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I.1

Introduction

Dans ce mémoire, je présenterai les différents travaux de recherche que j’ai menés depuis
la soutenance de mon doctorat [Bou06a]. Dans cette dernière, j’analysais la stabilité de
solutions stationnaires d’une classe d’équations de Dirac non-linéaires [Bou06b ; Bou08 ;
Bou07]. Les aspects relativistes de ces équations ne permettant pas de donner un sens
clair à la notion d’état fondamental, l’analyse de la stabilité au sens de Lyapounov des
solutions stationnaires était compromise.

Nous avions contourné cette difficulté en considérant la notion plus forte de stabilité
dynamique ou asymptotique. Au préalable, il fallait montrer la stabilité spectrale en
utilisant des méthodes de bifurcations à partir de problèmes linéaires ad hoc. Nous nous
étions donc restreints aux petites solutions stationnaires.

Un partie importante de l’analyse menée durant cette thèse relevait de la théorie
spectrale. Cela est évident dans l’étude de la stabilité spectrale. En effet, la problématique
est l’analyse des valeurs propres isolées et de multiplicités finies de l’opérateur linéarisé. De
manière moins évidente, l’obtention de la dynamique de l’équation linéarisée sur le reste
du spectre utilise des outils sophistiqués de l’analyse du spectre essentiel. Les propriétés
de l’opérateur résolvante par des méthodes de Mourre, ou de développement en valeurs
propres généralisées, furent ainsi des outils essentiels.

Dès lors que la théorie linéaire ou linéarisée fut comprise, il nous restait à établir les
propriétés dynamiques de nos solutions en considérant des formulations de Cauchy bien
choisies dans le cadre fonctionnel donné par l’analyse linéaire.

À partir de ma thèse, j’ai envisagé différentes directions de recherche en accord avec le
contexte scientifique dans lequel j’évoluais.

Lors de mon séjour postdoctorat à l’Université Heriot-Watt (Edimbourg) sous l’influence
de Lyonell Boulton et Michael Levitin, j’ai considéré des questions liées à l’analyse
numérique d’opérateurs autoadjoints dont le spectre n’est borné ni inférieurement, ni
supérieurement ou plus généralement d’opérateurs autoadjoints avec du spectre discret
dans les trous du spectre essentiel. Le but était de mettre en œuvre une caractérisation du
spectre discret menant à une implémentation numérique.

La pollution spectrale est un phénomène numérique théorique. Il relève de l’analyse
numérique puisqu’il apparaît lorsque l’on tente d’approcher le spectre discret d’un opérateur
(en dimension infinie) par celui d’une suite de matrices (en général ses compressions à une
suite d’espaces dont les dimensions vont croissantes). Il est seulement théorique puisque il
apparaît dans l’adhérence d’une suite de spectres discrets. La pollution spectrale est la
partie de cette adhérence qui n’est pas dans le spectre.

Tant qu’une valeur propre peut être caractérisée par un principe de min-max classique,
elle peut toujours être approchée raisonnablement par le spectre des compressions. Concrè-
tement, seul le bas du spectre discret possède une telle caractérisation. Si, comme dans le
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cas de l’opérateur de Dirac, le spectre n’est pas borné inférieurement ou supérieurement une
telle caractérisation n’est pas simple ou pas simple d’usage. C’est donc assez naturellement
que Lyonell Boulton et moi-même avions envisagé une autre caractérisation du spectre
donnant également une méthode numérique. Nous avons donc analysé l’implémentation
numérique de la méthode du second ordre avec une base de Hermite pour approcher le
spectre discret d’opérateurs de Dirac [BB10]. L’intérêt essentiel de notre analyse est de
proposer une méthode permettant d’obtenir un encadrement des éléments du spectre
discret. Cet encadrement intersecte nécessairement le spectre et est de ce fait exempt de
toute pollution spectrale.

Notons que la méthode d’approximation par les spectres des compressions, dite méthode
de Galerkin, basée sur la caractérisation de Rayleigh-Ritz, ou min-max, est toujours
utilisable dans le cas de l’opérateur de Dirac tout en étant possiblement sujette à la
pollution. La pollution spectrale dépend de la suite de sous-espaces considérée pour les
compressions. Pour un nombre de cas important, soit il n’y a pas de pollution spectrale soit
cette pollution est bien localisée et disjointe du spectre discret (cf. Lewin & Séré [LS10]).
Toujours en référence à [LS10], il est possible de caractériser les suites de sous-espaces
exempts de pollution spectrale. De tels critères sont assez connus par la communauté des
chimistes. Il semble que la méthode de Galerkin construite sur une base de Hermite ne
présente pas de pollution spectrale bien que nous n’ayons aucun critère pour le prouver.
Nos réflexions dans cette direction nous ont menés à une collaboration avec Lyonell Boulton
et Mathieu Lewin sur les propriétés de la pollution spectrale [BBL12]. La question qui
nous intéressait était la stabilité de cette dernière par perturbation relativement compact.
Nous avons alors obtenu un théorème de stabilité de type Weyl.

Nous avions à l’époque financé cette collaboration par un accord de partenariat Hubert
Curien. Ceci a permis de financer un autre projet, celui mené avec Gabriel Barrenechea
et Lyonell Boulton sur le calcul numérique des modes propres des équations de Maxwell
dans une cavité résonnante [BBBa ; BBBb]. Les opérateurs associés aux équations de
Maxwell ont également un spectre qui n’est borné ni inférieurement ni supérieurement. Ils
présentent aussi la particularité d’avoir un noyau infiniment dégénéré si la loi de Gauß
n’est pas incluse. D’un point de vue numérique ceci représente un ensemble de difficultés
bien connues. Nous avons envisagé la question avec la contrainte d’imposer un minimum
de conditions sur le modèle et sur la méthode. Nous avons étudié et amélioré une méthode
due à Zimmermann et Mertins.

Dans le cadre des questions liées aux propriétés dynamiques des opérateurs linéarisés,
j’utilisais de manière essentielle le principe d’absorption limite, une estimation de l’opérateur
résolvante au voisinage du spectre dans des espaces pondérés. C’est une question similaire
qui nous a intéressés, avec Sylvain Golénia pour des perturbations de type longue portée.
Nous avons démontré dans cette analyse un principe d’absorption limite au voisinage des
seuils [BG10]. Nous avions alors utilisé une méthode de Mourre faible afin de traiter les
énergies aux seuils et gagner la positivité en utilisant le complément de Schur qui fait
apparaître, d’une certaine manière, la limite non relativiste.

Peu de temps après, j’ai eu l’occasion de découvrir une autre méthode liée à des
commutateurs. C’est la méthode des multiplicateurs de Morawetz. Ce fut à l’occasion de ma
rencontre avec Piero d’Anconna et Luca Fanelli qui avaient étudié les propriétés dispersives
de perturbations de l’opérateur de Dirac. Nous avions alors étudié des perturbations
magnétiques et obtenu des estimations de Morawetz et de Strichartz [BDF11].

Dans la lignée de mes travaux sur la stabilité spectrale, j’ai, à l’occasion de ma rencontre
avec Scipio Cuccagna, commencé une collaboration sur l’extension de mes travaux de
doctorat au cas dit résonnant [BC12b]. Il faut noter que dans le cadre de mes études
doctorales, je m’étais limité à une analyse linéaire et les aspects non linéaires étaient



11

vus de manière perturbative. Or depuis les travaux fondateurs (en ce qui concerne le
cas des équations dispersives) de Soffer & Weinstein, on sait que des phénomènes de
résonances non linéaires peuvent stabiliser ou déstabiliser certains équilibres dans des
équations d’évolutions dispersives. De tels phénomènes, dans le cas des équations des ondes,
de Klein-Gordon ou même de Schrödinger, sont en fait dus à un couplage non linéaire entre
des modes discrets et le spectre essentiel du linéarisé autour d’un équilibre. Dans le cas de
l’équation de Schrödinger, le caractère réversible de l’équation donne un spectre essentiel
qui est en fait la réunion de deux copies de signes opposés de [|ω|,∞) (si on considère
un état stationnaire de niveau ω comme équilibre). Dans le cas de l’équation de Dirac ce
sont donc des copies de translations de R \ (−m;m) que l’on obtient. Le spectre de la
linéarisation est donc divisé en trois parties, un partie libre de spectre essentiel, une partie
doublement couverte par le spectre essentiel (qui est non bornée) et entre les deux une
partie simplement couverte. Lorsque le premier ordre de couplage entre les modes discrets
et le spectre essentiel se fait au niveau de la partie simplement couverte, une analyse
similaire à celle de l’équation de Schrödinger nous permet de montrer que les phénomènes
de résonance non-linéaire tendent à stabiliser le système.

Néanmoins, l’analyse que nous avions menée avec Scipio Cuccagna s’est faite au
prix d’hypothèses importantes sur le spectre de l’opérateur linéarisé. C’est un choix qui
s’inscrivait dans une logique à plus long terme. Il s’agissait de comprendre ce qui était
possible de faire au niveau non linéaire et avec quels jeux d’hypothèses acceptables. Depuis
j’étudie la faisabilité de ces hypothèses. Il reste toujours beaucoup de questions ouvertes
mais la question du spectre de l’opérateur linéarisé a fait l’objet d’une collaboration avec
Andrew Comech qui nous a permis de clarifier partiellement la situation [BC12a]. Une des
difficultés rencontrées est encore liée au caractère non coercitif de l’opérateur de Dirac.
Le spectre ne peut plus être confiné aux axes réel et imaginaire comme dans le cas de
l’équation de Schrödinger non linéaire. Les mécanismes qui peuvent donner de l’instabilité
sont donc plus complexes.

En dernier lieu et avant de clore cette introduction, il me faut mentionner mes travaux
liés à des problématiques de contrôle bilinéaire en mécanique quantique [BCC13c ; BCC14c ;
BCC14a ; BCC12a ; BCC12b ; BCC12c ; BCC12e ; BCC12d ; BCC12a ; BCC13a ; BCC13b ;
BCC14b]. Cet ensemble fut mené en collaboration avec Marco Caponigro et Thomas
Chambrion. La question de départ fut posée par Thomas Chambrion lors d’un de ses
exposés à l’université de Franche-Comté. La question qui semblait les intéresser était celle
de la construction de solutions de problèmes d’évolutions linaires non autonomes avec une
régularité temporelle faible. Cette question et un certain nombre de problèmes connexes
nécessitent une analyse assez fine des propriétés d’opérateurs non bornés. Nous avons
étendu à un cadre plus général un certain nombre de résultats désormais classiques.

In re mathematica ars proponendi quaestionem pluris facienda est quam
solvendi.

Titre de la troisième soutenance de la thèse de Georg Cantor De aequationibus
secundi gradus indeterminatis [ Dissertation, Friedrich-Wilhelms-Universität,

Berlin, 1867 ].
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I.2

Framework

This section describes some of the objects and tools that appear in my work. For instance
I present

• the Dirac operator;

• the Maxwell equation.

I have also analysed the well known Schrödinger equation but my point of view was
abstract and the properties I use are really well known. I did not think it was useful to
describe them.

I included a description of the commutator methods as they are important in my
work. I also added two appendices. The first is a brief description of the spectral theory
concepts that I use and the second is some unpublished detailed proof of the Mourre
method including the treatment of high energies.

For familiar reader, this chapter can be skipped. In the rest of the manuscript we will
refer precisely to what is needed.

2.1 The Dirac operator

2.1.1 Some physical motivation

The Dirac equation models the motion of a quantum relativistic electron. Hence from the
evolution principle of quantum mechanics, it is of the form:

i∂tψ(t) = Hψ(t)

where ψ is in a Hilbert space H (superposition principle) and H is a self-adjoint operator
on H quantifying the energy (quantification principle).

For the free non-relativistic electron, the energy operator is obtained with the usual
correspondence principle of Schrödinger:

P = −i∇ ↔ p

Q ↔ x

applied to the classical energy∗

E =
mv2

2
+ V (x) =

p2

2m
+ V (x) as p = mv.

∗Recall that p is the momentum, v the velocity and x the position in classical mechanics.
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It takes the form

H =
P 2

2m
+ V (Q) =

−∆

2m
+ V (Q)

where V (Q) denotes the operator of multiplication by V that is

(V (Q)ψ)(x) = V (x)ψ(x).

This gives the famous Schrödinger equation.
The energy given by the special relativity satisfies:

E2 = c2p2 +m2c4.

We fix units such that the speed of light c is 1. Using Schrödinger’s principle, we can
obtain H the Dirac operator:

• The first idea could be the relativistic Schrödinger operator

H =
√
−∆ +m2,

defined with the Fourier transform. But this operator is not local and in the
associated equation, an asymmetry between time and spatial derivations appears
and violates relativistic principles.

• P.A.M. Dirac proposed, in 1928, an operator linear with respect to P = −i∇:

Dm =
3∑
j=1

αj(−i∇j) +mβ,

such that D2
m = −∆ +m2. If m 6= 0, this imposes the relations

αiαj + αjαi = 2δij

βαi + αiβ = 0

β2 = 1.

The ambient Hilbert space is thus L2(R3,C4) ≡ L2(R3)⊗ C4, it makes appear two
sets of degrees of freedom:

1. The spin that is the intrinsic magnetic momentum of the electron which is thus
a natural relativistic quantity;

2. The sign of the energy.

The spectrum of Dm is (−∞,−m]∪ [+m,+∞). The interpretation, given by Dirac, of the
negative part of the spectrum has important physical consequences such as the prediction
of the antiparticle of the electron: the positron.

Unfortunately, the classical theory introduced by Dirac does not allow the creation or
annihilation of particles. For this one should consider, instead of classical functions, trace
class operators. Nonetheless and despite of this strong indefiniteness, this operator can be
used to model different type of phenomenon. The ones we have in mind are of non-linear
interaction type as phenomenological models for self-interacting extended particles (one
can find an interesting account of the possible models in [Ran]).
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2.1.2 Definition

The free Dirac operator is hence usually defined as a differential operator acting on square
integrable valued 4-spinors (vector of L2(R3,C)4†). It is determined by the first order
differential expression

Dm := α · P +mβ = −i
3∑

k=1

αk∂k +mβ,

where α = (α1, α2, α3), and the Pauli-Dirac matrices are:

αi =

(
0 σi
σi 0

)
and β =

(
IC2 0
0 −IC2

)
,

for σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

We assume that the units are fixed so that c = ~ = 1.
When the space dimension n is different from 3 then there exists N an integer such

that Dm is the free Dirac operator acting on square integrable valued N -spinors of the
form

Dm = −iα ·∇ + βm =
n∑
=1

−iα∂x + βm m > 0

where the N ×N Dirac matrices are hermitian and satisfy

(α)2 = β2 = IN , ααk + αkα = 2δkIN , αβ + βα = 0, 1 ≤ , k ≤ n (2.1)

where IN is the N ×N identity matrix. The integer N is even as from (2.1), each matrix
coefficient is hermitian unitary and has zero trace.

As the Dirac matrices generate a faithful representation of the Clifford algebra over
Minkowski spaces then for n = 2d− 1, odd dimensions, or n = 2d, even dimensions, they
acts on spinors of dimension 2kd for some k ∈ N. Hence beside being even, N has to satisfy

N ∈
{

2k[n+1
2

], k ∈ N
}
.

We refer to [KY01, Appendix], where the minimal N is proved to be 2[n+1
2

].
There are different possibilities for the matrices for instance the matrices can be

swapped. But any choice is unitarily equivalent up to a time reversion as stated in the

Lemma 2.1 (Dirac–Pauli theorem). Let {α, 1 ≤  ≤ n; β} and {α̃, 1 ≤  ≤ n; β̃}, be
two sets of the Dirac matrices of the same dimension N :

{α, αk} = 2δk, {α, β} = 0; {α̃, α̃k} = 2δk, {α̃, β̃} = 0.

1. Let n = 2d− 1, d ∈ N. There is an invertible matrix S such that

α̃ = S−1αS, 1 ≤  ≤ n; β̃ = S−1βS. (2.2)

2. Let n = 2d, d ∈ N. There is an invertible matrix S and σ ∈ {±1} such that

α̃ = S−1αS, 1 ≤  ≤ n− 1; α̃n = σS−1αnS; β̃ = S−1βS.

†We will identify L2(R3)4, L2(R3,C4) and L2(R3)⊗ C4.
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Since the matrices α̃ are hermitian, by taking the adjoint we show that the matrix S∗S
commutes to the matrices α so that we can eliminate |S| and choose S to be unitary.

We refer to [Shi11; Shi13; Pau36; Wae74; Dir28] or [Tha92, Lemma 2.25] for proofs
and also [Kes61, Theorem 7] for general version in odd spatial dimensions. We provided a
sketch of the proof in [BC12, Lemma 4.5].

The Dirac operator is built in order to satisfy

D2
m = (−∆ +m2)IN .

Standard arguments involving the Fourier transform show that Dm defines a self-adjoint
operator with domain H1(Rn)N and that the spectrum of Dm is

σ(Dm) = (−∞,−m] ∪ [m,∞).

2.1.3 Spherically symmetric potentials and radial reduction

Due to the matrix structure of the Dirac operator, the representation of the orthogonal
group are not as simple as in the scalar case. For instance radially symmetric N-spinors
are not left invariant by the Dirac operator and radially symmetric potentials have a
particular matrix structure.

In the 3-dimensional case for the standard Dirac representation (2.2), we considered,
among others, hermitian 4× 4 matrix multiplication operators, V , acting on L2(R3)4, such
that C∞0 (R3 \ {0})4 ⊂ D(V ) and

eiϕn·SV (R−1x)e−iϕn·S = V (x), ∀x ∈ R3, ∀ϕ ∈ [0, 4π),

where
S =

1

2

(
σ 0
0 σ

)
is the spin operator, and R is the matrix of the rotation of angle ϕ and axis n.

Spherically symmetric potentials may be constructed from maps

φsc,el,am : R −→ R

via
V (x) = φsc(|x|)β + φel(|x|)IC4 + iφam(|x|)βα · x

|x|
. (2.3)

The subscripts “sc”, “el” and “am”, stand for “scalar”, “electric” and “magnetic” potential,
respectively. Radial symmetry on the electric potential, for instance, is a consequence of
the assumption that the atomic nucleus is pointwise and the electric forces are isotropic in
an isotropic medium like the vacuum. In the particular Coulomb case φsc = φam = 0 and
φel(r) = γ/r,

√
3/2 < γ < 0, Dm + V describes the motion of a relativistic electron in the

field created by an atomic nucleus.
If we consider, for any Ψ ∈ L2(R3)4, the spherical coordinates representation:

ψ(r, θ, φ) = rΨ(r sin(θ) sin(φ), r sin(θ) cos(φ), r cos(θ)) (2.4)

where (r, θ, φ) ∈ (0,∞)× [0, π)× [−π, π). The map Ψ 7→ ψ is an isomorphism between
L2(R3)4 and L2((0,∞), dr)⊗ L2(S2)4.

Then L2(S2)4 decomposes as the direct sum of the two-dimensional angular momentum
subspaces Kmj ,κj (see [Tha92, Section 4.6]), the partial wave subspaces are given by

Hmj ,κj = L2((0,∞), dr)⊗ Kmj ,κj ,
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so that L2(R3)4 =
⊕

Hmj ,κj . The indices (mj, κj) run over the set mj ∈ {−j, · · · , j} and
κj ∈ {±(j + 1

2
)}, for j ∈ {2k+1

2
: k ∈ N}.

The r factor in (2.4) renders a Dirichlet boundary condition at 0. The dense subspaces
C∞0 (0,∞)⊗ Kmj ,κj ⊂ Hmj ,κj are invariant under the action of H. If V is as in (2.3), then
H � C∞0 (0,∞)⊗ Kmj ,κj is unitary equivalent to

Hmj ,κj :=

(
1 + φsc(r) + φel(r) − d

dr
+

κj
r

+ φam(r)
d
dr

+
κj
r

+ φam(r) −1− φsc(r) + φel(r)

)
. (2.5)

The operators Hmj ,κj are essentially self-adjoint in C∞0 (0,∞)2 under suitable conditions
on the potentials φsc,el,am. Then one has

σ(H) =
⋃

σ(Hmj ,κj).

The sub-index (mj, κj) are often suppressed from operators and spaces, and only the index
κ ≡ κj is written. Note that the eigenvalues of H are degenerate and their multiplicity is
at least mj. We have

σdisc(H) =
⋃

σdisc(Hκ).

We have σess(Hκ) = (−∞,−1] ∪ [1,∞), so that Hκ are strongly indefinite as well.

In any dimension, referring to [KY01], we have

α · P = αr

(
pr +

i

r
K

)
where

αr := α · x
r
, pr := −ir−

n−1
2 ∂rr

n−1
2 = −i

(
∂ − r +

n− 1

2r

)
and

K :=
n− 1

2
−

∑
1≤j<k≤n

iαjαk(xjPk − xkPj)

is the spin-orbit coupling operator. Its self-adjoint extension on L2(Sn−1) has purely
discrete spectrum

−(N +
n− 3

2
) ∪ (N +

n− 3

2
).

The Dirac operator in n-dimensions acts invariantly in each of the sum

Eκ := L2((0,∞), r−
n−1
2 dr)⊗ (〈φ〉 ⊕ 〈αrφ〉)

where φ ∈ Ker(S − κ). For spherically symmetric potentials of the form

V (x) = φsc(|x|)β + φel(|x|)ICN + iφam(|x|)βαr

the same is true for H := Dm + V the action of H on Eκ reads as (2.5).
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2.1.4 The ground state of Dirac Coulomb operators

In dimension n larger than 3, when V is the Coulomb potential: φsc = φam = 0, φel(r) = γ/r
with, see [Tha92, Lemma 4.15, Theorem 4.16, Example 4.17],

−
√
n(n− 2)/2 < γ < 0.

The eigenvalues of Hκ are given explicitly by

Ej = m

(
1 +

γ2

(j +
√
κ2 − γ2)2

)−1/2

.

Note that Ej → m as j →∞ for all values of κ. The ground state in dimension 3 of the
full coulombic Dirac operator H is achieved when κ = −1 and j = 0. The first component
in the radial reduction of the associated eigenfunction is given by:

u0(r) = ν0

(
γ

(1− γ2)1/2 − 1

)
r
√

1−γ2e−(γE0/
√

1−γ2)r,

ν0 is chosen so that ‖u0‖ = 1.

2.1.5 The multicenter potential

We considered, in dimension n = 3 only, the following operator

Hγ := Dm + γVc, where Vc := vc ⊗ IdCN and vc(x) :=
∑

k=1,...,n

zi
|x− ai|

, (2.6)

acting on C∞c (R3 \ {ai}i=1,...,n;CN), with ai 6= aj for i 6= j. The γ ∈ R is the coupling
constant. The index c stands for coulombic multi-centre. Assuming

Z := |γ| max
i=1,...,n

(|zi|) <
√

3/2, (2.7)

the theorem of Levitan-Otelbaev‡ ensures that Hγ is essentially self-adjoint and its domain
is the Sobolev spaceH1(R3;CN ), see [AY82; Kal98; Kla80; LR79; LRK80; LO77] for various
generalizations. This condition corresponds to the nuclear charge α−1

at Z ≤ 118, where
α−1

at = 137.035999710(96). Note that using the Hardy-inequality, the Kato-Rellich theorem
will apply till Z < 1/2 and is optimal in the matrix-valued case, see [Tha92][Section 4.3]
for instance. For Z < 1, one shows there exists only one self-adjoint extension so that its
domain is included in H1/2(R3;CN), see [Nen75]. This covers the nuclear charges up to
Z = 137. When n = 1 and Z = 1, this property still holds true, see [EL07]. Surprisingly
enough, when n = 1 and Z > 1, there is no self-adjoint extension with domain included in
H1/2(R3;CN), see [Xia99][Theorem 6.3].

In [Nen75], one shows for Z < 1 that the essential spectrum is given by (−∞,−m] ∩
[m,∞) for all self-adjoint extension.

2.1.6 A link with the Klein-Gordon equation

The identity
(i∂t −D0 −mβ)(i∂t +D0 +mβ) = (∆−m2 − ∂2

tt)IN

‡From [Che77, Theorem 2.1] and Section 2.1.4, we deduce the same result.
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shows the intimate relation between the Dirac and the Klein-Gordon equation with mass
m2 (the wave equation if m = 0).

It is a way to derive properties of the free Dirac flow from the corresponding ones for
the scalar Klein-Gordon and Wave equations using these identities.

For general self-adjoint perturbations H (of the Dirac operator), the squared Dirac
equation

(i∂t −H)(i∂t +H) = (−∂tt −H2)

can also be considered as a Klein-Gordon type equation.

2.2 The Maxwell operator

The physical phenomenon of electromagnetic oscillations in a resonator filled with a
homogeneous medium is described by the isotropic Maxwell eigenvalue problem,

curlE = iωH in Ω

curlH = −iωE in Ω

E × n = 0 on ∂Ω,

(2.8)

where the angular frequency ω is a real and the field phasor (E,H) 6= 0 is restricted to
the solenoidal subspace, characterised by the Gauss law

div(E) = 0 = div(H).

The orthogonal complement of this subspace is the gradient space, which is in the kernel
of (2.8). The permittivities we considered are such that

ε,
1

ε
, µ,

1

µ
∈ L∞(Ω). (2.9)

In order to give a meaning to the normal to the boundary, it is usual to impose some
regularity in the domain. Actually one can avoid such an assumption by imposing directly
some symmetry on the associated operator. In this respect, we follow closely [BS90], the
self-adjoint Maxwell operator has domain defined as follows. Consider

H(curl; Ω) =
{
u ∈ L2(Ω)3 : curlu ∈ L2(Ω)3

}
H0(curl; Ω) = {u ∈ H(curl; Ω) :

∫
Ω

curlu · v =

∫
Ω

u · curlv ∀v ∈ H(curl; Ω)}.

The linear space H(curl; Ω) becomes a Hilbert space for the norm

‖u‖curl,Ω =
(
‖u‖2

0,Ω + ‖ curlu‖2
0,Ω

)1/2
,

where

‖v‖0,Ω =

(∫
Ω

|v|2
)1/2

is the corresponding norm of L2(Ω)3. Moreover, we have

H0(curl; Ω)3 = C∞0 (Ω)3,

where the closure is in the norm ‖ · ‖curl,Ω.
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By virtue of Green’s identity for the rotational [GR86, Theorem I.2.11], if Ω is a Lipschitz
domain [Amr+98, Notation 2.1], then u ∈ H0(curl; Ω) if and only if u ∈ H(curl; Ω) and
u× n = 0 on ∂Ω.

A domain of self-adjointness of the operator associated to (2.8) for ε = µ = 1 is

D1 = H0(curl; Ω)×H(curl; Ω) ⊂ L2(Ω)6

and its action is given by

M1 =

[
0 i curl

−i curl 0

]
: D1 −→ L2(Ω)6.

For
P =

[
ε1/2I3×3 0

0 µ1/2I3×3

]
,

condition (2.9) ensures that P : L2(Ω)6 −→ L2(Ω)6 is bounded and invertible. Moreover,(
ω,

[
E
H

])
∈ R×D1

is a solution of (2.8), if and only if [
Ẽ

H̃

]
= P

[
E
H

]
is a solution of

P−1M1P−1

[
Ẽ

H̃

]
= ω

[
Ẽ

H̃

]
.

ThereforeM = P−1M1P−1 on D(M) = PD1 is the self-adjoint operator associated to
(2.8).

AsM anticommutes with complex conjugation, the spectrum is symmetric with respect
to 0. Moreover, Ker(M) is infinite dimensional, because it always contains the gradient
space, see [BS90].

Isotropic cylindrical symmetries. If Ω = Ω̃ × (0, π) for Ω̃ ⊂ R2 an open simply
connected set, then (2.8) decouples by separating the variables for ε = µ = 1. In turns, a
non-zero ω is an eigenvalue ofM1, if and only if either ω2 = λ2 where λ2 is a Dirichlet
eigenvalue of the Laplacian in Ω̃, or ω2 = ν2 + ρ2 where ν2 is a non-zero Neumann
eigenvalue of the Laplacian in Ω̃ and ρ ∈ N.

The Neumann problem can be re-written as (ν = ω)
curlE = iωH

curlH = −iωE
in Ω̃

E · t = 0 on ∂Ω̃ ,

(2.10)

for (
ω,

[
E
H

])
∈ R× (D̃1 \ {0}).

Here
E =

[
E1

E2

]
, curlE = ∂xE2 − ∂yE1, curlH =

[
∂yH
−∂xH

]
,

t is the unit tangent to ∂Ω̃ and

D̃1 =
{
u ∈ L2(Ω)2 : curlu ∈ L2(Ω) and u · t = 0

}
×
{
u ∈ L2(Ω) : curlu ∈ L2(Ω)2

}
.

This defines the Maxwell equation and operator in the bi-dimensional setting.
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2.3 Commutator methods

In this section, we describe commutator methods. Unlike the other sections, the operator of
interest is now denoted H and not A. This may look inconsistent but A in these theories
stands for the so-called conjugate operator.

The idea, which goes back to C.R. Putnam [Put67], is to use some auxiliary operator
A to analyse the spectral properties of some operator H. This is for instance the case
when one tries to analyse properties of the point spectrum by means of Virial methods,
also called Pohozaev methods. In what we describe below, we were more interested on the
properties of the essential spectrum.

For instance in [Put67], if H is a self-adjoint operator acting in a Hilbert space H, one
supposes that there is a bounded operator A so that

C := [H, iA] > 0,

where “>” means non-negative and injective. The commutator has to be understood in
the form sense:

〈ψ, [H, iA]ψ〉 = i 〈Hψ,Aψ〉 − i 〈Aψ,Hψ〉 ∀ψ ∈ D(H).

When it extends into a bounded operator between some spaces, we denote this extension
[H, iA] as well. The operator A is said to be conjugate to H.

One deduces some estimates, namely the so called Limiting Absorption Principle (LAP),
on the imaginary part of the resolvent, i.e., one finds some weight B, a closed injective
operator with dense domain, so that

sup
<(z)∈R,=(z)>0

=〈f, (H − z)−1f〉 ≤ ‖Bf‖2

see for instance [RS79, Theorem XIII.28]. This estimation is equivalent to the global
propagation estimate, c.f. [Kat66] and [RS79][Theorem XIII.25]:∫

R
‖B−1eitHf‖2dt ≤ 2‖f‖2 (2.11)

This equivalence explains the recent increasing interest to commutator methods in the
analysis of dispersive equations even though they go back to the late seventies.

The last estimates called Kato smoothness estimates or, for short, Kato estimates are
similar to the classical Strichartz estimates. We can also mention that Kato smoothness
estimates can be simpler to prove than Strichartz estimates in a perturbation framework.
Indeed, one only needs an estimate on the resolvent.

Combining the knowledge of Strichartz in some “free case”, a Duhamel formula linking
this “free case” and the “perturbed case” and the Kato smoothness in this “perturbed case”,
we can deduce Strichartz estimates in the short range case, see [RS04, Section 4].

To close our comment on the use of commutator methods to establish estimates of the
form (2.11), we can also mention that Morawetz estimates are in a sense of the form of
(2.11) and are based on Virial identities, that are commutator methods.

At the spectral level, one infers that the spectrum of H is purely absolutely continuous
with respect to the Lebesgue measure. In particular, H has no eigenvalue. To deal with
the presence of eigenvalues, the fact that A is unbounded and with the 3-body-problem, E.
Mourre has the idea to localise in energy the estimates and to allow a compact perturbation,
see [Mou81]. With further hypotheses, one shows an estimate of the resolvent (and not
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only on the imaginary part§). The theory was finally improved in many directions and
optimised in many ways, see [ABG96] for a more thorough discussion of these matters.
We mention also [GGM04; GJ07; Gér08] for recent developments. We refer to Appendix B
where we give a detailed proof and description of Mourre’s method.

As we were concerned about thresholds, Mourre’s method was not sufficient, as the
estimate of the resolvent is given on an interval excluding thresholds. In [BM97] one
generalizes the result of Putnam’s approach. Under some conditions, one allows A to
be unbounded. By asking some positivity on the Virial of the potential, one is able to
conciliate the estimation of the resolvent above the threshold energy and the accumulation
of eigenvalues under it.

§This property was called supersmoothness in [KY89].
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I.A

The spectrum of a
self-adjoint operator

In this section, we recall some facts from spectral theory.

A.1 Spectrum
Recall that a linear operator on a normed space B is the coupled data (A,D(A)) where
D(A) is a subspace of B and A a linear operator from D(A) to B. To simplify the notation
we often write A instead and refer to D(A) as the domain of A. An operator A′ is an
extension of A if D(A) ⊂ D(A′) and A′ = A on D(A). We will write A ⊂ A′.

An operator is densely defined if its domain is dense.

Definition A.1. Let B be a Banach space. A linear operator A : D(A) ⊂ B → B is
said to be closed if for every sequence {xn}n∈N in D(A) converging to x ∈ B such that
Axn −−−→

n→∞
y ∈ B, then x ∈ D(A) and Ax = y. Equivalently, A is closed if its graph is

closed in B ×B.
For an operator A, if the closure of its graph in B ×B is the graph of some operator,

we call that operator the closure of A, and we say that A is closable. We denote the closure
of A by A. It follows that A is the restriction of A to D(A).

A core of a closable operator is a subset C of D(A) such that the closure of the
restriction of A to C, or the closure of (A �C , C), is (A,D(A)).

A core is also a dense subspace for the graph topology, namely the space D(A) endowed
with the norm

u 7→ ‖u‖+ ‖Au‖.

The following are immediate:

• Any bounded linear operator defined on the whole space B is closed. Notice that from
the closed graph theorem, closed operator A with D(A) = B are exactly bounded
operators on B;

• An operator A admits a closure if and only if for every sequence {xn} converging to
0 in B, and such that {Axn} converges to v in B, then v = 0.

For simplicity we replace the Banach space B by a Hilbert space H. If A is a densely
defined operator, we define its adjoint A∗ by

D(A∗)={φ ∈ H, s.t. ∃η ∈ H,∀ψ ∈ D(A), 〈φ,Aψ〉=〈η, ψ〉}
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and for any φ ∈ D(A∗), A∗φ = η. The uniqueness of η follows from the density of the
domain of A.

Using transformation (ψ, η) 7→ (−η, ψ) in H × H, Riesz lemma and Closed Graph
theorem we deduce that A∗ is closed and A is closable if and only if D(A∗) is dense, [RS80,
Theorem VIII.1].

Notice that if A ⊂ A′ then (A′)∗ ⊂ A∗.

Definition A.2. A densely defined linear operator A : D(A) ⊂ H → H on a Hilbert space
H is a hermitian or symmetric operator if (Aψ, φ) = (ψ,Aφ) for all ψ, φ ∈ D(A). This
means that A ⊂ A∗.

The operator A is self-adjoint if it coincides with its adjoint, i.e. if A = A∗. Notice
that a symmetric operator is always closable and if its closure coincides with its adjoint
(i.e. A = A∗), then A is said to be essentially self-adjoint.

Definition A.3 (The spectrum of a self-adjoint operator). Let A : D(A) ⊂ H → H
self-ajoint operator on a Hilbert space H

The spectrum of A, usually denoted σ(A), is the set of all complex numbers λ such
that∗

λIH − A

is not invertible from D(A) to H.
The discrete spectrum is the set of eigenvalues isolated in σ(A) and of finite multiplicity.

Its complementary in the spectrum is the essential spectrum of A, denoted σess(A).

A complex number λ is in the resolvent set ρ(A) of A if A− λIH is invertible (with
bounded inverse) from D(A) to H. This is the complementary set of σ(A). From

‖(A− zIH)ψ‖2 = ‖(A+ =zIH)ψ‖2 + |<z|2‖ψ‖2, (A.1)

we deduce the

Lemma A.4. If A is self-adjoint, the spectrum is contained on the real axis. The essential
spectrum is always closed, and it is a subset of the spectrum σ(A).

The following lemma explains why it is called the ”essential” spectrum.

Proposition A.5. The essential spectrum is invariant under compact perturbations. That
is, if K is a compact operator on H, then the essential spectra of A and that of A + K
coincide.

These different notions of spectrum can be extended to closed operators but for self-
adjoint operators the essential spectrum can be characterised by many ways. Another
characterisation that is useful is given by

Theorem A.6 (Weyl’s characterisation). A number λ is in the spectrum of A if and only
if there exists a sequence {ψk} in the space H such that ||ψk|| = 1 and

lim
k→∞
|Aψk − λψk| = 0.

Furthermore, λ is in the essential spectrum if there is a sequence satisfying this condition,
but such that it contains no convergent subsequence; such a sequence is called a singular
sequence or Weyl sequence. For instance we can choose ψk → 0 weakly.
∗We often write λ−A instead of λIH −A.
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A.2 Resolvent & functional calculus
If A is a self-adjoint operator acting on a Hilbert space H, for any λ ∈ ρ(A), the operator
RA(λ) := (A− λIH)−1 is a bounded operator. Moreover for λ, λ′ ∈ ρ(A), RA(λ) commutes
to RA(λ′) and we have the following resolvent identity

RA(λ)−RA(λ′) = (λ− λ′)RA(λ)RA(λ′).

Thus for λ′ 6= λ in the resolvent set of A, we have

IH = (λ′ − λ)(IH − (λ− λ′)RA(λ′))
(
(λ′ − λ)−1IH −RA(λ)

)
from which we deduce that the spectrum of RA(λ) is the closure of the image of the
spectrum of A by λ′ 7→ (λ′ − λ)−1.

Consider ΦA that maps the function x ∈ R 7→ (x − z)−1 to RA(z). It extends to a
unitary ∗-algebra morphism that maps bounded rational functions to bounded operator
still denoted ΦA. We can prove that if f is a non-negative bounded rational function then
ΦA(f) is non negative. This allows the extension of the map ΦA to continuous functions
tending to 0 at infinity, the class C0(R), with the property

‖ΦA(f)‖ ≤ ‖f‖∞.

As this extension preserves the positivity, the functional Λψ, for any ψ ∈ H defined by

f ∈ C0(R) 7→ 〈u,ΦA(f)u〉

is a positive bounded functional. It is represented by a positive finite Borel measure and
thus extends to any bounded borelian function f , allowing the extension of ΦA with all
the mentioned properties preserved. Thus we can obtain, see [RS80, Theorem VIII.5], the

Theorem A.7. Let A be self-adjoint operator on H. Then there exists a unique map ΦA

from the bounded Borel functions on R into B(H) the space of bounded operators on H so
that

1. ΦA is an algebraic ∗-homomorphism

2. ΦA is norm continuous, that is

‖ΦA(f)‖B(H) ≤ ‖f‖∞

3. Let (fn)n∈N be a uniformly bounded sequence of bounded borelian functions converging
pointwise to f then f is a borelian bounded function and

ΦA(fn)ψ → ΦA(f)ψ in H.

In addition ΦA(f) ≥ 0 when f is non-negative bounded borelian function.

Below we write f(A) for ΦA(f) for any bounded borelian function.

Compact resolvent. Riesz-Schauder theorem [RS80, Theorem VI.15] gives that if one
of the resolvent of A is compact then the spectrum of A is made of isolated eigenvalues
of finite algebraic multiplicity (the corresponding algebraic kernel is finite dimensional)
possibly accumulating at infinity.

Notice that if one of the resolvent is compact then all of them are.
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A.3 The min-max principle & Rayleigh-Ritz technique
The min-max characterisation of the lower part of the spectrum is given by

Theorem A.8. If A is a self-adjoint operator on H bounded from below, A ≥ cI in the
form sense for some c ∈ R. Define

µn(A) = sup
φ1,...φn−1

inf
ψ∈[φ1,...φn−1]⊥

ψ∈lD(A), ‖ψ‖=1

(ψ,Aψ) .

Then, for each n, either

(a) there are n eigenvalues (counting multiplicity) below the bottom of the essential
spectrum, and µn(A) is the n-th eigenvalue counting multiplicity;

or

(b) µn(A) is the bottom of the essential spectrum, i.e., µn(A) = inf{λ : σess(A)} and in
this case µn(A) = . . . = µn+k(A) = . . . an there are at most n− 1 eigenvalues below
µn(A).

We refer to Reed & Simon, [RS78, Chapter XIII] for more details. One important
consequence of this theorem for numerical applications is the Rayleigh-Ritz technique,
which shows that spectra of compressions provides upper bounds for the spectrum of
operator bounded from below. This the content of the

Theorem A.9. Let A be a self-adjoint semibounded operator on H. Let L be an n-
dimensional subspace of D(A), and let P be the orthogonal projection onto L. Let AL =
PA �L. Let µL1 ≤ . . . ≤ µLn be the eigenvalues of AL. Then

µm(A) ≤ µLm, m ∈ {1, . . . , n}

The convergence of the so called Galerkin method in the case of operator which are
bounded from below is a consequence of the

Theorem A.10 (XIII.4 Reed & Simon IV). Let A be a self-adjoint semibounded operator
on H. Let (Ln)n∈N be a sequence such that Ln is n-dimensional subspace of D(A), and let
Pn be the orthogonal projection onto Ln.

Suppose µ1(A) is an eigenvalue of A with normalised eigenvector ψ ∈ ∪n∈NLn. Suppose

lim
n→∞

(Pnψ,APnψ) = µ1(A).

Then
lim
n→∞

µLn1 = µ1(A).



I.B

On the boundary
values of the resolvent
of a self-adjoint
operator

In this appendix, we give detailed proofs of the main consequences of Mourre estimates on
both bounded and unbounded intervals. Here again, the operator of interest is now denoted
H and not A, which stands for the so-called conjugate operator.

We study a self-adjoint operator H in a Hilbert space H with the help of an auxiliary
self-adjoint operator A.

B.1 The assumptions
We assume the following

Assumption B.1.1. The unitary operators Wα = eiαA, α ∈ R, leaves the domain D(H)
of H invariant. We write Hα = W ∗

αHWα considered as an operator from D(H) to H.

Assumption B.1.2. For all u ∈ D(H) the function α ∈ R 7→ Hαu ∈ H is twice
differentiable. We write H ′αu and H ′′αu for its derivatives at the first and second order and
we define two linear operators H ′ and H ′′ with domain D(H) in H by H ′u = H ′0u and
H ′′u = H ′′0u.

Assumption B.1.3. There exists J ⊂ R an open interval such that there exist a0 > 0
and a compact operator K in H such that :

1J(H)H ′1J(H) ≥ a01J(H) +K.

This last assumption is usually called Mourre estimate.
With no further mention, we consider these assumptions on each of the following

statements.

B.2 On the discrete spectrum
Let W ◦

α = Wα �D(H) considered as an operator in D(H). We have the

Lemma B.1. The operators H ′ and H ′′ are bounded from D(H) to H and symmetric.
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Proof – As an immediate consequence of the Banach-Steinhauss theorem, we obtain the
boundedness.

The operator H is selfadjoint and WαD(H) ⊂ Wα. Differentiating in α the identity
〈u,Hαv〉 = 〈Hαu, v〉 for any u and v in D(H) gives the symmetry.

Lemma B.2. For all real α, W ◦
α ∈ B(D(H)) and there exist M and ω in R such that for

‖W ◦
α‖B(D(H)) ≤Meωα ∀α ∈ R.

Proof – To prove that W ◦
α ∈ B(D(H)), it is enough to prove that its graph is closed

in D(H) × D(H). So if (un)n∈N is such that un → u, Hun → Hu, Wαun → v and
HWαun → Hv then v = Wαu since Wα is a bounded operator on H and W ◦

α is bounded
by the closed graph theorem.

By the previous lemma, H ′ is bounded from D(H) to H and H ′α = W ∗
αH

′Wα, so

HW ◦
α = H +

∫ α

0

W ∗
α−βH

′Wβ dβ

and thus
‖W ◦

αu‖D(H) ≤ ‖u‖D(H) + C

∫ α

0

‖W ◦
βu‖D(H) dβ

so the lemma follows from Gronwall lemma.

Lemma B.3 (Virial). For any eigenvector u of H, 〈u,H ′u〉 = 0.

Proof – For any u ∈ D(H), the map f : α ∈ R 7→ (Hα − i)−1u is differentiable at 0:

f(α)− f(0)

α
= −(Hα − i)−1Hα −H

α
(H − i)−1u

tends to −(H− i)−1H ′(H− i)−1u due to the local uniform boundedness of α→ (Hα− i)−1

(following from the above lemma) since (Hα − i)−1 = W ∗
α(H − i)−1Wα. Hence we get

R(i)′ = −R(i)H ′R(i).
Then one has:

(Hα − i)−1 − (H − i)−1

α
=
W ∗
α(H − i)−1Wα − (H − i)−1

α
or

(Hα − i)−1 − (H − i)−1

α
=

{
W ∗
α − 1

α
(H − i)−1 − (H − i)−1W

∗
α − 1

α

}
Wα

and hence applying it to W ∗
αu we obtain:

R(i)′ = lim
α→0

[
W ∗
α − 1

α
, (H − i)−1]u

so if u is an eigenvector (associated to an eigenvalue λ),

〈u, [W
∗
α − 1

α
, (H − i)−1]u〉 = 0

and
〈u,R(i)′u〉 = 0

and finally
〈(H − i)−1u,H ′(H − i)−1u〉 = 0

hence with (H − i)−1u = (λ− i)−1u we obtain the lemma.
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Corollary B.4. The interval J contains at most a finite number of eigenvalues, each of
them of finite multiplicity.

Proof – Assume the assertion if false, then there exist a sequence (un)n∈N of orthonormal
eigenvectors of H with eigenvalues in J , from the Mourre estimate and the previous lemma,
we have :

a0〈un, un〉 ≤ −〈un, Kun〉
Since un ⇀ 0 weakly with ‖un‖ = 1 and K is compact, we obtain a0 ≤ 0, which is a
contradiction.

B.3 The limiting absorption principle
If the interval J does not contain any eigenvalue, we can get ride of K in the Mourre
estimate:

Lemma B.5. If λ ∈ J is not an eigenvalue then, there exists ν0 > 0 and a ∈ (0, a0) such
that for Jν = (λ− ν, λ+ ν) ∩ J

1Jν (H)H ′1Jν (H) ≥ a1Jν (H) ∀ν ≥ ν0.

Proof – Indeed, 1Jν (H) → 0 in the strong sense as ν → 0 hence K1Jν (H) → 0 in the
norm sense as ν → 0.

We have a similar lemma for neighbourhood of infinity:

Lemma B.6. There exists ν0 > 0 and a ∈ (0, a0) such that for Jν = J \ (−1/ν, 1/ν)

1Jν (H)H ′1Jν (H) ≥ a1Jν (H) ∀ν ≥ ν0.

Proof – Again, 1Jν (H)→ 0 in the strong sense as ν → +∞ hence K1Jν (H)→ 0 in the
norm sense as ν → +∞.

In the following, Jν will be one of the interval: (λ− ν, λ+ ν) ∩ J or J \ (−1/ν, 1/ν),
which we assume to be non empty.

Lemma B.7. For sufficiently small δ > 0, there exists cδ > 0 positive such that for all
u ∈ D(H), for all ν ≥ ν0:

(a− δ)‖1Jν (H)u‖2 ≤ 〈H ′u, u〉+ cδ‖(1− 1Jν (H))u‖2
H .

Proof – From the previous lemmata, we have

〈u,1Jν (H)H ′1Jν (H)u〉 ≥ a‖1Jν (H)u‖2.

so that

〈u,H ′u〉
≥ 〈(1− 1Jν (H))u,H ′(1− 1Jν (H))u〉+ 2<〈H ′(1− 1Jν (H))u,1Jν (H)u〉+ a‖1Jν (H)u‖2.

By Cauchy-Schwartz inequality, we have for some C > 0

|〈(1− 1Jν (H))u,H ′(1− 1Jν (H))u〉|

≤ 1

2
‖H ′(1− 1Jν (H))u‖2 +

1

2
‖(1− 1Jν (H))u‖2 ≤ C‖(1− 1Jν (H))u‖2

H
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and since H ′ ∈ B(D(H),H)

|<〈H ′(1− 1Jν (H))u,1Jν (H)u〉| ≤ δ

2
‖1Jν (H)u‖2 +

1

2δ
‖H ′(1− 1Jν (H))u‖2

or

|<〈H ′(1− 1Jν (H))u,1Jν (H)u〉| ≤ δ

2
‖1Jν (H)u‖2 +

‖H ′R(i)‖
2δ

‖(1− 1Jν (H))u‖2
H

So

〈u,H ′u〉 ≥ −C‖(1− 1Jν (H))u‖2
H

−δ‖1Jν (H)u‖2 − ‖H
′R(i)‖
δ

‖(1− 1Jν (H))u‖2
H

+a‖1Jν (H)u‖2.

hence for a sufficiently small δ, we have the estimate.

Lemma B.8. Let Hε = H − iεH ′ for ε ∈ R with domain D(Hε) = D(H). For |ε| <
‖H ′R(i)‖−1, H∗ε = H−ε.

Proof – We have from the symmetry of H and H ′ that H−ε + i ⊂ H∗ε + i. From

Hε + i = (1− iεH ′(H + i)−1)(H + i)

and the fact that H ′(H + i)−1 is bounded, we deduce that for |ε| ≤ ‖H ′R(i)‖−1, Hε + i is
invertible and so H−ε + i = H∗ε + i or H−ε = H∗ε

Lemma B.9. There exists C > 0, such that for all λ ∈ R, for all µ ∈ R, with µε ≥ 0, for
all u ∈ D(H), we have:

|ε+ µ|‖u‖2 ≤ C|=〈(Hε − λ− iµ)u, u〉|+ C|ε|‖(1− 1Jν (H))u‖2
H .

Proof – From Lemma B.7, we have:

(a− δ)‖1Jν (H)u‖2 ≤ 〈H ′u, u〉+ C‖(1− 1Jν (H))u‖2
H ∀ν ≥ ν0

or
(a− δ)|ε|‖1Jν (H)u‖2 ≤ =〈i|ε|H ′u, u〉+ |ε|C‖(1− 1Jν (H))u‖2

H ∀ν ≥ ν0

and hence since µε ≥ 0

(a− δ)|ε+ µ|‖1Jν (H)u‖2 ≤ |=〈(iεH ′ + iµ)u, u〉|+ |ε|C‖(1− 1Jν (H))u‖2
H ∀ν ≥ ν0

and hence we obtain the desired estimate.

Lemma B.10. We have, for any u ∈ D(H):

‖(Hε − λ− iµ)u‖2 ≥ 〈u,
[
(H − λ)2 − ‖H ′R(i)‖|ε|(1 +H2)

]
u〉.
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Proof – We have

‖(Hε − λ− iµ)u‖2 = ‖(H − λ)u‖2 + ‖(εH ′ + µ)u‖2 − 2<〈(H − λ)u, i(εH ′ + µ)u〉

or
‖(Hε − λ− iµ)u‖2 = ‖(H − λ)u‖2 + ‖(εH ′ + µ)u‖2 + 2ε=〈Hu,H ′u〉.

Hence
‖(Hε − λ− iµ)u‖2 ≥ ‖(H − λ)u‖2 − 2|ε|‖Hu‖‖H ′u‖.

and so the result follows.

The following results are the key estimate.

Lemma B.11 (bounded interval case). In the bounded case (Jν = (λ0− ν, λ0 + ν)∩ J for
some λ0 ∈ J) if [λ− η, λ+ η] ⊂ [α, β] ⊂ Jν then

‖(Hε − λ− iµ)u‖2 + (ε+ ε2)](|λ|+ |ν|)2‖u‖2

≥
[
(1− ε)(η2 min(

1

1 + α2
,

1

1 + β2
)− ‖H ′R(i)‖|ε|)− (ε+ ε2)

]
‖(1− 1Jν (H))u‖2

H

for any u ∈ D(H).

Proof – We have

‖(Hε − λ− iµ)(1− 1Jν (H))u‖2

≥ 〈(1− 1Jν (H))u,
[
(H − λ)2 − ‖H ′R(i)‖|ε|(1 +H2)

]
(1− 1Jν (H))u〉

and since [
(H − λ)2 − ‖H ′R(i)‖|ε|(1 +H2)

]
(1− 1Jν (H))

≥
(
η2 min(

1

1 + α2
,

1

1 + β2
)− ‖H ′R(i)‖|ε|

)
(1 +H2)

Then, we use

‖(Hε − λ− iµ)u‖2

= ‖(Hε − λ− iµ)1Jν (H)u‖2 + ‖(Hε − λ− iµ)(1− 1Jν (H))u‖2

+2<〈(Hε − λ− iµ)(1− 1Jν (H))u, (Hε − λ− iµ)1Jν (H)u〉
= ‖(Hε − λ− iµ)1Jν (H)u‖2 + ‖(Hε − λ− iµ)(1− 1Jν (H))u‖2

−2ε=〈(H − λ− iµ)(1− 1Jν (H))u,H ′1Jν (H)u〉
+2ε=〈H ′(1− 1Jν (H))u, (H − λ− iµ)1Jν (H)u〉
+2ε2<〈H ′(1− 1Jν (H))u,H ′1Jν (H)u〉

≥ (1− ε)‖(Hε − λ− iµ)1Jν (H)u‖2 + (1− ε)‖(Hε − λ− iµ)(1− 1Jν (H))u‖2

−(ε+ ε2)‖H ′1Jν (H)u‖2

−(ε+ ε2)‖H ′(1− 1Jν (H))u‖2

≥ (1− ε)‖(Hε − λ− iµ)(1− 1Jν (H))u‖2

−(ε+ ε2)‖Hu‖2

to conclude.

The unbounded case is immediate
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Lemma B.12 (unbounded interval case). In the unbounded case (Jν = J \ (−1/ν, 1/ν))
if λ ∈ Jν then

(1 +
1

ν2
)‖u‖2 ≥ ‖(1− 1Jν (H))u‖2

H

for any u ∈ D(H).

All the previous results gathers to obtain the following propositions.

Proposition B.13. For I ⊂ R such that dist(I, J cν) ≥ η, for some positive η, there exist
ε0 > 0 and C > 0 such that

∀ε ∈ (0, ε0), ∀λ ∈ I, ∀µ ≥ 0, (ε+µ)‖u‖2 ≤ C|=〈(Hε−λ−iµ)u, u〉|+Cε‖(Hε−λ−iµ)(∗)u‖2

for any u ∈ D(H).

Proposition B.14. For I ⊂ R such that I ⊂ J ∩ [−η, η]c, for a sufficiently large η for all
λ ∈ I, for all µ ≥ 0, (Hε − λ− iµ) : D(H)→ H is invertible and its inverse Rε satisfies

(ε+ µ)‖R(∗)
ε f‖2 ≤ C|=〈f,R(∗)

ε f〉|+ Cε‖f‖2

for any f ∈ H.

Proposition B.15. For Fε = 〈f,Rεf〉, we have

F ′ε =
dFε
dε

= 〈R∗εf, Af〉 − 〈Af,Rεf〉 − ε〈R∗εf,H ′′Rεf〉

for any f ∈ D(A).

Proof – For any f ∈ D(A), a resolvent type identity gives

Fε − Fε′
ε− ε′

= 〈R(∗)
ε f,H ′Rε′f〉

since Rεf ∈ D(H) and so
dFε
dε

= i〈R(∗)
ε f,H ′Rεf〉

In the other hand,

H ′f = lim
α→0

[
W ∗
α − 1

α
,H]f

so plugging in the above identity, one gets taking the limit, one gets

dFε
dε

= lim
α→0

(
〈W

∗
α − 1

α
R(∗)
ε f, (H − λ+ iµ)Rεf〉 − 〈(H − λ+ iµ)R(∗)

ε f,
W ∗
α − 1

α
Rεf〉

)
or

dFε
dε

= lim
α→0

(
〈R(∗)

ε f,
Wα − 1

α
f〉 − 〈Wα − 1

α
f,Rεf〉

+ iε〈W
∗
α − 1

α
R(∗)
ε f,H ′Rεf〉 − iε〈H ′R(∗)

ε f,
W ∗
α − 1

α
Rεf〉

)
using

H ′′f = lim
α→0

[
W ∗
α − 1

α
,H ′]f

we obtain the lemma.

As an immediate consequence of these results, one gets the
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Theorem B.16. If Jν is bounded or H ′′ is a bounded operator, there exists C ′ such that
if dist(I, J cν) > η > 0 then for all ε ∈ (0, ε0), for all λ ∈ I, for all µ ≥ 0, we have

|F ′ε| ≤
C ′√
ε

(|Fε|+ ‖f‖2
D(A))

for any f ∈ D(A).

Proof – Let assume that H ′′ is bounded then we have

|F ′ε| ≤ (‖R∗εf‖‖Af‖+ ‖Af‖‖Rεf‖+ ε‖H ′′‖‖R∗εf‖‖Rεf‖

and so

|F ′ε| ≤
√
C(

1√
ε

√
|Fε|+‖f‖)‖Af‖+

√
C‖Af‖( 1√

ε

√
|Fε|+‖f |)+C‖H ′′‖ε( 1√

ε

√
|Fε|+‖f‖)2

or

|F ′ε| ≤
√
C

1√
ε

(
√
|Fε|+ ‖f‖)‖Af‖+

1√
ε
‖Af‖(

√
|Fε|+ ‖f |) + C‖H ′′‖(

√
|Fε|+ ‖f‖)2

or if ε0 is small enough

|F ′ε| ≤ (C‖H ′′‖+ 2
√
C)

1√
ε

(|Fε|+ ‖f‖2
D(A)).

If Jν is bounded then I is bounded and with HRε = I − (iεH ′ − λ − iµ)Rε we can
adapt the proof.

Then the Gronwall lemma gives

Theorem B.17 (Limiting absorption principle). There exist ν0 > 0 such that for η > 0,
ν ≤ ν0 and I ⊂ R with dist(I, J cν) > η, if J is bounded or I ⊂ J∩[− 1

ν
, 1
ν
]c if J is unbounded

in which case we also assume H ′′ is a bounded operator, such that the following holds.
There exists C > 0 such that

sup
λ∈I,µ>0

〈f, (H − λ− iµ)−1f〉.

Moreover the limits as µ→ ±0 exits uniformly over I for the weak topology:

lim
µ→±0

〈f, (H − λ− iµ)−1f〉

exits uniformly over I.

Proof – From the previous lemma on gets:

|Fε − Fε0| ≤
∫ ε0

ε

1
√
η

(|Fη|+ ‖f‖2
D(A)) dη

and so by Gronwall lemma:

|Fε| ≤ |Fε0| exp(
√
ε0 −

√
ε)

which gives the boundedness for ε = 0 since

|Fε0| ≤ ‖Rε0u‖‖u‖ ≤
√
C

ε
(
√
|Fε0|+

√
ε‖u‖)‖u‖
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is bounded.
Then

|Fε − Fε′| ≤
∫ ε′

ε

1
√
η

(|Fη|+ ‖f‖2
D(A)) dη ≤

∫ ε′

ε

1
√
η

(|Fε0| exp(
√
ε0 −

√
η + ‖f‖2

D(A))

which is hence a Cauchy sequence in ε→ 0. The resolvent identity and above estimates
provides the uniform continuity of Fε as µ→ 0 and hence the theorem follows.

Example B.18. Consider H = Dm in dimension n = 3 (N = 4) and Wα = eiαA where A
is the self-adjoint extension of

1

2

(
D−1
m P ·Q+Q · PD−1

m

)
defined on smooth function with compact support. The domain of A contains{

ψ ∈ L2(R3)4, x 7→ xψ(x) ∈ L2(R3)4
}

see [IM99]. Using [IM99, Identity (3.9)], [ABG96, Theorem 6.2.10] and the fact that
smooth function with compact support form a core of A, we have

[iA,Dm] =
−∆

−∆ +m2

implies that our assumptions are verified and H ′′ is bounded.
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Part II

The PhD Thesis





II.3

Description of the PhD
thesis

For the reader convenience, we present here the results we obtained during the PhD, see
[Bou06a] and [Bou06b; Bou08; Bou07].

My PhD thesis was devoted to the study of the stability of small stationary solutions
of a non-linear Dirac equation :

i∂tψ = (Dm + V )ψ +∇F (ψ).

where F ∈ C∞(C4,R) was such that

F (eiθz) = F (z), ∀θ ∈ R, ∀z ∈ C4.

and V ∈ C∞(R3,S4(C)), where S4(C) is the space of self-adjoint 4× 4 matrices, was such
that there exists ρ > 5 with

∀α ∈ N3, ∃C > 0, ∀x ∈ R3, |∂αV |(x) ≤ C

〈x〉ρ+|α| .

We considered stationary state e−itEψ0 where E ∈ R and

Eψ0 = (Dm + V )ψ0 +∇F (ψ0).

In these analysis, the non-linear equations were viewed as small non-linear perturbations
of linear systems. A part of the PhD thesis was hence devoted to the study of linear
problems. We proved that for the Dirac operator H := Dm + V with no resonance at
thresholds nor eigenvalue at thresholds, the propagator satisfies propagation and dispersive
estimates. We also deduced Kato smoothness estimates and Strichartz estimates.

With some ad hoc assumptions on the discrete spectrum of a Dirac operator, we built
small manifolds of stationary states. Then with small variations on these assumptions,
we highlighted some stabilization process and orbital instability phenomena for some
stationary states.

3.1 The linear theory
Below Pc(H) = 1(−∞,−m]∪[+m,+∞)(H) is the projector associated with the continuous
spectrum of H and Hc = Pc(H)L2(R3,C4).

We needed precise decay estimates of e−itH in Hc in order to analyse the stabilisation
properties of the non-linear system.

For this, we made the
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Assumption 3.1.1. The operator H presents no resonance at thresholds and no eigenvalue
at thresholds.

A resonance is a solution of

Eφ = (Dm + V )φ

in H1/2
−σ (R3,C4) \H1/2(R3,C4) for some σ ∈ (1/2, ρ− 1/2).

3.1.1 The propagation estimates

We obtained the

Theorem 3.1 (Propagation for perturbed Dirac dynamics). Let σ > 5/2. Then one has

‖e−itHPc (H) ‖B(L2
σ ,L

2
−σ) ≤ C 〈t〉−3/2 .

Where ‖f‖L2
σ

= ‖〈Q〉σf‖L2 .
The proof was divided in two parts :

1. High and intermediate energies were treated by means of a minimal escape velocity
(based on Mourre estimates, see Appendix B);

2. Thresholds (or low) energies used ideas from [JK79] and hence asymptotic expansion
of resolvent at thresholds where we used Assumption 3.1.1.

Using Bochner-Fourier transform, we deduce the a consequence of this result is the

Theorem 3.2 (H-smoothness of 〈Q〉−1). We have for any s ∈ R∫
R
‖ 〈Q〉−1 e−itHPc (H)ψ‖2

Hs dt ≤ C ‖ψ‖2
Hs ,

‖
∫
R
eitHPc (H) 〈Q〉−1 F (t) dt‖Hs ≤ C ‖F‖L2(R,Hs) ,

‖
∫
s<t

〈Q〉−1 e−i(t−s)HPc (H) 〈Q〉−1 F (s) ds‖L2(R,Hs) ≤ C ‖F‖L2
t (R,Hs) ,

3.1.2 The dispersive estimates

In the forthcoming sections, our results are based in an a priori analysis of a Cauchy
problem. To close these a priori estimates we need the above propagation properties.
Unfortunately they were not sufficient, we also proved the

Theorem 3.3 (Dispersive estimates). For any θ ∈ [0, 1], p ∈ [1, 2], s− s′ ≥ (2 + θ)(2
p
− 1)

and p′ = p/(p− 1), there exists C > 0 such that

‖e−itHPc(H)‖Bsp,q ,Bs′p′,q ≤ C

{
|t|(−1+θ/2)( 2

p
−1) if |t| ∈ (0, 1]

|t|(−1−θ/2)( 2
p
−1) if |t| ∈ [1,∞)

.

The method of proof in the free case (V = 0) is classical in the sense that is based on
oscillatory integrals estimates using the dispersion relations of the system. These integrals
appear via a Fourier transform which in a sense diagonalises the free Dirac operator. It was
tempting to mimic the procedure in the general case by using a kind of distorted Fourier
transform based on distorted plane waves or expansions with respect to the generalised
eigenvectors.

By means of the TT ∗ method or actually using the result by [KT98], this in turn
implied the
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Theorem 3.4 (Strichartz-type estimates). For any 2 ≤ p, q ≤ ∞, θ ∈ [0, 1], for β ∈
[−θ/2, θ/2] such that (1− 2

q
)(1 + β) = 2

p
with (p, β) 6= (2, 0), taking α(q) = (1 + θ

2
)(1− 2

q
)

and s′ − s ≥ α(q), there is a positive constant C such that

‖e−itHPc(H)ψ‖Lpt (R,Bsq,2(R3,C4)) ≤ C‖ψ‖Hs′ (R3,C4),

‖
∫
eitHPc(H)F (t) dt‖Hs ≤ C‖F‖Lp′ (R,Bs′

q′,2(R3,C4)),

‖
∫
s<t

e−i(t−s)HPc(H)F (s) ds‖Lp(R,B−sq,2(R3,C4)) ≤ C‖F‖Lp̃′ (R,Bs̃
q̃′,2(R3,C4)),

for any r ∈ [1,∞] and (q̃, p̃) chosen like (q, p) and s+ s̃ ≥ α(q) + α(q̃).

3.2 The one eigenvalue case

In the simplest case [Bou07], we assumed that the operator H := Dm + V has only one
simple eigenvalue λ0 and denote by φ0 an associated normalised eigenvector.

3.2.1 The PLS manifold

Out of this assumption, stationary solutions are built by bifurcation methods. We have
the

Proposition 3.5. For any σ ∈ R+, there exists a neighbourhood Ω of 0 ∈ C, a C∞ map

h : Ω 7→ Hc ∩H2(R3,C4) ∩ L2
σ(R3,C4)

and a C∞ map E : Ω 7→ R such that

S(U) = Uφ0 + h(U)

satisfies for all U ∈ Ω,

HS(U) +∇F (S(U)) = E(U)S(U),

with the following properties

h(eiθU) = eiθh(U), ∀θ ∈ R
‖h(U)‖H2∩L2

σ
= O(|U |2)

E(U) = E(|U |) = λ0 +O(|U |2).

By means of classical methods, we inferred the

Lemma 3.6. For any α ∈ N2, s ∈ R+ and p, q ∈ [1,∞] there is γ > 0, ε > 0 and C > 0
such that for all U ∈ BC2(0, ε) one has

‖eγ〈Q〉∂αUS(U)‖Bsp,q ≤ C‖S(U)‖2.

The space Bs
p,q is the usual Besov space on R3.
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3.2.2 The stability problem

For a perturbation
ψ0 = S(U0) + η0,

the associated solution can be written

ψ(t) = e−i
∫ t
0 E(U(s)) ds [S(U(t)) + η(t)] .

We wanted toe track the evolution of U and η. In order to write a modulation equation
for U and an equation for η, we imposed η ∈ H⊥0 (U) where

H⊥0 (U) =

{
η ∈ L2(R3,C8),

〈
Jη,

∂

∂<U
S(U)

〉
=

〈
Jη,

∂

∂=U
S(U)

〉
= 0

}
,

which is invariant under the action of JH(U). The skew-adjoint operator J represents the
action of −i on C when the later is identified with R2.

So we wanted to solve the equation

∂tη = J {H − E(U)} η + J {∇F (S(U) + η)−∇F (S(U))}+ dS(U)U̇

= J {H + d2F (S(U))− E(U)} η + JN(U, η) + dS(U)U̇

for η ∈ H⊥0 (U(t)). The notation d2F (S(U)) stand for the differential of the gradient of F ,
which is no longer C-linear as the differential with respect to the real structure. Below we
write H(U) for H + d2F (S(U))− E(U).

The condition
〈η(t), JdS(U(t))〉 = 0,

after a time derivation gives:

U̇(t) = −A(U(t), η(t))〈N(U(t), η(t)), dS(U(t))〉

where A is a smooth non vanishing function.
We obtained the following equation

∂tη = J
{
H + d2F (S(U))− E(U)

}
η + JÑ(U, η)

where
|Ñ(U, η)| ≤ C(U, η)|η|2

where C is locally bounded in U and η.
Notice that the function η is C8-valued. This is due to a two steps process. First, C

is replaced by R2 as the linear part of the equation is not C but R linear, and then the
operator and the function are complexified.

The idea was then to solve this equation in a space of functions which tend to 0
asymptotically in time. Somehow we wanted to consider the wellposedness of this equation
in some well chosen functional setting.

In order to analyse the wellposedness, we needed some dispersive properties on the
linear part. Due to the smallness assumption on the initial state, the estimates for H were
enough.
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3.2.3 Stabilisation and non-linear scattering

The functional setting we considered is given by the set:

S =
{

(U, η) ; U ∈ Ω, η ∈ Hc(U) ∩Hs(R3,C4)
}
,

endowed with the norm of C2 ×Hs for some s > 2. Here Hc(U) := H⊥0 (U) but later it
will change.

Hence by solving a fixed point problem, we obtained the stability trough the
Theorem 3.7 (Stabilisation). Let s > β + 2 > 2 and σ > 3/2, there exist V0 a neighbour-
hood of (0, 0) in S and C > 0 such that for any initial condition of the form ψ0 = S(U0)+η0

with (U0, η0) ∈ V0, one has

(i) there exists a unique global solution ψ and this solution is in C (R, Hs)∩C (R, Hs−1);

(ii) there exist U±∞, with
|U±∞ − U0| ≤ C‖η0‖2

Hs ,

such that for all t ∈ R

ψ(t) = e−i
∫ t
0 E(U(v)) dvS(U(t)) + ε±(t)

with U̇ ∈ Lp(R) for all p ∈ [1,∞], lim
t→±∞

U(t) = U±∞ and

max
{
‖ε±‖L∞(R±,Hs) , ‖ε±‖L2(R±,Hs

−σ) , ‖ε±‖L2(R±,Bβ∞,2)

}
≤ C‖η0‖Hs .

The above theorem can be rephrased as : any small solution relaxes towards the
manifold of stationary solutions.

One can notice that the asymptotic of the phase is rather unclear. To clarify this point
the above theorem can be refined using pointwise decay estimates (Theorems 3.1 and 3.3
instead of Theorems 3.2 and 3.4) and thus imposing localisation on the perturbation. As
a by-product we can also refine the asymptotic of the other terms.

Thus considering the set

Sσ =
{

(U, z) ; U ∈ BC2(0, ε), z ∈ Hc(U) ∩BHs
σ
(0, r(U))

}
endowed with the metric C2 ×Hs

σ, we obtained the
Theorem 3.8 (Nonlinear scattering). Let s > β + 3 > 6 and σ > 5/2, there exist Vσ a
neighbourhood of (0, 0) in Sσ and C > 0 such that for any initial condition of the form
ψ0 = S(U0) + η0 with (U0, η0) ∈ Sσ, there exist bijective maps (V±∞; η±) : V0 7→ V±σ , where
V±σ are open neighbourhoods of (0, 0) in Sσ with

|V±∞ − U0| ≤ C‖η0‖2
Hs , ‖η± − η0‖Hs ≤ C‖η0‖2

Hs ,

such that for all t ∈ R
ψ(t) = e−itE(V±∞)S(V±(t)) + e−itE(V±∞)e−itH(V±∞)η± + ε±(t)

with V̇± + i (E(V±)− V±∞) ∈ Lp(R) for all p ∈ [1,∞], lim
t→±∞

V±(t) = V±∞ and∣∣∣V̇±(t) + i (E(V±(t))− E(V±∞))
∣∣∣ ≤ C

〈t〉2
‖z0‖2

Hs
σ
,

|V±(t)− V±∞| ≤
C

〈t〉
‖z0‖Hs

σ
,

max
{
‖ε±(t)‖Hs , ‖ε±(t)‖Hs

−σ
, ‖ε±(t)‖Bβ∞,2

}
≤ C

〈t〉2
‖z0‖2

Hs
σ

and
∥∥∥e−JtH(V±∞)eJ

∫ t
0 (E(V±(s))−E(V±∞) dsε±(t)

∥∥∥
Hs

3
2

≤ C

〈t〉
1
2

‖z0‖2
Hs
σ
.
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Moreover, the maps (U0; z0) ∈ Vσ 7→ (U±∞; z±∞) ∈ V±σ are bijective.

3.3 The two eigenvalues case

3.3.1 The two eigenvalues case with non resonant condition

In [Bou06b], the operator H has two simple eigenvalue λ0 and λ1 in a non resonant
configuration for the first one:

|λ1 − λ0| < min{|λ0 +m|, |λ0 −m|}.

This assumption was useful in our study of the spectrum of the linearised operator around
a stationary state, it gave us that this operator has two simple non zero eigenvalues.

3.3.1.1 PLS manifold

We proved in Theorem 3.9 that some solutions are global and can be decomposed as the
sum of a stationary solution plus a remainder part which is vanishing. Since the stationary
solution part may change during the evolution, we need to track it. Again we built, as in
Proposition 3.5, with bifurcation methods, a map S : Ω ⊂ C 7→ H2(R3,C4) ∩ L2

σ(R3,C4)
and E : Ω 7→ R such that

E(u)S(u) = HS(u) +∇F (S(u)).

We also obtained the exponential decay of Lemma 3.6.

3.3.1.2 Stable manifold

The linearised operator JH(U) around a stationary state S(U) has a two dimensional
geometric kernel and two simple eigenvalues E1(U) and −E1(U) which are purely imaginary.
The associated eigenspaces are conjugated one to each other. Working on the real part of
their direct sum, we introduced a family of basis of this last real space : (φ1

1(U), φ2
1(U)).

The rest of the spectrum is the essential spectrum. We write Hc(U) for the space
associated with the continuous spectrum. This space Hc(U) is the orthogonal of the
previous eigenspaces with respect to the product (f, g) 7→ < 〈f, Jg〉 where 〈·, ·〉 is the
standard product of L2(R3,C4).

Since there is a second eigenvalue, we obtained only stable directions with the

Theorem 3.9 (Stable manifold). Let s, s′, β ∈ R∗+ be such that s′ ≥ s + 3 ≥ β + 6 and
σ > 5/2. There exist ε0 > 0, R > 0, K > 0, T0 > 0 and Lipschitz map

Ψ : S 7→ R2

where S =
{

(V, ξ) ; V ∈ BC2(0, ε), ξ ∈ Hc(U) ∩BHs′
σ

(0, R)
}

endowed with the metric of

C2 ×Hs′
σ with Ψ(U, 0) = 0 for all U ∈ BC(0, ε),

|Ψ(U, z)| ≤ K
(
|U |+ ‖z‖Hs′

σ

)2

,

such that the following holds. For any initial condition of the form

ψ0 = S(U0) + z0 + Ψ(U0, z0) · φ1(U0)

with (U0, z0) ∈ S, one has
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(i) there exists a unique solution ψ with initial condition ψ0, and this solution is in

C
(

(−T0; +∞), Hs′(R3,C4)
)
∩ C1

(
]− T0; +∞[, Hs′−1(R3,C4)

)
;

(ii) there exist (U∞, z∞) ∈ S and E∞ ∈ R with

|U∞ − U0| ≤ K‖z0‖2
Hs′
σ
, |E∞| ≤ K‖z0‖2

Hs′
σ
, ‖z∞ − z0‖Hs′ ≤ K‖z0‖2

Hs′
σ

such that

ψ(t) = e−i(tE(U∞)+E∞+r(t))
(
S(U∞) + eJtH(U∞)z∞ + ε(t)

)
,

where 

‖ε(t)‖Hs′ ≤
K

〈t〉
‖z0‖2

Hs′
σ

‖ε(t)‖Hs
−σ
≤ K

〈t〉2
‖z0‖2

Hs′
σ

‖ε(t)‖Bβ∞,2 ≤
K

〈t〉2
‖z0‖2

Hs′
σ

and |r(t)| ≤ K
〈t〉‖z0‖2

Hs′
σ

as t→ +∞.

A version of this theorem with no localisation in the perturbation (similarly to Theo-
rem 3.7) could be obtained by using Theorems 3.2 and 3.4.

3.3.2 The two eigenvalues case with a non resonant condition

In [Bou08] H has two simple eigenvalues λ0 and λ1. We denote some associated normalised
eigenvectors by φ0 and φ1 a resonant condition for the first one

|λ1 − λ0| > min{|λ0 +m|, |λ0 −m|}. (3.1)

There again we obtained a smooth map

S : Ω ⊂ C 7→ H2(R3,C4) ∩ L2
σ(R3,C4)

and a C∞ map E : Ω 7→ R such that

HS(U) +∇F (S(U)) = E(U)S(U)

with the exponential decay.
The resonant condition we imposed is the Fermi Golden Rule

Γ(φ0) := lim
ε→0,
ε>0

〈
d2F (φ0)φ1,= ((H − λ0) + (λ1 − λ0)− iε)−1 Pc(H)d2F (φ0)φ1

〉
> 0. (3.2)

The quantity Γ(φ0) is always non-negative, the assumption is thus that it is non-zero. This
kind of assumption is considered as generic with respect to F .

Due to condition 3.1 and 3.2, we were able to give a more exhaustive description of
the non-linear flow in the vicinity of a small stationary solution S(U).
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3.3.2.1 The stabilisation

This time beside the kernel there is four eigenvalues ±E1(U) and ±E1(U) with non zero
real parts due to the resonant condition and the Fermi golden rule. There is no other points
in the point spectrum. For the associated sum of eigenspaces H1

+(U), we introduced a
basis (ξi(U))i=1,...,4 of H1

+(U). The space Hc(U) has the same definition and we introduced

S = {(U, z) ; U ∈ BC(0, ε), z ∈ Hc(U) ∩BHs(0, r(U))}

endowed with the metric of C×Hs.
We obtained again stable directions in the

Theorem 3.10. For s > β + 2 > 2 and σ > 3/2, there exist ε > 0, C > 0, a continuous
map r : BC(0, ε) 7→ R with r(U) = O(|U |2), V a neighbourhood (0, 0) in S and a map
Ψ : V 7→ R8, smooth n V \ (0, 0) with for U ∈ BC2(0, ε)

‖Ψ(U, z)‖ = O(‖z‖2
Hs)

for all z ∈ Hc(U) ∩BHs(0, r(U)) with (U, z) ∈ V such that the following holds.
For any initial condition of the form ψ0 = S(U0) + z0 +A · ξ(U0) with (U0, z0) ∈ V and

A = Ψ(U0, z0),

(i) there exists a unique global solution ψ and this solution is in C (R, Hs)∩C (R, Hs−1);

(ii) there exist U±∞, with |U±∞ − U0| ≤ C‖z0‖2
Hs , such that for all t ∈ R

ψ(t) = e−i
∫ t
0 E(U(v)) dvS(U(t)) + ε±(t)

with U̇ ∈ Lp(R) for all p ∈ [1,∞], lim
t→±∞

U(t) = U± and

max
{
‖ε±‖L∞(R±,Hs) , ‖ε±‖L2(R±,Hs

−σ) , ‖ε±‖L2(R±,Bβ∞,2)

}
≤ C‖z0‖Hs .

The set

CM := {S(U0) + z0 + A · ξ(U0), with (U0, z0) ∈ V and A = Ψ(U0, z0)}

plays the role of the central manifold as it is build with components that are associated
with the central spectrum, that is part of the spectrum of the linearised operator with
zero real part.

3.3.2.2 Stable and unstable directions

We introduce the set

S̃ = {(U, z, p) ; U ∈ BC(0, ε), z ∈ Hc(U) ∩BHs(0, r(U)), p ∈ BR4(0, r(U)), }

endowed with the metric of C×Hs × R4.
Using the resonant condition, we were able to treat the transverse directions to the

stable manifold in the

Theorem 3.11. For s > 2, there exist C > 0, W± neighbourhoods of (0, 0, 0) in S̃ and
maps Φ± :W± 7→ R8, smooth on W± \ {(0, 0, 0)} with

‖Φ±(U, z, p)‖ = O(‖z‖2
Hs + ‖p‖2

Hs), ∀(U, z, p) ∈ W±
and such that for any initial condition of the form

ψ0 = S(U0) + z0 + (p+, p−).ξ(U0, z0)

which is not in CM, the following holds.
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• If (U0, z0, p+) ∈ W+ and p− = Φ+(U0, z0, p+) then for any small neighbourhood
O of S(U0) including ψ0 there exists t+(ψ0) > 0 and a unique solution ψ ∈
∩2
k=0C

k([−t+; +∞), Hs−k) with ψ(0) = ψ0.

Moreover we have

dist(ψ(t), CM)Hs ≤ Cdist(ψ0, CM)Hse−γt when t→ +∞ and ψ+(−t+) /∈ O

where γ is in a ball of centre 1/2Γ(U0) and radius O(|U0|6)).

• If (U0, z0, p−) ∈ W− and p+ = Φ−(U0, z0, p−) then for any small neighbourhood
O of S(U0) including ψ0 there exists t−(ψ0) > 0 and a unique solution ψ ∈
∩2
k=0C

k((−∞; t−), Hs−k) with ψ(0) = ψ0.

Moreover we have

dist(ψ(t), CM)Hs ≤ Cdist(ψ0, CM)Hseγt when t→ −∞ and ψ−(t−) /∈ O

where γ is in a ball of centre 1/2Γ(U0) and radius O(|U0|6)).

3.3.2.3 The non-linear scattering

Consider the set

Sσ =
{

(U, z) ; U ∈ BC2(0, ε), z ∈ Hc(U) ∩BHs
σ
(0, r(U))

}
endowed with the metric C2 ×Hs

σ.
We also proved a scattering result, using Theorems 3.2 and 3.3, in the

Theorem 3.12. For s > β + 2 > 2 and σ > 3/2, there exists neighbourhoods Vσ and V±
of (0, 0) in Sσ such that if A = Ψ(U0, z0) with (U0, z0) ∈ Vσ, there exist (V±∞; z±∞) ∈ V±
with |V±∞ − U0| ≤ C‖z0‖2

Hs
σ
, ‖z±∞ − z0‖Hs

σ
≤ C‖z0‖2

Hs
σ
such that for all t ∈ R

ψ(t) = e−itE(V±∞)S(V±(t)) + eJtE(V±∞)eJtH(V±∞)z±∞ + ε±(t)

with ∣∣∣V̇±(t) + i (E(V±(t))− E(V±∞))
∣∣∣ ≤ C

〈t〉2
‖z0‖2

Hs
σ
,

|V±(t)− V±∞| ≤
C

〈t〉
‖z0‖Hs

σ
,

max
{
‖ε±(t)‖Hs , ‖ε±(t)‖Hs

−σ
, ‖ε±(t)‖Bβ∞,2

}
≤ C

〈t〉2
‖z0‖2

Hs
σ

and
∥∥∥e−JtH(V±∞)eJ

∫ t
0 (E(V±(s))−E(V±∞) dsε±(t)

∥∥∥
Hs

3
2

≤ C

〈t〉
1
2

‖z0‖2
Hs
σ
.

Moreover, the maps (U0; z0) ∈ Vσ 7→ (V±∞; z±∞) ∈ V± are bijective.
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This part is the content of my work since my PhD thesis.
The order of the chapters is almost chronological in the sense that they are ordered with

respect to the age of my first work in the corresponding area. I only swapped the last two
chapters. For practical reasons, I’ve chosen in each chapter to reorder the corresponding
works irrespectively of the chronology.

The chapters are presented with the following order in mind:

• From linear to non-linear;

• From time independent to time dependent.

Although the chapters look different, there are common tools and methods. In many
respects, the time independent linear theory is present and the properties of the resolvent
operator and estimates based on commutator methods are the core of most all these works.

My original field of research is the asymptotic stability of non-linear dispersive equations.
The analysis of such problems is at the interface of the spectral theory and non-linear
partial differential equations. The idea is to solve some well chosen Cauchy problems in a
suitable functional setting. This setting is determined by the spectral and the dispersive
properties of an underlying linear problem. I was hence brought up to analyse point
spectrum, dispersive properties, non-autonomous Cauchy problems in order to understand
the asymptotic stability.

The direct or indirect applicability of the solutions to theses problems to the asymptotic
stability problem is a work in progress. The question of spectral and asymptotic stability
in non-linear Dirac equations is a promising field with many interesting open problems,
see for instance the final report of the focus research group [Bou+12], that we organized
in BIRS centre (Banff, Alberta).
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III.4

Spectral pollution

In this section, we present the analysis of [BB10; BBL12; BBBa; BBBb]. The results we
have obtained in these works are either properties on the spectral pollution in itself viewed
as spectral phenomenon or analysis and implementations of numerical methods that are
free from any spectral pollution.

4.1 Introduction
The spectral pollution is a theoretical phenomenon that arises in the numerical computation
of self-adjoint operator spectra acting on a separable infinite dimensional Hilbert space H.

Consider λ an isolated eigenvalue of (A,D(A)), a self-adjoint operator on H with
domain D(A), which has an infinite number of spectral values above it and an infinite
number of spectral values below, in the sense that inf σess(A) < λ < supσess(A) or, more
generally, in the sense that∗

tr1(−∞,λ)(A) = tr1(λ,∞)(A) =∞. (4.1)

The numerical estimation of λ constitutes a serious challenge in applied spectral theory.
Classical approaches, such as the Galerkin method, suffer from variational collapse under
no further restrictions on the approximating space. This often leads to numerical artefacts
which do not belong to the spectrum of A, giving rise to what is generically called spectral
pollution. This can be illustrated by means of the following simple example.

Example 4.1. Let H = Span{e±n }n∈N where e±n is an orthonormal set of vectors in a
given scalar product. Let Ln = Span{e±1 , . . . , e±n−1, fn} where fn = (cos θ)e+

n + (sin θ)e−n for
θ ∈ (0, π/2). Let†

A =
∑
n≥1

|e+
n 〉〈e+

n |,

that is, A is the orthogonal projector onto Span(e+
n ) and σ(A) = σess(A) = {0, 1}. Then

σ(An) = {0, 1, cos2 θ} for all n. Thus imposing θ = π
4
will lead to 1

2
∈ σ(An) for all n

while it is not in the spectrum of A.

Notice that if A has only finitely many eigenvalues with finite multiplicities and is
bounded from below, then the characterisation of the discrete spectrum by means of
the min-max principle ensures that the Galerkin method is free from any pollution, see
Section A.3. So the spectral pollution appears only for operators which are strongly
∗For I ⊂ R an interval let 1I(A) be the spectral projector of A associated to I.
†The bra-ket notation |f〉〈g| denotes the linear operator ψ 7→ 〈g, ψ〉f .
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indefinite‡ or in the gap of the essential spectrum. The later should be considered in
a generalised sense including ±∞ whenever there are eigenvalues tending to ±∞, see
condition (4.1).

The spectral pollution phenomenon occurs in different practical contexts such as
Sturm-Liouville operators [AGM06; SW95; SW93], perturbations of periodic Schrödinger
operators [BL07; Mar10] and systems underlying elliptic partial differential equations
[AFW10; BBG98; BBG00]. It is a well-documented difficulty in quantum chemistry and
physics, in particular regarding relativistic computations [Kut84; SH84; Gra82; DG81].
It also plays a fundamental role in elasticity and magnetohydrodynamics [KLT04; DS02;
Rap+97; Atk+94].

In our analysis of spectral pollution problems, we have adopted two different approaches:

1. analyse and produce numerical methods for strongly indefinite operators (e.g. Dirac,
Maxwell) that are free from spectral pollution ;

2. analyse the spectral pollution as a spectral phenomenon in order to understand how
it occurs and to localise it.

The first aspect appeared in [BB10] where we considered the second order spectrum
for Dirac operators and in [BBBa; BBBb] where we analyse and extend the Lehmann-
Maehly-Goerisch and Davies-Plum methods for approximating the spectrum of Maxwell
operators in bounded domain. The second aspect was considered in [BBL12] where we
obtained a Weyl-type theorem for the spectral pollution.

4.2 A brief chronological description of my work on
spectral pollution

From a chronological point of view, the first of my works in these research field was
[BB10]. In this analysis, we implemented a certified pollution free method, the quadratic
projective method, for Dirac type problems in dimension 3. Unlike the Galerkin method,
it is guaranteed to be free from any pollution. Nonetheless the question of the pollution of
Galerkin methods with the basis we choose, namely Hermite functions, can be asked and
the answer is not trivial. For instance our numerical experiments did not show pollution as
long as the basis is balanced with respect to the four components (namely the number of
degree of freedom used to approximate each component is the same). The pollution appears
when we try to take advantage of the unbalanced character of the eigenvectors (some
components are smaller than the others). Although it may seem artificial to unbalance
the basis, the problem that we were trying to solve was to improve accuracy given a fixed
number of degrees of freedom.

So a natural question arose: does the balanced Hermite basis pollute the spectrum of
Dirac type operators ? This lead us to refinements in [BBL12] of the work by Lewin and
Séré [LS10]. Indeed with a balanced basis, the analysis in [LS10] ensures that the pollution
is absent in the free case. It is then natural to look for conditions that guarantees the
stability of pollution by perturbations. The question was solved for operators bounded
from below but remains open for the operators which are strongly indefinite. In the case
of strongly indefinite operators, we failed to obtain a reasonable “symmetric” mapping
theorem, see Theorem 4.9.

We shall also point out that the Galerkin methods do not provide any enclosure for
strongly indefinite operators. They are a priori unhierarchical for strongly indefinite
‡Strongly indefinite operators are operators unbounded from above and from below.
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operators. Indeed the resulting approximations of the eigenvalues are not guaranteed to
be upper or lower bounds of the corresponding eigenvalue even if they are free from any
pollution. In this respect one can also consider the application of quadratic projective
methods to operators which are bounded from below, this has been for instance considered
by Boulton and Hobiny [BH13a] (they also considered in [BH13b] application to this context
of the method by Zimmermann-Mertins, see Section 4.5). Since a weak formulation of the
spectral problem exists for these operators the enclosure obtained by a quadratic projective
method has a price which is to double the regularity of the Galerkin basis.

My most recent work on the spectral pollution is an analysis of another method based
on finite elements which is free from spectral pollution [BBBa] and its application to
the Maxwell operator in a bounded domain [BBBb] in a very low regular setting. The
domain even if it is polygonal (2D) or polyhedral (3D) is not necessarily Lipschitz and the
permeabilities or permitivities can be rough. The only constraint is that on the solenoidal
space the Maxwell operator has compact resolvent. This seems to be true at very high level
of generality and is subject to further work with G. Barrenechea and L. Boulton [BBBc].
The numerical method we considered is based on an upper approximation of the spectral
distance and its link with a weak spectral formulation introduced by Zimmermann and
Mertins [ZM95].

The organization of this section: We start describing, the results on [BBL12] as it
contains many interesting statements on the spectral pollution that may be helpful to
understand the other analysis.

4.3 Weyl-type results for the non-linear Dirac equation

We present here our analysis [BBL12] of the spectral pollution. These work was lead in
the spirit of [LS10] but with a more abstract point view. We studied the stability of the
spectral pollution with respect to perturbations in order to locate it and somehow to avoid
it.

The ideas was to establish an abstract framework for spectral pollution in the Galerkin
method and examine its invariance under relatively compact perturbations. We considered
a self-adjoint operator A with domain D(A) together with L = (Ln)n∈N a sequence of
finite dimensional subspaces of D(A), dense in the graph norm as n→∞ in the sense of

Definition 4.2 (A-regular Galerkin sequences). We say that L = (Ln), Ln ⊂ D(A), is an
A-regular Galerkin sequence, or simply an A-regular sequence, if for all f ∈ D(A) there
exists a sequence of vectors (fn) with fn ∈ Ln such that fn → f in the graph norm of A,
that

‖fn − f‖+ ‖Afn − Af‖ →n→∞ 0.

When A is semi-bounded, we also considered a slightly more general framework, which
covers important applications such as many of those involving the finite element method.
In this framework we will only require that the subspaces Ln lie in the domain of the
quadratic form associated to A and that the sequence L is dense in the form sense.

Notations : The weak limit is be denoted by ⇀. The ideal of compact operators on H
is be denoted by K(H).
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4.3.1 Limiting spectra

If πn : H −→ Ln is the orthogonal projection in the scalar product of H onto Ln then the
compression of A to Ln is An = πnA�Ln : Ln −→ Ln. We defined σ(A,L) as the large n
limiting set in Hausdorff distance of the Galerkin method spectra σ(An) in the sense of the

Definition 4.3 (Limiting spectrum). The limiting spectrum of A relative to L, σ(A,L),
is the set of all λ ∈ R for which there exists λk ∈ σ(Ank) such that nk →∞ and λk → λ
as k →∞.

A real number λ ∈ σ(A,L) if and only if there exists a sequence xk ∈ Lnk such that
‖xk‖ = 1 and πnk (A− λ)xk → 0 as k →∞.

We proved that σ(A) ⊂ σ(A,L) and since the equality may fail to occur in this identity,
an abstract notion of limiting spectral pollution set can be formulated naturally as,

σpoll(A,L) = σ(A,L) \ σ(A).

We realised that points in the limiting spectral pollution set can be characterised in a
similar fashion as points in the essential spectrum. Therefore a question arose:

What are the conditions on a perturbation B that ensure σpoll(A,L) =
σpoll(B,L)?

Our analysis relied on the characterisation of σ(A,L) in terms of special Weyl-type
sequences (L-Weyl sequences) and its structural properties. Let us recall the

Definition 4.4 (Limiting essential spectrum). We denote by σess(A,L) the set of all
λ ∈ σ(A,L) for which there exists an L-Weyl sequence (xk) that is a sequence xk ∈ Lnk
such that ‖xk‖ = 1 and πnk (A− λ)xk → 0 as k →∞. such that xk ⇀ 0.

Thus we could consider a decomposition of σ(A,L) as the disjoint union of a limiting
essential spectrum associated with L, σess(A,L), and its limiting discrete spectrum coun-
terpart, σdisc(A,L). We showed that the former contains both the true essential spectrum
σess(A) and σpoll(A,L). Actually we proved that the limiting spectra enjoy the following
properties:

(i) the limiting spectrum σ(A,L) and the limiting essential spectrum σess(A,L) are
closed subsets of R;

(ii) moreover σess(A) ⊂ σess(A,L) and σdisc(A,L) ⊂ σdisc(A).

Hence if σess(A) = σess(A,L) then automatically σdisc(A) = σdisc(A,L) and σ(A) = σ(A,L).

4.3.2 Stability properties of the limiting essential spectrum

In this part, we only consider semi-bounded operators. We explain in Section 4.3.3 this
limitation.

The condition we found to ensure the stability of the spectral pollution

σess(B,L) = σess(A,L).

on the perturbed operator B with respect to A sums up in
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Theorem 4.5 (Weyl-type stability theorem for the limiting spectra). Let A and B be two
self-adjoint operators which are bounded below. Assume that for some a < inf{σ(A), σ(B)},

D((B − a)1/2) = D((A− a)1/2) (4.2)

and
(A− a)1/2((B − a)−1/2 − (A− a)−1/2) ∈ K(H).

Then
σess(A,L) = σess(B,L)

for all sequences L = (Ln) which are simultaneously (A − a)1/2-regular and (B − a)1/2-
regular.

Hence an approximating sequence L will not asymptotically pollute for A in a given
interval if and only if it does not pollute for B in the same interval. This generalises [LS10,
Corollary 2.5].

In order to obtain a more practical statement we provided the

Corollary 4.6. Let A and B be two bounded-below self-adjoint operators such that (4.2)
holds true for some a < inf{σ(A), σ(B)}. Assume that C := B − A is a densely defined
symmetric operator such that

C ∈ B(D((B − a)β),H)

and
(A− a)−αC(B − a)−β ∈ K(H) (4.3)

for some 0 ≤ α, β < 1 with α + β < 1. Then

σess(A,L) = σess(B,L)

for all sequences L = (Ln) which are simultaneously (A − a)1/2-regular and (B − a)1/2-
regular.

Remark 4.7. Let A be a given bounded-below self-adjoint operator and assume that A
has a gap (a, b) in its essential spectrum in the following precise sense,

σess(A) ∩ (a, b) = ∅, tr
(
1(−∞,a)(A)

)
= tr

(
1(b,∞)(A)

)
= +∞.

Let Π := 1(c,∞)(A) where a < c < b. Results shown in [LS10] ensure that, when the
Galerkin spaces Ln are compatible with the decomposition H = ΠH⊕ (1− Π)H (i.e. when
Π and πn commute for all n), there is no pollution in the gap: σess(A,L) ∩ (a, b) = ∅.
According to [LS10, Corollary 2.5], when

(B − a)−1C(A− a)−1/2 ∈ K(H), (4.4)

then σess(B,L) ∩ (a, b) = ∅ as well.
In this respect, Theorem 4.5 can be seen as a generalisation of these results. Although

condition (4.3) is stronger than (4.4), the statement guarantees that the whole polluted
spectrum will not move irrespectively of the (A− a)1/2-regular Galerkin family L and not
only for those satisfying [Π, πn] = 0 for all n.
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Example 4.8 (Periodic Schrödinger operators). Let A = −∆ + Vper where Vper is a
periodic potential with respect to some fixed lattice R ⊂ Rd (for instance R = Z3). Let
C = W (x) be a perturbation. Assume that

Vper ∈ Lploc(R
d) where


p = 2 if d ≤ 3
p > 2 if d = 4
p = d/2 if d ≥ 5

and that
W ∈ Lq(Rd) ∩ Lploc(R

d) + L∞ε (Rd)

for max(d/2, 1) < q <∞. Then (4.3) holds true for suitable α, β and a, and therefore

σess (−∆ + Vper +W,L) = σess (−∆ + Vper,L) (4.5)

for all A-regular Galerkin sequence L. See [LS10, Section 2.3.1].
A Galerkin sequence L which does not lead to any pollution in a given gap, can be

found by localised Wannier functions, [LS10; CDL08]. In practice, these functions can
only be calculated numerically, so it is natural to ask what would be the polluted spectrum
when they are known only approximately. According to (4.5), the polluted spectrum will
not increase in size more than that of the unperturbed operator −∆ + Vper.

4.3.3 Mapping of the limiting spectra

Our approach consisted in adapting to the context of limiting spectra, several classical
results for the spectrum and essential spectrum. This lead to many unexpected difficulties
which were illustrated on a variety of simple examples in [BBL12].

In particular, we established a limiting spectra version of the spectral mapping theorem
allowing to replace the unbounded operator A by its (bounded) resolvent (A− a)−1.

Theorem 4.9 (Mapping of the limiting spectra). Let A be semi-bounded from below and
let a < inf σ(A). Assume that L is an (A− a)1/2-regular Galerkin sequence. Then

λ ∈ σ(A,L) ⇐⇒ (λ− a)−1 ∈ σ
(
(A− a)−1,G

)
and

λ ∈ σess(A,L) ⇐⇒ (λ− a)−1 ∈ σess

(
(A− a)−1,G

)
where G =

(
(A− a)1/2Ln

)
n∈N.

Remark 4.10. Recall that a self-adjoint operator A is unbounded (D(A) ( H) if and only
if 0 ∈ σ((A− a)−1) for one (hence for all) a 6∈ σ(A). As it turns out, A is unbounded if
and only if 0 ∈ σess((A − a)−1,G) for one (and hence all) a < minσ(A) and (A − a)1/2-
regular sequence L. Formally in Theorem 4.9 this corresponds to the case +∞ ∈ σ(A) and
(+∞− a)−1 = 0.

When A is not semi-bounded but its essential spectrum has a gap containing a number
a, we could as well consider sequences (Ln) which are only |A− a|1/2-regular. We have
chosen to avoid mentioning quadratic forms for operators which are not semi-bounded,
because in practical applications (such as those involving the Dirac operator) the domain of
|A− a|1/2 does not necessarily coincide with the natural domain upon which the quadratic
form is defined.

Another apparent reason for why A is required to be semi-bounded, is in order to be
able to use a square root (A−a)1/2 in the definition of G. But there is a more fundamental
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reason. When a is in a gap of the essential spectrum, it would be natural to expect an
extension of the above result by considering, for example, G =

(
|A − a|1/2Ln

)
n∈N. We

provided the following simple example showing that this extension is not possible in
general.

Example 4.11 (Impossibility of extending Theorem 4.9 for A strongly indefinite). Let
H = Span{e±n }n∈N where e±n is an orthonormal set of vectors in a given scalar product.
Define Ln = Span{e±1 , . . . , e±n−1, cos(θn) e+

n + sin(θn) e−n } with θn := π/4 − λ/(2n) for a
fixed λ ∈ (0, 1). Let

A =
∑

n|e+
n 〉〈e+

n | −
∑

n|e−n 〉〈e−n |.

Then σ(A) = {±n : n ∈ N} = σdisc(A). On the other hand

σ(A,L) = σ(A) ∪ {λ}, σess(A,L) = {λ} and σdisc(A,L) = σ(A).

Now
A−1 =

∑
n−1|e+

n 〉〈e+
n | − n−1|e−n 〉〈e−n |

and G =
√
|A|L = L. Since A−1 is compact we have

σ(A−1,G) = σ(A−1) and σess(A
−1,G) = σess(A

−1) = {0}.

Thus λ ∈ σess(A,L) whereas 1/λ 6∈ σ(A−1,G).

We also provided a counter-example when a is chosen in the the convex hull of the
spectrum.

4.4 The quadratic projection method for the Dirac op-
erator

We now present the analysis [BB10] of our implementation of the quadratic projective
method to the case of the Dirac operator.

As already mentioned in the previous section, the Galerkin methods may lead to
a variational collapse when A is strongly indefinite. In the case where the operator is
semi-bounded these methods relies on the min-max principle, see Section A.3, which shows
that they are hierarchical. This principle also reveals a drawback of these methods. Any
eigenvalue in a gap of the essential spectrum cannot be attained as the methods stops at
the lowest (or highest) threshold of the essential spectrum.

A simple idea can change the situation, if λ is an eigenvalue of A then |λ− µ| is an
eigenvalue of |A − µ|. So that a Galerkin method will give access to the eigenvalues in
a vicinity of µ. The story is not that simple as the “oscillations” of the eigenvectors will
deteriorate the situation compared to the original case but the main issue is the absolute
value. To get ride of this difficulty then one can try to consider the square as (λ− µ)2 is
an eigenvalue of (A− µ)2.

For semi-bounded operators there is a weak formulation for the associated eigenvalue
problem. Therefore the idea we just mention doubles the cost of the method. For a
strongly indefinite operator, this does not change much. This was one of the justification
for the analysis we present here.
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4.4.1 The second order spectrum

The second order spectrum is the core notion of the quadratic projection method, it was
introduced by Davies in [Dav98, Section 9]. The aim of the quadratic projection method
is to compute the second order spectrum of A relative to L, some finite dimensional space.

Let L ⊂ D(A) be a fixed subspace of finite dimension:

L = Span{b1, . . . , bn}

where the vectors bj are linearly independent, define

K := (〈Abj, Abk〉)nj,k=1, L := (〈Abj, bk〉)nj,k=1

and B := (〈bj, bk〉)nj,k=1.
(4.6)

and for z ∈ C, let
Q(z) := Bz2 − 2zL+K ∈ Cn×n.

The second order spectrum of A relative to L is defined by

σ2(A,L) := σ(Q) = {λ ∈ C : Q(λ)v = 0, some 0 6= v ∈ Cn}.

Since B is a non-singular matrix, σ2(A,L) consists of at most 2n points. These points do
not lie on the real line, except if L contains eigenvectors of A. However, since Q(z)∗ = Q(z),

σ2(A,L) = σ2(A,L).

4.4.2 The quadratic projective method

The quadratic projective method aims at approximating the discrete spectrum of A using
the second order spectrum, this was for instance discussed in [LS04], [Bou07], [BL07] and
the references therein. The connection between σ(A) and σ2(A,L) is the content of

Theorem 4.12. [BB10, Theorem 1] Let L ⊂ D(A) be finite-dimensional. If λ ∈ σ2(A,L),
then

[<(λ)− |=(λ)|,<(λ) + |=(λ)|] ∩ σ(A) 6= ∅. (4.7)

Moreover, suppose that E is an isolated eigenvalue of A with associated eigenspace E ⊂
D(A). Let

dE := dist(E, σA \ {E}) = min{|E − x| : x ∈ σ(A), x 6= E}.

If
[<(λ)− |=(λ)|,<(λ) + |=(λ)|] ∩ σ(A) = {E}

and Q(λ)v = 0 for 0 6= v ∈ Cn, then the corresponding v ∈ L satisfies

‖v − ΠEv‖
‖v‖

≤
√

2|=λ|
dE

. (4.8)

There is no concern with the position of E relative to the essential spectrum, or any
semi-definitness condition imposed on A. The procedure is always free from spectral
pollution.

Out of this theorem, we produced, in [BB10], the following procedure for estimating
σ(A) from the points in σ2(A,L)

Procedure 4.4.1. Quadratic projection method



4.4. THE QUADRATIC PROJECTION METHOD FOR THE DIRAC OPERATOR 65

• Choose a suitable L ⊂ D(A) ;

• Find Q(z) (compute σ2(A,L)) ;

• The λ ∈ σ2(A,L) which are close to R will necessarily be close to σ(A), if λ is close
enough to an isolated eigenvalue E of A, then

|<λ− E| ≤ |=λ| (4.9)

and an associated vector 0 6= v ∈ L (such that Q(λ)v = 0) approaches the eigenspace
associated to this eigenvalue with an error also determined by |=(λ)|.

The convergence of the method will be ensured if we consider an A2-regular Galerkin
sequence of subspaces Ln, see Definition 4.2, as stated in

Theorem 4.13. [Bou07, Theorem 2.1] see [BB10, Theorem 2] Let λ be an isolated
eigenvalue of finite multiplicity of A with associated eigenspace denoted by E . Suppose that
Ln ⊂ D(A2) is a sequence of subspaces such that

‖Ap(u− Πnu)‖ ≤ δ(n)‖u‖ ∀u ∈ E , p = 0, 1, 2,

where δ(n) → 0 as n → ∞ is independent of u and p. Then there exists b > 0 and
λn ∈ σ2(A,Ln), such that

|λn − λ| < bδ(n)1/2. (4.10)

Hence if Ln is an A2-regular Galerkin sequence then one can find points of σ2(A,L) near
the real axis. This guarantees the existence of a sequence λn ∈ σ2(A,Ln) accumulating at
points of the discrete spectrum of A.

4.4.3 Application to the radial Dirac operator

The main purpose of our analysis was to obtain an efficient pollution free method for a
class of Dirac operator. We restricted our analysis to the spherically symmetric case and
took advantage of the radial reduction. So, instead of the Dirac operator, we considered the
operator Hκ, see (2.5). The radial reduction being all of the same type for any dimension
another advantage was that the method applies to any dimension but 1. The latter can be
included.

Once the method properties were established, the analysis was reduced to a proper
choice of some H2

κ-regular Galerkin sequence.
We consideredMN ⊂ L2(0,∞) a nested family of finite-dimensional subspaces such

thatMN ⊂MN+1, ⋃
N≥1

MN = L2(0,∞)

and LNM :=MN ⊕MM ⊂ D(Hκ). Then LNM ⊂ D(Hκ) were chosen as the one generated
by odd Hermite functions:

Φk(r) := c−1
2k+1h2k+1(r)e−

r2

2 , r ≥ 0, k ≥ 0,

where hn(r) are the Hermite polynomials and cn =
√

2n−1n!
√
π are normalisation constants.

More precisely

L ≡ LNM := Span

{(
Φ1(r)

0

)
, . . . ,

(
ΦN(r)

0

)
,

(
0

Φ1(r)

)
, . . . ,

(
0

ΦM(r)

)}
. (4.11)
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We considerer balanced (N = M) and unbalanced (N 6= M) number of basis elements in
the first and second component.

The odd-order Hermite functions are the normalised wave functions of a harmonic
oscillator,

−Φ′′k(r) + r2Φk(r) = (4k + 3)Φk(r),

subject to Dirichlet boundary condition at the origin. They form an orthonormal basis of
L2(0,∞) and so B = I in (4.6). The entries of the other matrices K and L in (4.6) can
also be found explicitly from known properties of the Hermite polynomials, see [BB10,
Table 1 & 2].

As the Hermite polynomials are eigenvectors of the Harmonic oscillator, we introduced

A =

(
Ã 0

0 Ã

)
where Ã = −∂2

r + r2 acting on L2(0,∞), subject to Dirichlet boundary conditions at the
origin.

If φsc,el,am ∈ C∞(0,∞) are such that r 7→ rαφsc,el,am(r) are locally bounded for some
α ∈ (0, 1). Then we verified that we have an H2

κ-regular Galerkin sequence. Hence for
any isolated eigenvalue E of Hκ with finite multiplicity and associated eigenspace E , there
exist bu, bl > 0 independent of N or M , and a sequence λNM ∈ σ2(Hκ,LNM), such that

|λNM − E| < buN
− ql−1

2 + blM
− ql−1

2 and ‖(I − ΠE)vNM‖ < buN
− qu−1

2 + blM
− ql−1

2

for 1 < qu = ql < 5/4 and vNM an eigenvector of Q(λNM).

4.4.4 Upper/lower spinor component balance and approximation
of eigenvalues

We have implemented different numerical experiments that were added to the collection
[Bet+13]. We refer to our published analysis [BB10] for a complete description. Let us just
mention the outcome of the experiments with unbalanced basis. The previous paragraph
may suggest that an optimal rate of approximation might be achieved by choosing an
equal number of upper/lower spinor components in (4.11). Contrary to this presumption,
and depending on the potential V , the numerical evidence we obtained showed that the
residual on the right side of (4.9) can in some cases decrease significantly by suitably
choosing N 6= M .

In Figure 4.1, we have performed the following experiment. Fix the number of degrees
of freedom, dim(LMN) = 200. Then for N = 10 : 5 : 190 and M = 200 − N , use the
quadratic method as well as the Galerkin method to approximate eigenvalues of Hκ in the
spectral gap (−1, 1).

We firstly considered φsc = φam = 0 and φel(r) = −1/(2r). The Galerkin method might
or might not produce spurious eigenvalues. The quadratic method will always provide
two-sided non-polluted bounds for the true eigenvalues with a residual, obtained from
(4.7), which might change with N . See also figures 4.3 and 4.4 (left). The Galerkin method
appeared to pollute heavily near the upper end of the gap for N > M . Moreover, for
the ground state, the minimal |=(λ)| is not achieved at N = 100 which corresponds to
N = M , but rather at some N > 100. Remarkably, the residual are reduced significantly
(up to 66% for the true residual) when M(N)/N ≈ 1/5.

We performed the analogous experiment for the inverse harmonic potential φel(r) =
γ/(1+r2), the conclusion were also rather surprising. See Figure 4.2. The Galerkin method
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Figure 4.1: Here E0 and E1 are eigenvalues of H−1 for φel(r) = − 1
2r
. The top graph

shows the eigenvalues of L in (4.6) (that is the Galerkin approximation) for G = H−1 and
(M,N) = (N, 200−N) so that dim(LNM ) = 200. The bottom graph depicts the residuals
|=(λ)| and |<(λ)−Ej|. For E0, the minimum of the residual curve corresponding to |=(λ)|
is achieved when N ≈ 155 and it is roughly 7% smaller than when N = 100. For the same
eigenvalue, the residual curve corresponding to |<(λ)− E0| achieves its minimum when
N = 165 and it is roughly 66% smaller than when N = 100.

appeared to pollute heavily near the upper end of the gap for N > M . However, now the
approximation is improved by over 16% for E0 and over 18% for E1, if M(N)/N ≈ 3.

The above phenomena is related to the fact that the constants bu and bl in the previous
paragraph do not need to be close to each other. It can be explained by considering the
relation between the components of the exact eigenvectors, we refer to [BB10, Section 4.4].

N a b
n/8 -0.6736 1.6766
n/4 -0.5426 0.6555
3n/8 -0.4385 0.3530
n/2 -0.3963 0.2703
5n/8 -0.5064 0.4478
3n/4 -0.6903 1.1115
7n/8 -0.9609 5.4520

N a b
n/8 -1.3241 8.8276
n/4 -0.9135 1.1303
3n/8 -0.7990 0.7223
n/2 -0.7979 0.8155
5n/8 -0.8125 1.0825
3n/4 -0.8163 1.5171
7n/8 -0.8004 2.4558

Table 4.1: In this table we fit by least squares the data of Figure 4.4 and find a and b such
that |λn − E0| ≤ |=(λn)| ∼ bna for n = N +M .

4.4.5 A comment on the Galerkin method in the balanced case

Strong numerical evidence suggests that (for any of the potentials considered above)
no spurious eigenvalue is produced by the Galerkin method when N = M . It may be
surprising to consider a more complicated procedures, such as the quadratic projection
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Figure 4.2: Here E0, E1 and E2, are the first three eigenvalues of H−1 for φel(r) =
−4/(1 + r2). The top graph shows approximation of E0 ≈ −0.3955, E1 ≈ 0.6049 and
E2 ≈ 0.9328, for (M,N) = (N, 120−N) so that dim(LNM ) = 120. The curves correspond
to <(λn) for λ = λn in (4.8) and (4.10). The vertical bars measure |=(λn)|. The image
is superimposed with the eigenvalues of L in (4.6) for G = H−1, that is the Galerkin
approximation. The bottom graph depicts the residuals |=(λn)|.

method, to avoid inexistent spectral pollution. But, on the one hand, the quadratic
projective method is robust: as a priori it is quite unclear whether the Galerkin method
pollutes for a given basis or not. On the other hand, as the experiments of this section
suggest, some times forcing pollution into a model might improve convergence properties.

Nonetheless, understanding whether or not the Galerkin method for a balanced basis
pollutes is a difficult problem which lead to the analysis [BBL12]. But the problem is still
open.

4.5 Pollution-free methods for the Maxwell operator

We present here two analysis [BBBa; BBBb] on which we improved and implemented
another pollution free method originated from Lehmann-Maehly-Goerisch method [GA86;
Wei74], later extended by Zimmermann and Mertins [ZM95] and then developed by Davies
and Plum [DP04].

The approach of Zimmermann and Mertins is based on an extension of the Lehmann-
Maehly-Goerisch method [GA86; Wei74] and it has proved to be highly successful in
concrete numerical implementations: computation of bounds for eigenvalues of the radially
reduced magnetohydrodynamics operator [ZM95; BS12], complementary eigenvalue bounds
for the Helmholtz equation [BM01] and calculation of sloshing frequencies in the left definite
case [Beh09].

Our analysis was initiated with the results presented in [DP04, Section 6] where it
is shown that their techniques based on a notion of approximated spectral distance is
equivalent to the one initiated by Zimmermann and Mertins.
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the eigenvalues of L in (4.6) for G = H−1, that is the Galerkin approximation.
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and E0 ≈ 0.86602.

Right: κ = −1, φel(r) = − 2
1+r2

and E0 ≈ 0.61399. See Table 4.1.



70 CHAPTER 4. SPECTRAL POLLUTION

We determined in a more precise manner the nature of this equivalence and examine
their convergence properties.

We extended various canonical results from [DP04]. Notably, we included multiplicity
counting and a description of how eigenfunctions are approximated. We also addressed
the questions of convergence and upper bounds for residuals in both methods.

Notations : For J a Borel subset of R, the spectral projector associated to A is
denoted by 1J(A) and EJ(A) = ⊕λ∈J Ker(A− λ)§.

4.5.1 Approximated local counting functions

In order to explain how we included the multiplicities in the original method by [DP04]
we explain how we generalised the approximated distance.

First for t ∈ R, qt : D(A)×D(A) −→ C is the closed bilinear form

qt(u,w) = 〈(A− t)u, (A− t)w〉 ∀u,w ∈ D(A).

We defined the following t-dependant semi-norm, which is a norm if t is not an eigenvalue,

|u|t = qt(u, u)1/2 = ‖(A− t)u‖.

By virtue of the min-max principle, Section A.3, qt characterises the spectrum which lies
near the origin of the positive operator (A − t)2. This is reminiscent of the quadratic
projective method, from previous section. But this gives also rise to a notion of local
counting function at t for the spectrum of A as follows. If

dj(t) = inf
dimV=j
V⊂D(A)

sup
u∈V

|u|t
‖u‖

then 0 ≤ dj(t) ≤ dk(t) for j < k.
Now notice that d1(t) is in fact the Hausdorff distance from t to σ(A),

d1(t) = min{λ ∈ σ(A) : |λ− t|} = inf
u∈D(A)

|u|t
‖u‖

and similarly dj(t) are the distances from t to the j-th nearest point in σ(A) counting
multiplicity in a generalised sense. That is, stopping when the essential spectrum is
reached.

Consequently it is possible to extract certified information about σ(A) in the vicinity
of t from the action of A onto finite-dimensional trial subspaces L ⊂ D(A), see [Dav98,
Section 3], as follows. For j ≤ n = dimL, with

F j
L(t) = min

dimV=j
V⊂L

max
u∈V

|u|t
‖u‖

.

we have 0 ≤ F 1
L(t) ≤ . . . ≤ F n

L (t) and F j
L(t) ≥ dj(t) for all j = 1, 2, . . . , n. Since

[t− dj(t), t+ dj(t)] ⊆ [t− F j
L(t), t+ F j

L(t)], there are at least j spectral points of A in the
segment

[
t− F j

L(t), t+ F j
L(t)

]
including, possibly, the essential spectrum. That is

tr1[t−F jL(t),t+F jL(t)](A) ≥ j ∀j = 1, . . . , n.

Hence F j
L(t) is an approximated local counting function for σ(A). They can be obtained

as the j-th smallest eigenvalue µ of the non-negative weak problem:

find (µ, u) ∈ [0,∞)× L\{0} such that qt(u, v) = µ2〈u, v〉 ∀v ∈ L.
§ Generally EJ(A) ⊆ 1J(A)H, however there is no reason for these two subspaces to be equal.
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4.5.2 Optimal setting for detection of the spectrum

From a numerical point of view it is inefficient to consider all the values t and hence one
have to characterise the optimal one. The first idea may be to estimate local minima
of F 1

L(t). This turns out to be the opposite and we now give a crucial ingredient in the
formulation of the strategy proposed in [Dav98; Dav00; DP04].

To simplify various statements, we introduce some notations:

n−j (t) = sup{s < t : tr1(s,t](A) ≥ j} and
n+
j (t) = inf{s > t : tr1[t,s)(A) ≥ j}.

Then n∓j (t) is the j-th point in σ(A) to the left(−)/right(+) of t counting multiplicities.
Here t ∈ σ(A) is allowed and neither t nor n∓1 (t) have to be isolated from the rest of σ(A).

Our strategy was based on the following result.

Proposition 4.14. Let t− < t < t+. Then

F j
L(t−) ≤ t− t− ⇒ t− − F j

L(t−) ≤ n−j (t)

F j
L(t+) ≤ t+ − t ⇒ t+ + F j

L(t+) ≥ n+
j (t).

Moreover, let t−1 < t−2 < t < t+2 < t+1 . Then

F j
L(t−i ) ≤ t− t−i for i = 1, 2 ⇒ t−1 − F

j
L(t−1 ) ≤ t−2 − F

j
L(t−2 ) ≤ n−j (t)

F j
L(t+i ) ≤ t+i − t for i = 1, 2 ⇒ t+1 + F j

L(t+1 ) ≥ t+2 + F j
L(t+2 ) ≥ n+

j (t).

When t is an eigenvalue of multiplicity m and Et(A) ∩ L = {0}, then for t− < t < t+.

F j
L(t−) ≤ t− t− ⇒ t− − F j

L(t−) ≤ n−j+m(t)

F j
L(t+) ≤ t+ − t ⇒ t+ + F j

L(t+) ≥ n+
j+m(t).

For the rest of this presentation, we make the following

Assumption 4.5.1.
L ∩ Et(A) = {0}.

From Proposition 4.14 it follows that optimal lower bounds for n−j (t) are achieved by
finding t̂−j = s ≤ t, the furthest point to t, such that

t− s = F j
L(s). (4.12)

Similarly, optimal upper bounds for n+
j (t) are found by analogous means.

But determining this optimal value as fixed point seems to be a challenging problem
too. Following [DP04], we characterised the optimal parameters t± in Proposition 4.14
by means of a weak eigenvalue problem due to Zimmermann and Mertins [ZM95] : If
lt : D(A)×D(A) −→ C is the (generally not closed) bilinear form associated to (A− t),

lt(u,w) = 〈(A− t)u,w〉 ∀u,w ∈ D(A),

we consider the weak eigenvalue problem

find u ∈ L \ {0} and τ ∈ R such that
τqt(u, v) = lt(u, v) ∀v ∈ L.

(ZLt )

Let
τ−1 (t) ≤ . . . ≤ τ−n−(t) < 0 and 0 < τ+

n+(t) ≤ . . . ≤ τ+
1 (t),

be the negative and positive eigenvalues of (ZLt ) respectively, n∓(t) the number of these
negative and positive eigenvalues and u∓j (t) denote eigenfunctions associated with τ∓j (t).

The connection with the framework of [DP04] is made as follows. Let us recall the
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Theorem 4.15. [DP04, Theorem 11] Let t ∈ R. The smallest eigenvalue τ = τ−1 (t) of
(ZLt ) is negative if and only if there exists s < t such that (4.12) holds true. In this case
s = t+ 1

2τ−1 (t)
and

F 1
L(s) = − 1

2τ−1 (t)
=
|u−1 (t)|s
‖u−1 (t)‖

for u = u−1 (t) ∈ L the corresponding eigenvector.

An extension to j 6= 1 is now found by induction.

Theorem 4.16. Let t ∈ R and 1 ≤ j ≤ n be fixed. The number of negative eigenvalues
n−(t) in (ZLt ) is greater than or equal to j if and only if

〈Au, u〉
〈u, u〉

< t for some u ∈ L 	 Span{u−1 (t), . . . , u−j−1(t)}.

Assuming this holds true, then τ = τ−j (t) and u = u−j (t) are solutions of (ZLt ) if and only
if

F j
L

(
t+

1

2τ−j (t)

)
= − 1

2τ−j (t)
=

∣∣u−j (t)
∣∣
t+ 1

2τ−
j

(t)

‖u−j (t)‖
.

A neat procedure for finding certified spectral bounds for A, as described in [ZM95],
can now be deduced from Theorem 4.16 :

For all t ∈ R and j ∈ {1, . . . , n±(t)},

t+
1

τ−j (t)
≤ n−j (t) and n+

j (t) ≤ t+
1

τ+
j (t)

.

4.5.3 Convergence and error estimates

If L captures an eigenspace of A within a certain order of precision O(ε) as specified below,
we showed that the bounds which follow from Proposition 4.14, ore precisely (4.12), are

1. at least within O(ε) from the true spectral data for any t ∈ R,

2. within O(ε2) for t 6∈ σ(A).

In the spectral approximation literature this last property is known as optimal order of
convergence/exactness, see [Cha83, Chapter 6] or [Wei74].

Let us make the statement more precise. The following is one of our main results
in [BBBa].

Theorem 4.17. Let J ⊂ R be a bounded open segment such that J ∩ σ(A) ⊆ σdisc(A).
Let {φk}m̃k=1 be a family of eigenvectors of A such that Span{φk}m̃k=1 = EJ(A). For fixed
t ∈ J , there exist constants ε̃t > 0 and C−t > 0 independent of the trial space L, ensuring
the following. If there are {wj}m̃j=1 ⊂ L such that(

m̃∑
j=1

‖wj − φj‖2 + |wj − φj|2t

)1/2

≤ ε < ε̃t, (4.13)

then

0 < ν−j (t)−

(
t+

1

τ−j (t)

)
≤ C−t ε

2

for all j ≤ n−(t) such that ν−j (t) ∈ J .
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We also obtained a statement on convergence of eigenfunctions.

Corollary 4.18. Let J ⊂ R be a bounded open segment such that J ∩σ(A) ⊆ σdisc(A). Let
{φk}m̃k=1 be a family of eigenvectors of A such that Span{φk}m̃k=1 = EJ(A). For fixed t ∈ J ,
there exist constants ε̃t > 0 and C±t > 0 independent of the trial space L, ensuring the
following. If there are {wj}m̃j=1 ⊂ L guaranteeing the validity of (4.13), for all j ≤ n±(t)
such that ν±j (t) ∈ J we can find ψε±j ∈ E{ν−j (t),ν+j (t)}(A) satisfying

|u±j (t)− ψε±j |t + ‖u±j (t)− ψε±j ‖ ≤ C±t ε.

Hence we achieved the optimal order of convergence. This is possible since Assump-
tion (4.5.1) ensures that the arguments of the approximated local counting function in
Theorem 4.16 are never in the spectrum.

4.5.4 The finite element method for the Maxwell eigenvalue prob-
lem

Let Ω ⊂ R3 be a polyhedron. Denote by ∂Ω the boundary of this region and by n its
outer normal vector. Consider the anisotropic Maxwell eigenvalue problem: find ω ∈ R
and (E,H) 6= 0 such that 

curlE = iωµH

curlH = −iωεE
in Ω

E × n = 0 on ∂Ω.

(4.14)

The physical phenomenon of electromagnetic oscillations in a resonator is described by
(4.14), assuming that the field phasor satisfies Gauß’s law

div(εE) = 0 = div(µH) in Ω. (4.15)

Here ε and µ, respectively, are the given electric permittivity and magnetic permeability
at each point of the resonator.

The orthogonal complement in a suitable inner product, see [BS90] of the solenoidal
space (4.15) is the gradient space. This gradient space has infinite dimension and is part
of the kernel of the densely defined linear self-adjoint operator

M : D(M) −→ L2(Ω)6

associated to (4.14). In turns, this means that (4.14)-(4.15) and the unrestricted problem
(4.14), have exactly the same non-zero spectrum and exactly the same eigenvectors
orthogonal to the kernel. As already explained, the numerical computation of ω by means
of the finite element method is extremely challenging, due to a combination of variational
collapse (M is strongly indefinite) and the fact that finite element bases seldom satisfy
the ansatz (4.15).

The concrete assumptions on the data of equation (4.14) were as follows. The
polyhedron Ω ⊂ R3 is open, bounded and simply connected. The permittivities are such
that

ε,
1

ε
, µ,

1

µ
∈ L∞(Ω).

Without further mention, the non-zero spectrum of M will be assumed to be purely
discrete and it does not accumulate at ω = 0. This hypothesis is verified, for example,
whenever Ω is a polyhedron with a Lipschitz boundary, [Mon03, Corollary 3.49] and [BS90,
Lemma 1.3]. A more systematic analysis of the spectral properties ofM on more general
regions Ω is a work in progress [BBB16].
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4.5.4.1 Finite element computation of the eigenvalue bounds

Formulation of the weak problem and eigenvalue bounds. Let {Th}h>0 be a
family of shape-regular [EG04] triangulations of Ω, where the elements K ∈ Th are
simplexes with diameter hK and h = maxK∈Th hK . For r ≥ 1, let

Vr
h = {vh ∈ C0(Ω)3 : vh|K ∈ Pr(K)3 ∀K ∈ Th}

Vr
h,0 = {vh ∈ Vr

h : vh × n = 0 on ∂Ω}.

Then
L ≡ Lh = Vr

h,0 ×Vr
h ⊂ D1. (4.16)

For t ∈ R, let mp
t : D1 ×D1 −→ C be given by

m1
t

([
E
H

]
,

[
F
G

])
=

∫
Ω

(
(M1 − tP2)

[
E
H

])
·
[
F
G

]
m2
t

([
E
H

]
,

[
F
G

])
=

∫
Ω

(
(P−1M1 − tP)

[
E
H

])
·
(

(P−1M1 − tP)

[
F
G

])
Then ZLt [ZM95; DP04; BBBa] has the following form:

find
(
τ,

[
E
H

])
∈ R× (L \ {0}) such that

m1
t

([
E
H

]
,

[
F
G

])
= τm2

t

([
E
H

]
,

[
F
G

])
∀
[
F
G

]
∈ L.

(4.17)

Let m±(t) ≡ m±(t, h) be the number of negative and positive eigenvalues of (4.17),
respectively. Let τ±j (t) ≡ τ±j (t, h),

τ−1 (t) ≤ . . . ≤ τ−(t)m−(t)

be the negative eigenvalues of (4.17) and

τ+
m+(t)(t) ≤ . . . ≤ τ+

1 (t)

be the positive eigenvalues of (4.17), if they exist at all. Let

ρ±j (t, h) = t+
1

τ±j (t)
.

By counting multiplicities, let

. . . ≤ ν−2 (t) ≤ ν−1 (t) < t < ν+
1 (t) ≤ ν+

2 (t) ≤ . . .

be the eigenvalues of M which are adjacent to t. That is ν−j (t) is the j-th eigenvalue
strictly to the left of t and ν+

j (t) is the j-th eigenvalue strictly to the right of t.

Convergence of the eigenvalue bounds. Consider an open bounded segment J ⊂ R,
such that 0 6∈ J . Denote by EJ the eigenspace associated to this segment and assume that
t ∈ J . Here and elsewhere the relevant set where the indices j move is

F±J (t) = {j ∈ N : ν±j (t) ∈ J}.

The following crucial statement is a direct consequence of our theoretical analysis.
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Theorem 4.19. Let r ∈ N be fixed. Then

lim
h→0

∣∣ρ±j (t, h)− ν±j (t)
∣∣ = 0 ∀j ∈ F±J (t).

If in addition P−1EJ ⊆ Hr+1(Ω)6, then there exist C±t ≡ C±t (r) > 0 such that∣∣ρ±j (t, h)− ν±j (t)
∣∣ ≤ C±t h

2r ∀j ∈ F±J (t)

for h sufficiently small.

We also obtained the convergence of the associated eigenvectors.

4.5.4.2 A certified numerical strategy

Denote by 0 < tup < tlow the corresponding parameters t in the weak problem (4.17),
which are set for computing ρ−j (tlow, h) (lower bounds) and ρ+

j (tup, h) (upper bounds) in
the segment (tup, tlow). The scheme described next aims at finding intervals of enclosure
for the eigenvalues ofM which lie in this segment, for a prescribed tolerance set by the
parameter δ > 0.

Procedure 4.5.1.

Input.

– Initial tup > 0.
– Initial tlow > tup such that tlow − tup is fairly large.
– A sub-family F of finite element spaces Lh as in (4.16), dense as h→ 0.
– A tolerance δ > 0 fairly small compared with tlow − tup.

Output.

– A prediction m̃(δ) ∈ N of tr1(tup,tlow)(M).
– Predictions ω±j,δ of the endpoints of enclosures for the eigenvalues in σ(M) ∩

(tup, tlow), such that 0 < ω+
j,δ − ω

−
j,δ < δ for j = 1, . . . , m̃(δ).

Steps.

1. Set initial Lh ∈ F .
2. While

ρ+
j,h − ρ

−
j,h ≥ δ or ρ−j,h > ρ+

j,h for some j = 1, . . . , m̃,

do 3 - 5.
3. Compute

ρ+
j,h = ρ+

j (tup, h) for j = 1, . . . , m̃up

where m̃up is such that ρ+
m̃up,h

< tlow and

ρ+
m̃up+1(tup, h) ≥ tlow.

4. Compute

ρ−m̃low−k+1,h = ρ−k (tlow, h) for k = 1, . . . , m̃low

where m̃low is such that ρ−m̃low,h
> tup and

ρ−m̃low+1(tlow, h) ≤ tup.
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RF DOF tlow = 1.95 tlow = 2.05 tup = 1.05 tup = 0.7
(l = 1 ω−3 ) (l = 3 ω−3 ) (l = 1 ω+

3 ) (l = 3 ω+
3 )

1 4143 1.24764 1.26640 1.50395 1.3436
0.1 9648 1.25029 1.26830 1.49282 1.3336
0.01 74226 1.25063 1.26846 1.48899 1.3274

Figure 4.5: Dependence of the accuracy of our bounds on the choice of t for the region
Ω̃cut. It is preferable to pick tup and tlow as far as possible from ω, than to increase the
dimension of the trial subspace.

5. If m̃low 6= m̃up, decrease h, set new Lh ∈ F and go back to 3. Otherwise set
m̃ = m̃low = m̃up, decrease h, set new Lh ∈ F and continue from 2.

6. Exit with m̃(δ) = m̃ and ω±j,δ = ρ±j,h for j = 1, . . . , m̃.

If the eigenfunctions ofM lie in Hr+1(Ω)6, then

ρ+
j,h − ρ

−
j,h = O(h2r).

This means that the exit rate of the conditional loop in Procedure 4.5.1 is also O(h2r) as
h→ 0.

4.5.5 Some numerical experiments

The two-dimensional Maxwell problem (2.10) exhibits all the complications concerning
spectral pollution as its three-dimensional counterpart.

We denote by M̃ : D̃ −→ L2(Ω̃)3 the self-adjoint operator associated to (2.10). This
operator has often been employed for tests which can then be validated against numerical
calculations for the original Neumann Laplacian via the Galerkin method, [Dau04]. Note
that the latter is a semi-definite operator with a compact resolvent, so it does not exhibit
spectral pollution.

A non-Lipschitz domain. For a single trial space L, the accuracy of the eigenvalue
bounds we established depends on the position of t relative to adjacent components of the
spectrum. In this experiment we demonstrate that this dependence might vary significantly
with t. The numerical evidence, see figure 4.5, suggests that a good choice of tup and tlow

plays a major role in the design of efficient algorithms for eigenvalue calculation based on
this method.

Let Ω̃ ≡ Ω̃cut = (0, π)2 \ S for S = [π/2, π] × {π/2}. Benchmarks [Dau04] on the
eigenvalues of (2.10) are found by means of solving numerically the corresponding Neumann
Laplacian problem.

The first seven positive eigenvalues are

ω1 ≈ 0.647375015, ω2 = 1, ω3 ≈ 1.280686161,

ω4 = ω5 = 2, ω6 ≈ 2.096486081 and ω7 ≈ 2.229523505.

The eigenfunctions associated to ω2, ω4 and ω5 are smooth, as they are also eigenfunctions
on Ω̃sqr. On the other hand, ω1 and ω3 correspond to singular eigenfunctions. Standard
nodal elements are completely unsuitable for the computation of these eigenvalues, even
with a significant refinement of the mesh on S.
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j ωj from [Dau04] ωj
+
− l up low

1 1.15954813181 1.159555
456 1 85

2 1.16804100636 1.16807
770 2 84

3 1.5834295853 1.5834453
229 3 83

4 2.3757369919 2.375788
452 4 82

5 2.4724291674 2.472479
212 5 81

6 2.5288205712 2.528884
634 6 80

7 2.7487894882 2.748868
693 7 79

8 3.2334726763 3.23362
280 8 78

9 3.47832176265 3.478478
775 9 77

10 3.51802898831 3.51822
718 10 76

Figure 4.6: Enclosures for the first 10 positive eigenvalues of M̃ for the transmission
problem (Section 4.5.5). For comparison, on the second column we include the upper
bounds found in [Dau04]. Here the trial subspace is made out of Lagrange elements of order
1, tup = 10−9 and tlow = 11.74. The mesh employed was constructed in an unstructured
fashion in the four sub-domains Ω̃sqr,l. The maximum element size is set to h = .01 and
the total number of DOF=399720.

The table in Figure 4.5 shows computation of ω±3 on a mesh that is increasingly refined
at S with a factor RF for two pairs of choices of tup and tlow. Here h = 0.1 and we consider
Lagrange elements of order r = 1. The choice of tup and tlow further from ω3, even with
the very coarse mesh, provides a sharper estimate of ω±3 than the other choices even with
a finer mesh.

The transmission problem. In this example, we considered a non-constant electric
permittivity. Let

Ωsqr,1 =
(

0,
π

2

)
×
(

0,
π

2

)
Ωsqr,2 =

(π
2
, π
)
×
(π

2
, π
)

Ωsqr,3 =
(π

2
, π
)
×
(

0,
π

2

)
and Ωsqr,4 =

(
0,
π

2

)
×
(π

2
, π
)
.

so that

Ω̃sqr =
4⋃
l=1

Ω̃sqr,l.

Set µ = 1 and

ε(x) =

{
1 x ∈ Ωsqr,1 ∪ Ωsqr,2
1
2

x ∈ Ωsqr,3 ∪ Ωsqr,4.

Numerical estimations of the eigenvalues of M̃ on Ω̃ ≡ Ω̃sqr for this data were found in
[Dau04].

We have set the experiment reported in Figure 4.5.5, on a family of meshes, which is
unstructured but of equal maximum element sizes in each one of the subdomains Ω̃sqr,l.
We implemented Procedure 4.5.1 as discussed previously, with fixed tup = 10−9 and
tlow = 11.74. For comparison, in the second column of the table we have included the
benchmark upper bounds from [Dau04].

As we pointed out previously, accuracy depends on the regularity of the corresponding
eigenspace. Moreover, finding conclusive lower bounds for the ninth and tenth eigenvalues
turns out to be expensive, if tlow ≈ 3.5. Observe that, from the reproduced values in the
second column of the table, these two eigenvalues form a cluster of multiplicity 2. It seems
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that in fact they are part of a larger cluster. The resulting narrow gap from this cluster
seems to be the cause of the deterioration in accuracy.

The data has a natural symmetry with respect to the diagonals of Ω̃sqr. Four types
of eigenvectors arise from these symmetries, and the analytical problem reduces to four
different eigen-problems which give rise to degenerate eigenspaces. As we were not
considering a mesh that completely respects these symmetries, the multiplicities arising
from them are not shown completely in the numerics.

In order to find reasonable bounds for ω9 and ω10, we had to resource to exploiting
the fact that ρ−j (t, h) is locally non-increasing in t, and it respects ordering in j. An
analytical proof of this property is achieved by extending to the indefinite case the results
of [BH13b, §3], but in the present context we have examined them only from a numerical
perspective. Note that, when tlow is near to cross an eigenvalue, ρ−j (tlow, h) jumps. These
jumps appear to be small (respecting the order of the j) as long as the subspace captures
well the eigenvectors. This effect will disappear eventually as we increase tlow further, due
to the fact that L is finite-dimensional. In our experiments, we have determined that
t = tlow ≈ 11.74 is near to optimal for the trial subspaces employed. Note that tlow = 11.74
gives 85 eigenvalues in the segment (10−9, 11.74) for these trial subspaces.
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III.5

Dispersive properties
of Dirac type models

In this section, we present the results of [BG10; BDF11], where we considered dispersive
properties of Dirac type linear equations. Both are in fine, propagation-type estimates in
the sense that they imply the decay of the solution in some Banach subspace continuously
embedded in the Hilbert space of square integrable spinors.

This kind of estimates are in general useful to establish dispersive estimates, that is
estimates for translation invariant spaces such as Lp-spaces. Typical examples of dispersive
estimates are the Strichartz estimates. Unfortunately such an implication is unclear when
we consider long range perturbations, but is now classical for short-range ones, see [RS04,
Section 4].

Our first result, [BG10], is a Kato-smoothness estimates for coulombic interactions
while the second, [BDF11], is a Morawetz type estimate for magnetic perturbations. The
techniques used in the proof of both estimates are based on commutators estimates. In the
first case, we use Mourre estimates while in the second, we use the Morawetz multiplier
method.

Introduction

The first propagation estimates we obtained are :∫
R
‖〈Q〉−1e−itHγ1I(Hγ)f‖2dt ≤ C ′‖f‖2,

whereHγ , see (2.6), is a perturbation of Dirac operator by multi-centre coulombic potentials
with small coupling constant γ, 1I(Hγ) is the spectral projector associates to the interval
I. In the present case, I is a small neighbourhood of the thresholds in the essential
spectrum. One can notice that when I is a bounded interval in the interior of the spectrum
such estimates hold, see [GM01], by means of usual Mourre estimates when the coupling
constants are small. In the present case, we used a weak Mourre estimates to treat the
thresholds. The question of high energies, namely when I is a vicinity of +∞ or −∞
can be treated as in Appendix B of Part I, where we provide an extension of the classical
Mourre estimates to non compact intervals. The usual restriction to compact intervals
in the Mourre theory is crucial to attain some critical regularity. Since the aim of this
theory is to prove absence of singular spectrum the localisation in the spectrum is not a
problem. In high energy, the conjugate operator to consider is the one proposed by [IM99].
In this reference, the weights are actually singular (|Q|−1 instead of 〈Q〉−1). We were able
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in the result we present to provide such singular weights but we needed to add a loss of
regularity. This is still unclear if this loss is necessary.

The second estimates are

sup
R>0

1

R

∫ +∞

−∞

∫
|x|≤R

|(eitHAf)(x)|2dxdt . ‖f‖2
L2 .

where HA is the perturbation of the Dirac operator by a magnetic potential A for which
the magnetic field B := curlA has some decay. In this case we used Morawetz estimates.

In both cases, a smallness assumption was made in the sense that the potentials are
bounded in some weighted space. While the spaces in the first case are simple weighted
Lebesgue spaces, in the second they are the more elaborated Morrey-Campanato spaces.

One can notice that the first estimate implies the following

sup
R>0
〈R〉−1

∫
R

∫
|x|≤R

|(e−itHγ1I(Hγ)f)(x)|2dxdt ≤ C ′‖f‖2.

which is similar to the Morawetz estimates with a non singular weight. We also notice
that Morawetz estimates exclude discrete spectrum while Kato ones do not as they include
projectors into the continuous part of the spectrum. Theoretically, larger perturbations
should be allowed by Kato estimates.

One of the main strength of Morawetz estimates is the “simplicity” of their proof. This
is a direct commutators method. They are based on the estimates of two commutations
coming from two derivatives on the evolution of some localised position observable usually
called Morawetz multiplier. Most of the analysis then relies on a proper choice of the
multiplier in order to obtain positive second commutator and to provide useful estimates.
Even if this link has to be clarified, Morawetz estimates seems to be reminiscent of Putnam’s
theorem [Put67] and, in the case of Schrödinger operators, Lavine’s theorem [Lav71]. Let
us emphasise that the proof of Morawetz estimates is a direct time-dependent analysis
of the dynamics. In the other hand, Kato estimates are often obtained as a corollary
of a limiting absorption principle through Bochner-Fourier transform and using refined
operator theory consideration. This limiting absorption principles is often obtained by
means of Mourre estimates.

In the other hand, even if the origin of the idea by Éric Mourre belongs only to him, it
seems to be linked to analytic dilation methods. Somehow only the first order term in the
Taylor series expansion of the dilatation is kept. The generator of dilation is now called
conjugate operator and can be replaced by any type of self-adjoint operator which has a
positive commutator with the operator. Eventually the analyticity is no longer needed
and is replaced by C2 type assumption. All these considerations make the analysis heavier
but in a sense less demanding in terms of assumptions.

5.1 Limiting absorption principle at thresholds with an
electric coupling

In [BG10], we were interested in uniform estimates of the resolvent at threshold energies
of the Dirac operator in the presence of a electric potential generated by n positive point
charges (zi)1≤i≤n, recall (2.6) :

Hγ := Dm + γVc(Q), where Vc := vc ⊗ IdCN and vc(x) :=
∑

k=1,...,n

zi
|x− ai|

,
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acting on C∞c (R3\{ai}i=1,...,n;CN ), with ai 6= aj for i 6= j with γ ∈ R the coupling constant
such that, recall (2.7),

Z := |γ| max
i=1,...,n

(|zi|) <
√

3/2.

This is the multi-centre case.
Before stating our theorem let us mention briefly the bibliography. There is a larger

literature for non-relativistic models, e.g., −∆+V in L2(Rn;C). The question is intimately
linked with the presence of resonances at threshold energy, [JN01; FS04; Nak94; Ric06;
Yaf82]. We mention also [Bur+04] for applications to Strichartz estimates and [DS09a;
DS09b] for applications to scattering theory. We refer to [BH10; Bou11] for perturbations
in divergence form and to [GH08; GH09; VW10] for some more geometrical setting.
We also point out some low energy results in the context of non-relativistic quantum
electrodynamics, [FGS08; FGS11].

Our main result is the

Theorem 5.1. There are κ, δ, C > 0 such that

sup
|λ|∈[m,m+δ], ε>0,|γ|≤κ

‖〈Q〉−1(Hγ − λ− iε)−1〈Q〉−1‖ ≤ C. (5.1)

In particular, Hγ has no eigenvalue in ±m. Moreover, there is C ′ so that

sup
|γ|≤κ

∫
R
‖〈Q〉−1e−itHγ1I(Hγ)f‖2dt ≤ C ′‖f‖2, (5.2)

where I = [−m− δ,−m] ∪ [m,m+ δ].

Notations : Given a complex-valued function F , F (Q) is the operator of multiplication
by F , P = −i∇ and we use the standard 〈·〉 := (1 + | · |2)1/2.

The estimate (5.1) implies (5.2), see [ABG96, §7.1.1] or [RS78, Theorem XIII.24], so
our aim was to prove (5.1).

Classical Mourre estimates do not usually hold at thresholds and this is why we
considered a weak form of them. This has the advantage to deal with one major difficulty
that already appears in the case n = 1 and z1 6= 0. Indeed it is well known that there are
infinitely many eigenvalues in the gap (−m,m) converging to m as soon as γ < 0 (see for
instance [Tha92][Section 7.4] and references therein). This indicates for instance that a
Jensen-Kato method [JK79; JN01] has no chance to provide the estimate at threshold.

In our analysis, we revisited the approach of [Ric06] and make several improvements in
order to treat dispersive non self-adjoint operators and to obtain estimates of the resolvent
uniformly in a parameter. These improvements were needed as the Dirac operator is
matrix-valued, as we considered coulombic interactions which are singular and as we were
interested in both thresholds.

Our proof was a several steps reduction of the problem to the case of a second order
elliptic problem which is non-self-adjoint. The latter seemed to us easier to treat than the
strongly indefinite original Dirac operator.

5.1.1 Reduction of the problem

In [FS04] and in [Ric06], one takes advantage that the Virial∗ of the potential is negative, in
order to prove the limiting absorption principle for some self-adjoint Schrödinger operators.
∗In the context of non-linear PDEs, the Virial is known as the Pohozaev identity.
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We could not make this hypothesis as we were also interested in the positronic threshold,
i.e., we sought a result for v and −v, see (5.3). It is still unclear for us if one can actually
deal with thresholds energy and keep the “positivity” of something close to the quantity

[Hγ, iA]− cHγ,

for some self-adjoint operator A.
To avoid this fundamental problem, we cut-off the singularities and recovered them by

perturbation. Hence we considered the resolvent of the Dirac operator perturbed by an
electric potential:

Hbd
γ := Dm + γV, where V := v ⊗ IdCN and v bounded.

We then add a singular part to the potential by standard perturbation techniques as we
considered the addition of V2 ∈ L1

loc(R3;RN) satisfying:

〈Q〉2V2(Q) ∈ B
(
H 1(R3;CN), L2(R3;CN)

)
.

The fact that we recover singularities by means of perturbation allows only small coupling
constants.

Hence for bounded potential V , our idea was to obtain the following limiting absorption
principle

sup
|λ|∈[m,m+δ], ε>0, |γ|≤κ

‖〈Q〉−1(Hbd
γ − λ− iε)−1〈Q〉−1‖ ≤ C,

for some κ > 0. It was enough to consider λ > 0. Since with α5 := α1α2α3β and using the
anti-commutation relation (2.1), it is known that

α5 (Dm + γV )α−1
5 = −(Dm − γV ). (5.3)

5.1.2 The non self-adjoint operator

The non self-adjoint operator appears by expanding the resolvent relatively to a upper/lower
spinor decomposition:

CN/2
± :=

1

2
(1 + β)CN

This transfers the analysis to the one of an elliptic operator of second order. More precisely
a kind of Schur’s Lemma, see also [DES00; JN01], links the inverse of the Dirac operator,
with the one of a second-order operator with

Lemma 5.2. Suppose

‖v‖∞ ≤ m/2 and ∇v ∈ L∞(R3;R3).

Take z ∈ C \ R such that <(z) ≥ 0. Then ∆m,v,z is the minimal extension of the closable
operator

α+ · P 1

m− v(Q) + z
α− · P + v(Q)

on C∞c (R3;CN/2
+ ), has domain

Dmin(∆m,v,z) = D(∆∗m,v,z) = H2(R3;CN/2
+ )
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and verifies ∆m,v,z = ∆∗m,v,z. The spectrum of ∆m,v,z is contained in the lower/upper
half-plane which does not contain z so that c+ z is always in the resolvent set of ∆m,v,z

for any c ∈ R.
Moreover in the upper/lower spinor decomposition, we have (Hbd

1 − z)−1 = (∆m,v,z +m− z)−1

1

m− v(Q) + z
α− · P (∆m,v,z +m− z)−1

(∆m,v,z +m− z)−1α+ · P 1

m− v(Q) + z

1

m− v(Q) + z
α− · P (∆m,v,z +m− z)−1α+ · P 1

m− v(Q) + z
− 1

m− v(Q) + z


The drawback is that this operator is non self-adjoint and depends on the spectral

parameter z. We bypass this difficulty by studying the family {∆m,γv,ξ}(γ,ξ)∈E uniformly
in E . This is exactly why we considered a non self-adjoint extension of the weak Mourre
approach of [Ric06], see Appendix C. The set E will be [−κ, κ]× [0, δ]× (0, 1].

5.1.3 Positive commutator estimates

We thus needed some estimate on the resolvent of ∆m,v,z uniformly in the spectral
parameter.

We proved that if v ∈ L∞(R3;R) satisfies the hypotheses

(H1) ‖v‖∞ ≤ m/2 and ∇v, Q · ∇v(Q), 〈Q〉(Q · ∇v)2(Q) are bounded.

(H2) There are cv ∈ [0, 2) and c′v ≥ 0 such that

x · (∇v)(x) + cvv(x) ≤ c′v
|x|2

, for all x ∈ R3 \ {0}

then the hypothesis of Section C are fulfilled.
We deduced that there are δ, κ, CLAP > 0 such that

sup
<z≥0,=z>0,(γ,ξ)∈E

∥∥|Q|−1(∆2m,γv,ξ − z)−1|Q|−1
∥∥ ≤ CLAP.

Application of Appendix C. Let us be more precise on the way checked the hypothesis
of Appendix C.

First for
C+ := {z ∈ C,=z ≥ 0},

we introduced

S := ∆1,0,0 = α+ · P α− · P = −∆R3 ⊗ IdCN/2+
in H2(R3;CN/2

+ ) ' H2(R3)⊗ CN/2
+

and S := Ḣ1(R3;CN/2
+ ), the homogeneous Sobolev space of order 1, (the completion of

H1(R3;CN/2
+ ) under the norm ‖f‖S := ‖S1/2f‖2), we considered the strongly continuous

one-parameter unitary group {Wt}t∈R acting by:

(Wtf)(x) = e3t/2f(etx), for all f ∈ L2(R3;CN/2
+ ).
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This is the C0-group of dilatation. By interpolation and duality, one gets

WtS ⊂ S and WtH
s(R3;CN/2

+ ) ⊂H s(R3;CN/2
+ ), for all s ∈ R.

Its generator A in L2(R3;CN/2
+ ) was our conjugate operator. It acts as follows:

A =
1

2
(P ·Q+Q · P )⊗ IdCN/2+

on C∞c (R3;CN/2
+ ) ' C∞c (R3)⊗ CN/2

+ .

By the Nelson lemma, it is essentially self-adjoint.
Then we checked that for δ ∈ (0, 2m) :

• there are c1, κ > 0 such that

D(∆2m,γv,ξ) = H2(R3;CN/2
+ ), (∆2m,γv,ξ)

∗ = ∆2m,γv,ξ,

[<(∆2m,γv,ξ), iA]− cv<(∆2m,γv,ξ) ≥ c1S > 0,

∓=(∆2m,γv,<(ξ)±i=(ξ)) ≥ 0, ∓[=(∆2m,γv,<(ξ)±i=(ξ)), iA] ≥ 0,

hold true in the sense of forms on H1(R3;CN/2
+ ), for all (γ, ξ) ∈ E ;

• there is c and C depending on cv, δ, κ and v, such that

|〈∆2m,γv,ξ f, Ag〉 − 〈Af,∆2m,γv,ξ g〉| ≤ c‖f‖ · ‖(∆2m,γv,ξ ± i)g‖,

holds true, for all f, g ∈ H2(R3;C+
N/2) ∩D(A) and

|〈f, [[∆2m,γv,ξ, iA], iA]f〉| ≤ C〈f, Sf〉.

holds true for all f ∈H 1(R3;CN/2
+ ).

This was all the assumptions we needed.

5.1.3.1 An application to non-relativistic dispersive Hamiltonians

As a by-product of our method, we obtained some new results for dispersive Schrödinger
operators. In the following the dissipative part V2 of the potential term corresponds to the
absorption coefficient of the laser energy by material medium in the Helmholtz model, see
[Jac75] for instance.

Theorem 5.3. Suppose that V1, V2 ∈ L1
loc(Rn;R) satisfy:

(H0) Vi are ∆-operator bounded with a relative bound a < 1, for i ∈ {1, 2}.

(H1) ∇Vi, Q · ∇Vi(Q) are in B(H2(Rn);L2(Rn)) and 〈Q〉(Q · ∇Vi)2(Q) is bounded, for
i ∈ {1, 2}.

(H2) There are c1 ∈ [0, 2) and c′1 ∈
[
0, 4(2− c1)/(n− 2)2

)
such that

WV1(x) := x · (∇V1)(x) + c1V1(x) ≤ c′1
|x|2

, for all x ∈ Rn.

and

V2(x) ≥ 0 and − c1x · (∇V2)(x) ≥ 0, for all x ∈ Rn.
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On C∞c (Rn), we define H := −∆+V (Q), where V := V1 +iV2. The closure of H defines a
dispersive closed operator with domain H2(Rn). We keep denoting it with H. Its spectrum
included in the upper half-plane. Moreover, H has no eigenvalue in [0,∞) and

sup
λ∈[0,∞), µ>0

∥∥ |Q|−1(H − λ+ iµ)−1|Q|−1
∥∥ <∞. (5.4)

If c1 = 0, H has no eigenvalue in R and (5.4) holds true for λ ∈ R.

The quantity WV1 is called the virial of V1. For fixed Planck constant as here and for a
compact I included in (0,∞), [Roy] shows some estimates of the resolvent above I. Here
we deal with the threshold 0 and with high energy estimates. On the other hand, as he
avoids the threshold, he reaches some very sharp weights.

In [Roy] one makes a hypothesis on the sign of V2 but not on the one of x · (∇V2)(x).
Note that if one supposes c1 = 0, we are also in this situation.

Unlike in [Roy], we stress that V is not supposed to be a relatively compact perturbation
of H and that the essential spectrum of H can be different of [0,∞).

5.2 Morawetz type estimates with a magnetic field
In [BDF11], we investigated the dispersive properties of the flow u = eitHAf relative to the
Cauchy problem

iut(t, x) +HAu(t, x) = 0, u(0, x) = f(x) (5.5)

where u(t, x) : R × R3 → C4, f(x) : R3 → C4 and HA a magnetic perturbation of the
Dirac operator :

HA = −iα · ∇A +mβ = DA +mβ

where

DA = −i
3∑
j=1

αk(∂k − iAk)

In [BDF11], we used a multiplier method to establish some dispersive estimates.
Multiplier methods in relation with weak dispersion properties have a long history, starting
from Morawetz [Mor68] for the Klein-Gordon equation and [CS88], [Sjö87], [Veg88] for the
Schrödinger equation. They were adapted to more general situations in [PV99], [PV08].

In order to focus on the assumptions needed for dispersive properties we avoid any
discussion on the wellposedness problem by making the

Assumption 5.2.1. the operator HA is essentially self-adjoint on C∞c (R3)4, and in
addition, for initial data in C∞c (R3)4, the flow eitHAf belongs to C(R, H3/2)4.

The density condition allows to approximate rough solutions with smoother ones,
locally uniformly in time, and is verified in concrete cases. One can actually replace the
Sobolev space by the the domain of |HA|3/2. Our virial identities are actually restricted
to smooth compactly supported functions. Most of the terms extend to the domain of
the operator as C∞c (Rn) is a core of HA and the corresponding commutators term are
bounded operators. But the computations lead to a term with Bτ which is bounded from
Hs to Hs−3/2 for s ∈ [1/2, 1], in our assumptions, this is why we imposed the H3/2 in this
assumption.

Concerning our results by using multiplier methods, we were able to partially relax the
smallness assumption while making more natural assumptions from the physical point of
view since they are expressed in terms of the magnetic field

B = curlA,
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which is the physically relevant quantity. Actually, our assumptions were in terms of the
quantities

Bτ =
x

|x|
∧B, and ∂rB = (∂rB

1, ∂rB
2, ∂rB

3),

which are, respectively, the tangential component and the radial derivative of the field B.

5.2.1 Virial identities

We considered virial identities for

(i∂t −HA)(i∂t +HA) = (−∂tt −H2
A)

as the Dirac operator does not have a definite sign.
Thus we reduced the study to a system of wave (Klein-Gordon) equations of the form

utt(t, x) + Lu(t, x) = 0, L = H2
A (5.6)

with u = u(t, x) : R× R3 → C4.
We obtained a virial identity for solutions of a general system of wave equations like

(5.6), with L being any self-adjoint operator on L2(Rn;Ck). We considered virial identities
in the form

Θ̇(t) = < ([L, φ]u, ut) (5.7)

Θ̈(t) = −1

2
([L, [L, φ]]u, u) . (5.8)

where
Θ(t) = (φut, ut) + < ((2φL− Lφ)u, u) .

for any solution u(t, x) of the linear wave equation (5.6) and any function φ : Rn → R
smooth enough.

As an application of (5.7), (5.8) we obtained

2

∫
R3

∇AuD
2φ∇Au−

1

2

∫
R3

|u|2∆2φ+ 2=
∫
R3

uφ′Bτ · ∇Au+ 2

∫
R3

[S · (DB∇φ)u] · u

(5.9)

= − d

dt
<
(∫

R3

ut(2∇φ · ∇Au+ u∆φ)

)
.

where DB = [∂jBi]i,j=1,3, S = i
4
α ∧ α is the spin operator, φ : R3 → R a sufficiently

smooth real valued function ∇A = ∇− iA(t, x) and u(t, x) a solution of (5.5).
The function φ is the multiplier that we choose as follows. Writing r = |x|, for any

R > 0, we defined φ as follows

φR(r) = Rφ0

( r
R

)
,

where

φ0(x) =

∫ r=|x|

0

φ′0(s) ds,

and

φ′0 = φ′0(r) =

{
M + 1

3
r, r ≤ 1

M + 1
2
− 1

6r2
, r > 1,

with M an appropriately chosen positive constant.
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5.2.2 Weak dispersion for the magnetic Dirac Equation

We applied identity (5.9) to u = eitHAf . For f : R3 → C, denoted by

‖f‖LprL∞(Sr) := ‖ sup
|x|=r
|f | ‖Lpr =

(∫ +∞

0

(sup
|x|=r
|f |)pdr

) 1
p

.

and by ∇r
Au and ∇τ

Au we denoted, respectively, the radial and tangential components of
the covariant gradient ∇A = ∇− iA(t, x):

∇r
Au =

x

|x|
· ∇Au, ∇τ

Au = ∇Au−
x

|x|
∇r
Au,

and we obtained the

Theorem 5.4. Let HA satisfy the self-adjointness assumption (A). Let B = curlA =
B1 +B2 with B2 ∈ L∞(Rn) and introduce the quantities

C0 = ‖|x|2B1‖L∞(Rn), C1 = ‖|x|
3
2Bτ‖L2

rL
∞(Sr), C2 = ‖|x|2∂rB‖L1

rL
∞(Sr).

We shall assume the smallness conditions

C0 <
1

4
, C2

1 + 3C2 + C1

√
C2

1 + 6C2 ≤ 1 (5.10)

and that the L∞ part of B is absent in the massless case:

m = 0 =⇒ B2 ≡ 0.

Then for all f ∈ L2, the following estimate holds:

sup
R>0

1

R

∫ +∞

−∞

∫
|x|≤R

|eitHAf |2dxdt . ‖f‖2
L2 .

Assume moreover that the second inequality in (5.10) is strict; then for any f ∈ D(HA)
the following estimate is true:

sup
R>0

1

R

∫ +∞

−∞

∫
|x|≤R

|∇Ae
itHAf |2dxdt+ ‖eitHAf‖2

L∞x L
2
t

+

∫ +∞

−∞

∫
R3

|∇τ
Ae

itHAf |2

|x|
dxdt+ sup

R>0

1

R2

∫ +∞

−∞

∫
|x|=R

|eitHAf |2dσdt . ‖HAf‖2
L2 .

Example 5.5. Explicit examples of magnetic fields satisfying assumption (5.10) are of
the following form

ω

(
x

|x|

)
x

|x|
+ εB(x),

where ω is a smooth function on the unit sphere, while ε is sufficiently small and B : R3 →
R3 satisfies

|Bτ (x)| ≤ 1

|x|2−δ + |x|2+δ
, |∂rB| ≤

1

|x|3−δ + |x|3+δ
,

for some δ > 0.
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5.2.3 Strichartz estimates for the magnetic Dirac Equation

We then derived from the previous weak dispersive estimates the Strichartz estimates
for the perturbed Dirac equation. We recall that the solution u(t, x) = eitD0f of the free
massless Dirac system with initial value u(0, x) = f(x) satisfies

‖eitD0f‖
LpḢ

1
q−

1
p−

1
2

q

. ‖f‖L2 ,

for all wave admissible (p, q)

2

p
+

2

q
=

2

2
, 2 < p ≤ ∞, ∞ > q ≥ 2

while in the massive case m 6= 0 we have

‖eitDmf‖
LpH

1
q−

1
p−

1
2

q

. ‖f‖L2 ,

for all Schrödinger admissible (p, q)

2

p
+

3

q
=

3

2
, 2 ≤ p ≤ ∞, 6 ≥ q ≥ 2.

These can be deduced from the corresponding estimates, respectively for the Wave equation
and the Klein-Gordon equation.

A perturbation approach based on the Morawetz estimates provides

Theorem 5.6. Assume ∑
j∈Z

2j sup
|x|∼2j

|A| <∞

in the perturbed case we obtained exactly the same results:

‖eitDAf‖
LpḢ

1
q−

1
p−

1
2

q

. ‖f‖L2

for all wave admissible couple (p, q), (in particular, p 6= 2), while in the massive case we
have, for all Schrödinger admissible couple (p, q),

‖eitHAf‖
LpH

1
q−

1
p−

1
2

q

. ‖f‖L2 (m 6= 0).



Appendices to part III





III.C

A non-self-adjoint
weak Mourre theory

We present here the non self-adjoint weak Mourre theory we developed in [BG10].
For the definitions of a regularity classes with respect to a generator of a group A

such as Ck(A) or Ck(A;K,K∗) we refer to [ABG96]. The class C1(A) and C2(A) actually
appears in a stronger form in the second assumption of Appendix B.

We adapted ideas coming from [FS04] and [Ric06] in order to obtain a limiting
absorption principle for a family of closed operators {H±(p)}p∈E .

We asked them to have a common domain

D := D
(
H+(p)

)
= D

(
H−(p)

)
, for all p ∈ E .

We choose p0 ∈ E and endow D with the graph norm of H+(p0). We also asked that(
H+(p)

)∗
= H−(p), for all p ∈ E .

In particular, we have that D
(
(H±(p))∗

)
= D . In the sequel, we drop p, when no confusion

can arise.
Since H± are densely defined, share the same domain and are adjoint of the other,

we have that <(H±) and =(H±) are closable operators on D , indeed their adjoints are
densely defined. We denote by <(H±) and by =(H±) the closure of these operators. It is
possible that they are not self-adjoint, albeit there are symmetric. However, D is a core
for them. Their domain is possibly bigger than D . We suppose that H+ is dissipative, i.e.,

〈f,=(H+)f〉 ≥ 0, for all f ∈ D .

This gives also that =(H−) ≤ 0. By the numerical range theorem, we inferred that σ(H±)
is included in the half-plan containing ±i. Take now a non-negative self-adjoint operator
S, independent of p ∈ E , with form domain G := D(S1/2) ⊃ D . We assume that S is
injective. We write 〈f, Sf〉 > 0 for all f ∈ G \ {0} or simply S > 0. One defines S as
the completion of G under the norm ‖f‖2

S := 〈f, Sf〉. We obtain G ⊂ S with dense
and continuous embedding. Moreover, since G = 〈S1/2〉−1H , S identifies also with the
completion of H under the norm given by ‖S1/2〈S1/2〉−1 · ‖. We use the Riesz Lemma to
identify H with H ∗, its anti-dual. The adjoint space S ∗ of S is exactly the domain of
〈S1/2〉S−1/2 in H 'H ∗. Note that S−1 is an isomorphism between S and S ∗. We get
the following scale with continuous and dense embeddings:

S ∗

↓ ↘
D −→ G −→ H ' H ∗ −→ G ∗ −→ D∗.

↘ ↓
S
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To perform our analysis, we considered an external operator, the conjugate operator. Let
A be a self-adjoint operator in H . We assume S ∈ C1(A). Let Wt := eitA be the C0-group
associated to A in H . We ask:

WtG ⊂ G and WtS ⊂ S , for all t ∈ R. (C.1)

By duality, we have Wt stabilises G ∗ and also S ∗ (but may be not D or D∗). The
restricted group to these spaces is also a C0-group. We denote the generator by A with
the subspace in subscript. Given Hi ⊂Hj be two of those spaces. One easily shows that
A|Hi

⊂ A|Hj
and that A|Hj

is the closure of A|Hi
in Hj. Moreover, one has

D(A|Hi
) =

{
f ∈ D

(
A|Hj

)
∩Hi such that A|Hj

f ∈Hi

}
.

We now explain how to check the second hypothesis of (C.1), see also [Ric06]. We mention
this result is due to [FL74] when D(S) ⊂ D(A).

The second invariance of the domains of (C.1) follows from the first one and from

|〈Sf,Af〉 − 〈Af, Sf〉| ≤ c‖S1/2f‖2, for all f ∈ D(S) ∩D(A).

Let K ⊂H be a space which is stabilised by Wt. Consider L ∈ B(K ,K ∗). We say
that L ∈ Ck(A; K ,K ∗), when t → W−tLWt is strongly Ck from K into K ∗. When
K = H , using the resolvent equality, one observes that this class is the same as Ck(A),
see for instance [ABG96][Theorem 6.3.4 a.].

Theorem C.1. Let H± = H±(p), with p ∈ E as above. Let A be self-adjoint such
that (C.1) holds true. Suppose that H± ∈ C2(A; G ,G ∗) and that there is a constant c,
independent of p, such that

|〈H∓f, Ag〉 − 〈Af,H±g〉| ≤ c‖f‖ · ‖(H± ± i)g‖, for all f, g ∈ D ∩D(A).

Take c1 ≥ 0 independent of p and assume that

[<(H±), iA]− c1<(H±) ≥ S > 0,

±c1[=(H±), iA] ≥ 0, ±=(H±) ≥ 0,

in the sense of forms on G . Suppose also there exists C > 0 independent of p ∈ E such
that ∣∣〈f, [[H±, A], A]f〉∣∣ ≤ C‖S1/2f‖2, for all f ∈ G .

Then, there are c and µ0 > 0, both independent of p, such that

|〈f, (H± − λ± iµ)−1f〉| ≤ c
(
‖S−1/2f‖2 + ‖S−1/2Af‖2

)
≤ c‖f‖D(A|S∗ ),

for all p ∈ E, µ ∈ (0, µ0) and λ ≥ 0, in the case c1 > 0 and λ ∈ R if c1 = 0.

In the self-adjoint setting, the case c1 = 0 is treated in [BKM96; BM97]. Comparing
with [Ric06], who deal with the case of one self-adjoint operator and for c1 > 0, we gave
some improvements. First, we did not ask D to be the domain of S. Moreover, we drop
the hypothesis that the first commutator [H, iA] is bounded from below. For the latter,
we used more carefully the numerical range theorem in our proof. But, unlike [Ric06], we
did not go into interpolation theory so as to improve the norm in the limiting absorption
principle. Indeed, in the context of the model we were considering here, we reached the
weights we were interested in without it. We stuck to an intermediate and explicit result,
which is closer to [IM99].

We mention that there exists other Mourre-like theory for non-self-adjoint operators,
[Ast+06; Roy].
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III.6

Bilinear control of
infinite dimensional
models

In this chapter, we present the results of the analysis [BCC13c; BCC14c; BCC14a] and
the short notes (proceedings) [BCC12a; BCC12b; BCC12c; BCC12e; BCC12d; BCC12a;
BCC13a; BCC13b; BCC14b]. All these works were in collaboration with Marco Caponigro
and Thomas Chambrion.

Our key notion of “weak coupling” was introduced in [BCC13c], where we showed many
different implications. An important achievement of this series is the analysis [BCC14c].
Between this two analysis, we made a series of simple but crucial observations on the class
of weakly coupled systems. All of them lead to original results and were the content of
different proceedings. With two exceptions, the analysis [BCC14a] is a development of the
proceeding [BCC12a] and [BCC14b] is an announcement of [BCC14c].

Introduction

These analysis are related to bilinear control of quantum systems. The general form of the
problems concerns the equation

d

dt
ψ(t) = Aψ(t) + u(t)Bψ(t), (6.1)

with a given initial condition ψ0 in some separable Hilbert space H. The aim was to
establish properties of the solution (the notion of solution has to be clarified) with respect
to the time dependent coupling constant u appearing in the equation.

In general, A and B are skew-symmetric that is symmetric up to a multiplication by i.
A minimal assumption in this context is that A+u(t)B is skew-adjoint on the domain of A
for a set of values of u(t) including 0 (change of domain can be considered but introduced
further complications, see for instance [Kat70]). The first question to be asked is obviously
the one of well-posedness of (6.1). This turns out to be linked to the variations of u, for
instance if u is a step function (piecewise constant in the following) an immediate solution
is obtained by concatenating the solutions in the intervals where u is constant, see (6.4)
below. This is the point of view adopted in [Cha+09; Bos+12].

We were mainly interested in the regularity of the solution both with respect to changes
in u and in the scale of A. When A is a differential operator this corresponds to a Sobolev
scale.
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The notion of weak coupling measures at the linear level, the maximal amount of
regularity than can be propagated along the flow of (6.1). As the considered regularity is
in the scale associated to A, this amount is limited by the operator B. Somehow, the less
changes are induced by B in the operator A the more the regularity is preserved. If A has
a pure discrete spectrum this measures the strength of the couplings that B introduces
between the different energy levels of A. Hence the weaker are these couplings the higher
is the amount of regularity propagated by the flow associated with (6.1).

Then the question of the existence of solutions for a large class of functions u, even
when B is an unbounded operator, have been considered in [BCC14c]. For instance, when
u has bounded variation this is a consequence of the work by Kato [Kat53]. Under some
additional assumptions on B and A, we extended his result to Radon measure, in which
case we had to be careful in the notion of solution we consider. We proved using all the
estimates at hand some continuity in terms of the control u. Taking advantage of Helly’s
selection theorem, we generalised the result on the obstruction to exact controllability by
Ball, Marsden and Slemrod [BMS82], either for a larger class of control or a larger class
of potentials. This analysis tells somehow that the exact controllability is an accident of
regularity in the sense that the result obtained by [Bea05; BL10] are due to the strength
of the control potentials that breaks the propagation of the regularity of A at some level.

Once again the starting point of these analysis, was the need to understand the
properties of solutions of (6.1). Even if does not really enter the framework of our analysis
its worth keeping in mind the following case H = Hs

x(R), A = 0, B = x then the solution
of (6.1) with initial condition ψ0 is given by

ψ(t, x) = e
∫ t
0 u(s) dsxψ0

whenever u is locally integrable. The absolute continuous function t 7→
∫ t

0
u(s) ds can

be replaced by a bounded variation function (so u can be replaced by a Radon measure)
chosen to be right-continuous to comply with the initial condition requirement. In this
example the growth of the norm is related to the variation of the ante-derivative of u.

6.1 A brief bibliography
The typical example we had in mind is a closed system submitted to excitations by p
external fields (e.g. lasers) described by the bilinear Schrödinger equation

i
∂

∂t
ψ(x, t) = −1

2
∆ψ + V (x)ψ(x, t) +

p∑
l=1

ul(t)Wl(x)ψ(x, t), (6.2)

where ∆ is the Laplace-Beltrami operator on a riemanian manifold Ω, V : Ω → R is a
real function, called potential, carrying the physical properties of the uncontrolled system,
Wl : Ω → R, 1 ≤ l ≤ p, is a real function modelling the effect an external field, such as
a laser, and ul, 1 ≤ l ≤ p, called control, is a real function of the time modulating the
amplitude of the corresponding control potential.

In recent years there has been an increasing interest in studying the controllability of
the bilinear Schrödinger equation (6.2) mainly due to its importance for many advanced
applications such as Nuclear Magnetic Resonance, laser spectroscopy, and quantum
information science. The problem concerns the existence of control laws (u1, . . . , up)
steering the system from a given initial state to a pre-assigned final state in a given time.
Considerable efforts have been made to study this problem and the main difficulty is the
fact that the state space, namely L2(Ω,C), has infinite dimension. Indeed in [BMS82],
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a result which implies (see [Tur00]) strong limitations on the exact controllability of
the bilinear Schrödinger equation has been proved. Hence, one has to look for weaker
controllability properties as, for instance, approximate controllability or controllability
between eigenstates of the Schrödinger operator (which are the most relevant cases from the
physical viewpoint). In dimension one, in the case p = 1, and for a specific class of control
potentials a description of the reachable set has been provided [Bea05; BL10]. In dimension
larger than one or in more general situations, the exact description of the reachable set
appears to be more difficult and at the moment only approximate controllability results
are available (see for example [Ner09; Cha+09; Bos+12] and references therein).

6.2 Helly’s selection theorem
Before stating our result, it may be convenient to recall the definition of bounded variation
function and a results that played a crucial role in our analysis: Helly’s selection theorem.

Let I ⊂ R be an interval. A family t ∈ I 7→ u(t) ∈ E, E a subset of a Banach space B,
is in BV (I, E) if there exists N ≥ 0 such that

n∑
j=1

‖u(tj)− u(tj−1)‖B ≤ N

for any partition a = t0 < t1 < . . . < tn = b of the interval (a, b). The mapping

u ∈ BV (I, E) 7→ sup
a=t0<t1<...<tn=b

n∑
j=1

‖u(tj)− u(tj−1)‖B

is a semi-norm on BV (I, E) that we denote with ‖ · ‖BV (I,E). The semi-norm in BV (I, E)
is also called total variation.
We say that (un)n∈N ∈ BV (I, E) converges to u ∈ BV (I, E) if (un)n∈N is a bounded
sequence in BV (I, E) pointwise convergent to u ∈ BV (I, E).

The Jordan decomposition theorem provides that any bounded variation function is
the difference of two nondecreasing bounded functions. This coupled to Helly’s principle
of choice (see [Nat55]) provides the famous Helly’s selection theorem :

Theorem 6.1. Let (fn)n∈N be a sequence in BV (I,R), where I is a compact interval. If

1. there exists M > 0 such that for all n ∈ N, ‖fn‖BV (I,R) < M ,

2. there exists x0 ∈ I such that (fn(x0))n∈N is bounded.

Then (fn)n∈N has a pointwise convergent subsequence.

6.3 The weak coupling for piecewise constant control
In the analysis [BCC13c], we considered a slightly more general system than (6.1). In a
separable Hilbert space H endowed with norm ‖ · ‖ and Hilbert scalar product 〈·, ·〉, we
studied the evolution problem

dψ

dt
=

(
A+

p∑
l=1

ulBl

)
ψ (6.3)

where we made the
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Assumption 6.3.1. (A,B1, . . . , Bp) is a (p+ 1)-uple of linear operators such that

1. for every u in Rp, A+
∑

l ulBl is essentially skew-adjoint on the domain D(A) of A
and i(A+

∑
l ulBl) is bounded from below;

2. A (is skew-adjoint and) has purely discrete spectrum (−iλj)j∈N, the sequence (λj)j∈N
is positive non-decreasing and unbounded.

Assumption 2 was relaxed in [BCC14c]. In this first analysis it was advantageous to
consider the compact resolvent case.

From Assumption 1, we deduce that for every initial state ψ0 in H, for every piecewise
constant control u : t ∈ R →

∑N
n=0 u

nχ[tn,tn+1)(t) ∈ Rp, where χ[a,b)(t) stands for the
characteristic function of the interval [a, b), with 0 = t0 ≤ t1 ≤ . . . ≤ tN+1 we can define
the solution of (6.1) by t 7→ Υu

t ψ0, where

Υu
t = e(t−tj−1)(A+

∑p
l=1 u

j−1
l Bl) ◦ e(tj−1−tj−2)(A+

∑p
l=1 u

j−2
l Bl) ◦ · · · ◦ et0(A+

∑p
l=1 u

0
lBl), (6.4)

for t ∈ [tj−1, tj), j = 1, . . . , N .
For every s ≥ 0, with

|A|sψ =
∑
n

|λn|s〈ψ, φn〉φn,

we define the s-norm by ‖ψ‖s = ‖|A|sψ‖ for every ψ in D(|A|s). We introduced the

Definition 6.2. Let k be positive and let (A,B1, . . . , Bp) satisfy Assumption 6.3.1.1. Then
(A,B1, . . . , Bp) is k-weakly-coupled if for every u ∈ Rp, D(|A+

∑
l ulBl|k/2) = D(|A|k/2)

and there exists a constant C such that, for every 1 ≤ l ≤ p, for every ψ in D(|A|k),
|<〈|A|kψ,Blψ〉| ≤ C|〈|A|kψ, ψ〉|.

The coupling constant ck(A,B1, . . . , Bp) of system (A,B1, . . . , Bp) of order k is the
quantity

sup
ψ∈D(|A|k)\{0}

sup
1≤l≤p

|<〈|A|kψ,Blψ〉|
|〈|A|kψ, ψ〉|

.

In [BCC13c], we gave many different examples of weakly-coupled systems : the single
trap ion, smooth potentials on compact manifold in the bounded case (such as the rotation
of the molecule in a plane), or the quantum harmonic oscillator which, as the planar
molecule, belongs to the class of tri-diagonal systems (the control potential has an infinite
tri-diagonal matrix in the basis of the eigenvectors).

One of the main feature of weakly-coupled system is the bound on the growth of the
s-norm given by the following

Proposition 6.3. Let k be a positive number and let (A,B1, . . . , Bp) satisfy Assump-
tion 6.3.1 and be k-weakly-coupled. Then, for every ψ0 ∈ D(|A|k/2), K > 0, T ≥ 0, and
piecewise constant function u = (u1, . . . , up) for which

∑p
l=1 ‖ul‖L1 ≤ K, one has

‖Υu
T (ψ0)‖k/2 ≤ eck(A,B1,...,Bp)K‖ψ0‖k/2. (6.5)

If for instance the restriction of Bl to D(|A| k2 ) is bounded for the k
2
-norm for every

l = 1, . . . , p then (A,B1, . . . , Bp) is k-weakly-coupled if for every u ∈ Rp, D(|A| k2 ) =

D(|A+
∑

l ulBl|
k
2 ).
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6.3.1 Good Galerkin approximation

Our motivation to control the growth of the s-norm was practical. The idea was to approx-
imate the infinite dimensional system by its compression to a natural finite dimensional
space. For every N in N, we define the orthogonal projection

πN : ψ ∈ H 7→
∑
j≤N

〈φj, ψ〉φj ∈ H

where (φj)j∈N a Hilbert basis of H such that Aφj = −iλjφj for every j in N. With this
projection in mind we introduced the

Definition 6.4. Let N ∈ N. The Galerkin approximation of (6.1) of order N is the
system in H

ẋ =

(
A(N) +

p∑
l=1

ulB
(N)
l

)
x (ΣN)

where A(N) = πNA �RanπN and B(N)
l = πNBl �RanπN are the compressions of A and Bl

(respectively).

We denote by Xu
(N)(t, s) the propagator of (ΣN) for a p-uple of piecewise constant

functions u = (u1, . . . , up). We proved that on finite time intervals the associated sequence
in N converges to the solution of (6.3) in the sense of the

Theorem 6.5 (Good Galerkin Approximation). Let k and s be non-negative numbers with
0 ≤ s < k. Let (A,B1, . . . , Bp) satisfy Assumption 6.3.1 and be k-weakly-coupled. Assume
that there exist d > 0 and 0 ≤ r < k such that ‖Blψ‖ ≤ d‖ψ‖r/2 for every ψ in D(|A|r/2)
and l in {1, . . . , p}. Then for every ε > 0, K ≥ 0, n ∈ N, and (ψj)1≤j≤n in D(|A|k/2)n
there exists N ∈ N such that for every piecewise constant function u = (u1, . . . , up)

p∑
l=1

‖ul‖L1 < K =⇒ ‖Υu
t (ψj)−Xu

(N)(t, 0)πNψj‖s/2 < ε,

for every t ≥ 0 and j = 1, . . . , n.

The proof of this theorem reduces, by interpolation with the estimates (6.5), to the
case s = 0 which corresponds to the space H.

In [BCC12b], we provided numerical experiments supporting this theorem in the case of
the harmonic oscillator or the potential well. The control was of averaging type, see [Cha12]
and chosen to exchange the moduli of the first three coordinates. The idea was to model
quantum logical gates, the basic blocs of quantum circuits. In [BCC12c], we revisited the
averaging procedure. The idea was to measure the quality of the chosen periodic control,
to this effect we introduced a quantity called efficiency and made numerical experiments for
rotations of planar molecules supporting that the efficiency is a good quantity to measure
the quality of the control.

6.3.2 Approximate controllability

We applied the above theorem to control theory and actually generalised to higher regularity
results on approximate controllability of [Bos+12]. Recall the
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Definition 6.6. Let (A,B) satisfy Assumption 6.3.1 and s > 0. The system (A,B) is
approximately simultaneously controllable for the s-norm if for every ψ1, . . . , ψn ∈ D(|A|s),
Υ̂ ∈ U(H) such that Υ̂(ψ1), . . . , Υ̂(ψn) ∈ D(|A|s), and ε > 0, there exists a piecewise
constant function uε : [0, Tε]→ R such that

‖Υ̂ψj −Υuε
Tε
ψj‖s < ε.

for every j = 1, . . . , n.

In order to state the approximate controllability result, we introduced some sufficient
conditions with the

Definition 6.7. Let (A,B) satisfy Assumption 6.3.1. A subset S of N2 couples two levels
j, l in N, if there exists a finite sequence

(
(s1

1, s
1
2), . . . , (sq1, s

q
2)
)
in S such that

(i) s1
1 = j and sq2 = l;

(ii) sj2 = sj+1
1 for every 1 ≤ j ≤ q − 1;

(iii) 〈φsj1 , Bφsj2〉 6= 0 for 1 ≤ j ≤ q.

The subset S is called a connectedness chain for (A,B) if S couples every pair of levels in
N. A connectedness chain is said to be non-degenerate (or sometimes non-resonant) if for
every (s1, s2) in S, |λs1 − λs2| 6= |λt1 − λt2| for every (t1, t2) in N2 \ {(s1, s2), (s2, s1)} such
that 〈φt2 , Bφt1〉 6= 0.

We obtained the

Proposition 6.8. Let k be a positive number. Let (A,B) satisfy Assumption 6.3.1, be
k-weakly-coupled, and admit a non-degenerate chain of connectedness. Assume that there
exist d > 0, 0 ≤ r < k such that ‖Bψ‖ ≤ d‖|A| r2ψ‖, for every ψ in D(|A| r2 ). Then (A,B)
is approximately simultaneously controllable for the norm ‖ · ‖s/2 for every s < k.

Notice that the harmonic oscillator, in the case we considered in [BCC13c], is weakly
coupled at any order but not controllable, see [MR04] and it does not enter the framework
of Proposition 6.8.

6.3.3 An application: The Schrödinger equation with a polariz-
ability term

In [BCC12a; BCC14a], we considered the following control system

d

dt
ψ = (A+ u(t)B + u2(t)C)ψ,

where (A,B,C, k) satisfies

Assumption 6.3.2. k is an integer and (A,B,C) a triple of (possibly unbounded) linear
operators in H such that

1. A is skew-adjoint with pure point spectrum (−iλj)j∈N with λj 6= 0, λj →∞;

2. for every (u1, u2) in R2, A + u1B + u2C is essentially skew-adjoint with domain
D(A);

3. for every (u1, u2) in R2, |A+ u1B + u2C|k/2 has domain D(|A|k/2));
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4. sup
ψ∈D(|A|k)\{0}

|<〈|A|kψ,Bψ〉|
|〈|A|kψ, ψ〉|

+
|<〈|A|kψ,Cψ〉|
|〈|A|kψ, ψ〉|

<+∞;

5. there exist d > 0 and 0 ≤ r < k such that ‖Bψ‖ ≤ d‖|A|r/2ψ‖ and ‖Cψ‖ ≤
d‖|A|r/2ψ‖ for every ψ in D(|A|r/2).

We are almost in the previous framework with B1 = B, B2 = C and u1 = u but
u2 = u2 = u2

1. The later is thus a constraint in the choice of the second control.
At this point we tried to relax our requirements on the chain of connectedness and

introduced the

Definition 6.9. A pair (j, l) in N2 is a weakly non-degenerate transition of (A,B,C) if
|bjl| + |cjl| 6= 0 and, for every m,n, |λj − λl| = |λn − λm| implies {j, l} = {m,n} or
|bmn|+ |cmn| = 0 or {m,n} ∩ {j, l} = ∅.

A pair (j, l) in N2 is a strongly non-degenerate transition of (A,B,C) if |bjl|+ |cjl| 6= 0
and, for every m,n, |λj − λl| = |λn − λm| implies {j, l} = {m,n}.

A pair (j, l) in N2 is a non-resonant transition of (A,B,C) if |bjl|+ |cjl| 6= 0 and, for
every m,n, |λj − λl| = |λn − λm| implies {j, l} = {m,n} or |bmn|+ |cmn| = 0.

A subset S of N2 is a chain of connectedness of (A,B,C) if there exists α in R such
that, for every m,n ∈ N, there exists a finite sequence s1 = (s1

1, s
2
1), s2 = (s1

2, s
2
2), . . . , sr =

(s1
r, s

2
r) ∈ S such that s1

1 = m, s2
r = n, s2

l = s1
l+1 for every l = 1, . . . , r − 1 and

〈φs2l , (B + αC)φs1l 〉 6= 0 for every l = 1, . . . , r. A chain of connectedness S of (A,B,C) is
weakly non-degenerate (resp. strongly non-degenerate, resp. non-resonant) if every s in S
is a weakly non-degenerate (resp. strongly non-degenerate, resp. non-resonant) transition
of (A,B,C).

By analyticity, for almost every α in R, (A,B + αC, 0) satisfies Assumption 6.3.2 and
admits a non-degenerate chain of connectedness. Thus due to Proposition 6.8, this system
is approximatively controllable. This can be improved to impose controls in arbitrary
intervals such as [0, δ] with δ > 0. Then the routine introduced in the previous section
works as fine.

A key remark was the following lemma. It can be interpreted as the number of values
that a control takes can be restricted to the minimum that is 3 in general and 2 when it is
non-negative.

Lemma 6.10. Let (A,B, 0, k) satisfy Assumption 6.3.2 with k in N, T be a positive number,
a, b be two real numbers such that a < 0 < b, u∗ be a piecewise constant function with
support in [0, T ], and ψ0 be in H. Then, for every ε > 0, there exists a piecewise constant
control uε : [0, Tε]→ {a, 0, b} such that ‖Υuε

Tε,0
(ψ0)−Υu∗

T,0(ψ0)‖ < ε, and ‖uε‖L1 ≤ ‖u∗‖L1.
Moreover, if u∗ is positive, then uε may be chosen with value in {0, b}.

So choosing b = α provided the

Theorem 6.11. Assume that (A,B,C) admits a non-degenerate chain of connectedness.
Then, for every ε > 0, for almost every δ > 0, for every ψ0, ψ1 in the Hilbert unit sphere
of H, there exists uε : [0, Tε]→ {0, δ} such that ‖Υuε

Tε,0
ψ0 − ψ1‖ < ε.

We also obtained that if (1, 2) is a non-degenerate transition of (A,B,C), then, for
every ε > 0, for almost every δ > 0, there exists uε : [0, Tε]→ {0, δ} such that

‖uε‖L1 ≤ π

|b12 + δc12|
and ‖Υuε

Tε,0
φ1 − φ2‖ < ε.
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Similarly, if for some δ > 0, S is a weakly non degenerate chain of connectedness of
(A,B + δC, 0). Then, for every ε > 0 and for every p, q in N, there exist Tε > 0 and a
piecewise constant function uε : [0, Tε]→ {0, δ} such that

‖Υuε,(A,B,C)
Tε,0

φp − φq‖r < ε,

for every r < k/2. While if (p, q) is a weakly non-degenerate transition of (A,B,C) and
for some δ > 0, bpq + δcpq 6= 0 then, for every ε > 0 there exist Tε > 0 and a piecewise
constant function uε : [0, Tε]→ {0, δ} such that

‖Υuε,(A,B,C)
Tε,0

φp − φq‖r < ε,

with
‖uε‖L1 ≤ π

|bpq + δcpq|
for every r < k/2.

In [BCC14a] we showed that the mapping u 7→ Υu
T,t0

ψ0 admits a unique continuous
extension (for the ‖ · ‖L1 + ‖ · ‖L2 norm) to L1(R,R) ∩ L2(R,R), for every fixed T ≥ 0.
This allowed us to extend all our results to this context.

6.3.4 Minimal control time

During our analysis, we realised that both the energy accumulating at infinity and the
dispersion associated to the continuous spectrum allow in some cases very small control
time. The idea relies on the RAGE theorem (Ruelle [Rue69], Amrein-Georgescu [AG74] &
Enss [Ens78]), which is a manifestation of the dispersion of the control potential, and on
averaging control to connect to states localised at high energies.

We considered the following bilinear control system

i
∂ψ

∂t
= −|∆|αψ + u(t) cos θψ θ ∈ Ω (6.6)

where α is a real constant, Ω = R/2π is the one dimensional torus, H = L2(Ω,C) and ∆
is the Laplace-Beltrami operator on Ω.

The Hilbert space H = L2(Ω,C) splits in two subspaces He and Ho, the spaces of even
and odd functions of H respectively. The spaces He and Ho are stable under the dynamics
of (6.6), hence no global controllability is to be expected in H. We considered only the
restriction of (6.6) to the space Ho.

Theorem 6.12. If α > 5/2, then for every ψ0, ψ1 in the Hilbert unit sphere of Ho, for
every ε > 0, for every T > 0, there exists a piecewise constant function u : [0, T ]→ R such
that ‖Υu

Tψ0 − ψ1‖ < ε.

In other words, for (6.6), if α > 5/2 then the minimal control time is arbitrary small.
This situation is in contrast with the finite dimensional case. The question of minimal
control time in the infinite dimensional setting is completely open. At this point, we
mention the recent analysis [BCT14] which provides a general example of bilinear controlled
system for which there exists a non zero minimal control time.

6.3.5 The energy of the control

In [BCC12e] we considered a couple (A,B) of linear operators such that
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1. A is skew-adjoint and has purely discrete spectrum (−iλk)k∈N associated with the
sequence (φk)k∈N of eigenvectors, the sequence (λk)k∈N is positive non-decreasing
and accumulates at +∞;

2. B : H → H is skew-adjoint and bounded;

3. for every j, k, 〈φj, Bφk〉 is purely imaginary.

Moreover we assumed that (A,B) admits a non-degenerate chain of connectedness. For
every r > 0, for every j, k in N and ε > 0 we define Aεr(j, k) as the set of functions
u : [0, Tu]→ R in L1([0, Tu]) ∩ Lr([0, Tu]) such that ‖Υu

Tu
φj − φk‖ < ε. We considered the

quantity

Cr(φj, φk) = sup
ε>0

(
inf

u∈Aεr(j,k)
‖u‖Lr(0,Tu)

)
.

and proved the

Proposition 6.13. C1 is a distance on the set {φj, j ∈ N}. For r > 1, Cr is equal to zero
on {(φj, φk), j, k ∈ N}.

Hence, among the Lebesgue spaces, the most relevant space seemed to be L1 space.
We actually showed that for the rotation of a planar molecule, we have

C1(φ1, φ2) = π.

where φ1 and φ2 are the first odd eigenstates.
We considered the L1 norm as more relevant as it could play the role of an energy for

the control u in the sense that this controls the variation of the solution. The outcome
would be a lower bound for the energy u in terms of some distance between the initial and
the final state. Actually this is still a rough norm compared to what we obtained.

In [BCC13a], we showed that from piecewise constant controls we can extend the
existence and continuity results of solutions of (6.3) to bounded variation controls. Then
in [BCC13b] we provided two examples (the rotation of the planar molecule and an non
physical perturbation of the harmonic oscillator) for which we indeed have lower bounds
of the distance of the initial and final state by means of the total variation.

For instance, if one considers only piecewise constant controls switching between 0 and
some given positive value, then its total variation is a linear function of the number of its
switches and only that. From the above discussion the conclusion is then that to drive the
system from an initial state to a final states, there is a minimal number of switches.

Notice that up to a change of variable, corresponding to the interacting framework,
the L1 norm is nothing less than the total variation of the measure of density u. This
interaction framework needs some regularity on the system, at least (A,B) has to be
1-weakly coupled.

6.4 Upper bounds for attainable set of bilinear control
systems

In [BCC14c], we extended to a wider framework the considerations developed in our previous
works. In this analysis, we considered only one control potential (see Equation (6.1)).
As already mentioned the bounded variation control framework seemed to more suitable
for non-autonomous dynamics. The idea was not new, it goes back to [Kat53]. In
finite dimensions, Carathéodory’s theorem allows locally integrable controls. This can be



110 CHAPTER 6. BILINEAR CONTROL OF INFINITE DIMENSIONAL MODELS

recovered when the control potential B is bounded as for instance in [BMS82]. Up to
a change of variables, the interaction framework, we can extend the solutions to Radon
measure. Of course, the associated solution is no longer continuous but we could impose
right-continuity. It appeared that the discontinuities are located at the jumps at the atoms
of the measure. Shall we be more careful, we would say that this extension to Radon
measure has been obtained by a completion with respect to a natural topology on Radon
measure.

We also relaxed the skew-adjointness framework in order to exploit fully the weak-
coupling. Indeed, a couple (A,B) appears to be weakly coupled if B and −B are dissipative
(up to a constant) with respect to the scale of A.

Our aim was to give upper bounds for attainable set of bilinear control systems and
our main result could be the

Theorem 6.14. Let H be an infinite dimensional separable Hilbert space, A be a maximal
dissipative operator on H with domain D(A) and B an operator on H such that B− c and
−B − c′ generate contraction semi-groups leaving D(A) invariant. If A+ uB is maximal
dissipative with domain D(A) for every u in R and if the map t ∈ R 7→ etBAe−tB ∈
L(D(A),H) is locally Lipschitz, then,

1. for every T > 0, there exists a unique continuous extension to L1([0, T ],R) of the
input-output mapping of (6.1) u 7→ Υu

T,0 ∈ L(H,H),

2. for every ψ0 in H, the set⋃
α≥0

⋃
T≥0

⋃
u∈L1([0,T ],R)

{αΥu
t,0ψ0, t ∈ [0, T ]}

is a meagre set in H and hence has dense complement.

In the special case where the control operator B is bounded, we obtain a simplified
statement similar to the one of [BMS82] and dealing with L1 controls and answering a
question by Ball, Marsden and Slemrod [BMS82, Remark 3.8]. We have the

Proposition 6.15. Let H be an infinite dimensional separable Hilbert space, A generate
a C0 semi-group of bounded linear operators on H and B be a bounded linear operator on
H. Then for every T > 0, there exists a unique continuous extension to L1([0, T ],R) of
the input-output mapping of (6.1) u 7→ Υu

T,0 ∈ L(H,H) and, for every ψ0 in H,⋃
α≥0

⋃
T≥0

⋃
u∈L1([0,T ],R)

{αΥu
t,0ψ0, t ∈ [0, T ]}

is a meagre set in H and hence has dense complement.

The Lipschitz hypothesis in Theorem 6.14 is crucial for our analysis when B is un-
bounded but may be difficult to check in practice. For bilinear systems encountered in
quantum physics, one can take advantage of the skew-adjointness of the operators to make
the analysis simpler. For instance, it is possible to replace the Lipschitz assumption of
Theorem 6.14 by a hypothesis of boundedness of the commutator of operators A and B:

Theorem 6.16. Let H be an infinite dimensional separable Hilbert space, k a positive
number, A and B be two skew-adjoint operators such that

1. A is invertible,
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2. B is A-bounded∗ with ‖B‖A = 0, where

‖B‖A := inf
λ>0
‖B(λ− A)−1‖.

3. for every u in R, |A+ uB|k/2 is self-adjoint with domain D(|A|k/2) and

4. there exists a constant C such that, for every ψ in D(|A|k), |<〈|A|kψ,Bψ〉| ≤
C|〈|A|kψ, ψ〉|.

Then, for every T > 0, there exists a unique continuous extension to BV ([0, T ],R) of the
input-output mapping u 7→ Υu

T . Moreover, for every s < k/2 and every ψ0 in H, the set⋃
α≥0

⋃
T≥0

⋃
u∈BV ([0,T ],R)

{αΥu
t,0ψ0, t ∈ [0, T ]}

has dense complement in D(|A|s).

6.5 Some extensions
In this section, we emphasize some of the ideas behind the proofs of the above mentioned
results and provide some extensions to Radon measure or higher regular framework.

6.5.1 The properties of the propagator

Under weak coupling assumption on the control potential B with respect to the uncontrolled
operator A, we were able to extend the previous results to an higher regular setting.

For instance we can replace the ambient Hilbert space by any iterated domain of A up
to the maximal regularity allowed by B. The immediate outcome of this extension is that
the exact controllability is linked to the lack of regularity of the uncontrolled potential.

Let us recall what was our starting point. We considered as in [Kat53] the

Assumption 6.5.1. Let I be a real interval and D dense subset of H

1. A(t) is a maximal dissipative operator on H with domain D ,

2. t 7→ A(t) has bounded variation from I to L(D,H), where D is endowed with the
graph topology associated with A(a) for a = inf I,

3. M := supt∈I ‖(1− A(t))−1‖L(H,D) <∞,

Recall the

Definition 6.17 (Propagator on a Hilbert space). Let I be a real interval. A family
(s, t) ∈ ∆I 7→ X(s, t) of linear contractions, that is Lipschitz maps with Lipschitz constant
less than one, on a Hilbert space H, strongly continuous in t and s and such that

1. for any s < r < t, X(t, s) = X(t, r)X(r, s),

2. X(t, t) = IH,

is called a contraction propagator on H.

We obtained the
∗B is A-bounded if for instance BA−1 is bounded.
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Theorem 6.18. If t ∈ I 7→ A(t) satisfies Assumption 6.5.1, then there exists a unique
contraction propagator X : ∆I → L(H) such that if ψ0 ∈ D then X(t, s)ψ0 ∈ D and for
(t, s) ∈ ∆I

‖A(t)X(t, s)ψ0‖ ≤MeM‖A‖BV (I,L(D,H))‖A(s)ψ0‖.
and in this case X(t, s)ψ0 is strongly left differentiable in t and right differentiable in s
with derivative (when t = s) A(t+ 0)ψ0 and −A(t− 0)ψ0 respectively.

In the case in which t 7→ A(t) is continuous and skew-adjoint, if ψ0 ∈ D then
t ∈ (s,+∞) 7→ X(t, s)ψ0 is strongly continuously differentiable in H with derivative
A(t)X(t, s)ψ0.

Below, we will write that X is the propagator associated with A. We obtained the
continuity of the propagator X with respect to A in the sense of

Proposition 6.19. Let (An)n∈N and A satisfy Assumption 6.5.1 on a bounded real interval
I. Let (Dn)n∈N and D be their respective domains (for any t ∈ I). Let Xn (respectively
X) be the contraction propagator associated with An (respectively A).

Assume

1. supn∈N supt∈I ‖(1− An(t))−1‖L(H,Dn) < +∞,

2. An(τ) converges to A(τ) in the strong resolvent sense for almost every τ ∈ I as n
tends to infinity:

(1− An(τ))−1φ→ (1− A(τ))−1φ in H, for a.e. τ ∈ I,

3. supn∈N ‖An‖BV (I,L(Dn,H)) < +∞,

4. supn∈N ‖An(a)‖L(Dn,H)) < +∞ for for a = inf I.

Then Xn(t, s) tends strongly to X(t, s) locally uniformly in s, t ∈ I.

It is interesting to notice that when restated for An(t) = A+ un(t)B as in (6.1), the
hypotheses of this proposition in the sequence (un)n∈N of bounded variation functions
reduces to the claim that it is almost everywhere pointwise convergent with a uniform
bounded variation. This is, surprisingly, the conclusion of Helly’s selection theorem and
lead us to consider the corresponding topology in our analysis.

This two results provide most of the result we needed when we dealt with bounded
variation controls. In the case of Radon measures we made the

Assumption 6.5.2. (A,B,K) is a triple with A is a maximal dissipative operator on H,
B an operator on H with D(A) ⊂ D(B), and K a real interval containing 0 is such that
for any u ∈ K, A+ uB is a maximal dissipative operator on H with domain D(A).

We also made the

Assumption 6.5.3. (A,B,K), with A a maximal dissipative operator on H and K a real
interval containing 0, is such that

1. there exists c ≥ 0 and c′ ≥ 0 such that B − c and −B − c′ generate contraction
semigroups on H leaving D(A) invariant,

2. for every u ∈ R((0, T ]), with u((0, t]) ∈ K for any t ∈ [0, T ],

t ∈ [0, T ] 7→ A(t) := eu((0,t])BAe−u((0,t])B

is a family of maximal dissipative operators with common domain D(A) such that :
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• supt∈[0,T ] ‖(1−A(t))−1‖L(H,D(A)) < +∞,

• A has bounded variation from [0, T ] to L(D(A),H).

This allows us to obtain the proposition below where the space R(I) denotes the space
of (signed) Radon measures on a real interval I.

Proposition 6.20. Let (A,B,K) satisfy Assumption 6.5.2 and (A,B,K) satisfy Assump-
tion 6.5.3. Let t 7→ Y u

t be the contraction propagator with initial time s = 0 associated with
A(t) := e−u((0,t])BAeu((0,t])B for u ∈ R((0, T ]) and Υu

t the one associated with A + u(t)B
with initial time s = 0 for u ∈ BV ([0, T ],R). Then for every ψ0 ∈ H, t ∈ [0, T ] the map
Υt(ψ0) : u 7→ Υu

t (ψ0) ∈ H admits a unique continuous extension on R((0, T ]) denoted
Υt(ψ0) which satisfies, for every u in R(I),

Υu
t (ψ0) = eu((0,t])BY u

t (ψ0),∀u ∈ R((0, T ]),∀t ∈ [0, T ].

From the above expression, we can see that the factor eu((0,t])B supports all the
discontinuities of the solution. More precisely, the jumps of the solutions are the atoms
of u.

Making a crucial use of Helly’s selection theorem, we obtained among others the results
of the previous section. Actually the case of bounded operator was treated separately and
the existence theory in the Radon case was obtained directly from a Dyson type expansion
allowing less assumptions on (A,B).

6.5.2 The new form of the weak coupling

The weak coupling was then reformulated as in the following

Definition 6.21 (Weakly coupled). Let k be a non negative real. A couple of skew-adjoint
operators (A,B) is k-weakly coupled if

1. A is invertible with bounded inverse from D(A) to H

2. for any real t, etBD(|A|k/2) ⊂ D(|A|k/2),

3. there exists c ≥ 0 and c′ ≥ 0 such that B − c and −B − c′ generate contraction
semigroups on D(|A|k/2) for the norm ψ 7→ ‖|A|k/2u‖.

In [BCC14c], we provided different equivalent definitions and showed that the former
definition of weak-coupling actually implied the new one.

The main interest of this definition is to show that the weak-coupling is in fact almost
a restatement in D(|A|k) of the assumption we made in H to ensure the well posedness of
(6.1). This lead us to the

Proposition 6.22. Let k be a non negative real. Let (A,B) be k-weakly coupled and B
be A-bounded.

For any u ∈ BV ([0, T ],R) ∩BL∞([0,T ])(0, 1/‖B‖A), there exists a family of contraction
propagators in H that extends uniquely as contraction propagators to D(|A|k/2) : Υu :
∆[0,T ] → L(D(|A|k/2)) such that

1. for any t ∈ [0, T ], for any ψ0 ∈ D(|A|k/2)

‖Υt(ψ0)‖k/2 ≤ eck(A,B)
∫ t
0 |u|‖ψ0‖k/2
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2. for any t ∈ [0, T ], for any ψ0 ∈ D(|A|1+k/2) for any u ∈ BV ([0, T ],R) with ‖u‖∞ <
1/‖B‖A), there exists m (depending only on A, B and ‖u‖L∞([0,T ]))

‖Υt(ψ0)‖1+k/2 ≤ mem‖u‖BV ([0,T ],R)eck(A,B)
∫ t
0 |u|‖ψ0‖1+k/2

Moreover, for every ψ0 in D(|A|k/2), the end-point mapping

Υ(ψ0) : BV ([0, T ], K)→ D(|A|k/2)

u 7→ Υu(0, T )(ψ0)

is continuous.

Then our main point was that any statement that we made in H in the bounded
variation case still holds in D(|A|k/2) when (A,B) is k-weakly coupled. The Radon
measure case cannot be attained as the interacting framework is more demanding in terms
of regularity. Instead, we obtained the results by interpolating H and D(|A|k/2) which
gave the space D(|A|s) for s ∈ [0, k/2). In this case we can thus extend the result we
obtain in H to D(|A|s) for s ∈ [0, k/2).

6.5.3 Operators with a non pure point spectrum

When the operator A does not admit a basis of eigenvectors some parts of the theory in
Section 6.3 do not extend easily. It does not necessarily mean that we cannot reach some
of the conclusion we made.

For instance, we can make use of the

Theorem 6.23 (Weyl-Von Neumann). Let A be a skew-adjoint operator on H. For any
ε > 0, there exists Cε ∈ B2(H) skew-adjoint with ‖Cε‖2 ≤ ε and such that A+Cε has pure
point spectrum.

With this tool we can for instance obtain good Galerkin approximations and then use
finite dimensional theory and expect some interesting controllability results. We have thus
the

Proposition 6.24. Let A be skew-adjoint, B be bounded with B(1− A)−1 compact and
s be in [0, 1). Then for every ε > 0, L ≥ 0, T > 0, n ∈ N, and (ψj)1≤j≤n in D(|A|k/2)n
there exists a Hilbert basis Φ of H and N ∈ N such that for any u ∈ BV (0, T ],

|u|([0, T ]) < L⇒ ‖Υu
t (ψj)−Xu

(N)(t, 0)πNψj‖s/2 < ε,

for every t in [0, T ] and j = 1, . . . , n.
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III.7

Stability of non-linear
Dirac problems

In this section, we present the results of the analysis [BC12c; BC12b], in which we
considered the stability problem related to non-linear Dirac models. This is the chapter
which is the most related to my PhD work. I’ve chosen to present first the joint work
with Andrew Comech on the spectral and linear stability and then the one with Scipio
Cuccagna on the non-linear stability. This is opposite to the chronological order but in a
sense the spectral analysis should precede the non-linear analysis.

This situation is explained as follows: the spectral analysis is a difficult analysis with
very limited outcome. In many situations it has to be accompanied by numerical evidences.
We choose with Scipio Cuccagna to proceed further paying the price of making assumptions
on the linearised spectrum.

We mention that we provide a limited bibliography in the sequel. The actual bibliogra-
phy in this field is limited. The non-linear Dirac equation due to its strong indefiniteness
cannot be analysed from the stability point of view with the tools introduced for its
non-relativistic counter part: the non-linear Schrödinger equation. For instance the orbital
stability which was obtained either by concentration-compactness method [CL82] or by
Lyapounov methods [GSS87] for the non-linear Schrödinger equations can no longer be
obtained by these means for the non-linear Dirac equations.

7.1 The spectral stability of dispersive relativistic mod-
els

This section presents the analysis [BC12b] in collaboration with Andrew Comech.
We considered the non-linear Dirac equation

i∂tu = Dmu− g(uu)βu, ψ(x, t) ∈ CN , x ∈ Rn, (NLDE)

where g ∈ C(R) with g(0) = 0 and u = βu∗ (·∗ denoted the complex conjugation).
The non-linearity is such that the equation is U(1)-invariant. If φω(x)e−iωt is a solitary

wave solution to (NLDE), then the profile φω satisfies the stationary equation

ωφ = Dmφ− g(φ∗βφ)βφ. (7.1)

In order to avoid any discussion on the existence of solitary waves and to restrict our
assumptions to what is needed for the analysis of the spectral stability, we made the
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Assumption 7.1.1. There exists a nonempty open interval O ⊆ (−m,m) such that
equation (7.1) admits a C1 family of solutions ω 7→ φω, O → Hs(Rn), for some s > n/2.

One of our main tool is a version of the Carleman inequality for the Dirac operator
due to Berthier and Georgescu [BG87], which we extended to any dimension. In order to
formulate it, for λ ∈ R \ [−m,m] and for constants M ≥ 1, N ≥ 1, ρ ≥ 1, and ν > 0, we
introduce the set of functions

Cλ(M,N , ρ, ν) =
{
ϕ ∈ C2(R+) ; ϕ′ > 0, 0 < ϕ′ ≤ N r, r|ϕ′′| ≤Mϕ′,

λ2 −m2 + ϕ′2 + 2rϕ′ϕ′′ ≥ ν for r ≥ ρ
}
.

Theorem 7.1 (Carleman–Berthier–Georgescu inequality in Rn). Let n ∈ N, m > 0, and
ϕ ∈ C2(R+). Let λ ∈ R\[−m,m]. Assume that

ϕ ∈ Cλ(M,N , ρ, ν)

for some M, N , ρ ≥ 1, and ν > 0. Denote

µ(r) = 8
√
n+ λ2

(√
1 + rϕ′(r) +

r√
1 + rϕ′(r)

)
.

There is R0(M,m, n, λ) < ∞ such that for any u ∈ H1(Rn,CN) with suppu ⊂ ΩR and
R ≥ max(ρ,R0(M,m, n, λ)), which satisfies

µeϕ(Dm − λ)u ∈ L2(Rn,CN),

one has (λ2 −m2 + ϕ′2 + 2rϕ′ϕ′′)1/2eϕu ∈ L2(Rn,CN), and moreover∣∣∣∣∣∣(λ2 −m2 + ϕ′2 + 2rϕ′ϕ′′
)1/2

eϕu
∣∣∣∣∣∣2 ≤ 2 ||µeϕ(Dm − λ)u||2 .

Note that ϕ is considered as a function of |x|.
The above theorem has many consequences for the analysis of eigenvectors and sequence

of eigenvectors. As an illustration we have the

Theorem 7.2 (Properties of solitary wave solutions). Let n ∈ N.

1. Let Assumption 7.1.1 be satisfied. Let φω, ω ∈ O, be a solution to (7.1). Then for
any µ <

√
m2 − ω2 one has eµ〈Q〉φω ∈ L2(Rn,CN).

2. Let g ∈ C(R). For ω ∈ R\[−m,m], there are no solitary wave solutions φω(x)e−iωt

to (NLDE) such that φω ∈ L2(Rn,CN) ∩H1
loc(Rn,CN) ∩ L∞(Rn,CN).

We now explain the main steps of the proof of a simpler result. This is the core of
some proofs we made.

Statement :

If g(x) = o(|x|2) then for ω > m then there is no solitary waves φω(x)e−iωt,
such that |x|1/4φω(x) ∈ L∞(Rn,CN).
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Sketched proof :

1. Using our assumption on g and φω with Theorem 7.1, there exists R0 ≥ 0, τ0 > 0
and C(R0) > 0 such that for any R ≥ R0, for any u ∈ H1

0 (B(0, R)c,CN), and for
any τ ≥ τ0

||eτru||L2(B(0,R)c,CN ) ≤
C(R0)

τ

∣∣∣∣r1/2eτr(Dm − g(φ∗ωβφω)β − ω)u
∣∣∣∣
L2(B(0,R)c,CN )

.

2. Consider vj = ηjφ with ηj := η(·/j), where η ∈ C∞(R) satisfies 0 ≤ η ≤ 1,

η(x) = 1, for x ∈ B(0, 2)c and 0 for x ∈ B(0, 1).

For τ > 1 and for j > R0 sufficiently large,

||eτrvj||L2(B(0,R)c,CN ) ≤
2C(R0)

τ

∣∣∣∣r1/2eτr(Dm − g(φ∗ωβφω)β − ω)vj
∣∣∣∣
L2(B(0,R)c,CN )

≤ 2C(R0)

τ

∣∣∣∣r1/2eτrα · (∇ηj)φω
∣∣∣∣
L2(B(0,R)c,CN )

,

which implies that

eτ3j ||φω||L2(B(0,3j)c,CN ) ≤ const
2C(R0)

τ
eτ2j ||φω||L2(B(0,j)c∩B(0,2j)c,CN ) .

Considering τ →∞ leads to φω is identically zero outside of the ball B3j.

3. We use a unique continuation principle for the Dirac operator to conclude.

7.1.1 The linearised operator

The linearised operator is obtain trough a linear approximation of the flow in a vicinity of
an equilibrium. A stationary solution can be turned to an equilibrium by a simple time
dependent change of gauge. For instance, we considered solutions to (NLDE) in the form
of the Ansatz u(x, t) = (φω(x) + ρ(x, t))e−iωt, so that ρ(x, t) ∈ CN is a small perturbation
of the solitary wave. If g is Fréchet differentiable at values of φ∗ωβφω, but not necessarily
at zero, (e.g. g(s) = |s|k with k > 0), the linearisation at the solitary wave φω(x)e−iωt (the
linearised equation on ρ) is given by

i∂tρ = L(ω)ρ, (7.2)

where
L(ω) = Dm − ω − g(φ∗ωβφω)β − 2g′(φ∗ωβφω)βφω<(φ∗ωβ · ).

The operator L(ω) is not C-linear because of the term with <(φ∗ωβ · ). To work with
C-linear operators, we introduced

α =

[
<α −=α
=α <α

]
, 1 ≤  ≤ n; β =

[
<β −=β
=β <β

]
, J =

[
0 IN
−IN 0

]
,

where the real part of a matrix is the matrix made of the real part of its entries (and
similarly for the imaginary part of a matrix). For

φω(x) =

[
<φω(x)
=φω(x)

]
∈ R2N
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and Dm = Jα ·∇+mβ the operator corresponding to Dm acting on R2N -valued functions,
we introduced the operator

L(ω) = Dm − ω − g(φ∗ωβφω)β− 2(φ∗ωβ · )g′(φ
∗
ωβφω)βφω.

by C-linearity, it extends onto

X = H1(Rn,C2N) = H1(Rn,C⊗R R2N),

and in order for it to be be self-adjoint on the domain H1(Rn,C2N), we assume that

f ′(x) = o(
1

|x|
) as x→ 0.

The linearisation at the solitary wave (7.2) takes the form

∂tρ = JL(ω)ρ, ρ(x, t) =

[
<ρ(x, t)
=ρ(x, t)

]
∈ R2N (7.3)

where J acts as (
0 IN
−IN 0

)
.

Recall the following

Definition 7.3. We will say that a particular solitary wave is linearly stable if the spectrum
of the equation linearised at this wave does not contain points with positive real part and if
there are no 4× 4 Jordan blocks at λ = 0 and no 2× 2 Jordan blocks at λ ∈ iR \ 0.

This definition is reminiscent of Definition 7.7 below. There is only one extra require-
ments in the later that we comment in the sequel.

The essential spectrum of JL(ω) is purely imaginary, with the edges at the thresholds
±(m−|ω|)i (this is a consequence of Weyl’s theorem). There are also embedded thresholds
±(m+ |ω|)i. Hence from the point of view of linear stability, we were only interested in
the point spectrum of this operator.

Let us be more precise on this last comment. At this point of our investigations, we
haven’t consider the question of the dispersive properties of the linearised operator on
the essential spectrum. From the point of view of the stability, as long as we do not
seek optimal estimates, we can consider the Kato smoothness and Strichartz estimates of
Part II. It won’t be sufficient but Kato smoothness will follow from a limiting absorption
principle that we are currently investigating. Then as f(0) = 0 and if f ′(x) = o(|x|−1−ε),
ε > 0, due to the exponential decay of φω, see Theorem 7.2, a perturbation approach will
lead to Strichartz estimates.

In order to attain attain an optimal setting, it will be interesting to consider estimates
for non-autonomous linearised operators.

7.1.2 Linearised spectrum of the non-linear Schrödinger operator

In order to explain our results it maybe relevant to recall an important fact on the
non-linear Schrödinger equation.

For the ground state solution φω(x)e−iωt to the non-linear Schrödinger equation

i∂tψ = −∆ψ − |ψ|2kψ, ψ(x, t) ∈ C, x ∈ Rn, (NLS)
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where k > 0, the linearisation is given by

∂tρ = j`(ω)ρ,

where

(j = 1/i, ) `(ω) = `−(ω)− 2k<(φω
∗ · )|φω|2(k−1)φω, `−(ω) = −∆− ω − |φω|2k.

This operator acts on R2 valued function instead of C. The real space R2 is then embedded
in C2. The extension of j`(ω) reads as

jl(ω) :=

(
0 `−(ω)

−`(ω) 0

)
.

We have that `−(ω)φω = 0 so that from Perron-Frobenius and Sturm oscillation theorems
`−(ω) > cIφ⊥ω for some c > 0. Hence jl(ω)ρ = λρ implies√

`−(ω)`(ω)
√
`−(ω)R = −λ2R

for R =
√
`−(ω)ρ2 where ρ2 is the second component of ρ, which is necessarily nonzero. If

λ 6= 0 then λ2 ∈ R and thus
σ(jl) ⊂ R ∪ iR. (7.4)

7.1.3 The case of the linearised Dirac equations

The property 7.4 seems no longer true for Dirac type models so we tried to recover
part of this property or at least to analyse the behaviour of sequences associated to the
complementary set of R ∪ iR.

The ±2ωi eigenvalues. At this point, we can mention another difficulty coming from
the matrix aspect of the Dirac operator. The spectrum of a linearised operator, always
contains the points ±2ωi as stated by

Lemma 7.4. Let α0 be an hermitian matrix anti-commuting with α, 1 ≤  ≤ n, and
with β. Then α0φω is an eigenfunction of L− and of L, corresponding to the eigenvalue
λ = −2ω and it follows that

±2ωi ∈ σp(jL(ω)).

If n is odd α0 can be the product of α, 1 ≤  ≤ n, and β. In the other case, we have
to consider spatial symmetries and use symmetries of φω and g.

These eigenvalues are always present in the spectrum of the linearised operator and
represents a serious obstacle to the stability analysis. To understand this we defined in a
work in progress with Andrew Comech the following

χω := α0φω;

then, applying α0 to (7.1), we see that χω satisfies

− ωχω = Dmχω − f(φ∗ωβφω)βχω = Dmχω − f(−χ∗ωβχω)βχω. (7.5)

If f(s) is even, then χeiωt is a solitary wave solution to (NLDE).
Let us assume that

φ∗ωβχω = φ∗ωβα
0φω = 0.
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This is for instance true for the solutions of the Soler model considered by [CV86]
Then for a, b ∈ C satisfy |a|2 − |b|2 = 1, define

ψ(x, t) = aφω(x)e−iωt + bχω(x)eiωt.

Taking up the linear combination of (7.1) and (7.5), we see that

i∂tψ = aωφωe
−iωt − bωχωeiωt = Dmψ − f(ψ∗βψ)βψ.

We took into account that

ψ∗βψ = (aφωe
−iωt + bχωe

iωt)∗β(aφωe
−iωt + bχωe

iωt)

= (|a|2 − |b|2)φ∗ωβφω.

We obtained a manifold of bi-frequency solitary waves of the form

M =
{
eiϑ(aφω + bχω) ; ϑ ∈ T, b ∈ C1, a =

√
1 + |b|2, ω ∈ O

}
.

This is a manifold of solutions larger than the manifold of stationary solutions. An orbit
of this manifold never intersects the orbit of a stationary solution unless it is the orbit
of a stationary solution. This manifold has to replace the curve ω 7→ φω in the stability
analysis. Below we consider a larger class of perturbations of Dirac operators containing
the class of linearised operator. The following considerations are still valid for linearisation
around solutions in M . The time dependent problem and especially the modulations of
the term b still have to be investigated.

7.1.4 Embedded point spectrum

We formulated our results on the point spectrum for the operator JL, where

L = Dm − ω + V, ω ∈ (−m,m),

V : Rn → End (CN) is measurable, and such that there is τ0 > 0 and C <∞ with

sup
x∈Rn

∣∣∣∣eτ0|x|V (x)
∣∣∣∣
CN→CN < C

and J is a skew symmetric 2N × 2N matrix such that J2 = −I2N . Notice that we did not
assume that V is hermitian valued.

With Theorem 7.1 and a limiting absorption principle, we proved the

Theorem 7.5 (Properties of embedded eigenstates). Let n ≥ 1. Let J ∈ End (CN) be
skew-adjoint and invertible, J2 = −1, [J,Dm] = 0. Assume that there is τ0 > 0 such that

sup
x∈Rn

∣∣∣∣eτ0|x|V (x)
∣∣∣∣

End (CN )
<∞.

1. Let ω ∈ O, λ ∈ σp(JL(ω))∩ iR, |λ| < m+ |ω|, |λ| 6= m−|ω|. Then the corresponding
eigenfunctions are exponentially decaying.

2. There are no embedded eigenvalues beyond the embedded thresholds ±i(m+ |ω|):

σp(JL(ω)) ∩ i(R\[−m− |ω|,m+ |ω|]) = ∅.
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Then we analysed the birth of eigenvalues with nonzero real part. As in Theorem 7.5,
we formulated the results for general Dirac-type operators, having in mind the linearisation
(7.3) of the non-linear Dirac equation or linearisation of (NLDE) around point in M . We
obtained the

Theorem 7.6 (Bifurcation of point eigenvalues). Let n ≥ 1. Let J ∈ End (CN) be
skew-adjoint and invertible, J2 = −1, [J,Dm] = 0. Let (ωj)j∈N, ωj ∈ O, be a Cauchy
sequence, ωj → ωb ∈ O, and assume that there is ε > 0 such that∣∣∣∣〈Q〉1+εV (ωb)

∣∣∣∣
L∞(Rn,End (C2N ))

<∞, lim
j→∞

∣∣∣∣〈Q〉1+ε (V (ωj)− V (ωb))
∣∣∣∣
L∞(Rn,End (C2N ))

= 0.

Let λj ∈ σp(JL(ωj)) be a Cauchy sequence, with λj −→
j→∞

λb ∈ iR. Then:

1. |λb| ≤ m+ |ωb|.

2. If |λb| < m+ |ωb| and moreover V is hermitian, then

λb ∈ σp(JL(ωb)),

and there is a subsequence of eigenfunctions (ζj)j∈N corresponding to eigenvalues
λj ∈ σp(JL(ωj)) which converges in L2 to the eigenfunction ζb corresponding to
λb ∈ σp(JL(ωb)).

Moreover, if there is a subsequence of (λj)j∈N such that λj → λb and <λj 6= 0, then

〈ζb, L(ωb)ζb〉 = 0, 〈ζb, Jζb〉 = 0.

The quantity 〈ζb, L(ωb)ζb〉 = 0 is called Krein signature. Hence points of instability
bifurcation are zero Krein signature eigenvalues. The reason for that is quite simple, the
eigenvalues with nonzero real parts have zero Krein signature. So the same is true at
the limits. As we also have 〈ζb, Jζb〉 = 0, and hence if, as in Definition 7.7, we assume
〈ζb, Jζb〉 6= 0 this is an obstruction to the appearance of unstable directions from the
embedded eigenvalues.

To sum-up, there is no embedded eigenvalues beyond the embedded thresholds and if
eigenvalues bifurcate into the complex plane it is necessarily from an eigenvalue with zero
Krein signature between the embedded thresholds.

Even if they are in a way simple to state the proofs of these results rely on an refined
analysis of the ellipticity of the operators.

7.2 The asymptotic stability through resonances in the
non-linear Dirac equation

We now present our analysis [BC12c] lead in collaboration with Scipio Cuccagna. We
considered (NLDE) with n = 3 and N = 4 with the standard Dirac representation that is

αj =

(
0 σj
σj 0

)
, β =

(
IC2 0
0 −IC2

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
.

Equation (NLDE) reads in this case{
iut −Dmu+ g(uu)βu = 0

u(0, x) = u0(x)
(t, x) ∈ R× R3.
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7.2.1 The assumptions on the symmetries and spectral stability

Once again, we decided to make ad hoc assumptions in order to consider the non-linear
aspects. As mentioned the spectral aspects are still under investigation and our knowledge
on that respect was even more limited at the time we worked on the analysis [BC12c]
that we present now. At that time the numerical experiments made by [BC12a] were in
agreement with our assumptions. We still think that these assumptions are valid

Let us start by presenting all the assumptions we made. It may look threatening but
we gathered all the assumptions of a long analysis and a large part is either assumptions
on the nonlinearity or symmetries imposed to the solitary waves or the initial conditions.
Some of these assumptions, especially those on the symmetries, are are verified in some
cases.

Below C : C4 → C4 denotes the charge conjugation operator uc := Cu := iβα2u
∗. We

have αjC = Cαj and βC = −Cβ for all j ∈ {1, 2, 3}, see [Tha92, Sect. 1.4.6]. Since it
is anti-linear, for any u ∈ C4, C(u∗) = (Cu)∗. We denoted by L(ω, 0) the block diagonal
operator (

Dm − ω 0
0 Dm + ω

)
.

Let us recall the full set of assumptions we made.

(1) g(0) = 0, g ∈ C∞(R,R).

(2) There exists an open interval O ⊆ (m/3,m) such that Dmu − ωu − g(uu)βu = 0
admits a C∞ family of solutions ω ∈ O → φω ∈ Hk,τ (R3) for any (k, τ). In spherical
coordinates x1 = ρ cos(ϑ) sin(ϕ), x2 = ρ sin(ϑ) sin(ϕ), x3 = ρ cos(ϕ), these standing
waves are of the form

φω(x) =

 a(ρ)

[
1
0

]
ib(ρ)

[
cosϕ
eiϑ sinϕ

]


with a(ρ) and b(ρ) real valued and satisfying the following properties:

a, b ∈ C∞([0,∞),R) , ∀ρ ≥ 0, a2(ρ)− b2(ρ) ≥ 0,

a(j) and b(j) decay exponentially at infinity for all j.

Notice that φω(−x) = βφω(x) and φω(−x1,−x2, x3) = S3φω(x1, x2, x3) with S3 :=(
σ3 0
0 σ3

)
.

(3) Let q(ω) = ‖φω‖2
L2 . We assume q′(ω) 6= 0 for all ω ∈ O.

(4) For any x ∈ R3 we consider in (NLDE) initial data s.t. u0(−x) = βu0(x) and
u0(−x1,−x2, x3) = S3u0(x1, x2, x3).

(5) Let L(ω) be the linearised operator around eitωφω. We assume that L(ω) satisfies the

Definition 7.7 (Linear Stability). A standing wave eitωφω is linearly stable when
the following hold:

(1) σ(iL(ω)) ⊂ R;
(2) NG(iL(ω)) = {Σ3Φω, ∂ωΦω};
(3) for any eigenvalue z 6= 0 of iL(ω) we have NG(iL(ω)− z) = Ker(iL(ω)− z);
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(4) for any positive eigenvalue λ > 0 and for any ξ ∈ Ker(iL(ω) − λ), we have
〈ξ,Σ3ξ

∗〉 > 0.

If the positive discrete spectrum of iL(ω) is 0 < λ < λ2 < . . . < λn < . . . then we
fix an orthonormal basis (ξMn−1+1, . . . , ξMn−1+mn) of Ker(iL(ω)− λn) where m0 = 0,
mn is the multiplicity of λn and Mn =

∑n
k=1 mk.

(6) Consider

X :=
{

(Υ1,Υ2) ∈ L2(R3, (C4)2) : (Υ1(−x),Υ2(−x1,−x2, x3) ≡ (βΥ1(x),−βΥ1(x),

(Υ1(−x1,−x2, x3),Υ2(−x1,−x2, x3) ≡ (S3Υ1(x),−S3Υ1(x))
}
.

The space X is invariant for the action of iL(ω). Consider the restriction of iL(ω) in
X. Then iL(ω) has 2n nonzero eigenvalues, counted with multiplicity, all contained
in (ω − m,m − ω). The positive eigenvalues can be listed as 0 < λ1(ω) ≤ ... ≤
λn(ω) < m− ω, where we repeat each eigenvalue according to the multiplicity. For
each λj(ω), also −λj(ω) is an eigenvalue. There are no other eigenvalues except for
0.

(7) The points and ±(m − ω) and ±(m + ω) are not resonances for iL(ω), see (7.6)–
(7.7) below.

(8) Suppose that λ ∈ R with |λ| > m − ω is a resonance for iL(ω), that is one of the
following two equations admits a nontrivial solution:

(1 +R+
iL(ω,0)(λ)Vω)u = 0, u ∈ L2,−τ (R3,C8) for some τ > 1/2 ; (7.6)

(1 +R−iL(ω,0)(λ)Vω)u = 0, u ∈ L2,−τ (R3,C8) for some τ > 1/2 . (7.7)

Then if u satisfies either (7.6) or (7.7) we have u ∈ L2(R3,C8) and λ is an eigenvalue
of iL(ω).

(9) There are natural numbers Nj defined by the property 0 < Njλj(ω) < m − ω <
(Nj + 1)λj(ω).

(10) There is no multi index µ ∈ Zk with |µ| := |µ1| + ... + |µk| ≤ 2N1 + 3 such that
µ · λ = m± ω.

(11) If λj1 < ... < λjk are k distinct λ’s, and µ ∈ Zk satisfies |µ| ≤ 2N1 + 3, then we have

µ1λj1 + · · ·+ µkλjk = 0 ⇐⇒ µ = 0 .

(12) The non-linear Fermi golden rule holds at ω0, that is for some fixed constant C > 0,
for any vector ζ ∈ Cn we have:∑

λ0·α=λ0·ν>m−ω0
λ·α−λk<m−ω0 ∀ k s.t. αk 6=0
λ·ν−λk<m−ω0 ∀ k s.t. νk 6=0

λ0 · ν=
(
ζαζ

ν〈R+
α0H

0
α0, iβα2Σ1Σ3H

0
0ν〉
)
≥ C

∑
λ0·α>m−ω0

λ0·α−λ0k<m−ω0 ∀ k s.t. αk 6=0

|ζα|2.

where R+
µ0 = (iL(ω)− λ0 · µ− i0)−1 and

H0
α0 = ∂αG(φω0)ξα
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where for α ∈ NM (M ∈ N ∪ {∞} is the number of positive eigenvalues of iL(ω))
with |α| <∞, ξα is the |α|-uple (u1, . . . , u|α|) formed such that

uj = ξαi if
i−1∑
k=1

αk ≤ j <
i∑

k=1

αk.

and
H0

0ν = ∂α∇G(φω)(Cξ)ν

where (Cξ)ν is built similarly yo ξν with the (Cξj)1≤j≤M and

G(U) = G(U∗βU)

where G is the an antederivative of g and

Σ1 =

(
0 IC4

IC4 0

)
,Σ3 =

(
IC4 0
0 −IC4

)
.

Assumption (1) is stronger than the one me made in the previous section. Assump-
tion (2) is close to Assumption 7.1.1 especially when it is considered in conjunction with
Theorem 7.2. Except for the smoothness with respect to the parameter ω, for some
non-linearities (2) is a consequence of [CV86]. Continuous dependence on ω for some
examples was proved in [Gua08].

Assumption (3) is reminiscent of what usually appears in the case of the non-linear
Schrödinger equations, see [Wei85; Wei86; SS85; GSS87]. This goes back to Vakhitov and
Kolokolov [VK73].

The space of functions satisfying (4) is invariant by (NLDE). Since we imposed
3ω > m, we have that ±2iω are embedded eigenvalues. We can avoid this thanks to the
symmetry (4) since the associated eigenvectors do not belong to X. Reducing to the space
X reduces the number of parameters, simplifying the problem. The parameters eliminated
involve translation and orientation of the solutions.

Assumption (5) has to be linked to Definition 7.3 and the Krein signature in Theo-
rem 7.6. The first link is natural as Jordan blocks (outside the natural one for the kernel)
will produce linear instability. The second link shows that instability cannot occur by
modulating ω.

By (6)–(8) there are no resonances for the restriction of iL(ω) in X. As expected, (8)
had been verified in [BC12b].

The assumptions (7), (10), (11) and (12) are considered as generic in the sense that
they are not true for some g a small change will change the situation. Surprisingly, no
proof of such statement seems available.

The most technical assumption is (12), we actually rewrote the original one, the
one presented is stronger. The reason is that the original assumptions reads only on a
coordinate system that we obtained after several changes changes of variables that are
maybe useless to present here. Note that actually these changes of variables are small
perturbations of the identity so that replacing them by the identity gives the current
form of (12) out of the original one. One interest of the form we gave here, is that it
is closer to the usual formulation of the Fermi Golden Rule in the semi-linear context.
One motivation of our original formulation is that even if (12) is not satisfied the Fermi
Golden Rule in [BC12c] could be. Another motivation is that formulated in an appropriate
hamiltonian framework we hope that this formulation may turn to be in some convenient
form to analyse the dynamics.
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A restrictive assumption is actually (5) as it imposes to the point spectrum to be
semi-simple with non-zero Krein signature. This last requirement is compatible with the
considerations of the previous section on the spectral stability.

We finish this paragraph by mentioning that we introduced the charge conjugation C to
replace the usual complex conjugation. The standard Dirac operator commutes to C but
not to the complex conjugation. For the usual complex conjugation, the linearisation writes
in splitting real and imaginary parts. The same can be done with the charge conjugation
with the corresponding real and imaginary parts. For the hamiltonian consideration
mentioned below this is more convenient.

A linear combination will change one splitting to the other and the matrix Σ3 that
appears in the assumptions is actually the J matrix of the previous section written in the
coordinates associated to the charge conjugation splitting.

7.2.2 The asymptotic stability

The main result of our analysis is the

Theorem 7.8. Suppose that O ⊂ (m/3,m) and fix k0 ≥ 4 , k0 ∈ Z. Pick ω1 ∈ O and
let φω0(x) be a standing wave of (NLDE). Let u(t, x) be a solution to (NLDE). Assume
(1)–(12) (at ω0). Then, there exist an ε0 > 0 and a C > 0 such that for any ε ∈ (0, ε0)
and for any u0 with infγ∈R ‖u0 − eiγφω1‖Hk0 < ε, there exist ω+ ∈ O, θ ∈ C1(R;R) and
h+ ∈ Hk0 with ‖h+‖Hk0 + |ω+ − ω0| ≤ Cε such that

lim
t→+∞

‖u(t, ·)− eiθ(t)φω+ − e−itDmh+‖Hk0 = 0.

The constraint 3ω > m allows to exploit the non-linear Fermi Golden Rule like for the
non-linear Schrödinger equation by circumventing the strong indefiniteness of the Dirac
system. This guarantees that appropriate multiples of the eigenvalues belong to portions
of the spectrum where there is no superposition of the continuous spectrum of distinct
coordinates. This fact and our results continue to hold if 3ω < m and (2Nj + 1)ω > m for
all j = 1, ..., n.

It is still difficult to provide examples of g and ω satisfying our spectral assumptions.
The situation is not very different from the case of the NLS where the spectrum is unknown
except in few cases. Rigorous analysis of examples is certainly a difficult open problem.
Like for the NLS, see [Cha+08], one can consider numerical analysis.

We refer to Section 7.1 for an account of what is known for the Dirac equation. These
are ongoing works and we expect to attain a situation which can be almost as satisfactory
as in the Schrödinger case.

Consider ξ ∈ Ker(Hω−λj(ω)). One of the requirements for linear stability in Definition
7.7 is that if ξ 6= 0 then 〈ξ,Σ3ξ

∗〉 > 0. As it might seem artificial, we stated the

Theorem 7.9. Suppose that O ⊂ (m/3,m). Pick ω ∈ O and let φω(x) be a standing wave
of (NLDE). Replace (5) with the following assumption:

(H:5’) We assume that iL(ω) satisfies all the conditions of Definition 7.7 except for condition
(4) which we restate as follows. That is, we assume that for any eigenvalue λ > 0
the quadratic form ξ → 〈ξ,Σ3ξ

∗〉 is non degenerate in Ker(iL(ω)− λ). We assume
that there exists at least one eigenvalue λ > 0 such that the quadratic form is non
positive in Ker(iL(ω)− λ).

Assume (1)–(4), (H:5’) and (6)–(12). Then φω(x) is orbitally unstable.
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This instability result in Theorem 7.9 arose from our desire to justify Assumption (5)
in our definition of linear stability, see Definition 7.7.

The strategy of our proofs began with a classical linear analysis where we considered
the linearisation of (NLDE) at the stationary solution, and gave some information on the
spectrum and on symmetries of the linearisation.

We introduced an appropriate coordinate system related to the spectral decomposition
of the linearised operator. We especially insisted in having a hamiltonian formulation of
the problem in terms of the coordinates. Except for the dispersive part all the coordinates
go in pairs of conjugate coordinates. This is for instance why we considered the pair
(z, Cz) in a way similar to the scalar case. The system was rewritten in a hamiltonian
form, as we wanted to use some of the machinery used in the stability analysis of finite
dimensional hamiltonian systems. Unfortunately for the natural sympleptic structure
of the system, 〈X, iY 〉, the coordinates were not canonical. So by means of a Darboux
theorem of our own, we changed variables to canonical coordinates. We then applied the
method of Birkhoff normal forms to isolate key resonating terms and prove non-linear
dispersion. The key being the Fermi Golden Rule (12).

Specifically we proved that appropriate coefficients are quadratic forms and that for
ω > m/3 they are non negative and under hypothesis (12) they are nonzero. Then using
some of the linear theory of dispersion in [Bou06; Bou08] we obtained the stability.

7.3 An ongoing work: The non-relativistic limit

The result presented so far are quite restrictive in the sense that they are conditional to
the knowledge of what is the spectrum of some limit operator.

In a work in progress with Andrew Comech [BC], we consider the limit as ω tends to
±m which corresponds to the non-relativistic limit.

We built particular families of solitary wave solutions to the non-linear Dirac equation
(NLDE) which “bifurcate” from solitary waves of its non-relativistic limit, the non-linear
Schrödinger equation (NLS). In [Gua08] or [CGG14] such a bifurcation was obtained by
means of an implicit function theorem. They thus assumed that the non-linearity g is
smooth enough. So the non-relativistic limit is a mass super-critical non-linear Schrödinger
equation and thus the corresponding ground state is unstable. To recover stable limits, we
use a Shauder fixed point argument coupled to shooting type arguments to obtain the

Theorem 7.10. Let n ∈ N. Assume that

g(s) = |s|k +O(|s|K), 0 < k < K.

If n ≥ 3, additionally assume that k < 2/(n− 2). There is ω0 < m, dependent on n and g,
such that for ω ∈ (ω0,m) there are solutions φω to

ωφω = Dmφω − g(φ∗ωβφω)βφω,

so that φω(x)e−iωt is a solitary wave solution to (NLDE), and

φω(x)∗βφω(x) ≥ |φω(x)|2/2, x ∈ Rn. (7.8)

Moreover, introducing the projections onto the “particle” and “antiparticle” components,

ΠP =
1

2
(1 + β), ΠA =

1

2
(1− β); φP (x) = ΠPφ(x), φA(x) = ΠAφ(x),
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we have for ε =
√
m2 − ω2 and some τ > 0:

‖eτ〈Q〉(φP − ε
1
k Φ̂P (ε·))‖H1∩L∞ = O(ε2 min(1,k,K

k
−1)+ 1

k ),

‖eτ〈Q〉(φA − ε1+ 1
k Φ̂A(ε·))‖H1∩L∞ = O(ε1+2 min(1,k,K

k
−1)+ 1

k ),

where

Φ̂P (y) = nuk(y), Φ̂A = − iα ·∇Φ̂P
2m

,

with n ∈ CN , |n| = 1, ΠPn = n, and uk ∈ Hs(Rn,R), s = [(n+ 3)/2], a strictly positive
spherically symmetric solution to

− 1

2m
u = − 1

2m
∆u− |u|2ku, u(x) ∈ R, x ∈ Rn.

The property (7.8) is crucial to the spectral stability analysis to ensure the Fréchet
differentiability of the non-linear term (outside 0). This is actually for this property that
we used shooting type arguments

From the above theorem, one can wonder if the non-relativistic limit holds at the level
of the linearisation. The next theorem we obtain is still a the general level and aimed at
giving the asymptotic of the spectrum. This was the first step towards a refinement of
Theorem 7.6.

Theorem 7.11 (Bifurcation of point eigenvalues from the spectrum of the free Dirac
operator). Let n ≥ 1. Let J ∈ End (CN) be skew-adjoint and invertible, σ(J) = {±i},
[J,Dm] = 0. Let (ωj)j∈N, ωj ∈ O, be a Cauchy sequence, ωj → ωb = ±m, and assume that
there is ε > 0 such that

lim
j→∞

∣∣∣∣〈Q〉1+εV (ωj)
∣∣∣∣
L∞(Rn,End (CN ))

= 0.

Let λj ∈ σp(JL(ωj)), and let λb ∈ iR ∪ {∞} be an accumulation point of the sequence
(λj)j∈N. Then:

1. λb ∈ {0;±2mi}. In particular, λb 6=∞.

2. If additionally <λj 6= 0 and λj → λb = 0, then λj = O(m2 − ω2
j ).

We relate the families of eigenvalues of the linearised non-linear Dirac equation bifurcat-
ing from λ = 0 with the eigenvalues of the linearised non-linear Schrödinger equation (NLS).
Let n ≤ 3. By [BL83, Example 1], the equation

− 1

2m
u = − 1

2m
∆u− |u|2ku, u(x) ∈ R, x ∈ Rn

has a strictly positive spherically symmetric exponentially decaying solution uk(x) if and
only if 0 < k < 2/(n− 2) (any k > 0 if n ≤ 2). It follows that uk(x)e−iωt with ω = − 1

2m
is

a solitary wave solution to (NLS). The linearisation at this solitary wave, see Section 7.1.2,
is given by jl(ω). In fine, we can prove the

Theorem 7.12 (Bifurcations from the origin at ω = m). Let n ≥ 1 and 0 < k < K. If
n ≥ 3, additionally assume that k < 2/(n− 2). Let g(s) = |s|k +O(|s|K). Let ωj → m and
let φωje−iωjt be a family of solitary wave solutions to (NLDE) constructed in Theorem 7.10
below. Assume that λj are eigenvalues of (NLDE) linearised at φωje−iωjt such that

<λj 6= 0, λj = O(m2 − ω2
j )
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(cf. Theorem 7.11 1), and denote

Λj :=
λj

m2 − ω2
j

.

1. If Λb is an accumulation point of the sequence (Λj)j∈N, then Λb ∈ σp(jl).

2. If, moreover,

σp(jl) ∩ σp(−il−) = {0}, σp(jl) ∩ σp(il−) = {0},

then Λb ∈ σp(jl) ∩ R.

3. If λj 6= 0 for j ∈ N, then Λb = 0 is only possible when k = 2
n
.

4. If <λj 6= 0 for j ∈ N, then Λb = 0 is only possible when k = 2
n
and ∂ωQ(φω) > 0 for

ω ∈ (ω0,m), with some ω0 < m. Moreover, =λj = 0 for all but finitely many j ∈ N.

This theorem reduces our initial problem to a well known case, the one of the non-linear
Schrödinger equation. Unfortunately, this case is far from being completely solved. For
instance, in the analysis [Cha+08] the authors have to complement their partial theoretical
results by numerical evidences. In [CHS12], the authors proved the gap condition (`(ω)
and `−(ω) has no eigenvalues in (0, ω] among other things) only in dimension 3 for the
cubic case (k = 1/2) restricted to the radial symmetric solutions.
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Ce mémoire est consacré à l’étude de quelques problèmes issus de la mécanique
quantique relativiste et non relativiste.

Dans une première partie, je décris mes travaux sur l’analyse de la pollution spectrale.
Je présente dans un premier temps les résultats de stabilité par perturbation de ce
phénomène de la théorie spectrale numérique. Puis je détaille l’analyse de deux méthodes
d’approximation du spectre exemptes de pollution : la méthode du second ordre appliquée
à des opérateurs de Dirac et la méthode de Davies et Plum appliquée, entre autres, à
l’opérateur de Maxwell dans une cavité bornée.

Dans une seconde partie, je présente deux analyses des propriétés dispersives de
l’opérateur de Dirac. La première porte sur les estimations de Kato pour des perturba-
tions coulombiennes obtenues par des méthodes de Mourre. La seconde s’intéresse à des
estimations de Morawetz pour des perturbations magnétiques.

La troisième partie décrit l’ensemble des résultats obtenus en théorie du contrôle
bilinéaire d’équations de Schrödinger. Il s’agit essentiellement de résultats de contrôlabilité
approchée avec régularité faible en temps ou de résultats de non contrôlabilité. Des résultats
quantitatifs sur le temps ou l’énergie de contrôle sont également présentés.

La dernière partie décrit l’analyse de la stabilité de solutions stationnaires d’équations
de Dirac non linéaires. Une analyse des propriétés spectrales de la linéarisation donne des
résultats de stabilité linéaire alors que l’analyse des résonances non linéaires permet de
préciser les propriétés de stabilité asymptotique.
Mots clés : mécanique quantique, mécanique quantique relativiste, pollution spectrale,
opérateur de Dirac, opérateur de Maxwell, estimations de Kato, estimations de Mourre,
estimations de Morawetz, estimations de Strichartz, contrôle bilinéaire, contrôlabilité
approchée, stabilité linéaire, stabilité asymptotique.

Non linear models from relativistic quantum mechanics : spectral and asymptotic analysis
and related problems.

This thesis is devoted to some problems from relativistic and non relativistic mechanics.
In a first part, I describe my work on spectral pollution. I present first the results on the

stability by perturbation of this phenomenon from numerical spectral theory. Then I detail
the analysis of two methods of approximation of the spectrum free from any pollution :
the quadratic projective method applied to Dirac operators and the Davies-Plum method
applied, among others, to the Maxwell operator in a bounded cavity.

In a second part, I present two analysis on the dispersive properties of the Dirac
operator. The first one is on Kato smoothness estimates for coulombic type perturbations
obtained by Mourre’s methods. The second one is on Morawetz estimates for magnetic
perturbations.

The third part describes the results on the bilinear control of Schrödinger equations.
It is essentially results on approximate controllability with low time regularity and non
controllability. Some quantitative results on the time and energy control are also presented.

The last part describes the analysis of the stability of stationary solutions of non linear
Dirac equations. An analysis of the spectral properties of the linearisation gives results on
the linear stability while the analysis of non linear resonances gives asymptotic stability
properties.
Keywords: quantum mechanics, relativistic quantum mechanics, spectral pollution, Dirac
operators, Maxwell operator, Kato smoothness estimates, Mourre estimates, Morawetz
estimates, Strichartz estimates, bilinear control, approximate controllability, linear stability,
asymptotic stability.
Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, CNRS UMR
6623, 16, route de Gray, 25030 Besançon, France.
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