kg] 17432 6515 3288 

0s  [J/kgK] 49.57 15.45 9.78 

Φit 1200 900 1600 

γ 4.6 5 5.6 

af
T 0.025 0.001 0.016 

ar
T 0.19 0.16 0.19 

af
σ 0.07 0.05 0.03 

ar
σ 0.082 0.036 0.082 

Table II.2: The values of the thirteen parameters for both three alloys (summary of Tables 2, 3 
and 4 of Ref. [Getal00]) 

In the conclusions it is announced that the main hypothesis, i.e. distinguishing two types 
of martensite, is appropriate to NiTi based alloy films. However, at low stress levels the 
model didn’t provide a good agreement with the experiment, and the authors mentioned that 
they had the same problem in the modelling of classical shape memory alloy. 
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Figure II.20: Measured and calculated strain-temperature curves on Ti-43.0Ni-6.2Cu (at%) 
thin film at different stress levels (Fig. 4a of Ref. [Getal00]) 
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Figure II.21: Measured and calculated strain-temperature curves on Ti-48.7Ni (at%) thin 
film at different stress levels (Fig. 5a of Ref. [Getal00]) 
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Figure II.22: Measured and calculated strain-temperature curves on Ti-51.5Ni (at%) thin 
film at different stress levels (Fig. 6a of Ref. [Getal00]) 

 

II.2.3.2. Validity of models 

Although the RL model was developed to describe the stress induced martensitic 
transformation behaviour of shape memory alloys when only oriented martensite can form, it 
allows us to calculate the thermal induced martensitic transformation case where the 
conditions are so that only one type of martensite can appear. It can be seen from the fact that 
the equations of L–L lead to the ones of RL if only one martensite is considered and if it is the 
self-accommodated one, then the γ has to be equal to zero, i.e. the γσ/ρ term vanishes in 
expression of πf. I must to note that at stress-free state this term vanishes automatically and so 
the RL model works correctly without changing γ to zero. 
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III.   Experiment and evaluation 
 

III.1. Generalization of Beke-Daróczi model for the whole transformation 
 
The anisothermal tests are usually made on different shape memory alloys to determine 

only the transformation temperatures from the measured hysteresis curves. Nevertheless these 
curves contain information about the whole martensitic transformation, i.e. one can follow up 
both the forward and the reverse transition as a function of transformed (martensitic) fraction, 
ξ, and even the ξ dependence of the non-chemical energies can be obtained. [Petal05] 

 

III.1.1. Expressions for the up and down parts of the hysteresis loop 
 
The starting relation is the (II.1) equation, which is pasted here as (III.1), because the 

derivatives of the Gibbs free energy changing according to the transformed fraction is equal to 
zero not only at the starts end finish temperatures but at any time during the transformation; 
namely the martensitic phase transition is diffusionless and so a balanced state can find an 
other equilibrium very fast after any temperature or loading force changes, i.e. the derivatives 
of the Gibbs free energy according to the martensitic fraction is equal to zero through A→M 
and M→A transitions: 
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and a similar one is valid for M→A, too: 
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Furthermore the expressions of the chemical terms don’t change either, because the 

chemical free energy and the transformed fraction changes are linear to each other and the 
derivation keeps the slope only, which can be easily derived from the expression of chemical 
Gibbs free energy of the two phase system: 
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Thus using the relation about the enthalpy and entropy changes one receives: 
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and ∆sc=sM -sA (<0) like before. Writing it in (III.1) and in (III.2) two relations will be 

received: 
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( ) 0)()(0 =++∆− ↑↑ ξξ edsTT c  
 
where T is the temperature at which the derivatives of the chemical and the non-

chemical energies cancel each other and the direction and martensitic fraction dependence of 
non-chemical ones result the usual hysteretic behaviour, i.e. the temperature of the forward 
and the reverse transformation can be expressed by T0 and the derivatives of non-chemical 
energies whose transformed fraction dependence appears in the temperature. 
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The T↓(ξ) and T↑(ξ) functions are the inverses of the well known ξ

↓(T) and ξ↑(T) which 
can be calculated from resistance-temperature or from strain-temperature curves using a 
normalizing process which includes the eliminating of thermal effect and the actual 
normalizing, i.e. ξ=0 at parent state and ξ=1 at martensitic state. 

 

 
 

Figure III.1: The well known ξ(T) hysteresis loop and its inverse 
 
Obviously the (III.6) equations give back the relations valid for start and finish 

temperatures (II.5), if one uses the next notifications:  
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If thermal cycles is measured on shape memory alloys under different circumstances 
(applied pressure, stress, etc.), one will experience that the characteristic temperatures are 
shifted and even the shapes of the hysteresis branches are changed. Regarding the (III.6) 
relations, which are valid in stress-free and under-loading cases, the shape change can be 
derived only from the external field dependence of the elastic or the dissipative contributions, 
because only they depend on the transformed fraction. On the contrary, supposing the entropy 
change isn’t sensible to external load, a reason of the temperature shifting is stress or pressure 
dependence of the equilibrium temperature, which dependence is described by the Clausius-
Clapeyron equation, but the magnitude change of the non-chemical energies can do theirs bit 
from this shifting. 

Let us compose the sum and the difference of the (III.6) expressions. 
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These relations will have roles in the next two sections. 
 

III.1.2. Correlation between the differential and the integral quantities 
 
As one can see there is an analogy between the corresponding (II.14) and (III.8) 

equations, and if the connection between the differential and integral quantities is cleared, this 
analogy will become relations. 

Since the small letters mean the differential quantities the next equations are relevant: 
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After all, one can get the next two equations which describe the correlation between the 

measurable “differential” (T↓(ξ), T↑(ξ)) and “integral” (Q↓, Q↑) quantities. 
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These equations allow us without any simplifier assumptions to examine the self 

consistency of this model. 
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III.1.3. Extending the typical assumptions 
 
Like Chapter II we meet the same problem, namely the number of variables (e↓(ξ), e↑(ξ), 

d↓(ξ), d↑(ξ)) is more than the number of equations and even if we forget the determination of 
T0 is not possible in lots of cases. So similar assumptions have to be accepted like in case of 
pure-phase evaluation (section II.1.4.), i.e. the direction dependence has to be eliminated: 
e↓(ξ)=-e↑(ξ)=e(ξ)≥0 and d↓(ξ)=d↑(ξ)=d(ξ)≥0. Hence such relations are received which 
resemble to the (II.12) ones: 
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Now, to express the derivatives of the non-chemical free energies the assumptions have 

to be applied to (III.8) and after a little arrangement one receives the next: 
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III.2. Measurements in polycrystalline samples  
 
As continuance of the work of Beke and Daróczi [Detal00, Detal02, Betal04] I 

investigated the effect of tensile stress dependence on the derivatives of non-chemical 
energies during martensitic transformation on CuAlNi shape memory alloy. Firstly the 
dissipative and elastic terms were determined in pure phases [Detal04]; then the extended 
evaluation method was used to have information about the whole transformation [Petal05]. 

 

III.2.1. Anisothermal test under constant stress 
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III.2.1.1. Samples manufacturing 

 
A copper based shape memory alloy was chosen for the further tests. The Cu-24.0at% 

Al-2.2at% Ni samples with 0.5at% B addition were melted in arc melting equipment from 
elemental components. Then the melt was snuffed up into an Al2O3 tube with 1.1 mm internal 
diameter, so-cast l0=28.5mm length wires were used for the experiments. The composition 
was determined by energy dispersive X-ray spectrometry in a scanning electron microscope. 

III.2.1.2. Experimental set-up 

 
The equipments in which anisothermal test can be done under external constant stress 

are not so diffused than the ones which are built for isothermal tests. Hence we decided to 
develop our own machines and so we can construct it after our wishes, the Fig. III.2 illustrates 
the heating–cooling, the loading and the strain measurement systems. 

 

 
 

Figure III.2: Schematic figure about anisothermal test equipment 
The sample was oriented vertically to be sure that the gravity can not bend it which can 

cause that the stress field won’t be uniaxial. Furthermore the sample was fixed by its bottom 
and its other end was pull by a cord which was guided through a pulley for the direction 
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change and the appropriate weights for a certain stress hung on its other end. Actually the 
cord was used only on the pulley and the rest of the loading system was made by bar steel. At 
the boundary of the vacuum chamber and the outer atmosphere a packing-gland assured the 
hermetic sealing in which an oiled bar moved. 

The equipment was designed so that it allows us to measure simultaneously the 
resistance and the change of length of the sample precisely as functions of temperature. A 
copper-constantan thermocouple fixed to the middles of sample gave the temperature 
information, the resistance of sample was determined using the four-wire method and a 
micrometer was used to measure the change of length. To avoid the oxidation of sample and 
the condensation of water on the sample, which could have changed its resistance, the 
specimen was placed in a small vacuum chamber. 

External heating–cooling system was applied: a resistance furnace made by canthal wire 
heated up the part of the chamber where the specimen was located and vapour of liquid 
nitrogen was blown into the furnace, so the cooling was localised as well. 

 

III.2.1.3. Hysteresis curves 

 
Using this equipment we investigated the thermal cycles at constant stress up to 100 

MPa*, both the resistance-temperature and the elongation-temperature curves were measured. 
At low stresses the resistance hysteresis loops was rather usable to follow up the 
transformation (Fig. III.3/a) and the measurement of the change of length was important to 
determine the transformational strain ε

tr=∆l/l 0 (Fig. III.3/b). 
 

 
Figure III.3: a) Resistance and b) change of length hysteresis loops at 25.4MPa uniaxial 

stress (where ∆l is the change of length accompanied to the transformation)* 
 
Increasing the loading force both the resistance-temperature (Fig. III.4/a) and elongation 

temperature (Fig. III.4/b) hysteresis curves open the door to determine the transformation 
temperatures or even to perform the normalization process. 

- 61 -                                                
* Because of a calculation error the stress values were about 10 times smaller in the Refs. [Detal04] and 
[Petal05]. Here this error is corrected and the correct figures will be signed by a superscripted star. 
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Figure III.4: a) Resistance vs. temperature and b) elongation vs. temperature hysteresis loops 

at 67.2MPa uniaxial stress* 
As one can see that both on the resistance-temperature and on the elongation-

temperature hysteresis curves there are loops besides of the hysteretic behaviour. In the case 
of elongation these artifacts are derived from the shifting of the cooling down and the heating 
up branches to each other this effect probably comes from the fact that the steel bar couldn’t 
move easily, i.e. a limit force was needed to put it in motion, or the different hydrostatic 
pressure values cause the shifting. In the case of resistance the additional loop appears only in 
martensite state and even its size is different at different stress levels, for example at 78.2MPa 
its area is about the half of the hysteresis loop while at 25.4MPa any additional loop can not 
be experienced. In conclusion the elongation-temperature hysteresis loops are more 
appropriate to be the bases of the evaluation processes in spite of its weak resolution at low 
stresses. 

All measured hysteresis loops can be found in Appendix A. 

 
Figure III.5: DSC curves measured at zero stress 

 

- 62 -                                                
* See footnote at page 61. 
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III.2.1.4. DSC measurement 

 
As it was cleared in the previous chapter the entropy change between the parent and the 

martensitic phase during the martensitic transformation is needed to the evaluation procedure. 
To obtain this information a Perkin-Elmer DSC 7 was used to measure the absorption and 
release of energy during the martensitic transformation at stress free state. (Fig. III.5) 

 

III.2.2. Evaluation in accordance with B-D model 
 

III.2.2.1. In the pure phases 

 

III.2.2.1.1. Measured parameters 
 
First of all the start and finish temperatures (Ms, Mf, As and Af) were determined, we 

considered the start as well as the finish points where the hysteresis curve leaves as well as 
returns the linear fitted on the pure phases, respectively (Fig. III.6). However this temperature 
values are sensitive to the fitting and so ±5K error was considered. Finally the transformation 
temperatures vs. stress functions can be seen in the Fig. III.7. 

 
Figure III.6: Determination of transformation temperatures from elongation-temperature 

hysteresis curve* 

- 63 -                                                
* See footnote at page 61. 
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Figure III.7: Transformation temperatures at different stress levels stress* 

 
Almost all transformation temperatures show increasing tendencies at the whole stress 

range except of the martensite finish temperature which becomes decreasing from 57MPa. 
The Ms and As temperatures are almost correspondent to each other; the biggest difference, 
where it is more than the error limit only, can be experienced at 35MPa. 

 
Figure III.8: Transformation strain as a function of stress* 

 

- 64 -                                                
* See footnote at page 61. 
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Due to the measurement of change of length the stress dependence of the 
transformational strain could be determined (Fig. III.8) and as it can be seen that it depends 
linearly on the uniaxial stress so the general form of Clausius-Clapeyron relation (II.9) has to 
be used to describe the stress dependence of the equilibrium transformation temperature. 

Ortín and Planes [O&P88] showed that the entropy changes can be calculated from a 
DSC curve as follows: 
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and if the heat capacity difference between the parent and the product phase is zero (cp

A=cp
M) 

the magnitude of the entropy change is independent from the direction of the transformation 
and it is negative for A→M and positive for M→A. Nevertheless, if cp

A
≠cp

M, then a 
correction term appears between the ∆sc

↓ and ∆sc
↑ likewise in case of dissipated energy 

(II.17): 
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but now because of term ln(TM/TA) this correction is negligible in most of case. Evaluating the 
data from the DSC measurement (Fig. III.5) 

 
∆sc

↓=–1,393*105 J/Km3     and     ∆sc
↑=1,379*105 J/Km3 

 
are obtained. Since the difference of their magnitude is within error it is acceptable to neglect 
the heat capacity correction and during the evaluation  
 

∆sc=1/2(∆sc
↓–∆sc

↑)=–1,386*105 J/Km3=–1.026 J/Kmol 
 

is used. 
 

III.2.2.1.2. Stress dependence of non-chemical free energies 
 
Combining the relations of the transformation temperatures (II.12) one can obtain the 

next expressions taking into account the stress dependence of the transformation equilibrium 
temperature, T0: 

 

2

)()(
)(0

σσ
σ sf

c

MA
sd

−
∆−=  

           (III.18) 

2

)()(
)(1

σσ
σ fs

c

MA
sd

−
∆−=  

 



 - 66 - 

and 
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Now it is obvious that the derivatives of the dissipative energy can be determined 

exactly, but for lack of knowing T0(0) only the tendency of the elastic ones can be given. 
The derivatives of the dissipative and of the elastic free energy calculated can be found 

in Figs. III.9 and III.10. The transformed fraction derivatives of the dissipative free energy 
contribution at ξ=0 (d0) and at ξ=1 (d1) are approximately constant at low stresses and they 
show small increasing above 55MPa and d1 is bigger than d0 for the whole stress range, 
however the difference between them is almost within error. In case of elastic contribution it 
is experienced that it is bigger at ξ=1 than ξ=0 just like by dissipated ones and both of them 
do not change significantly with the stress. 

 

 
Figure III.9: The derivatives of dissipative free energies vs. uniaxial stress* 

- 66 -                                                
* See footnote at page 61. 
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Figure III.10: Stress dependence of the derivatives of elastic free energies in austenite (e0) 

and in martensite (e1) phases* 
 

 

III.2.2.2. During the whole transformation 

 

III.2.2.1.1. Normalization of measured hysteresis 
 
Regarding the (III.6) equations to calculate the non-chemical free energies one needs to 

know the temperatures of the down and high branches as a function of martensitic fraction, so 
a normalization process has to be done, which consist of two parts: eliminating the thermal 
effects and converting the hysteresis loop between 0 and 1.  

As it follows from the section III.2.1.3. the elongation-temperature curves are more 
appropriate to perform the normalization process (Fig. III.11), but at the lowest stress levels 
the resolution of the elongation measurement does not allow us to follow the transformation. 
So in this case the resistance-temperature hysteresis loop was used to have the normalized one 
and fortunately in this case the above mentioned additional loop is treatable (Fig. III.12). 

 

- 67 -                                                
* See footnote at page 61. 
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Figure III.11: Normalized hysteresis loop from measured elongation-temperature curve at 

78.2MPa* 

 
Figure III.12: Normalized hysteresis loop from measured resistance-temperature curve at 

8.4MPa* 
 
Performing this normalization process one receives ξ(T) functions of the down and up 

branches; then inverting them the T↓(ξ) and T↑(ξ) curves are obtained (Fig. III.13). It is worth 
to note that the determination of the down and up temperatures has bigger errors in the start 

- 68 -                                                
* See footnote at page 61. 
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(ξ=0) and finish points (ξ=1) than in the middle of the transformation between ξ=0.1 and 
ξ=0.9. It comes from that fact the start and finish temperatures are very sensitive to the base 
lines, so the normalization process is responsible for the different error bars (Fig. III.13). 

 
Figure III.13: The temperature of the up and low branches as a function of martensitic 

fraction (The size of error in the middle of transformation is equal to the size of the symbols 
and in the start and in the finish points it can be considered as the error bar at T↓(ξ=0))* 

 

III.2.2.1.1. Derivatives of the non-chemical free energies 
 
Knowing the T↓(ξ) and T↑(ξ) temperatures, the specific entropy change and taking into 

account the Clausius-Clapeyron relation the (III.15) equations allow us to calculate the 
derivatives of the dissipative and elastic terms as a function of martensitic fraction. The 
summary of T↓(ξ) and T↑(ξ) is proportional to the derivatives of the elastic free energy, as 
well as their difference is proportional to the dissipative term, respectively; so the experienced 
parallel branches pre-indicate constant dissipative contribution during the martensitic 
transformation. 

In the Fig. III.14 one can see that regarding the transformed fraction dependence of the 
derivatives of elastic term the differences between the different stress levels are within error 
limit and in the middle of the transformation the correspondence is perfect except of the 
lowest stress, where the resistance-temperature hysteresis loop was used for the normalization 
incidentally and it could cause the relatively big difference from the rest curves. Furthermore, 
it is worth to mention that the derivatives of the elastic energy contribution have singular 
points in the start and at the finish temperatures; and this behaviour leads thereto that the 
transformation paths tend tangentially to the base lines of the pure phases as Planes et al 
observed [Petal89]. 

In case of dissipative contribution the difference between the different stress levels are 
significant. It can be predicated that the derivatives of the dissipated free energy are constant 

- 69 -                                                
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independently of the uniaxial stress, only around the start and finish points one can experience 
different behaviour but where the error limit is bigger. 

 
Figure III.14: Derivatives of elastic contribution determined irrespective of an additive 

constant vs. martensitic fraction* 
 

 
Figure III.15: Changing of the derivatives of the dissipative terms during the transformation* 

 

- 70 -                                                
* See footnote at page 61. 
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Using the fact that the derivative of the elastic free energy cannot be negative a lower 
bound can be given for T0(0) from (III.15) and using the Clausius-Clapeyron equation: 
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and in the case of σ=78.2MPa and ξ=0 the left side of (III.20) is the biggest, so T0(0)≥393.8K. 

III.2.2.1.2. The non-chemical free energies 
 
Until this point the derivatives of the different energy contributions were investigated, 

i.e. their slopes were determined as a function of transformed fraction. Nevertheless these data 
didn’t provide us information about the amount of the dissipated energy and about the stored 
or released elastic one. However due to know the derivatives of these terms along the 
transformation one can calculate the transformed fraction dependence of the elastic and 
dissipative free energies: 
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To calculate the elastic free energy one should know the exact value of its derivatives, 

i.e. the T0(0). If the above mentioned lower bound value is used, we could receive a good 
estimation (E’) for the elastic energy (Fig. III.16) 

 
Figure III.16: The elastic energy vs. martensitic fraction (estimated result)* 

- 71 -                                                
* See footnote at page 61. 
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Figure III.17: The dissipated energy vs. martensitic fraction* 

 
Let us consider the limit conditions to determine the direction dependence: the 

dissipative energy is zero at the start of the forward and the reverse transition (D↓(ξ=0)=0, 
D↑(ξ=1)=0) and the same amount of energy dissipated in both directions (D↓(ξ=1)=D↑(ξ=0)); 
on the other hand in austenite phase there is no elastic energy in the system (E↓(ξ=0)=0, 
E↑(ξ=0)=0) as well as the whole stored elastic energy during the forward transformation is 
released during the reverse one (E↓(ξ=1)=E↑(ξ=1)). In conclusion the next relations can be 
written: 
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III.2.2.1.3. Correlation between the differential and integral quantities 
 
According to the section III.1.2. one can examine the evaluation processes performed on 

the hysteresis and on the DSC curves without any simplifying conditions. In Figs. III.18 and 
III.19 the open squares mean the values determined from stress free DSC measurement, while 
the solid ones are were calculated from the hysteresis curves at different stress levels. They 
show very good accordance, so it can be declared that our model is self-consistent. 

- 72 -                                                
* See footnote at page 61. 
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Figure III.18: The full dissipated energy during the complete martensitic (forward and 
reverse) transformation calculated from DSC (open square) and from hysteresis (solifd 

squares) measurement* 
 

 
Figure III.19: The minus two times the elastic energy and the free-enthalpy calculated from 

DSC (open square) and from hysteresis (solid squares) measurement * 
 

- 73 -                                                
* See footnote at page 61. 
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III.3. Measurements in single crystalline sample 
 

III.3.1. Anisothermal test under constant stress 
 
As it could be seen the lack of knowing T0 didn’t allow us to determine the exact value 

of the elastic terms. Salzbrenner and Cohen [S&c79] has already shown that using a single 
crystalline sample and gradient heating-cooling the martensitic transformation can be guided 
such a way when only one interface moves along the sample, so in this case the whole sample 
turns into the same martensitic variant; so elastic energy doesn’t store in the system and one 
receives a hysteresis curve like in Fig. I.2/b, and T0 is equal to the arithmetic mean of the 
temperatures of the two perpendicular branches (Ms=Mf and As=Af). 

Performing a similar measurement on a single crystalline CuAlNi alloy we can be able 
to determine the equilibrium transformation temperature. Nevertheless we used a uniform 
heating and cooling system instead of a gradient one, but we applied uniaxial stress to 
promote a certain martensitic variant and so to reach that only one variant can form, which 
should have been led to a rectangular hysteresis loop (Fig. I.2/b). 

III.3.1.1. Samples manufacturing 

 
A single crystalline CuAlNi was ordered and we received a cylindrical sample with 

50mm length and 5.2mm diameter, its orientation was [110]A. The sample was cut from this 
rod using an electro discharge machine and the final dimensions were 0.3725mm2 in square 
cross and 45.7mm in length. 

III.3.1.2. Experimental set-up 

 
The experiment was performed in the same device (Fig. III.2) like before but now a 

computer was used for the data acquisition, and so much more points were measured during a 
cycle like in case of polycrystalline sample. Furthermore the vacuum was changed to N2 
atmosphere. The heating/cooling rate was approximately 5Kmin-1. The measurement was 
started at the highest stress level and then the loading force was decreased cycle by cycle. 

 

III.3.1.3. Hysteresis curves 

In the Fig. III.20 one can see that the number of measured points allow us to follow the 
transformation very accurately. As well as there is no shifting between the branches of the 
elongation-temperature curve. Nevertheless in the resistance-temperature hysteresis loop one 
can see an artifact, namely the base lines of the austenite and martensite phases are not 
coincident for heating and for cooling. 
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Figure III.20: a) Resistance and b) change of length hysteresis loops at 171.5MPa uniaxial 
stress (where ∆l is the change of length accompanied to the transformation) 

 

 
Figure III.21: a) Resistance and b) change of length hysteresis loops at 42.4MPa uniaxial 

stress (where ∆l is the change of length accompanied to the transformation) 
 
Regarding the hysteresis loop measured at the lowest stress level (Fig. III.21) it becomes 

visible the difference between the high and low stresses. In case of high stress the 
perpendicular parts can be found at the martensite start and at the austenite finish points, 
while at low stress levels the vertical parts can be found after the start points of forward and 
reverse transformation. The explanation of these two different behaviours will be written 
below. 

All measured hysteresis loops can be found in Appendix B. 
 

III.3.2. Evaluation in accordance with B-D model 
 

III.3.2.1. Normalization of hysteresis curves 

 
Like before the measured hysteresis loops had to transform to transformed fraction-

temperature plane to perform the evaluation process. The procedure was the same like in case 
of polycrystalline sample, i.e. firstly the thermal effect was eliminated and then the hysteresis 
loop was normalized to 1. Although I above mentioned that on the resistance-temperature an 
artifact could be experienced, after the normalization the two normalized hysteresis showed 
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very well correspondence (Fig. III.22). So just like before the elongation-temperature curves 
were taken for the further processes since there is no any unusual effect on them. 

 

 
Figure III.22: Correspondence between the normalized hysteresis curves 

 

III.3.2.2. Determination of T0 

 

III.3.2.2.1. Low and high stress hysteresis loops 
 
The above mentioned difference between the high and low stress curves can be seen on 

the normalized hysteresis loops (Fig. III.23), namely the forward branches are the same for 
both stresses: the transformation starts with a perpendicular part and than the branch leans; 
but the reverse ones are different: the vertical part can be found at the start and at the finish at 
low and at high stress levels, respectively. 

In case of high stress the martensite phase accumulates and grows freely at the 
beginning of cooling (A→M transition), i.e. there is no any elastic energy storing which is 
indicated by the perpendicular part as Salzbrenner and Cohen proved [S&C79]; then the 
product phase cannot grow more freely (in case of multiple nucleus the martensitic plates 
overlap or the elastic energy cannot run out to the surface and so the system cannot relax), so 
the elastic energy storing begins and it continuous until the whole sample turns into 
martensite. During the reverse transformation the releasing of the stored elastic energy helps 
to accumulate the austenite phase, so first the last martensite plates start to revert, and after 
the whole elastic energy released the transformation finishes perpendicularly. Practically the 
high stress hysteresis consists of two parts: the lower part is similar to that described by 
Salzbrenner and Cohen (see Fig. 1a in Ref. [S&C79]) for a bulk single crystalline specimen 
with single-interface transformation (thermal gradient heating/cooling), while the upper one 
resembles to that observed for multiple-interface transformation (uniform heating/cooling) 
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and it is similar to the hysteresis obtained in polycrystalline sample. Since the rectangular 
hysteresis indicates that no elastic energy storing or releasing the relation 

 
( ) 2/0 fs AMT +=         (III.21) 

 
is a good approximation. 

 

 
Figure III.23: Normalized hysteresis curves (two cycles were measured at 89.9MPa, both of 

them can be seen in App. B) 
 
On the other at low stresses the forward transformation takes place the same way, but 

the reverse transformation starts without any elastic energy releasing; it means the austenite 
doesn’t nuclei where the elastic energy stored, instead the nucleation starts where the first 
martensite plates appeared during A→M transition. In fact this behaviour can be observed 
where the chemical energy is much smaller than the other contribution, i.e. the phases start to 
nuclei in the easy places (e.g. tips, edges), in this case some kind of blocking effect doesn’t 
allow the nucleation of the austenite where the releasing elastic energy would help the 
transition. So the same part of the specimen begins the forward and the reverse transformation 
as well as besides the leading force (chemical free energy change) only the dissipative 
contribution presents and supposing that the derivatives of the dissipative terms are the same 
in the start points (Ms, As) for the equilibrium temperature 

 
( ) 2/0 ss AMT +=         (III.22) 

 
is valid. 
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Between the high and low stress levels there is another distinction which regarding the 
forming martensite variants, namely there is a limit stress which there is no preferred 
martensite below, i.e. the martensite accommodate randomly. According to Leclercq and 
Lexcellent [L&L96] the macroscopic strain of the self accommodated martensite is zero, this 
demand has to be valid in case of polycrystalline shape memory alloys where the random 
effect is supported by the randomly oriented austenite grains. However now its value is 
different from zero (≈4%) (Fig. III.24), so it has to say that in case of single crystal the self-
accommodated martensite does its bit from the macroscopic shape change related to the 
martensitic transformation. Furthermore in Fig. III.24 one can see that the high and low stress 
curves are distinguished very well and the middle two points seem to be the transition 
between the two type hysteresis as it can be seen at the normalized hysteresis curves (Fig. 
III.23); in this region the system was frustrated the self-accommodated and oriented 
martensite variants compete with each other. 

 

III.3.2.2.2. Accordance with the Clausius-Clapeyron relation 
 
Due to know the equilibrium transformation temperature at each stress levels we can use 

the Clausius-Clapeyron equation to determine the entropy change between the austenite and 
martensitic phases since the transformational strain vs. stress function (Fig. III.24) can be 
determined from the measured hysteresis: ∆sc= – 1.169 x 105 JK-1m-3= – 0.843 Jmol-1. This 
value is not equal to the value received for polycrystalline sample but they are in the same 
order of magnitude; nevertheless the difference is not surprising because the composition of 
the two samples was different from each other. 

 
Figure III.24: Transformational strain vs. stress 

 
Now we can calculate the equilibrium transformation temperature (T0) at all stress levels 

and even we can determine it in stress free state taking the extrapolated value (open square in 
Fig. III.24). Taking as a basis the value of T0 at the highest stress level and using the well 
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known Clausius-Clapeyron equation one receives a very good accordance between the 
measured and the calculated values (Fig. III.25). 

 
Figure III.25: Measured and calculated equilibrium transformation temperatures 

 

III.3.2.3. Non-chemical energies 

 
Let us perform the same calculation like in case of polycrystalline sample, i.e. from the 

normalized hysteresis curves the non-chemical energies can be calculated and due to know T0 
even the value of the elastic energy can be given not only its tendency. Nevertheless one has 
to take into account the differences between the low and high stress hysteresis loops, so these 
two cases have to be treated separately. 

III.3.2.3.1. High stress case 
 
As above firstly the high stress hysteresis curves are evaluated since this case is a little 

similar to the polycrystalline one, it is so much true that the same simplifier conditions can be 
used (d(ξ)=d↓(ξ)=d↑(ξ) and e(ξ)=e↓(ξ)=–e↑(ξ)).  
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Figure III.26: The martensitic fraction dependence of the derivatives the dissipated energy at 

three different stress levels 
 
In the Fig. III.26 one can see that the derivatives of the dissipated energy are constant up 

to ξ=0.7 to a close approximation and then only the 116.5MPa curve start to differ from the 
constant value significantly which falls into the frustrated region as it was mentioned above. 
Finally it seems to be a good approximation if one takes the derivatives of the dissipative 
terms as constant during the martensitic transformation. 

 
Figure III.27: Derivatives of elastic energy vs. transformed fraction 
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The derivatives of the elastic contribution (Fig. III.27) show more specified stress 
dependence. The higher is the applied stress, the bigger is the elastic free region as well as the 
faster the elastic energy storing and releasing. 

 

III.3.2.3.2. Low stress case 
 
Due to the unusual shape of the low stress hysteresis loops the former simplicity 

conditions cannot applied, namely they suppose that the hysteresis branches should be 
approximately parallel to each other which is not true in this case. Instead the branches are 
investigated separately and a relatively strong condition helps us to perform it. We take the 
derivative of the dissipative energy as constant and its value is the same for forward and 
reverse transformation (d=d↓(ξ)=d↑(ξ)) – from the polycrystalline measurement and from the 
result for the high stress case this assumption seems appropriate). This constant can be 
calculated from the perpendicular parts of the branches. Actually the equality part of this 
condition was already assumed when the equilibrium transformation temperature was 
calculated as the arithmetic mean of the martensite start and austenite start temperatures. 

Thus e↓(ξ) can be calculated from (III.6)1 (Fig. III.28) and we can see that the elastic 
energy storing starts at ξ=0.5 for all curves, i.e. the half of the sample transforms into 
martensite freely, then in the case of the two lowest stress e↓(ξ) runs in the same way 
practically but at 89.9MPa different behaviour is observed which can be explained by that this 
stress level belongs to the frustrated region (Fig. III.24). 

 

 
Figure III.28: The derivatives of elastic free energy during forward transformation at low 

stresses (edown(ξ)=e↓(ξ)) 
 
Nevertheless in the case of the reverse branch we have to take into account the above 

mentioned blocking effect, which is a dissipation-featured term, for this purpose the 
dissipative can be written as follows for the reverse transformation: 
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)()()(' ξγ+ξ=ξ ↑↑ dd         (III.23) 
 

where d’↑(ξ) means the derivatives of the total dissipated energy, d↑(ξ) is the usual dissipation 
term which comes mainly from the friction between the habit plane and the lattice defects and 
γ(ξ) represents the blocking effect. 

The equation (III.6)2 is modified considering (III.23): 
 

cs

ed
TT

∆
ξ+ξγ+ξ−=ξ

↑↑
↑ )()()(

)( 0       (III.24) 

 
Regarding this relation both γ(ξ) and e↑(ξ) are unknowns. However the elastic 

contribution can be calculated from e↓(ξ) using a similar assumption like before, whatever the 
leak of the parallelism of the hysteresis branches denotes that in this condition the 
transformed fraction will be modified, too. Considering that the forward and reverse 
transformation start at the same place of the sample we can assume that the whole AM and 
MA transitions are the mirror images of each other, i.e. for the elastic term 

 

)()( ξ−−=ξ ↓↑ ee         (III.25) 
 

assumption is acceptable. Thus the derivatives of the blocking effect energy can be calculated 
from (III.24) (Fig. III.29). A similar case can be observed like by e↓(ξ): between the 42.4MPa 
and the 64.7MPa curves the correspondence is very good, and the other two ones at 89.9MPa 
show different tendency. 

 

 
Figure III.29: Calculated γ (related to blocking effect) as a function of ξ 
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III.3.2.3.3. Stress dependence 
 

 
Figure III.30: The constant value of the derivative of the dissipative energy vs. stress 
 
This far the stress dependence appears only in the different shapes of the hysteresis 

curves. In this section it will be shown how the changing applied stress affects the values of 
certain quantities and if the different hysteresis loops cause detectable changing. 

 

 
 

Figure III.31: Stress dependence of the integral quantities 
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As it was mentioned above it is a good approximation if the derivative of the dissipative 
energy is considered as a constant during the transformation. From the perpendicular parts the 
value of this constant can be calculated and in the Fig. 30 one can see these values as a 
function of applied stress. It shows increasing and decreasing tendencies in the low and the 
high stress range, respectively. 

The full dissipated energy during forward or reverse transformation and the full stored 
elastic energy in martensitic state can be seen in Fig. III.31 as a function of applied stress. The 
dissipative energy decreases while the elastic one increases with increasing stress. At 
89.9MPa the full stored energy has a jumping point it can come from the above mentioned 
frustrated state.  

Furthermore in Fig. III.32 one can see how the dissipated blocking effect energy (Γ is 
equal to the integrated of γ(ξ) from 0 to 1) changes with the stress. Of course the value of Γ is 
zero at the highest three stress levels and for the low stresses a constant value can be given 
except of the 89.9MPa point which is very different from the two others because it belongs to 
the frustrated region. 

 

 
Figure III.32: The dissipated blocking effect energy during the whole reverse transformation 
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IV.  Simulation 
 

IV.1. Comparison between the models used in Besançon and Debrecen 
 
As it can be seen above the model, which was developed in Debrecen by Beke and 

Daróczi [Detal00] which was improved by me [Petal05] (from now DE model), is suitable to 
evaluate the measured hysteresis curves and so determine the non-chemical free energies as 
well as in case of single crystalline sample the equilibrium transformation temperature. While 
the RL model [Retal92], which was improved in Besancon by Lexcellent and Leclercq 
[L&L96] (from now BE model), is more appropriate to perform simulations on the stress or 
thermal-induced martensitic transformations. Thus it seems to be a good idea to find out the 
relations between the two descriptions and so the data evaluated by DE model are used in the 
calculation of BE one. 

 

IV.1.1. One martensite type 
 
Let us consider firstly the improved DE model. The well known initial point for forward 

transformation (A→M) is: 
 

( )
0)()( =++∆=

∂
∆∂ ↓↓↓

↓

zdzeg
z

G
c .      (IV.1) 

 
The derivative of the free energy change according to the martensitic fraction (z) is zero. 
Substituting the relation for the chemical energy change (II.4) and using the Clausius-
Clapeyron equation (II.9), assuming that the entropy change does not depend on the applied 
stress, one arrives at: 

 

( ) 0)()()0(0 =++σε−∆− ↓↓ zezdsTT tr
c ,     (IV.2) 

 
A similar relation can be given for the reverse transition (M→A): 
 

( ) 0)()()0(0 =++σε+∆− ↑↑ zezdsTT tr
c .     (IV.3) 

 
Since currently this model can treat only one type of martensite we should compare it to 

the RL model, which consider one martensite, too. 
As I above mentioned Raniecki et al [Retal92] started from the Helmholtz free energy of 

the two-phase system of a unit mass and, neglecting the thermal extension, it can be written as 
follows : 
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where u0
1 and s0

1 are the internal energy and the entropy of the austenite phase and 
π0

f(T) is the chemical potential of phase transformation, containing the internal energy and 
entropy changes of the system due to the evolved martensite phases: 
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It vanishes at the temperature of thermodynamic equilibrium between the austenite and 
martensite phases: 

 

( ) *)0()(*)0(*0 000 sTTTsTu f ∆−=⇒∆−∆= π .   (IV.6) 
 
Let us take the functions (II.51), which describe the transformation-kinetics and are 

equal to zero for whole cycles, and substitute the expression of πf (II.42) and replace π0
f(T) by 

(IV.6): 
 

0)()21(*))0(( 0 =+Φ−+−∆−− zkzsTT it
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ρ
γσ

    (IV.7) 

 
where α=1 and 2 means the A→M and M→A transformations, respectively. 

Comparing (IV.2) and (IV.3) to (IV.7) we see that the first two terms are the same and 
somehow the last two ones have to be equal to each other. Nevertheless the relations between 
the BE and DE models can be given: 

 
*ssc ∆−=∆ ρ ;  trεγ = ; 

)()21()()( 1 zkzed it +Φ−=+ ↓↓ ξξ       (IV.8) 

)()21()()( 2 zkzed it −Φ−−=ξ+ξ ↑↑  
 
Let us examine the last two relations: the left sides there are the non-chemical 

contribution (dissipative and elastic) from DE, while on the right side an interaction 
component and a function of z are present. Using the properties of k(z) functions (II.52) one 
receives the next relations: 

 

ited Φ=+ ↓↓ )0()0(    ∞+Φ−=+ ↓↓
ited )1()1(  

           (IV.9) 

∞−Φ=+ ↑↑
ited )0()0(   ited Φ−=+ ↑↑ )1()1(  

 
The interaction component changes its sign at z=0.5 but such kind of behaviour wasn’t 

supposed and experienced neither for d(z) nor for e(z) in former experiments. So it can 
predicated that the k(z) function has to eliminate this behaviour somehow. 
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IV.1.1. Two martensite types 
 
In case of thermally induced martensitic transformation at a constant stress according to 

BE model two kinds of martensites are distinguished. To achieve the relations as above the 
DE model has to be improved to take into account the existence of two different martensite 
types. 

Let us suppose that the ratio of the self-accommodated and the stress induced martensite 
variants is constant during the transformation, so the martensitic fraction can be written as 

 
zzzzz TT σσ η+η=+= ,       (IV.10) 

 
where ηT and ησ denote the thermally and stress induced fraction of the martensite and 

e.g. ηT=VMT/VM, VM=VMT+VMσ and z=VM/V, with V=VM+VA. Obviously ηT+ησ=1. Since it 
was assumed that the ratio of the two different martensite variants is constant the possibility 
of the reorientation process is ruled out. 

Indeed, to calculate the derivatives of the elastic and the dissipative contributions related 
to the different variants, one needs the relation between the TT(zT) and Tσ(zσ) (inverses of 
zT(T) and zσ(T)) functions: 

 
)()()( zTzTzT TTT σσσ ηη+ηη= .      (IV.11) 

 
For the elastic and the dissipative terms similar relations can be given: 
 

)()()( zezeze TTT σσσ ηη+ηη= ,      (IV.12) 
 

)()()( zdzdzd TTT σσσ ηη+ηη= .      (IV.13) 
 
Writing these relations into (IV.2) and (IV.3) regarding the direction of the 

transformation one receives for A→M 
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and for M→A 
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i.e. from the εtr(σ) function and the total pseudoelastic strain (γ) the ratio of the two 
martensitic variants can be determined. 

From the above applied typical assumptions to eliminate the direction dependence 
(e↓(ξ)=-e↑(ξ)=e(ξ)≥0 and d↓(ξ)=d↑(ξ)=d(ξ)≥0) and from (IV.12) and (IV.13) equations similar 
conditions are received: 
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and so from the sums and the differences of the appropriate (IV.14) and (IV.15) equations: 
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as well as 
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These relations are very similar to the case of one martensite variant. As it can be seen 

the effect of the constant external stress appears only in the expression of the derivative of the 
elastic free energy related to the stress induced martensitic variant directly. 

As above let us take the Ψ functions (II.72) which are equal to zero for whole external 
cycles: 
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where α=f and r means the forward (A→M) and reverse (M→A) transformations, 
respectively. 

Finally, comparing (IV.14), (IV.15) to the previous equations similar relations are 
received like in case of one martensite variant: 
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and *ssc ∆−=∆ ρ  is still true. 

One can find the same problem like before, i.e. the interaction component changes its 
sign and the k functions have to eliminate this behaviour here, too. 

 

IV.2. Simulation on polycrystalline CuAlNi 
 
Using the measured data on the polycrystalline CuAlNi the k functions can be 

determined after (IV.22) relations and then the correspondence between the measured and the 
calculated curves can be investigated. Nevertheless, for the sake of simplicity let us neglect 
the interaction between the martensitic variants (Φit

m=0) and the k functions depend only on 
the martensitic fractions explicitly. 

 

IV.2.1. Parameter determination 
 

IV.2.1.1. Thermodynamic constants 

 
Firstly the thermodynamic parameters (∆u*, ∆s*, 0u , 0s ) have to be determined from 

the martensite and austenite start temperatures since at these points the thermodynamic forces 
are equal to zero: 
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where ρ (mass density) can be measured and the value of γ is taken from Sittner and Novák 
[S&N00]. Table IV.1 contains these and the calculated quantities. 

 
γ [%] ρ [kg/m3] ∆u* [J/m3] ∆s* [J/Km3] 

0u  [J/m3] 0s  [J/Km3] 

6.64 7168 1.538*108 4.128*105 4.419*107 1.134*105 

Table IV.1: Mechanical and thermodynamic parameters 

It is worth noting that the values of the entropic change between the two phases 
calculated form the transformation temperatures (∆s*) is almost four times bigger than one 
calculated from the DSC measurement (∆sc). Probably the difference comes from the fact that 
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the determination of the transformation temperatures is not so simple and probably the 
interaction between the martensite variants cannot be neglected. 

 

IV.2.1.2. Kinetic coefficients 

 
To calculate the k functions one has to separate the hysteresis curve according to the two 

different martensite variants. Supposing that the specific resistance of the two martensite 
types are the same normalizing the resistance-temperature curve the z(T) function can be 
received. As well as the elongation hysteresis curve provides the zσ(T) since the thermally 
induced martensitic variant does not cause macroscopic shape change and the maximum value 
of zσ at a constant stress can be given as ε

tr(σ)/γ. Of course, zT(T) is equal to their difference. 
Finally, from their inverses the separated elastic and dissipative terms can be determined 
according to (IV.18) and (IV.19). To have an exact value of the elastic contribution the T0(0) 
has to be known, here it was taken as the ratio of ∆u* and ∆s* according to (IV.6): 
T0(0)=372.58K; although this value is lower than the lower limit from the previous chapter, 
the different specific entropy change during the two evaluation processes can cause this 
discrepancy since it appears in the relation to calculate T0(0). 

As it was mentioned above the k functions depend only on the martensitic fractions – the 
dependence was taken from the one martensite variant case; similar form like (II.53) to fulfil 
the condition (II.52), i.e. at the beginning of forward transformation the kf functions have to 
be equal to zero and at the end they go to infinite as well as for reverse transition the kr ones 
are zero at the beginning, too, and they converge to the negative infinite – nevertheless the 
sign change of the interaction term has to be eliminate, too. So let us take the next formula: 
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In Figs. IV.1 and IV.2 one can see how the f and r functions fit to the curves calculated 

from the measured data at two different stress levels. 
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Figure IV.1: The f and r curves and the fitting functions at 35.3MPa 

 

 
Figure IV.2: The f and r curves and the fitting functions at 78.2MPa 

 

 
Figure IV.3: Determined coefficients for forward and reverse transitions 
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As it can be seen the fitting for the forward branches are very good but in the reverse 
case it is obvious that the formula does not describe well the evolution of the martensitic 
transformation. 

It is worth mentioning that the above k formulae are very similar to (II.73-76) except for 
the temperature dependence. Nevertheless the BE model didn’t take the stress dependence of 
the coefficients into account, but according to the Fig. IV.3 it is not negligible. The forward 
coefficients do not confirm it since they are almost constant, but the reverse ones slightly 
increase with the stress. 

 

IV.2.2. Correspondence between the measured and the calculated curves 
 
Finally all the thermodynamic constants and the kinetic coefficients are available to 

perform the simulation of the hysteresis loops and compare them to measured ones. Figs IV.4 
and 5 show the measured and the simulated evolution of the two martensite type in case of 
two different stress levels. Furthermore in Figs. IV.6 and 7 the comparison of the measured 
and calculated hysteresis can be seen. (All of these curves can be found in the Appendix C.) 

 
Figure IV.4: Measurement and simulation of the evolution of stress and thermal induced 

martensite variants at 35.3 MPa 



 - 96 - 

 
Figure IV.5: Measurement and simulation of the evolution of stress and thermal induced 

martensite variants at 78.2 MPa 
 

 
Figure IV.6: Measured and calculated anisothermal hysteresis loops at 35.3MPa 
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Figure IV.7: Measured and calculated anisothermal hysteresis loops at 78.2MPa 

 
As it was expected from the fitting of the f and r functions the calculated forward 

branches show quite good agreements with the measured one especially at high stress; on the 
contrary for the reverse branches the calculations do not follow the measurements. 
Nevertheless the start temperatures for both the forward and the reverse transformations were 
very well reproduced by the calculations. 

 

IV.2.3. Further steps 

IV.2.3.1. The case of single crystalline CuAlNi 
 
Elie Gibeau has made calculation on the single crystalline CuAlNi using the BE model. 

In Figs. IV.8 and 9 the comparison can be seen between the calculation and the measurement. 
In the low stress case (Fig. IV.8) the agreement is quite good, but at high stress (Fig. IV.4) 
even the calculated and measured start temperatures are very different to each other. These 
two cases can not be treated in the same way as it was discussed in the Chapter III. 

In fact, the transformation in this single crystalline sample includes jumping steps 
indicated by perpendicular parts on the measured hysteresis in both directions, i.e. big amount 
of martensite or austenite phase turns into the other one completely freely without any 
influence on the elastic field. This behaviour query, if it is well-founded, to use continuous 
function to describe the transformation kinetics, maybe some kind of probability function 
should be used. 

Furthermore it is worth to consider the possibility that in case of thermal induced 
martensite type has a not-zero extension, it means only MT martensite can cause macroscopic 
length change. In this way a new approach can be given: there is a limit stress, below and 
above which only thermal and stress induced martensite can form during anisothermal test, 
respectively. So the low and high stress cases can be separated. Nevertheless, this assumption 
needs further experiments. 
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Figure IV.8: Measured and calculated hysteresis curves on single crystalline CuAlNi at 

64.7MPa 
 

 
Figure IV.9: Measured and calculated hysteresis curves on single crystalline CuAlNi at 

143.8MPa 
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IV.2.3.2. More reliable simulations 
 
Besides the further test on single crystal it would be worth to measure the anisothermal 

hysteresis curves with better resolution and to determine the extension related to the 
martensitic transformation from measured stress-strain curve. In this case all the k functions 
can be calculated and the possibility would be opened to fit them in the whole interval for 
example with an ln(p-x)+ln(x) function, since both the f and r functions tend to -∞ and to ∞ at 
x=0 and at x=p, respectively, as it was written in Ref. [Petal89]. 



 - 100 - 

References 
 
[Detal00] L. Daróczi, D.L. Beke, C. Lexcellent and V. Mertinger: Effect of hydrostatic 
pressure on the martensitic transformation in CuZnAl(Mn) shape memory alloys, Scripta 
materialia 43 (2000) p. 691 
[Petal05] Z. Palánki, L. Daróczi and D. L. Beke: Method for determination of non-chemical 
free energy contributions as a function of the transformed fraction at different stress levels in 
shape memory alloys, Materials Transactions 46/5 (2005) p. 978 
[Retal92] B. Raniecki, C. Lexcellent and K. Tanaka: Thermodynamics models of 
pseudoelastic behaviour of shape memory alloys Archives of Mechanics, 44/3 (1992) p. 261 
[L&L96] S. Leclercq and C. Lexcellent: A general macroscopic description of the thermo-
mechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids 
44/6 (1996) p. 953 
[S&N00] Petr Sittner and Vacláv Novák: Anisotropy of martensitic transformations 
inmodeling of shape memory alloy polycrystals, International Journal of Plasticity 16 (2000) 
p. 1243 
[Petal89] Antoni Planes, Teresa Castán, Jordi Ortín and Luc Delaey: State equation for shape-
memory alloys: Application to Cu-Zn-AL, Journal of Applied Physics 66/6 (1989) p. 2342 



 - 101 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 



 - 102 - 

Conclusion 
 
 
 
 

1. From measurements of elongation-temperature and resistance-temperature hysteresis 
curves on Cu–24.0at% Al–2.2at% Ni–0.5at% B polycrystalline shape memory alloy I 
determined the stress dependence of the derivatives of the elastic and the dissipative 
energy contributions, according to the transformed fraction, on the austenitic and 
martensitic side (i.e. in the points of transformation temperatures: Ms, Mf As and Af, where 
e.g. Ms and Mf are the temperatures related to the appearing of the martensitic and the 
disappearing of the austenitic phases, respectively). The values of the dissipative terms at 
the beginning and the end of the martensitic transformation increase with increasing 
stress. Since the equilibrium temperature, T0, was not known I could give only the 
tendency of the elastic energy contribution: in both phases they do not change 
significantly with the uniaxial stress. Furthermore the derivatives of both the dissipative 
and the elastic contributions are higher in the martensitic side than in the austenitic one. 

2. I extended the evaluation method used in [1] in such a way that it gives the derivatives of 
the non-chemical free energy contributions not only at the start and the end of the 
transformations but during the transition (i.e. they can be given as the function of the 
transformed fraction), too. We showed that these values can be calculated after 
normalizing of the measured hysteresis loops. Furthermore, I demonstrated that the 
integral quantities measured in DSC and integrals of the differential ones, received from 
the measured hysteresis curves, agreed very well, i.e. the analysis is self-consistent. I 
determined the transformed fraction dependence of the full dissipated energy and the full 
stored and released elastic energy (calculated as the integral of the appropriate differential 
quantities) [2, 3]. 

3. Determination of the equilibrium transformation temperature in single crystalline sample 
a) The analysis mentioned in paragraphs 1. and 2. was extended for single crystalline 

samples. It was shown that the equilibrium transformation temperature, T0, can also be 
determined form such experiments [3]. From the detailed analysis of the data 
measured we illustrated that it is possible to measure hysteresis loops with vertical 
parts (perpendicular to the temperature axis) even if we use usual uniform heating-
cooling and not a gradient one. As a function of loading we got two different types of 
hysteresis curves, from which T0 could be determined by two different ways [4, 5]. 

b) Since the elongation-temperature hysteresis was also measured, it allowed calculating 
the equilibrium transition temperature using the Clausius-Clapeyron equation, too, and 
they showed really good correspondence with data calculated as described in a). [4, 5] 

4. Using the input parameters obtained from the experimental curves on the basis of the 
extended Debrecen-model (inclusion of two different types of martensitic phases [6]) 
calculations have been carried out for the hysteretic loops from the Besançon model. In 
accordance with the experimental data I also assumed that the kinetic parameters in the 
Besançon-model are not constant but depend on the stress (pressure) as well. The 
calculated hysteretic curves were compared to the experimental ones and a good 
agreement was obtained. 
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Conclusion 
 
 
 
 

1. Des courbes d’hystérésis «élongation-température» et «résistance électrique-température» 
sur des alliages à mémoire de forme Cu 24.0at%Al 2.2at%Ni 0.5at%B ont été réalisées. 
Pendant des essais de traction, la dépendance des dérivées des termes d’énergies élastique 
et dissipative à la fraction de martensite a été quantifiée (i.e. aux températures de 
transformation: Ms, Mf As et Af). Les valeurs des termes dissipatifs en début et en fin de 
transformation martensitique augmentent avec la contrainte de traction appliquée. Comme 
la température d’équilibre T0, n’est  pas connue, j’ai pu seulement suivre l’évolution des 
termes d’énergie élastique: dans tous les deux phases ils ne changent pas 
considérablement avec la contrainte uniaxiale. De plus, les dérivées des termes de 
l’énergie élastique et dissipative sont plus élevées dans la phase martensitique que dans la 
phase austénitique. 

2. La méthode d’évaluation utilisée dans [1] a été étendue, ce qui donne maintenant les 
valeurs des dérivées des termes d’énergie libre non-chimiques, non seulement, au début et 
à la fin de transformation martensitique, mais aussi pendant la transition (i.e. elles peuvent 
être exprimées comme des fonctions de la fraction de martensite). Nous avons montré que 
ces valeurs pouvaient être calculées grâce à la normalisation des boucles hystérétiques 
mesurées. De plus, j’ai aussi montré que les quantités intégrales mesurées par DSC et les 
intégrales extraites des courbes hystérétiques mesurées, sont en bon accord, c'est-à-dire 
que l’analyse est “auto-cohérente”. La dépendance de l’énergie dissipée totale et de 
l’énergie accumulée ou libérée totale à la fraction de martensite a été déterminée [2, 3]. 

3. Détermination de la température d’équilibre de la transformation de phase dans les 
échantillons monocristallins 
a) L’analyse mentionnée dans les 1er et 2ème paragraphes a été étendue aux échantillons 

monocristallins. Nous avons montré que la température d’équilibre, T0, peut être 
déterminée [3]. De l’analyse détaillée des résultats, nous en avons déduit qu’il est 
possible de mesurer des boucles hystérétiques même avec des parties verticales 
(perpendiculaire à l’axe de température), même si nous utilisons un système de 
chauffage-réfrigération uniforme et non avec gradient. Nous avons obtenu deux 
différents types de courbes hystérétiques fonction du niveau de contrainte appliquée, 
ainsi T0 a pu être déterminée par deux façons différentes [4, 5]. 

b) Comme la courbe d’hystérésis «élongation-température» a été obtenue expérimentale-
ment, on a pu calculer la température d’équilibre en utilisant l’équation de Clausius-
Clapeyron, et il y a un très bon accord avec les valeurs calculées dans a) [4, 5]. 

4. En utilisant les paramètres déduits des courbes expérimentales sur la base du modèle de 
Debrecen étendu (deux types de martensites [6]), des calculs avec le modèle de Besançon 
ont été effectués pour ces courbes hystérétiques. En accord avec les données 
expérimentales, j’ai présumé que les paramètres cinétiques dans le modèle de Besançon ne 
sont pas constants mais dépendent de la valeur de la contrainte de traction (compression) 
appliquée. Les courbes hystérétiques calculées ont été comparées avec celles obtenues 
expérimentalement et une bonne correspondance a été obtenue. 
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Befejezés 
 
 
 
 

1. A megnyúlás-hımérséklet és ellenállás-hımérséklet hiszterézis görbék mérésébıl 
Cu–24.0at% Al–2.2at% Ni–0.5at%B polikristályos alakmemória ötvözetben meghatá-
roztam a rugalmas és disszipatív energiajárulékok átalakult anyaghányad szerinti 
deriváltjainak feszültség-függését a martenzit és ausztenit oldalon (azaz az Ms, Mf As és 
Af pontokban, ahol például Ms és Mf martenzit fázis megjelenéséhez illetve eltőnéséhez 
tartozó hımérsékleteket jelölik). A disszipatív tagok a martenzites átalakulás kezdetén és 
végén növekvı feszültség hatására növekednek. A rugalmas energiajárulékonak azonban 
az egyensúlyi átalakulási hımérséklet, T0, ismeretének hiányában csak a menetét tudtam 
megadni: egyik fázsiban sem változik jelentısen az egytengelyő feszültség hatására. 
Továbbá mind a disszipativ mind a rugalmas járulékok deriváltjaira az érvényes, hogy a 
martenzit oldali értékek mindig nagyobbak az ausztenit oldaliaknál. [1,3] 

2. Az [1]-ben használt kiértékelési eljárást kibıvítettem olyan módon, hogy az ne csak a 
martenzites átalakulás kezdetén és végén, hanem közben is megadja a rugalmas és 
disszipatív járulékok átalakult anyaghányad szerinti deriváltjait. Megmutattuk, hogy ezek 
az értékek a mért hiszterézisgörbék normálása után kiszámolhatók. Továbbá 
bebizonyítottam, hogy a DSC-ben mért integrális mennyiségek és a hiszterézis hurkokból 
számolható differenciális mennyiségek jól egyeznek. Meghatároztam a folyamat során 
disszipálódott, valamint a tárolt és felszabadult rugalmas energiák (mint a differenciális 
mennyiségek integráltjai) átalakult anyaghányad szerinti függését. [2, 3] 

3. Az egyensúlyi átalakulási hımérséklet meghatározása egykristályos mintákban 
a) Az 1. és 2. pontban említett analízist kiterjesztettük egykristály alakmemória 

ötvözetre. Megmutattuk, hogy az egyensúlyi átalakulási hımérsékletet, T0, is 
meghatározható ilyen mérésekbıl [3]. A mérések részletes kiértékelésekor azt kaptuk, 
hogy szokásos, nem hımérséklet-gradienst alkalmazó, hőtést/főtést használva is lehet 
olyan hiszterézis görbéket mérni, melyeken függıleges szakaszok találhatók. A 
terhelés függvényében két különbözı típusú hiszterézis alakot kaptunk, amelyekbıl a 
T0 kiszámítására más-más módon nyílt lehetıség. [4, 5] 

b) Mivel a megnyúlás-feszültség függvényt is mértem, lehetıség nyílt az átalakulási 
egyensúlyi hımérsékleteket a Clausius-Clapeyron egyenletbıl is kiszámítani, amelyek 
nagyon jó egyezést mutattak az a) pontban említettekkel. [4, 5] 

4. Felhasználva a továbbfejlesztett debreceni modell alapján (kétféle martenzit variáns 
figyelembe vétele [6]) a kísérleti görbékbıl kapott bemenı paramétereket számolásokat 
végeztem a hiszterézis hurokokra a besançoni modell alapján. A mérési adatokból 
adódóan azt is feltételeztem, hogy a besançoni modellben szereplı kinetikus paraméterek 
nem konstansok, hanem a feszültség (nyomástól) is függenek. A számított hiszterézis 
görbéket összevetettem a mért adatokkal, és jó egyezést kaptam. 
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Appendix A 
 
Measured hysteresis curves on CuAlNi polycristalline sample. 
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Appendix B 
 
Measured hysteresis curves on CuAlNi singlecristalline sample. 
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Appendix C 
 
Calculated and measured hysteresis loops of the different types of martensit phases. 
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