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Abstract 

The present thesis deals with the performance analysis and the configuration design of 

lightweight cellular solids and sandwich structures. Special emphasis is devoted to the 

topological optimization of periodic cellular solids based on the superelement method and to 

the bending and dynamic analysis and the core design of sandwich panels considering the size 

effect of sandwich cores. 

The multi-step homogenization is applied to calculate the effective elastic constants of 

multi-layered honeycomb sandwich on the basis of the 3D homogenization method. The 

effective results are credible by comparison with other methods including classical formula, 

energy method and engineering empirical method. Then, the inverse homogenization is 

applied to design the configuration of the microstructure. It concerns the maximization of 

uni-axial or multi-axial elastic moduli and thermal conductivities. 

An integrated topology optimization procedure is developed for the global stiffness 

maximization of different cellular solids such as square, cyclic-symmetry, and cylinder 

structures. Each RVE (representative volume element) of periodic cellular solids is modeled 

by the SE (superelement). The technique of linking the design variables is adopted to ensure 

the periodicity of the optimal configuration over the whole structure after optimization. The 

various optimal configurations of RVE-SEs permit to illustrate the influence of size variation 

of RVE-SE on the optimal results. The computational efficiency is studied during the 

optimization process when the superelement method is adopted.  

Special studies on the size effect are carried out in the bending and dynamic analysis and the 

core design of sandwich panels. A homogenization method is adopted to predict the effective 

properties of the material unit cell in its limit case. So it’s unable to represent the scale effect 

of the unit cell. The bending and dynamic responses of sandwich panel with different size 

cores tend to ones with homogenized cores with decreasing the size and increasing the 

number of unit cells in sandwich cores. The size variation of unit cells also greatly influences 

the optimal configuration of sandwich cores. Special attention is devoted to the influence of 

size effect on the optimal results. The objective values are not monotonous when increasing 

the number of unit cells. From the static analysis and optimization results, the size effect is 

relevant with the boundary conditions. From the dynamic analysis and optimization results, 

the size effect has both sides.  

Keywords: topology optimization, homogenization method, superelement method, sandwich 

structure, cellular solids, size effect 
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Résumé 

Le travail présenté dans ce mémoire concerne les performances de l’analyse et de 

l’optimisation de structures composites légères du type « solides cellulaires et sandwichs ». 

Une étude spécifique est consacrée à l’optimisation topologique de solides cellulaires à 

périodicité. La méthode de super élément est développée et appliquée à l’analyse statique et 

dynamique de plaques composites en flexion considérant l’influence de la topologie et des 

dimensions de cellules périodiques constituant la structure.  

La méthode multi-phase d’homogénéisation 3D est appliquée pour calculer les propriétés 

élastiques équivalentes de structures multi-couche nid d’abeille.  Nos résultats sont 

conformes à ceux obtenus par des méthodes classiques  basées sur l’approche énergétique ou 

sur les méthodes empiriques d’ingénieur. Ensuite, une méthode inverse d’homogénéisation est 

appliquée pour obtenir une configuration de la micro-structure. Elle concerne la maximisation 

de propriétés élastiques uni-axial ou multi-axial ainsi que de conductivités thermiques.   

L’optimisation topologique est mise en œuvre pour maximiser la rigidité globale de 

différentes structures cellulaires comprenant les cellules carrées, à symétrie cyclique ou 

cylindrique.  Tous les éléments volumiques représentatifs (RVE – representative volume 

element) d’une structure cellulaire périodique sont modélisés en utilisant la méthode de 

super-élément (SE). La technique de liaison de variables d’optimisation est utilisée afin de 

supposer la périodicité dans les structures optimales. Les différentes configurations optimales 

RVE-SE étudiées permettent d’illustrer l’influence  du paramètre d’échelle  entre RVE et 

SE sur le processus d’optimisation. 

Pour finir, un travail  particulier  est consacré à l’influence de l’effet d’échelle  dans le  

super-élément et dans la micro-structure dans le cadre de l’optimisation topologique des 

structures composites en statique et en dynamique. Des relations entre les dimensions d’une 

cellule et le nombre de cellules dans une plaque avec différentes conditions aux limites et 

leurs influences sur les solutions optimales en statique et en dynamique sont étudiées.   

Keywords : structures composites, optimisation topologique, méthode d’homogénéisation, 

méthode de super-élément, effet de l’échelle  de cellule 
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1. Introduction 

 

How do you make a structure stronger?  

The answer, it seems, is to fill it with thousands of holes. 

It might be seem counterintuitive, but holes can add resilience to a material by 

absorbing stresses or the energy of an impact. 

 

 

------ Will Knight 

Microscopic holes are the secret of wood's resilience 

New Scientist，08 October 2005, issue 2520 
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1.1 Structures and materials 

In this part, we describe the general relationship between structures and materials and 

introduce the research objects of this thesis and their research situation. 

When the structures are mentioned in the engineering field, people naturally first bethink 

of building, civil engineering, mechanical structures, and so on. The human being has 

achieved creative and extraordinary successes in the structural engineering with the great 

developments of materials science and structural analysis. Eiffel tower and Chinese 

national stadium as seen in Fig.1.1 are the best evidences. All these structures are 

constituted of different types of elements such as columns, beams, plates, arches, shells 

and catenaries. At this level, we call them the macrostructures. Moreover, these structural 

elements also have various structural forms and they are made of materials with special 

properties.  

 

   

                (a)                           (b) 

Fig.1.1 (a) Eiffel tower (b) Chinese national stadium 

 

Actually, the material properties can be determined by their constituent elements and their 

forming way. It means that the desired properties of a material can be obtained by 

designing the form of its constituent elements. A material can be seen as a kind of structure 

and at this level; the material structure is named as microstructure. 

Ashby (Ashby [2000]) ever said, “When modern man builds large load-bearing structures, 

he uses dense solids; steel, concrete, glass. When nature does the same, she generally uses 

cellular materials; wood, bone, coral. There must be good reasons for it.” Many natural 

and human-made materials exhibit structures on more than one length scale; in some 
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materials, the structural elements themselves have specific structures (Lakes [1993]). This 

structural hierarchy can influence the material properties. In fact, the difference between a 

structure and a material is not clearly defined. Many draw the lines between what you 

understand as a homogeneous material when you see it with your bare eyes, and the 

inhomogeneous material structure that you clearly see is made up of a fixed geometry or 

mixing of materials. For instance, a composite is by this definition a material even though 

it consists of two or more components, but a honeycomb core built up of two different 

components is a structure (Lukkassen and Meidell [2003]). Good understanding of the 

effects of innovative structure may guide the synthesis of new materials with physical 

properties, tailored for specific application. The cellular solids and sandwich structures 

embody perfectly this relationship between structure and material. 

1.1.1 Cellular solids 

A cellular solid is one made up of an interconnected network of solid struts or plates which 

form the edges and faces of cells. There exist three typical structures: the two-dimensional 

honeycomb, the three-dimensional open cell foam and the three-dimensional closed cell 

foam as shown in Fig.1.2 (Gibson [2005]; Gibson and Ashby [1997]). Man-made cellular 

solids have been widely utilized in the form of structural honeycombs in aircraft and as 

well in the form of foams for packing, cushioning, energy absorption applications, 

sandwich panel cores, structural purposes and thermal protection systems. Natural 

materials such as wood, cancellous bone, coral and leaves have a cellular structure. All 

these conventional cellular materials exhibit the usual properties. 

 

   

(a)                      (b)                       (c) 

Fig.1.2 (a) Honeycomb (b) Open cell foam (c) Closed cell foam 

 

Some theoretical attempts to understand the geometry and the fundamental principles of 

the mechanics of cellular solids have begun with the celebrated geometrician Leonard 
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Euler (De Boor [1998]). Since then, many scientists and researchers committed themselves 

to studying the geometric, mechanical, thermal and electrical characteristics of these solids. 

The most widely known of them is the attempt proposed by Gibson and Ashby (Gibson 

and Ashby [1997]) in which an extensive record on the structure and the properties of 

cellular solids is given. They are the pioneers this field. Grenestedt (Grenestedt [1998]; 

Grenestedt [1999a]; Grenestedt [1999b]) has investigated the influence of wavy distortions 

of cell walls and cell shape variations on elastic stiffness of cellular solids and calculated 

the effective elastic behavior of several cellular solids with the analytical and numerical 

methods. Li (Li [2005]) has studied the microstructure-property relations of 

two-dimensional cellular solids having irregular cell shapes and non-uniform cell wall 

thickness, and has found that the elastic moduli increase as cell shapes became more 

irregular, but decrease as cell wall thickness gets less uniform. Huang (Huang [2005]) has 

theoretically derived the elastic moduli and strengths of hexagonal honeycombs with 

non-straight cell edges from a curved cell edge model, and has concluded that the 

normalized elastic moduli and strengths of regular hexagonal honeycombs decreased with 

increasing cell curvature and waviness. Tekoğlu (Tekoğlu [2007]) has explored the 

physical mechanisms that were responsible for the size-dependent elastic behavior of 

cellular solids with a discrete microstructural model, and has assessed the capability of 

generalized continuum theories to capture size effects. Onck (Onck [2001]) and Andrews 

(Andrews [2001]) have studied theoretically and experimentally size effects for the 

modulus and strength of regular, hexagonal honeycombs under uni-axial and shear 

loadings. 

The beforehand mentioned authors have accounted for the conventional properties of 

cellular solids. Lakes (Lakes [1987]) has presented a novel foam structure which exhibited 

a negative Poisson’s ratio. Such a material expands laterally when stretched, conversely 

with ordinary materials. Foams with negative Poisson’s ratios are made from conventional 

low-density open-cell polymer foams through causing the ribs of each cell to permanently 

protrude inward. An idealized reentrant unit is shown in Fig.1.3 (a). In the following 

twenty years, Lakes and his colleagues have carried out a series of studies on structures 

and materials with the negative Poisson’s ratio (Chen and Lakes [1989]; Chen and Lakes 

[1996]; Choi and Lakes [1992]; Lakes [1991]; Lakes [2001]; Lakes and Witt [2002]) and 

positive or negative thermal expansion of unbounded magnitude (Lakes [1996]; Lakes 
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[2007]). As shown in Fig.1.3 (b) and (c), new materials with non-conventional and extreme 

properties are obtained by virtue of the designing of innovative structures. Therefore we 

call them structural materials. 

 

   

(a)                         (b)                          (c) 

Fig.1.3 (a) Idealized reentrant unit produced by symmetrical collapse of a 24-sided 

polyhedron with cubic symmetry. (b) Artificial honeycomb with inverted cells, in which 

the structural elements unfolding causes the lateral expansion and a negative Poisson’s 

ratio. (c) Cellular solid which undergoes thermal expansion via lateral bending 

displacement of ribs with an unusual connectivity. 

 

1.1.2 Sandwich structures 

Sandwich structures represent a special form of a laminated composite material or 

structural elements, which have a relatively thick, lightweight and compliant core material 

to separate thin, stiff and strong face sheets (Fig.1.4). The faces are usually made of 

aluminum alloys, stainless steels, titanium alloys and composite materials. And the typical 

cores can be a honeycomb or corrugated type material, a cellular foam, a truss type 

structure and so on. The faces and the core are joined by adhesive bonding, which ensures 

the load transfer between the sandwich constituent parts. Although these structures have a 

low weight, they have high flexural stiffness and buckling strength. Hence, sandwich 

structures are being used extensively in astronautic, aeronautic, marine, automotive, 

architectural and many other applications. 
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(a)                 (b)                 (c)              (d)      

Fig.1.4 Sandwich structures with the different cores  

(a) Foam cores (b) Truss cores (c) Honeycomb cores (d) Corrugated cores 

 

The rising demand for new materials with higher specific stiffness and strength has 

stimulated a great development in the technology and theory of sandwich structures 

(Borsellino [2004]; Castanie [2002]; Mamalis [2007]; Rabczuk [2004]; etc.). Sandwich 

structures usually have three structural forms: sandwich beams, sandwich plates and 

sandwich shells with the various cores. Aiming at the following failure modes: wrinkle or 

bulking, yielding or fracture, fatigue, impact damage, the failure of the bond between the 

face and cores and so on, a great deal of studies are carried out on the basis of classical 

laminate theories about beam, plate and shell.  

A sample of selected papers published in recent years are following which review the state 

of the art and provide numerous cross-references on this subject. Daniel and Abot (Daniel 

and Abot [2000]) experimentally determined the flexural behavior of composite sandwich 

beam and compared the results with predictions of theoretical models. In the reference 

(Banerjee [2007]), Banerjee has developed an accurate dynamic stiffness model for a 

three-layered sandwich beam of unequal thicknesses to investigate its free vibration 

characteristics. Birman (Birman [2004]) has analyzed the dynamic wrinkling of the facing 

for sandwich beams. Wang (Wang [2000]) has investigated the damping behavior of 

laminated honeycomb cantilever beams with fine solder balls enclosed in the cells as 

dampers. For sandwich panel, Besant (Besant [2001]) predicted the behavior under low 

velocity impact of sandwich panels by a finite element procedure and proposed a suitable 

yield criteria based on experimental observations; Grenestedt and Reany (Grenestedt and 

Reany [2007]) have investigated numerically, analytically and experimentally compression 

wrinkling of composite sandwich panels with corrugated skins. Valdevit (Valdevit [2006]) 

has studied experimentally and computationally the bending response of steel sandwich 

panels with corrugated cores in transverse and longitudinal loading orientations. In 
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references (Zenkour [2005a; 2005b]), Zenkour used the sinusoidal shear deformation plate 

theory to study the buckling and free vibration of the simply supported functionally graded 

sandwich plate. Much more studies on sandwich panel will be reviewed in chapter 5 and 

chapter 6. For sandwich shell, Hutchinson (Hutchinson [2000]) addressed buckling of 

cylindrical sandwich shells subject to axial compression for shells having foamed metal 

cores and obtained optimal face sheet thickness, core thickness and core density which 

minimized the weight of a shell with a specified load carrying capacity and imposed 

constraints by wrinkling and yielding of the face sheets and yielding of the core. Tanov 

(Tanov [2000]) came up with a third order shear deformable shell element for finite 

element analysis and behavior prediction of sandwich shells. Kalamkarov (Kalamkarov 

[2007]) applied himself to the analytical development of the method of two-scale 

asymptotic homogenization to determine the effective elastic stiffness of hexagonal 

honeycomb-cored structural sandwich composite shells. In addition, the optimal design of 

sandwich structures is also performed. Normally, the sandwich structures with the 

variables of cell sizes, the thickness of face and core, layer group fiber angles, core relative 

density and so on, are designed for the weight minimization subjected to the constraints of 

the deflection, the fundamental frequency, the buckling, the yielding and the wrinkling, or 

for the behavior maximization of heat transfer, resistance to bending and torsion or their 

combination, and the sound transmission loss. Concerning strictly speaking structural 

design for sandwich structures, we can evoke (Kam [1999]; Liu [2006; 2007]; Mai [2007]; 

Sciuva [2003]; Tan [2007]; Thamburaj [2002]; Tian [2005]; Wang [2003]; Zok [2003]). 

Designs of structures and materials and their relationship are narrated as follows. 

 

1.2 Design of structures and materials 

With higher performance requirements for innovative products being proposed, huge 

challenges appear in the designs of structures and materials. Conventional trial-and-error or 

empirical methods and single structural designs cannot satisfy these requirements. In recent 

years, integrated designs of structures and materials have been paid great attention to with 

the development of topology optimization technique due to their capability of attaining the 

desirable functions. Many achievements reviewed in section 1.2.4 have been obtained in 

this research field. 



8                                                                         Chapter 1 

 

1.2.1 Overview of topology optimization  

Structural design has experienced three phases: sizing, shape and topology optimizations 

(Bendsøe [2003]) that implements the designing procedure of a product from the 

preliminary configuration to the final refinement. However its innovative design is mainly 

completed in the phase of the topology optimization. Indeed, the choice of the appropriate 

topology of a structure in the conceptual phase is generally the most decisive factor for the 

efficiency of a novel product (Eschenauer [2001]).  

The size and shape optimization does not allow changes of the structural topology during 

the solution process. So, topology optimization is most valuable as preprocessing tools for 

sizing and shape optimizations as seen in Fig.1.4 (Kim [2002]). 

 

 

Fig.1.4 Design optimization of a short cantilever beam 

 

Topology optimization is often referred to as the layout optimization or generalized shape 

optimization (Kita [1999]; Olhoff [1998]; Rozvany [1995]). Since Bendsøe and Kikuchi 

(Bendsøe [1988]) first implemented the topology optimization for continuum structures by 

using the homogenization method two decades ago, the research and development in this 

field have entered a new era. The classical methods to solve the topology optimization 

problem are as follows. At the beginning, the topology optimization problem was 

converted to a sizing problem with the introduction of a material density function. 

Assuming that the structural material consists of an infinite number of infinitely small 

periodic holes in the microscopic scale, the homogenization method was used to determine 

the macroscopic performance of the material (Hassani [1998b]). Next, artificial density 
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functions were employed to greatly reduce the computing complexity and boost the 

development of topology optimization. General artificial density functions include SIMP 

(Solid Isotropic Material with Penalization) (Rietz [2001]; Rozvany [1995]; Bendsøe 

[1999]) and RAMP (Rational Approximation of Material Properties) (Stolpe [2001]). They 

are also used as density penalization models to suppress the intermediate densities when 

topology optimization is transformed into a continuous optimization problem. In addition, 

many approaches have been studied to solve numerical instability in topology optimization: 

the perimeter method (Haber [1994; 1996]; Petersson [1999]; Jog [2002]; Zhang [2003]), 

the filtering technique (Sigmund [1994]), the local gradient constraint (Petersson [1998]), 

the minimum member size control (Zhou [2001]) and the MOLE (MOnotonicity based 

minimum Length scale) method (Poulsen [2003]). Sigmund (Sigmund [1998]) and Fujii 

(Fujii [2000]) have executed a detailed survey on the procedures dealing with 

checkerboards, mesh-dependencies and local minima. In the iterative computation, two 

optimization algorithms (Kamat [1993]) were addressed: mathematical programming (MP) 

(Duysinx [1996]; Fleury [1989]; Pan [2000]; Bruyneel [2002]) and optimality criteria (OC) 

(Hassani [1998c]). Xie (Xie [1993]) proposed the evolutionary structural optimization 

(ESO) for topology design based on the gradient calculation and material removing, which 

has been extended as the bidirectional evolutionary structural optimization (BESO) 

(Querin [1998]; Young [1999]). Liu (Liu [2000]) developed a novel approach, called 

Metamorphic Development (MD), which can allow a structure to grow and degenerate 

towards an optimum topological layout. In this method, the optimization can start from the 

simplest possible geometry (layout) or any degree of development of the structure rather 

than from a complex ground mesh. Eschenauer (Eschenauer [1994]) proposed the bubbles 

method, in which the boundaries of the structure are considered to be variable and the 

shape optimizations of new bubbles and of the other variable boundaries of the component 

are carried out as a shape optimization problem. Recently, Level Set as an effective 

approach was applied in topology optimization (Wang [2003]; Allaire [2005]). In this 

method, the optimized structure is implicitly represented by a moving boundary embedded 

in a scalar function (the level set function) of a higher dimensionality. The optimum 

topology of a structure can be obtained by the alteration of the implicit moving boundary. 

The genetic algorithm (GA), an optimization technique based on the theory of natural 

selection (Jakiela [2000]; Nakanishi [2001]) and the wavelet method (Yoon [2005]) are 
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also applied to structural topology design problems. In a word, the theory and method of 

topology optimization have been tremendously developed and gradually perfected in past 

two decades. However, the study is still going on.  

In practical applications, the topology optimization is mainly contributed to the structural 

designs in the macrostructure and the material designs in the microstructure (Kruijf 

[2007]).  

1.2.2 Structural designs by topology optimization 

Structural designs with topology optimization consist in finding the optimal structural 

layout by minimizing or maximizing structural responses under constraints of volume, 

stress, deflection and so on. Many kinds of examples can be evoked: compliance 

minimization of statically loaded structures (Sigmund [2001]) or due to the prestress 

(Pedersen [2002]), minimum weight with stress constraints (Duysinx and Bendsøe [1998]; 

Navarrina [2005]), maximization of the first eigenfrequency (Pedersen [2000]), 

maximization of the lowest buckling eigenvalue (Zhou [2004]), maximization of the 

overall geometric advantage or mechanical efficiency of the mechanism (Canfield [2000]), 

maximization of the magnetic energy with the volume constraint (Yoo [2004]), minimum 

resistance to heat dissipation (Kruijf [2007]). And it also has involved in multi-objective 

and multi-physics designs. Krog (Krog [1999]) used a max-min formulation based on a 

variable lower bound technique for the multi-objective topology optimization problem of 

statically loaded or freely vibrating disk and plate structures. Min (Min [2000]) proposed a 

unified topology design methodology to design a flexible structure which met both the 

static and vibration requirements with the multi-objective optimization approach. Sigmund 

(Sigmund [2001a; 2001b]) applied the topology optimization method to the design of 

multiphysics actuators and electrothermomechanical systems with one- and two-material 

structures. Yin (Yin [2002]) presented a new design parameterization scheme for the 

topology optimization problem involving three energy domains and multiple materials for 

the electro-thermal-compliant (ETC) design problem. Thus it can be seen that, structural 

designs with topology optimization focus on the structure behavior, not the material 

property. 

1.2.3 Material designs by topology optimization 

The material design with topology optimization consists in finding a reasonable material 
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distribution in the unit cell in order to obtain the prescribed properties. The development 

on material designs has begun ever since Sigmund (Sigmund [1994]) advocated an inverse 

homogenization method.  

This structural material is made of periodic representative volume elements (RVE) which 

are designed as a kind of microstructure with the topology optimization technique to tailor 

the material properties. It is involved in multi-physics, multi-phase materials and 

multi-objective designs. Sigmund (Sigmund [1995]) modeled the microstructure as a truss 

or thin frame structure to tailor extreme materials, such as isotropic materials with 

Poisson’s ratio close to -1, 0 and 0.5. Jung (Jung [2004]) designed the negative Poisson’s 

ratio (-0.38) material with 15% volume constraint based on geometrically nonlinear 

analysis. Diaz and Benard (Diaz [2003]) extended the material design problem with 

prescribed elastic properties by using polygonal cells. Kikuchi (Kikuchi [1998]) and Nelli 

Silva (Nelli Silva [1999]) adopted the extended fixed grid method to solve a microstructure 

design problem of periodic composite materials with prescribed elastic properties and 

thermal expansion coefficients, shear-only and negative Poisson’s ratio, as well as 

piezoelectric materials with maximizing hydrostatic coupling coefficient and figure of 

merit. Sigmund and Torquato (Sigmund [1997]) employed the three-phase topology 

optimization method to design materials with the maximum directional thermal expansion, 

the zero isotropic thermal expansion, and the negative isotropic thermal expansion. 

Gibiansky and Sigmund (Gibiansky [2000]) generated the optimal layouts of 

microstructure materials of two-dimensional three-phase composites with the 

maximization of bulk modulus in the Hashi-Shtrikman bounds. Kruijf (Kruijf [2007]) 

explored material designs with multiple conflicting objectives and tailored composite 

materials with the effective thermal conductivity and bulk modulus attaining their upper 

limits like Hashin-Shtrikman and Lurie-Cherkaev bounds. Guest and Prevost (Guest [2006; 

2007]) maximized the bulk modulus and permeability in the multi-physics problem of 

periodic material designs according to the relative importance or weights assigned by the 

designer to the competing stiffness and flow terms in the objective function. From the 

above-mentioned works, it can be known that material designs with topology optimization 

demonstrate the broad capability of designing the new materials with the periodic 

microstructures. 



12                                                                         Chapter 1 

 

1.2.4 Integrated design of structures and materials 

There exists a natural and close relationship between structures and materials. Some 

researchers analyzed in detail performances and applications of structural materials and 

came up with the concept of simultaneous designs of structures and materials.  

Evans (Evans [1999]) examined the thermomechanical properties of cellular metals that 

suggest their implementation in ultralight structures, and pointed out that there were 

substantial opportunities to greatly improve their thermal performance by tailoring cell size 

and density. Burgueno (Burgueno [2005]) concluded by experimental and analytical 

studies that hierarchical cellular designs can improve the performance of bio-composite 

beams and plates and that the further improvement in their mechanical efficiency can be 

achieved through optimized microstructures or hierarchical topological material 

arrangement. Soto (Soto [2000]) used the natural basis design model for designing 

simultaneously the global structural topology and the local material properties. Actually he 

solved two optimization problems: the global design of finding the optimum global 

material distribution for given local material properties and the local design of finding the 

optimum local material properties for the given global material distribution. Xia and Wang 

(Xia [2008]) proposed a level set based method for simultaneous optimization of material 

property (via material volume fraction) and topology of functionally graded structures for 

maximizing the structural performance. This optimization problem can be regarded as 

structural topology optimization with multi-phase materials.  

Here we define integrated designs of structures and materials. The configuration and 

constituents of the microscopic periodic unit cell are designed in order to satisfy the 

requirements of the macro-structural performances and responses specified in section 

1.2.2. 

Structural designs and material designs with topology optimization have laid substantial 

foundation on the implementation of integrated designs of structures and materials. In the 

early foundational work of topology optimization (Bendsøe [1988]), structural topology 

designs are implemented by using the homogenization method to predict the material 

properties. They made a good preparation for integrated designs of structures and materials 

in theories and methods. Takano and Zako (Takano [2000]) proposed the integrated and 

computational design methodology of graded microstructures of heterogeneous materials 

for the emergence of macroscopic function. Rodrigues (Rodrigues [2002]) presented an 
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authentic model for simultaneous optimization of structures and materials. In this model, 

the general layout of structures was first obtained for the minimum compliance design, and 

then the finite elements with the intermediate density in the general layout are further 

designed as microstructures by the topology optimization technique. Sun (Sun [2006]) 

made a systematic investigation on the key theory and methods of topology optimization of 

materials and structures and implemented integrated designs of structures and materials for 

the global stiffness maximization of the overall structure and local design of material 

microstructures based on the homogenization method and scale-related computing. As a 

research hotspot and an efficient approach, integrated designs of structures and materials 

can fully and deeply dig the potential performances and properties of structures and 

materials. However, as a multidisciplinary task involved in structure, material and 

optimization, there exist some problems to be solved, e.g. size effects, computing 

efficiency, numerical stability in the optimization procedure and appropriate material 

interpolation models for multi-physics. 

 

1.3 Objective 

In the past, people have passively selected and used structures and materials that couldn’t 

provide the desired performance for different industries, for instance, lightweight, 

high-performance, multi-function and so on. Nowadays, it appears necessary to actively 

seek new structures and materials. That explains the development of theories and methods 

for the analysis and design of structures and materials.  

Many research works focus on sandwich structures and cellular solids which have the 

remarkable performances and characteristics, more precisely concerning computation of 

effective properties (Grenestedt [1999b]; Hohe [2001a]; Kim [2003]; Saha [2007a; 2007b]), 

analysis of structural responses (Cunningham [2003a, 2003b]) and optimal designs (Denli 

[2007]; Wen [2007]; Yu [2006]; Zok [2003]). With the development of numerical 

techniques such as the finite element method, homogenization method and topology 

optimization, the analysis and design of sandwich structures and cellular solids has entered 

a new phase.  

In this context, predecessors’ works above-mentioned and numerical tools, this thesis has 

three main goals: 

1) To use the three-dimensional homogenization method to compute effective properties 
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of unit cells in multilayer structures and materials. 

2) To attempt the superelement method to improve the computational efficiency in 

designs of periodic structures and materials. 

3) To explore the size effect in static and dynamic response analysis and integrated 

designs of sandwich structures and materials. 

 

1.4 Outline of the thesis 

The aim of this thesis is to carry out the design of unit cell in periodic structures and 

materials on the basis of the computation of their effective properties by using 

three-dimensional homogenization method, and explore size effects in the analysis and 

designs of sandwich structures and materials and the method to improve the design 

efficiency. 

In chapter 2, using the three-dimensional homogenization method and the finite element 

technique, we evaluate the effective elastic constants of the three-dimensional honeycomb 

sandwich panel. We consider the three-dimensional honeycomb core as a two-phase 

composite and model it with the finite element technique. We also use three variations of 

our three-dimensional homogenization method (one-step, two-step, and multi-step ones) to 

evaluate the overall effective elastic constants of the three-dimensional honeycomb 

sandwich with upper and lower skins. The computed results of the one-step, two-step, and 

multi-step homogenization methods are compared with those of the engineering empirical 

method. 

Chapter 3 deals with the design of the stiffness and thermal conduction coefficient of 

three-dimensional microstructure unit cells with the given volume fraction by using the 

homogenization method and the finite element method.  

In chapter 4, an integrated topology optimization procedure is implemented for the global 

stiffness maximization of square, cyclic-symmetry and cylindrical cellular solids. To retain 

the structural periodicity and reduce the computing time, superelement (SE) and design 

variable linking techniques are introduced to characterize the representative volume 

element (RVE) layout. Then, the formulated topology optimization problem is solved by 

the dual optimization algorithm. Besides, the quadratic perimeter constraint is employed to 

prevent checkerboards in the design process. To reveal the structural efficiency of the 

obtained topology designs, a comparative study of the equivalent torsional rigidity of 
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cyclic-symmetry structures is made between the obtained optimal configuration, the foam 

material and the specific configuration.  

In chapter 5, bending responses of sandwich panels with periodic honeycomb and 

corrugated cores which have different sizes and the same structural forms are calculated 

numerically. Simultaneously, the theoretical solutions of sandwich panels with the effective 

core are also computed by using the Levy and Navier methods on the basis of the classical 

laminate plate theory. And then, considering the upper and lower skins as non-designable 

domains, the three-dimensional configurations of scale-related sandwich cores with the 

different sizes are designed for the global stiffness maximization of the sandwich panel. 

The topology optimization problem is solved by the dual optimization scheme. And the 

quadratic perimeter constraint is employed to eliminate checkerboards occurring in the 

design process. 

In chapter 6, we firstly compute the natural frequencies for simply supported sandwich 

panels with homogenized cores by the dynamic analysis of laminate plate including 

transverse shear deformation and with periodic honeycomb cores with different sizes by 

the finite element analysis, respectively. And then, with the upper and lower skins as 

non-designable domains, three dimensional configurations of scale-related sandwich cores 

with different sizes are designed for the natural frequency maximization of the sandwich 

panel.  

Finally, in chapter 7, we summarize the methods and rules in the computation of effective 

properties, analysis and designs of sandwich structures and materials. Then we draw the 

future work for the analysis and optimal design of lightweight sandwich structures and 

materials. 

 





 

2. Calculation of effective elastic constants for honeycomb 

sandwich structures 

 

In this chapter, the effective elastic properties of honeycomb sandwich 

structures are calculated using the homogenization method. Then they are 

compared with analytical methods.   

The effective constants of 3D honeycomb core are computed by using 

Gibson’s formula and its modification, energy method and homogenization 

method. 

Finally, the 3D honeycomb sandwiches are studied and are considered as a 

multi-layered structure. Therefore, a multi-step homogenization procedure is 

applied to obtain their effective properties. The engineering empirical method 

is also used. 
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2.1 Introduction 

It has been underlined in section 1.1.2, chapter 1 that sandwich structures have several 

different cores: the honeycomb core is one of them. They are extensively applied in many 

industries in the form of plates and shells because of their excellent strength-to-weight 

characteristics. For this reason, it appears very important to study their mechanical 

behavior including bending, vibration, buckling, impact, thermal insulation and so on.  

However, the presence of thick cores means that the mechanical characteristics of 

sandwich shells are different from classical laminated shells or monolayer structures.  

The classical laminated theory cannot be directly used to analyze the mechanical behavior 

of honeycomb sandwich structures. It needs to build up the micromechanical model or 

obtain the effective elastic constants of honeycomb sandwich structures. Then, their 

mechanical behavior can be analyzed numerically and theoretically. Currently, several 

approaches can be applied to compute effective elastic constants of the honeycomb 

sandwich structure: engineering empirical method (Wo [2000]), energy method (Hohe 

[2000]; Zhang [2007]), Gibson’s formula and its modifications (Fu [1999]), general 

micromechanical method (Kalamkarov [2007]) and homogenization method 

(Sanchez-Palencia [1980]; Hassani [1996]). These methods have their own advantages to 

evaluate the effective elastic constants. However, some of them are restricted to 

two-dimensional sandwich beams and plates on the basis of the beam or thin plate theory. 

The homogenization method has strictly theoretical foundation. So it has been adopted to 

predict various equivalent properties of periodic composite structures, for instance, 

effective moduli (Peng [2002]), thermal conductivities (Laschet [2002]), piezoelectric 

coefficients (Berger [2005]), and so on.  

In this chapter, we evaluate the effective elastic constants of the three-dimensional 

honeycomb sandwich structure by using the three-dimensional homogenization method 

and the finite element technique. All finite element models are built in the platform 

SAMCEF®. The different effective approaches and computing methods are utilized in 

order to deeply study the equivalent properties of honeycomb sandwich structures. As the 

theoretical foundation of computing effective properties of periodic cellular solids and 

designing structural materials with prescribed properties, the homogenization formulation 

and its finite element solution are firstly derived in detail in section 2.2. As Hassani 
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(Hassani [1996]), we consider, in section 2.3, the 3-D honeycomb core as a two-phase 

composite and we obtain the effective elastic constants with the 3D homogenization 

method and the finite element technique. Then, others methods (Gibson [1982]; Fu [1999]; 

Zhang [2007]; Hassani [1996]) are exploited to compute the effective elastic constants of 

the hexagonal honeycomb core. By comparison as shown in Table 2.3 and Fig.2.3, we 

validate the 3D homogenization method. In section 2.4, we use three variations of our 3D 

homogenization method (one-step, two-step, and multi-step ones explained with the aid of 

Fig.2.4) to evaluate the overall effective elastic constants of the 3D honeycomb sandwich 

with upper and lower skins; the evaluation results are given in Table 2.4. We exploit these 

three homogenization methods and the engineering empirical method of Wo (Wo [2000]) 

to calculate three kinds of effective elastic moduli of 3D honeycomb sandwich panel. The 

computed results are given and compared in Table 2.5. Finally in section 2.5, we give the 

final conclusions on calculating effective elastic constants of honeycomb sandwich 

structures with the homogenization method. 

 

2.2 Homogenization method (HM) 

Cellular materials, composed of periodically repetitive microstructure cells, can be 

analyzed by using averaging method such as homogenization to determine macroscopic 

material behavior. The homogenization method is based on a two-scale asymptotic 

expansion of material behaviors with periodic unit cells. The overall properties of an 

elastic body can be described with two different scales: the macroscopic or global level x, 

and the microscopic or local level y. The global level x is related to the local level y 

as /y x ε= , where ε  is a very small positive number, which is a relative size of the 

periodic cell.  

It is assumed that a physical quantity ( , )x yΦ  of a composite structure with periodic 

microstructures is given by:  

( , ) ( , )x y x y YΦ = Φ +                                                 (2.1) 

1d

dx x yε
Φ ∂Φ ∂Φ= +

∂ ∂
                                                   (2.2) 

where Y is the length of periodicity. 

We introduce now the general elasticity problem of a composite structure with periodic 
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microstructures as seen in Fig. 2.1. The virtual displacement equation can be constructed 

as: 

d d d d ,
ijkl

t

k i
i i i i i iS

l j

u v
E f v t v p v S V

x xε ε ε

ε
ε ε ε ε

Ω Ω Γ
Ω Ω Γ ν∂ ∂ = + + ∀ ∈

∂ ∂∫ ∫ ∫ ∫              (2.3) 

where if
ε  are the body forces; it  are the surface forces; ipε  are the hole boundary 

forces in unit cells (see Fig.2.1(c)); iv  is an arbitrary function that satisfies the boundary 

condition. 

According to the symmetry of linear elasticity, we know ijkl jikl ijlk klijE E E Eε ε ε ε= = = . The 

stress-strain and strain-displacement relations are respectively ij ijkl klE eε ε εσ =  

and , ,( ) / 2kl k l l ke u uε ε ε= + . uε , eε  and εσ  depend on the macroscopic level x  and 

microscopic levely . Using a double-scale asymptotic expansion, the displacement field 

can be written as: 

( ) ( ) ( ) ( )0 1 1 2 2, , ,u x u x y u x y u x yε ε ε= + + +L                             (2.4) 

where ( ),iu x y  defined in ( ),x y Y∈Ω ×  is the Y-periodic function. 

 

Fig.2.1 Elastic problem with periodic microstructures 

(a) General elasticity problem (b) Cellular structure (c) Unit cell 

 

For a Y-periodic function ( )yϕ , we have 

( )
0

1
lim

Y

x
d y dYd

Yεε
ϕ ϕ

ε+ Ω Ω→

  Ω = Ω 
 

∫ ∫ ∫                                   (2.5) 

where Y  is the volume of unit cell. 

Substituting Eqs. (2.2) and (2.4) into Eq. (2.3), we obtain 

(a) (b) (c)  

y 

Y 
p

ε  
f

ε  

d
Γ  

t
Γ  

t 

Ω  

f 

x 
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( )

0 0 1 0

2

0 1 1 2

1 1

d d d ,
t

k i k k i k i
ijkl

l j l l j l j

k k i k k i

l l j l l j

i i i i i i YS

u v u u v u v
E

y y x y y y x

u u v u u v
d

x y y x y y

f v t v p v S V

ε

ε ε

ε

ε ε

Ω Γ

ε ε

ε

Ω Γ ν

Ω

Ω×

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂    

    ∂ ∂ ∂ ∂ ∂ ∂ + + + + + Ω     ∂ ∂ ∂ ∂ ∂ ∂       

= + + ∀ ∈

∫

∫ ∫ ∫

L                    (2.6) 

where YVΩ× ={ ( ),v x y defined for( ) ( ), ,x y Y v y∈Ω × � Y-periodic; v smooth enough; 

0dv Γ = }. All the functions are assumed sufficiently smooth so when 0ε +→ , all 

integrals exist. By equating the terms with the same power of ε , using the divergence 

theorem and applying the periodicity conditions on the opposite faces of Y, the general 

elasticity problem of Eq. (2.3) with the periodic base cells in a cellular body is decomposed 

into two parts: one solves the equilibrium problem of Eq. (2.7) in the microscopic level; 

the other solves the equilibrium problem of Eq. (2.8) in the macroscopic level. The detailed 

derivations can be found in Refs. (Guedes [1990], Hassani [1996; 1998a]). It is also 

concluded that the first term of the expansion of uε only depends on the macroscopic scale 

x. 

1 2 ( )
( ) ,k k i

ijkl i i YY Y
l l j

u u v y
E dY f v y dY V

x y y
ν ∂ ∂ ∂+ = ∀ ∈ ∂ ∂ ∂ 

∫ ∫                      (2.7) 

0( ) ( )
( ) d

( )
( ) d ( ) ( )d ( ) ( )d ,

t

H k i
ijkl

l j

i
ij i i i i

j

u x v x
E x

x x

v x
x b x v x t x v x V

x

Ω

Ω Ω Γ

Ω

τ Ω Ω Γ ν Ω

∂ ∂
∂ ∂

∂= + + ∀ ∈
∂

∫

∫ ∫ ∫
           (2.8) 

H
ijklE  is the homogenized elastic tensor, and 

1
( ) d

kl
pH

ijkl ijkl ijpmY
m

E x E E Y
Y y

χ ∂
= −  ∂ 

∫                                      (2.9) 

( )ij xτ  are the average residual stresses within the cell due to the tractions pε  inside the 

holes, and  

1
( ) dk

ij ijklY
l

x E Y
Y y

ψτ ∂=
∂∫                                             (2.10) 

( )ib x  are the average body forces, and  
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1
( ) di iY

b x f Y
Y

= ∫                                                   (2.11) 

kψ  is the displacement field due to the tractionspε . klχ  are the microscopic 

displacement fields within unit cells under the periodic boundary condition, and then 

( ) ( )
d d

kl
p i i

ijpm ijklY Y
m j j

v y v y
E Y E Y

y y y

χ∂ ∂ ∂=
∂ ∂ ∂∫ ∫                                 (2.12) 

( )
d ( )dk i

ijkl i iY S
l j

v y
E Y p v y Y

y y

ψ∂ ∂ =
∂ ∂∫ ∫                                    (2.13) 

As shown above, the microscopic and macroscopic problems are not coupled when 0ε → . 

The homogenized elastic constants can be computed within the base cell by solving Eqs. 

(2.12) and (2.13) with the finite element analysis for klχ  and kψ . The mechanical 

response of the general elasticity problem with the periodic microstructures can be 

analyzed under the consideration of homogenous structures. 

 

2.3 Effective calculation of 3D honeycomb core 

2.3.1 Numerical solution of homogenized elastic constants of 3D honeycomb core 

based on HM 

To calculate the effective elastic tensorH
ijklE , as defined in Eq. (2.9), it is necessary to 

determine the microscopic displacement fieldklχ , which is the Y-periodic solution of Eq. 

(2.12). For the 3D problem, Eq. (2.9) and Eq. (2.12) with different values of kl 

( 11,22,33,12,23,13kl = ) provide essential equations to find the elements of the 

homogenized matrix. 

From Eq. (2.9), it follows that: 

1

1

1
( ) ( ) ( ) d

1
( ) ( ) d

1
( ) ( ) d

m

H kl
ijkl ijkl ijrs rsY

kl
ijkl ijY

nele
kl

ijkl ij mnele Y
m

m
m

E E y E y e y
Y

E y y
Y

E y y
Y

χ

σ χ

σ χ
=

=

 = − 

 = − 

 = − 

∫

∫

∑∫
∑

                              (2.14) 
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where Y  is the volume of unit cell; mY  is the volume of each element in the unit cell; 

nele is the number of finite elements in the unit cell; ( )kl
rse χ  and ( )kl

ijσ χ  are 

respectively strain and stress tensors corresponding the characteristic displacement klχ  of 

unit cell, obtained by solving the following Eq. (2.15).  

From Eq. (2.12), the conventional stiffness equation of microscopic base cell is:  

kl klK Fχ =                                                        (2.15) 

Here, the stiffness matrix of the microscopic base cell and the initial strain loads are: 

1 1

d
e

nele nele
T

e e e eY
e e

K k B E B y
= =

= =∑ ∑∫                                           (2.16) 

0
1 1

d
e

nele nele
kl kl T kl

e e eY
e e

F F B E yε
= =

= =∑ ∑∫                                        (2.17) 

where 0
klε  are the unit initial strains in the microscopic base cell. For 3D microstructure 

homogenization, 0
klε  have six different cases corresponding to six load cases. 

The finite element model of unit cell of the honeycomb core can be seen in Fig.2.2. We 

assume that the cell wall is made of the isotropic materials with E1＝0.91GPa, and the hole 

is replaced by weak materials, E2＝0.00001GPa. Both Poisson’s ratios are 0.3. The ratio of 

wall thickness to side length of unit cell is / 3 / 6t a = . 

 

 

Fig.2.2 Finite element model of 3D honeycomb core 

 

According to Hooke’s Law relating stress and strain Eq. (2.18) for orthotropic materials, 

the overall general equations in term of the principal materials directions are following as 

in Eq. (2.19): 

 

y1 y2 

y3 
a 

t 
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                            (2.19) 

where E11, E22, E22, G12, G23, G13,ν 12, ν 23 and ν 13 are elastic constants in the principal 

materials directions. We obtain effective elastic constants as seen in Table 2.1 and the 

corresponding effective elastic matrix of the honeycomb core as seen in Eq. (2.20) by the 

finite element analysis and the code program. 

 

Table 2.1 Effective elastic constants 

E11/GPa 0.03229932 G12/GPa 0.009252872 ν 12 0.7777879 

E22/GPa 0.03213468 G23/GPa 0.05289672 ν 23 0.03993055 

E33/GPa 0.2414293 G13/GPa 0.05303416 ν 13 0.04013513 

 

0.08977385

0.07139982 0.08931070

0.04835210 0.04821316 0.2703989

0.009252872

0.05289672

0.05303416

symmetric

0

H
ijklE

 
 
 
 =  
 
 
 
 

   (2.20) 

 



Calculation on effective elastic constants for honeycomb sandwich structures                   25 

 

From Table 2.1, the effective elastic moduli along y1 and y2 directions are less than one 

along y3 direction. Moreover the effective shear moduli in y1-y3 and y2-y3 planes are 

greater than one in y1-y2 plane. These facts demonstrate that the core in the honeycomb 

sandwich structure mainly carry the transverse shear loads. In addition, the effective elastic 

moduli along y1 and y2 directions are not equal. This shows the honeycomb structure has 

weakly anisotropic characteristics in y1-y2 plane and the elastic modulus along y1 direction 

is bigger than along y2 direction. This conclusion is the same as the one proposed by Fu 

(Fu [1999]).  

2.3.2 Other methods for the calculation of effective elastic constants of hexagonal 

honeycomb core 

The hexagonal honeycomb core is the most popular cellular solid used as the sandwich 

core. Besides the homogenization method, there exist several methods to compute effective 

elastic constants of hexagonal honeycomb core: Gibson’s formula (Gibson [1982]) and its 

modification (Fu [1999]), energy method (Zhang [2007]). In the following we will adopt 

respectively these methods to calculate the effective properties of the 2D hexagonal 

honeycomb core.  

For preliminary calculation in design or where a great accuracy is not needed, one uses 

simpler forms for some of the expressions in Eq. (2.19): 

11 11 12 21

22 22 12 21

12 12 21 11 12 21 12 22 12 21

66 12

/(1 )

/(1 )

/(1 ) /(1 )

C E v v

C E v v
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= −
= −
= = − = −
=

                          (2.21) 

2.3.2.1 Gibson’s formula 

Because the thickness of sandwich core is much bigger than upper and lower skins, the 

in-plane stiffness and bending stiffness cannot be ignored. Gibson (Gibson [1982]) gave 

the analytical formulation of Eq. (2.22) - Eq. (2.26) to calculate the effective properties of 

the hexagonal honeycomb core considering the sandwich core as an orthotropic layer. 
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where 1β =  for the hexagonal honeycomb core; / 6θ π= ; E＝0.91GPa is the elastic 

modulus of the cell wall made. The ratio of wall thickness to side length of unit cell is 

/ 3 / 6t a = .  

2.3.2.2 Modifications of Gibson’s formula 

For the uni-axial elongation case, the Gibson’s formula coincides with the experimental 

results. However the stiffness matrix cannot be obtained through the Gibson’s formula 

because the stretching deformation of the cell wall is ignored. Thus Fu (Fu [1999]) 

modified the Gibson’s formula as follows: 

2 3

11 2 3

4
1 3 0.037916666

3

t t
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 
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GPa                             (2.27) 
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t
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= − =                                               (2.28) 

2 3

22 2 3

4 5
1 0.04353395

33

t t
E E
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 
= − = 

 
GPa                              (2.29) 

2

21 2

8
1 0.77778

3

t
v

l
= − =                                              (2.30) 

The stretch deformation has little influence on the transverse shear modulus 

G12=0.01263888GPa. 

According to Eq. (2.21), the in-plane effective elastic matrix of the hexagonal honeycomb 

core is obtained as follows: 
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            (2.31) 

2.3.2.3 Energy method 

According to the average-field theory (Hori [1999]), the strains and stresses of effective 

honeycomb cores are the volume average of the corresponding strains and stresses within 

the microstructure unit cell of the honeycomb core: 

1
d

V Ω
= Ω∫σ σσ σσ σσ σ                                                     (2.32) 

1
d

V Ω
= Ω∫ε εε εε εε ε                                                      (2.33) 

From Hooke’s Law relating stress and strain Eq. (2.18), the effective elastic matrix for the 

2D honeycomb core is given as the following Eq. (2.34) which reflects the relations 

between the average strains and stresses. 
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                                          (2.34) 

The strain energy per unit volume of unit cell is expressed as: 
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Ω
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∫
                                     (2.35) 

For the 2D honeycomb core, we can obtain the effective elastic matrix through the finite 

element analysis with the four displacement load cases in Table 2.2. The displacement load 

u equals 3a/2; v equals 3 / 2a . Here a is the side length of cell wall. Of course, the 

effective properties of 3D honeycomb core can also be achieved by the energy method 

when sufficient boundary conditions are given. The effective results are seen as Table 2.3. 

Actually, the strain energy-based method and homogenization method are just two variants 

of the same definition of effective material properties (Sigmund [1994; 1997]) and they are 

physically identical (Zhang [2007]).  
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The effective elastic properties can be written in its energy form as: 

0( ) 0( ) 0( ) ( ) 0( ) ( )1
( )( )H kl ij kl kl ij ij

pqrs pq rs pqrs pq pq rs rsY
E E dY

Y
ε ε ε ε ε ε= − −∫                      (2.36) 

From Eqs. (2.34) and (2.35), the relationship between the effective elastic properties and 

the strain energy of microstructure in the strain energy-based method can be stated as 

0 0( ) 0( )( ) H kl ij
pqrs pq rsE Eε ε ε=                                               (2.37) 

By comparing Eq. (2.36) with Eq. (2.37), one can see that they are equivalent in fact. 

 

Table 2.2 Boundary conditions and corresponding strain energy 
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2.3.3 Comparison of the results of different methods 

From Gibson’s formula, obviously the effective elastic matrix can’t be determined because 

of 12 21 1v v = . So we give the comparison of effective elastic constants of honeycomb core 

according to modifications of Gibson’s formula, energy method and homogenization 

method as seen in Table 2.3 and Fig. 2.3. 

 

Table 2.3 Comparison of effective elastic constants of honeycomb core 

Components 1111
HE /GPa 1122

HE /GPa 2222
HE /GPa 1212

HE /GPa 

Modifications of Gibson’s formula 

(Fu and Yin [1999]) 
0.07875 0.06028 0.09042 0.01264 

Energy method  

(Zhang [2007]) 
0.080334 0.063458 0.07984 0.008501 

2D homogenization 

(Hassani [1996]) 
0.080334 0.063458 0.07984 0.008501 

3D homogenization 0.089774 0.0713998 0.089311 0.009253 

 

 

1—Modifications of Gibson’s formula; 2—Energy method; 

3—2D homogenization; 4—3D homogenization 

Fig.2.3 Comparison of effective elastic constants of honeycomb core 

 

Comparing the elastic moduli in Table 2.3, we can notice that computing results with 
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different methods coincide approximately. The flatness of each curve in Fig.2.3 reflects 

this fact. The comparison results also indicate the validity of each effective method. 

However, we can obtain all elastic constants of the honeycomb core using 3D 

homogenization that provides the complete data for the analysis and evaluation of the 

mechanical responses of honeycomb structures. 

 

2.4 Effective calculation of 3D honeycomb sandwich 

2.4.1 Multi-step homogenization of 3D honeycomb sandwich 

The 3D honecycomb sandwich can be considered as a type of multilayered structure 

composed of upper and lower skins and a core.  

Hohe (Hohe [2003]) directly determined the in-plane, bending and transverse shear 

stiffness components of structural sandwich panels by means of a strain energy based 

procedure which assumed equivalence of a representative plate element for the given 

microstructure and a similar homogeneous plate element if the strain energy of both 

elements is equal. Considering the skin effect, Xu (Xu [2002]) proposed a multi-pass 

homogenization method to derive elastic tensors for general honeycomb sandwiches. In 

this method, firstly a spatial heterogeneous problem was transferred into a material 

heterogeneous problem with consequent intermediate equivalent properties. Secondly the 

2D heterogeneous problem was analytically homogenized in a unit cell by the variational 

approximations of displacement field. Finally the effective elastic tensors of honeycomb 

sandwiches were obtained. Both of the two methods homogenized the 3D honeycomb 

sandwich structure based on the analysis of 2D plate structures. Here, we directly adopt the 

3D homogenization method to evaluate the overall effective elastic constants of the 

honeycomb sandwich with upper and lower skins. As seen in Fig.2.4, there are three 

variations: (1) direct equivalent (one-step); (2) firstly homogenizing the honeycomb core, 

and then combining with the lower and upper skins (two-step); (3) firstly homogenizing 

the honeycomb core, and then, in turn combining with the lower and upper skins 

(multi-step).  

Although these three methods are based on the homogenization method, the substantial 

difference lies in that the former method simultaneously homogenizes three variations of 

isotropic materials; the latter two methods firstly obtain the orthotropic equivalent core, 
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and then simultaneously or in turn combine with the lower and upper skins. 

 

Fig.2.4 Equivalence of honeycomb sandwich structure by one, two and multi-step 

homogenization schemes  

 

Now we build the finite element model of the honeycomb sandwich structure with one unit 

cell as seen in Fig.2.5. We assume that the lower and upper skins are made of the isotropic 

material and have elastic modulus E＝2.0GPa, Poisson’s ratio v＝0.3 and thickness hf＝

1.25mm. The honeycomb core has the same material as in Fig.2.2 and thickness 

hc=16.25mm. So the total thickness of the honeycomb sandwich structure is 

h=hc+2hf=18.75 (f-face, c-core). The computing results with the three methods are listed in 

Table 2.4. 

 

 

Fig.2.5 Finite element model of honeycomb sandwich structure with one unit cell 

 

y1 

y3 

y2 
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Table 2.4 Comparison of effective elastic constants with three methods 

Multi-step Elastic 

constants 
One-step Two-step 

first  second 

E11/GPa 0.3471983 0.3075509 0.1844299 0.3075508 

E22/GPa 0.3469135 0.3072475 0.1841251 0.3075508 

E33/GPa 0.2802617 0.2913491 0.2710600 0.2913491 

G12/GPa 0.1301219 0.1105833 0.0635370 0.1105833 

G23/GPa 0.0592139 0.0603957 0.0566659 0.0603957 

G13/GPa 0.0593021 0.0605510 0.0568124 0.0605510 

ν
12 0.3335783 0.3920744 0.4543954 0.3920745 

ν
23 0.1510265 0.1287283 0.1071237 0.1289385 

ν
13 0.1516072 0.1289882 0.1073589 0.1287782 

 

From Table 2.4, we can see that computing results with different methods nearly identical, 

especially for two-step and multi-step method. This fact demonstrates that the 

homogenization sequence has little influence on equivalent moduli values of the 

honeycomb sandwich structure obtained by the homogenization method. 

2.4.2 Engineering empirical method 

In the engineering design, tension or shear loads are applied in three directions of the 

honeycomb sandwich structure. And then according to the equilibrium condition and strain 

compatibility, the tension and shear moduli along three directions can be calculated. In this 

section, we use the engineering empirical method (Wo [2000]) to compute the equivalent 

elastic moduli of the honeycomb sandwich structure. We compare this approach with the 

homogenization method. Here the elastic moduli of honeycomb cores are the same as 

Table 2.1. In the following formula (2.38)~(2.43), 11E , 22E , 33E , 12G , 23G  and 13G  

are the equivalent elastic moduli of the honeycomb sandwich; 11fE , 22fE , 33fE , 12fG , 

23fG  and 13fG  are the elastic moduli of the lower and upper skins; 11cE , 22cE , 33cE , 

12cG , 23cG  and 13cG  are the elastic moduli of honeycomb cores. 
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(1) Tension moduli in plane 
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(2) Shear moduli 
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                 (2.42) 

(3) Transverse tension moduli 

33 33 33
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2 1.25 16.25
3.6564
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0.2734931GPa

21 f c

f c

E

t h
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= + =

⇒ =
            (2.43) 

 

2.4.3 Comparisons of the results for honeycomb sandwich 

We obtain the main elastic moduli of the honeycomb sandwich using the engineering 

empirical method. The resultant comparisons with the homogenization method can be seen 

in Table 2.5 and Fig.2.5. 
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Table 2.5 Comparison of main elastic moduli 

Tension moduli 

in plane 
Shear moduli 

Transverse 

tension 

moduli 
 

E11/GPa E22/GPa G13/GPa G23/GPa G12/GPa E33/GPa 

Engineering 

empirical method 

(Wo [2000]) 

0.29466 0.29452 0.06055 0.0604 0.1105831 0.2735 

one-step 

homogenization 
0.3472 0.3469 0.0593 0.0592 0.130122 0.2803 

two-step 

homogenization 
0.30755 0.30725 0.06055 0.0604 0.1105833 0.29135 

multi-step 

homogenization 
0.30755 0.30755 0.06055 0.0604 0.1105833 0.29135 

1—Engineering empirical method; 2—One-step homogenization; 

3—Two-step homogenization; 4—Multi-step homogenization 

Fig.2.5 Comparison of equivalent elastic moduli 

 

As we can notice from Table 2.5, the equivalent elastic moduli of the honeycomb sandwich 

respectively calculated with 3D homogenization and engineering empirical methods are 

0
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basically identical. The flatness of each curve in Fig.2.5 reflects the consistency of 

computing results with different methods. In addition, observing the expressions in the 

engineering empirical method, we find that each elastic modulus only depends on the ratio 

between the thickness of the honeycomb core hc and the thickness of lower and upper skins 

tf. Therefore, the engineering empirical method just like the homogenization method 

cannot embody the influence of the unit cell scale on equivalent elastic moduli. This 

approximate computation is valid only when the unit cell is very small relative to the 

whole structure. 

 

2.5 Summary 

Firstly, by calculating and comparing the effective elastic constants of honeycomb core 

with different methods, we have confirmed the rightness and validity of 3D 

homogenization method and provide the background for the computation of effective 

elastic constants of honeycomb sandwich structures. 

Secondly, combining 3D homogenization method with the finite element technique, one 

can obtain all effective elastic constants of honeycomb sandwich structures. Fairly good 

agreement with the engineering empirical method demonstrates that the multi-step 

homogenization method is valid and that the equivalent sequence has no influence on the 

equivalent results.  

Although the present study is directed to an analysis of sandwich structures with 

honeycomb cores, the multi-step homogenization method can be applied to a much broader 

class of layered structures that consist of a heterogeneous medium such as hybrid 

composites and braided structures. Moreover we can also employ this method to design the 

3D configuration of unit cells of cellular structures with the specific properties. 

 

 





 

3. Topological design of 3D microstructure 

 

In this chapter, maximization of elastic moduli and thermal conductivities is 

used to design the material microstructure. This is based on the 

homogenization method and topology optimization.  

The single objective and multi-objective designs are employed to maximize 

uni-axial and multi-axial properties. Actually the multi-objective design is 

transformed into the single objective through the vector aggregation. 

Different initial structures have been used in the optimization process. 
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3.1 Introduction 

In the previous chapter, we have used the homogenization method with the asymptotic 

expansion to passively predict effective properties of periodic unit cells of honeycomb 

sandwich structures within the finite element framework.  

In fact, we would like to achieve the desired properties of material microstructures by 

using the topology optimization in conjunction with the homogenization method and the 

finite element technique. Usually cellular materials and solids, which are constituted of 

ordered microstructures and formed by the periodic repetition of unit cells, possess 

excellent properties which are sensitive to the configuration of the microstructure cells. 

Therefore new types of cellular materials and solids with the specific properties can be 

designed by establishing relationships between topology and performance to satisfy the 

special requirement for structural performance. 

In the mid 1990ies, Sigmund (Sigmund [1994; 1995; 1997]) proposed the topological 

optimization method to design periodic microstructures of a material to obtain prescribed 

constitutive properties.  

The microstructure was modeled as a truss or thin frame structure in two and three 

dimensions. He also used a topology optimization procedure to determine the distribution 

of three phases in order to design composites with extreme or unusual thermal expansion 

behaviors. Neves (Neves [2000]) presented 2D computational models which addressed the 

problem of finding the optimal representative microstructural element for periodic media 

that maximized either a weighted sum of equivalent strain energy densities for specified 

multiple macroscopic strain fields, or a linear combination of the equivalent material 

properties.  

All these works have pursued the optimal layout under given constraints based on the 

inverse homogenization method which was required to update the evaluation of effective 

elastic tensor during the optimization process. More works have been reviewed in chapter 

1. Continuing along previous works, we explore the topological design of 3D 

microstructure cell combining the finite element analysis with the optimal algorithm.  

In this chapter, we first introduce the general problem of topology optimization and the 

optimal scheme that are adopted in our works. Then we establish the optimal models. 

Single equivalent constant and a linear combination of the equivalent material properties 

with regard to elastic constants and thermal conductivity coefficients are maximized under 
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the constraint of specific volume fraction. Numerically, 3D microstructures with the 

maximum stiffness and thermal conductivity in single and multiple directions are designed 

and satisfactory results are obtained. Lastly, we also point out that the initial values of 

design variables have great influence on the optimal configuration of 3D microstructures 

and several test examples are given to show the difference between optimal layouts. 

 

3.2 Formulation of topology optimization problem 

The topology optimization problem can be formulated as follows: to determine an optimal 

distribution of material within the given design domain. The amount of material is bounded 

to a given percentage of the design domain.  

Let us consider the general linear elasticity problem subject to the applied body force f in a 

bounded open domain Ω and the surface traction forces t on Γt. Assume that Ω has a 

smooth boundary Γ comprising the free boundary Γf, Γd, where displacements are 

prescribed and Γt where traction forces are applied. It is also assumed that Γ=∂Ω=Γf∪Γd∪Γt 

and Γf ∩ Γd ∩ Γt=Ø. The boundary value condition and the stress-strain and 

strain-displacement relationships are described as following: 

0

0

( )

( )
d

t

div u f in

u u on

u n on

σ

σ σ

− = Ω
= Γ

⋅ = Γ
                                              (3.1) 

( )( )
, ( ) ( )

1
( )

2
T

x u E u

u u u

σ ε

ε

∀ ∈Ω = ⋅

= ∇ + ∇
                                              (3.2) 

The material distribution problem, is controlled by a design variable that can be expressed 

by a switch function defined as 

1
( )

0 /
s

s

if x
x

if x
ρ

∈Ω
=  ∈Ω Ω

                                             (3.3) 

where Ω denotes the entire design domain and Ωs denotes the domain occupied by solid 

elastic materials. 

The general mathematical model of topology optimization for minimizing the objective 

function, subjected to the volume constraints, is formulated with a discrete valued design 

(0 for void and 1 for solid): 
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s t d V
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Ω

Ω ≤

= ∀ ∈Ω
∫                                             (3.4) 

where V  is the upper bound of volume constraint, ρ  is the volume density and ( )f ρ  

is a performance criterion.  

This topology optimization problem is generally solved numerically using the finite 

element discretization approach. The design domain Ω is divided into n finite elements and 

the density function ρ  is discretized correspondingly into element wise constant density 

functions. The formulation of topology optimization is expressed as: 

1

( )

. . ( )

0 1, 1,...,

X

n

i i
i

i

Min f X

s t V X x v V

x or i n
=

= ≤

= =

∑                                              (3.5) 

This discrete problem is difficult to solve because of its highly combinational nature 

(Bendsøe [1989]; Duysinx [2007]). Beckers (Beckers [1999; 2000]) developed a 

mathematical programming method combining the dual method and convex separable 

approximate scheme to directly solve structural optimization problems involving discrete 

variables. However the solution procedure is rather complicated. Normally we consider an 

alternative formulation to allow the density variables varying continuously from 0 to 1 via 

all intermediate densities. The optimal model on the material distribution problem can be 

written as follows:  

1

( )

. . ( )

0 1, 1,...,

X

n

i i
i

i

Min f X

s t V X x v V

x i nδ
=

= ≤

< ≤ ≤ =

∑                                            (3.6) 

where δ is a positively small quantity to avoid the singularity of the stiffness matrix. 

Now we can employ the sensitivity analysis and mathematical programming algorithms to 

efficiently solve the material distribution problem. Unfortunately numerical instabilities 

may occur: checkerboards and mesh-dependency. In fact, the discrete topology 

optimization problem without additional constraints is ill-posed.  

To suppress the intermediate densities, two density penalization models are generally 

employed: the SIMP method (Solid Isotropic Microstructure with Penalization) proposed 
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by Bendsøe and Sigmund (Bendsøe [1999]; Rozvany [1992]) and the RAMP (Rational 

Approximation of Material Properties) scheme proposed by Stolpe and Svanberg (Stolpe  

[2001]). These approaches assume that the following relationships exist between the elastic 

modulus Ei of the i-th element with the density value xi and the solid elastic modulus E0: 

0 (for SIMP)p
i iE x E=                                               (3.7) 

0 (for RAMP)
1 (1 )

i
i

i

x E
E

q x
=

+ −
                                        (3.8) 

where p≥1 and q≥1 are penalization factors. From Fig.3.1 and Fig.3.2, the use of SIMP and 

RAMP material models will force the topology optimization towards limiting values xi=0 

(void) and xi=1 (solid). 

 

 

Fig.3.1 Relative stiffness with respect to density variable for the SIMP material model for 

the different penalization factors p 
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Fig.3.2 Relative stiffness with respect to density variable for the RAMP material model for 

the different penalization factors q 

 

In a finite element context, the use of SIMP and RAMP material model leads to a 

mesh-dependence. To prevent numerical instabilities of the iterative procedure, a few of 

control methods reviewed in chapter 1 are proposed. We have mainly adopted two of them 

in our work: the perimeter control and the sensitivity filtering. 

 

(1) Perimeter control 

In the perimeter control scheme, a global constraint on the perimeter of structural 

boundaries is imposed. The perimeter of boundaries of a structure is the summation of 

length of boundaries between solid and void in the 0-1 topology optimization problem. It is 

obvious from an example as seen in Fig. 3.3 that the perimeter constraint can limit the 

number of holes in the domain (Bendsøe [2003]). Assuming the unit thickness of the 

domain, V is the volume and P is the perimeter of the internal holes. For the fixed volume, 

the number of holes decreases with the perimeter becoming small. 
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Suppose that xi and xj are the values of the density variable on the each side of an element 

edge or interface in the discretized structure, and then the total perimeter is given by  

1

( )
K

k i j
k

P X l x x
=

= −∑                                                  (3.9) 

When xi=xj, the perimeter function is non-differentiable, the approximate expression of Eq. 

(3.9) can be formulated as: 

( )( )2 2 2

1

( )
K

k i j
k

P X l x x ε ε
=

= − + −∑                                      (3.10) 

where K is the total number of element interfaces. lk denotes the edge length for 2D or the 

interface area for 3D of the k-th interface between adjacent elements i and j. The symbol ε 

is an artificial smoothing parameter with positive small value that guarantees the 

differentiability of the perimeter function. In the optimization problem, the constraint 

P(X) P≤  is treated with an interior penalty method. The upper bound P  with the 

gradual relaxation controls jumps of material density variations at all adjacent elements.  

The sensitivity in Eq. (3.10) is expressed as follows: 

( )2 21

K
i j

k
ki

i j

x xP
l

x x x ε=

−∂ =
∂ − +

∑                                           (3.11) 

Obviously, the perimeter function is non-monotonous because its first-order partial 

derivative may be either positive or negative depending upon values of design variables. A 

variant perimeter constraint of quadratic form is proposed here to restrict variations of 

element densities over the whole design domain (Zhang [2003]). 

2( ) ( )
K

k i j
k

P X l x x P= − ≤∑                                            (3.12) 

Sun (Sun [2006]) implemented this approach and proposed a generalized perimeter control 

method for irregular finite elements. 

 

(2) Sensitivity filtering 

Getting inspiration from filtering technique in image processing, filtering of design 

sensitivities in the each iteration of topology optimization process can efficiently control 

the checkerboard phenomenon and ensure mesh-independency. This approach is to modify 

the design sensitivity of a specific element, based on a weighted average of the element 

sensitivities in a fixed neighborhood. Such a filter is purely heuristic. The scheme works by 
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modifying the element sensitivities of the objective function as follows (Bendsøe [2003]): 

( ) 1

1

1

1 N

k i iN
ik i

i
i

f f
H

H
ρ ρ

ρ ρ
−

=

=

∂ ∂=
∂ ∂∑

∑

)
)

)
                                       (3.13) 

The convolution operator (weight factor) iH
)

 is written as: 

{ }min min( , ), ( , ) , 1, ,iH r disk k i i N dist k i r k N= − ∈ ≤ =
)

L                   (3.14) 

The operator dist(k,i) is defined as the distance between the center of element k and the 

center of element i. The convolution operator Ĥi is zero outside the filter area. The 

convolution operator for element i is seen to decay linearly with the distance from element 

k. In this fashion, an element with low sensitivity obtains a much higher sensitivity after 

the modification if the sensitivities of elements within the zone of radius rmin of this 

element have higher values. This guarantees that wherever a member is formed during the 

optimization process, the radius of the member is in general not below rmin. It is 

worthwhile noting that the filtering sensitivity converges to the original sensitivity when 

rmin approaches zero and that all sensitivities will be equal (resulting in an even distribution 

of material) when rmin approaches infinity. 

 

3.3 Topological design of 3D material microstructure 

3.3.1 Optimization algorithm 

A general optimization problem with constraints is stated as follows: 

1 2

0

max

( , , , )

( )

. . ( ) 1, ,

1, ,

n

X

j i

ii i

Find X x x x

Min g X

s t g X g j m

x x x i n

=

≤ =

≤ ≤ =

L

L

L

                                       (3.15) 

Most of the time, this optimization problem is non-linear and non-explicit with respect to 

the design variables. In order to efficiently solve this problem, explicit approximations of 

the actual functions, that are, explicit sub-problems are built to replace the real 

optimization problem. These sub-problems are obtained by expanding the objective 

function and the constraints in the neighborhood of a given design point. In our work, we 

adopt the optimal solver CONLIN (CONvex LINearization) (Fleury [1989]) with a dual 

sub-iteration scheme developed by Fleury (Fleury [1989]) and Zhang (Zhang [1997; 



46                                                                         Chapter 3 

 

2003]). The convex linear approximation is based on first order derivatives as follows. 

� 2( ) ( ) 1 1
( ) ( ) ( ) ( ) ( )

k k
j jk k k

j j i i i k
i ii i i i

g X g X
g X g X x x x

x x x x

+ −∂ ∂
≈ + − − −

∂ ∂∑ ∑          (3.16) 

where � ( ) ( 0,1, , )jg X j m= L  are the explicit form of original functions, symbols 

i

+

∑ and 
i

−

∑ denote the summation over the terms with positive and negative first order 

derivatives, respectively. Xk designate the developing point. 

To prevent numerical instabilities in topology optimization, a variant perimeter constraint 

of quadratic form, see Eq. (3.12), is used in the construction of each explicit optimization 

sub-problem. 

3.3.2 Optimal model 

Here, topology optimization of the material microstructure is performed to find the 

maximum stiffness and the optimal heat transfer path along desired directions. 

Homogenization method is firstly applied to achieve the effective elastic matrix and 

thermal conductivity matrix of 3D unit cells. The formulation of calculating homogenized 

elastic constants shown as follows has been derived in chapter 2: 

1
( ) d

kl
pH

ijkl ijkl ijpmY
m

E x E E Y
Y y

χ  ∂
= −  ∂ 

∫                                          (3.17) 

In order to solve the thermal conductivity problem of cellular materials composed of 

periodically repetitive microstructure cells, the temperature field with the double scale 

asymptotic expansion can also be written as: 

( ) ( ) ( )0 1 1 2 2, , ,T T x y T x y T x yε ε ε= + + +L                              (3.18) 

The heat conduction is similar to the elasticity problem. Starting from the equation of heat 

conduction in the general 3D case, the equation of heat balance is obtained. 

( )H
ij i

i j

T x
K f

x x

 ∂ ∂− = ∂ ∂  
                                              (3.19) 

where H
ijK  are the effective thermal conductivities depending on the following equation. 

1 j
H
ij ij ipY

p

K K K dY
Y y

φ ∂= −  ∂ 
∫                                         (3.20) 

wherein jφ  is the solution of the partial differential equation with the periodic boundary 
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conditions as follows: 

0 on Y
j

ij ip
p p

K K
y y

φ ∂ ∂− = ∂ ∂  
                                       (3.21) 

The objective functions are selected to be the primary diagonal quantities or a weighted 

combination of them. Making use of the abbreviation ij I→  for the 3D problem defined 

by 11→1, 22→2, 33→3, 12→4, 23→5 and 31→6. 

The optimization model for the maximum stiffness is stated as follows: 
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The optimization model for the optimal heat conduction path is similarly written as: 
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                                 (3.23) 

where H
kkE  are the effective elastic constants and HkK  are the effective thermal 

conductivities. kw  is the weighted coefficient ( 1kw =∑ ). Suppose a unit cell is 

discretized into a finite element model. Design variables ( 1, )tx t n=  are assigned to each 

element as pseudo-densities. Following the SIMP law, the element thermo-mechanical 

properties depend upon the density variable in an exponential form. 

�p
tt tE x E=                                                         (3.24) 

�p
tt tK x K=                                                         (3.25) 

where � tE  and � tK  respectively designate the nominal stiffness matrix and thermal 

conductivity matrix of element t with solid material, the exponent p in the SIMP law is 
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often chosen to be p=3 or 4 for the penalty. V(x) is the total material volume limited by its 

upper bound V over the unit cell. A small value of δ =10-5 is used to avoid the singularity 

of the elementary stiffness matrix during optimization. 2TV  denotes the total variation (TV) 

control used to regularize the solid-void pattern and the checkerboard control of the 

material layout. 

3.3.3 Sensitivity analysis 

After evaluation of the elastic properties of microstructure cells by finite element 

computation of homogenization problem, the sensitivity of objective functions with respect 

to the pseudo-density design variables ( 1, )tx t n=  have to be solved before carrying out 

the optimization step. From Eq. (3.22) and Eq. (3.23), the sensitivity of objective function 

is actually the sensitivity of effective properties with respect to design variables. 

Starting from Eq. (3.17), the sensitivity of effective elasticity tensor components with 

respect to the design variables can be calculated as: 

1
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∫                               (3.26) 

After the finite element discretization, the above equation can be rewritten in the following 

form: 
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From Eq. (3.24), 

t
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So the sensitivity formulation can be expressed as: 
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Similarly from Eq. (3.20) and Eq. (3.25), the sensitivity of effective thermal conductivity 

with respect to the design variables after the finite element discretization can be calculated 

as: 
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                     (3.30) 

In the above formulations, V is the volume of microstructure cell and vt is the volume of 

each element in the microstructure cell. The detailed microstructure design procedure is 

given as seen in Fig.3.4. 
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Fig.3.4 Flow chart of microstructure design procedure 

 

3.3.4 Microstructure design for maximum stiffness 

In this section, the microstructure of cellular solids will be designed with isotropic 

materials (elastic modulus 0.91E GPa=  and Poisson’s ratio 0.3µ = ). The unit cell is meshed 

with 8×8×8=512 elements. Suppose the volume fraction of the solid is of 50%. In the 

optimization procedure, the iteration begins with different distributions of element density 

values that satisfy the volume constraint over the unit cell. 

3.3.4.1 Single objective design for the maximization of microstructure stiffness 

Here, two FE models with different initial values are given. In the first model, the 

distribution of element density is layered symmetrically. In another model, the density 

variable values of eight central elements are 0.4, while others are 0.5. The distribution of 

element density values satisfies the volume constraint. Two completely different 
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configurations are obtained as shown in the Table 3.1, and the effective elastic constants of 

optimal microstructure with maximizing the uniaxial stiffness are seen in the Table 3.2. 

Obviously, the latter result is better for maximizing the uniaxial stiffness because the latter 

materials located along direction 1 are stiffer than the former one. 

 

Table 3.1 Optimal configuration with maximization of uniaxial stiffness 

Max 11
HE  

Initial model Optimal configuration 
Optimal configuration 

(only with solids) 

The 

first 

model 

   

The 

second 

model 

   

 

Table 3.2 Effective elastic constants of optimal microstructure 

The first model 
11 0.499499HE = GPa 22 0.499499HE = GPa 33 0.000136HE = GPa  

12 0.174815HE = GPa 23 0.000039HE = GPa 13 0.000039HE = GPa 

The second model 
11 0.522146HE = GPa 22 0.310918HE = GPa 33 0.310918HE = GPa 

 12 0.113786HE = GPa 23 0.028148HE = GPa 13 0.113786HE = GPa 

 

3.3.4.2 Multi-objective design for the maximization of microstructure stiffness 

Two FE models with the same initial density distribution are also given as the above 

example. As we can see in the Table 3.3 and Table 3.4, both kinds of material layouts are 
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mainly located along diagonal directions in the design space. This illustrates that optimal 

results are reasonable. Note that the central part in the optimal microstructure of the second 

model is void. In addition the first optimal microstructure is not symmetric because of the 

asymmetric initial model. But, its object values are greater than the second one because the 

former materials distributed along diagonal directions are more. That is the reason why the 

former uni-axial stiffness is smaller than the latter. 

 

Table 3.3 Optimal configuration with maximization of three shear stiffness terms 

Max 12 23 31
H H HE E E+ +  

Cases Optimal configuration Isoline figure 
Optimal configuration 

(only with solids) 

The 

first 

model 

   

The 

second 

model 

   

 

Table 3.4 Effective elastic constants of optimal microstructure 

The first model 
11 0.206832HE = GPa 22 0.230021HE = GPa 33 0.187013HE = GPa 

12 0.091302HE = GPa 23 0.092418HE = GPa 13 0.088311HE = GPa 

The second model 
11 0.264399HE = GPa 22 0.264399HE = GPa 33 0.264399HE = GPa 

12 0.079924HE = GPa 23 0.079924HE = GPa 13 0.079924HE = GPa 
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3.3.5 Microstructure design for maximum thermal conductivity 

In this section, the microstructure of cellular solids will still be designed with isotropic 

materials (thermal conductivity of the solid part1000K = W/(m·K)). The unit cell is meshed 

with 10×10×10=1000 elements. 

3.3.5.1 Single objective design for the maximization of microstructure conductivity 

Here, two models are given with the volume fraction 70% which have the opposite initial 

density distribution. That is, in the first model, density values of central elements are 

greater than outside elements. The second model is reversed. Therefore optimal 

microstructures are too completely different corresponding to the initial values. But their 

thermal conductivity values are close. Optimal results are shown in the Table 3.5. 

 

Table 3.5 Maximization of single thermal conductivity 

Max 11
HK  

Cases Optimal configuration Effective thermal conductivity (W/(m·K)) 

The 

first 

model 

 

11 690.6766HK =  

22 511.0676HK =  

33 511.0676HK =  

The 

second 

model 

 

11 689.7031HK =  

22 528.4172HK =  

33 528.4172HK =  

 

3.3.5.2 Multi-objective design for the maximization of microstructure conductivity 

In this section, uniaxial thermal conductivities terms defined in multi-directions are 
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maximized simultaneously with equal weighting coefficients. The volume fraction is 50%. 

Optimal microstructures are given in the Table 3.6. Because the thermal conductivity has 

no coupled terms, the material layout is mainly aligned to symmetrical axes (as shown in 

the Table 3.6), which corresponds to the heat transfer rule. 

 

Table 3.6 Maximization of multiple thermal conductivities 

Max 11 22
H HK K+  

11 22 33
H H HK K K+ +  

Optimal  

configuration 

  

Effective thermal 

Conductivity 

(W/(m·K)) 

11 465.0967HK =  

22 465.0967HK =  

33 2.292E-05HK =  

11 389.898HK =  

22 389.898HK =  

33 389.898HK =  

 

3.4 Summary 

In this chapter, combining the finite element and the homogenization method for the 

numerical prediction of the effective material properties, we have applied the topology 

optimization techniques to maximize the stiffness and thermal conductivity of 3D unit cells. 

Maximization of uniaxial and multiaxial material properties is considered as single and 

multiobjective optimization problems. Optimal material layouts are successfully obtained 

with the given material volume fraction. In addition, a conclusion is drawn that the initial 

layout of the unit cell has a great effect on the optimal topology, which illustrates that the 

solution of topology optimization is not unique when the microstructure is designed with 

the homogenization method. That is also the local optimization which we often meet. In 

this part, the local optimization appears because the different initial models are given. In 

future works, other methods can be pursued for the global optimization, including the exact 

methods and heuristic strategies. 
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4. Topology optimization of periodic cellular solids 

 

In this chapter, an integrated topology optimization procedure is developed 

for the global stiffness maximization of square, cyclic-symmetry and 

cylindrical cellular solids. To retain the structural periodicity and reduce the 

computational time, superelement (SE) and design variable linking techniques 

are introduced to characterize the RVE layout. The topology optimization 

problem is solved using the dual optimization algorithm. In addition, the 

polar moments of inertia of the optimal cyclic-symmetry structures are 

calculated and compared with the triangular subcells and foam cores. 
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4.1 Introduction 

As reviewed in section 1.1.1 of chapter 1, many researches have been focused on cellular 

solids (Gibson and Ashby [1997]; Gibson [2005]; Evans et al. [2001]) in recent years. This 

is a kind of lightweight structures that can be classified into two types according to the cell 

characteristics. One is regular such as the hexagonal honeycomb cell; the other is irregular 

such as the foam-like cell. Actually, honeycomb and sandwich are available for the 

marketing (e.g., see http://www.hexcel.com/markets) and cellular solids have been used in 

panel structures of the aircraft, satellite, boat and aero-engine components. This is a 

research front across the material and structure disciplines. From the design point of view, 

the key issue is to optimize the cell shape, size and topology in order to maximally exploit 

remarkable performances, e.g., impacting resistance, capacity of energy absorption, sound 

and heat insulation under specific loading conditions. 

At present, the RVE topology design of cellular solids is mainly developed for the 

optimization of material effective properties and macro-structural performances. Sigmund 

(Sigmund [1994; 1997; 2000]) obtained material microstructure configurations with the 

extreme thermal expansion coefficients and the negative Poisson’s ratio by optimizing the 

distribution of two or three isotropic material phases. Neves (Neves [2000]) carried out the 

topological optimization of the periodic linear microstructure for the maximization of shear 

and bulk moduli. Yi (Yi [2000]) implemented the optimal design of microstructures of 

viscoelastic composites following the inverse homogenization approach. The objective 

function was defined as a combination of storage modulus, loss modulus, and loss tangent 

at operating frequencies with linear and exponential weighting factors on each component 

in order to improve stiffness and damping characteristics. Another development of 

designing the RVE configuration concerns the optimization of macrostructural 

performances, e.g., stiffness, frequency, buckling load and so on. Assuming that the 

macrostructure is made of microstructures of a single material phase with a known volume 

fraction, Fujii (Fujii [2001]) and Rodrigues (Rodrigues [2002]) studied the maximization 

of macrostructural stiffness. Based on the scale-related method and the proposed design 

element (DE) concept, Zhang and Sun (Zhang and Sun [2006]) carried out the RVE 

topological optimization for the stiffness maximum and revealed the scale effect of 2D 

cellular structures in a systematical way as opposed to the homogenization method. Takano 

and Zako (Takano and Zako [2000]) proposed a design methodology of graded 
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microstructures of heterogeneous materials for the emergence of macroscopic function. 

The microstructure design of a plate was performed and the macroscopic deflection was 

controlled under the condition of the temperature distribution. Nelli Silva (Nelli Silva 

[1998]) developed the optimal design of piezocomposite microstructures using the 

topology optimization techniques and the homogenization theory. The problem consisted in 

finding the distribution of the material and void phases in a periodic unit cell that optimizes 

the performance characteristics of the piezocomposite subjected to constraints such as 

property symmetry and stiffness. Guest and Prevost (Guest and Prevost [2006]) optimized 

multifunctional porous material microstructures for stiffness and fluid permeability. 

However, when the RVE configuration is optimized, the number of RVEs that form the 

cellular solid and the number of finite elements in each RVE affect directly the computing 

scale and computational efficiency in the iterative design of the whole structure. In the 

earlier work of Yang and Lu (Yang and Lu [1996]), the superelement method was 

employed when a structure was locally designed by topology optimization. The fixed 

non-designable domain and the designable part were modeled as two superelements. The 

benefit is that only the stiffness matrix associated with the designable part of the structure 

needs to be reformulated each iteration.  

In this chapter, the introduction of the superelement (SE) technique relies on the fact that 

RVE is periodically distributed. As illustrated in the following examples of square, 

cyclic-symmetry and cylindrical structures, this approach can decrease the finite element 

computation cost for the integrated design of materials and structures. Meanwhile, by 

means of the SIMP model, the dual solution strategy and quadratic perimeter control that 

are presented in chapter 3, one can achieve the topology design of RVE without the 

checkerboard patterns in the material layout. The results demonstrate that the scale effect 

of the RVE upon the optimal configuration is important and the obtained equivalent 

torsional resistances of the optimal cyclic-symmetry cellular solids are more significant 

when compared with the results given in the literature (Wang and McDowell [2003]). Here, 

it is necessary to notice that although considered examples are relatively simple, they are 

illustrative to validate the superelement technique and the design procedure which can be 

used later in practical applications of cellular structures. 
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4.2 Representative volume element (RVE) and superelement (SE) 

 

(c) 

Fig.4.1 (a) Macrostructure (b) Cellular Structure 

(c)Super-element (RVE-SE) with design variable linking 

 
As shown in Fig.4.1, in a local region of a macrostructural body, cellular solids are 

spatially formed by a periodic repetition of a basic cell made of different or 

inhomogeneous materials. Suppose that the representative dimension of the microstructure, 

d, in the micro level y is much smaller than the representative dimension of the 

macrostructure, D, in the level x. Before the RVE configuration is optimized to attain the 

requirements of macrostructural responses, each RVE is modeled by the SE that is further 

discretized into finite elements. According to its periodicity, all the degrees of freedom 

(d.o.f.) associated with the interface connective nodes between adjacent RVE-SEs are 

retained including the d.o.f. of the boundary nodes on which the force and displacement 

loads are applied. All the others d.o.f. inside the RVE-SEs are condensed.  

For a static problem of a structure, the general static finite element equation is 

the retained nodes         the condensed nodes 
x1

t = x2
t =…= xm

t 

(a) (b) 

d 

x1
t 

d 

x2
t 
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KU F=                                                      (4.1) 

The SE method consists in condensing the stiffness matrix K and the load vector F. Denote 

UC and UR to be condensed and retained d.o.f., respectively, the above equation system can 

be rewritten as follows:  

CC CR C C

RC RR R R

K K U F

K K U F

     
=     

    
                                                   (4.2) 

where CF  and RF  are the equivalent force vectors applied on the condensed nodes and 

retained nodes, respectively. RRK  and CCK  are partial stiffness matrices of condensed 

and retained nodes, respectively. 

From the first line of Eq. (4.2), the following expression is obtained:  

1 ( )RC CC C CRU K F K U−= −                                                      (4.3) 

Its substitution into Eq. (4.2) results in 

( )1 1
RR R RRC CC CR RC CC CK K K K U F K K F− −− ⋅ = −                                   (4.4) 

The compact form is:                                  

* *
RR R RK U F=                                                     (4.5) 

This is a reduced equation system compared to Eq. (4.1). Once the displacement vector UR 

is known, the condensed displacement vector UC will be derived from Eq. (4.3).  

The advantage of integrating the SE method in topology optimization procedure is that the 

computational cost related to Eq. (4.5) is much less important than the cost of direct finite 

element analysis. Three steps are defined in the RVE-SE formulation: 

1) Creation of the superelement for the RVE finite element model by generating the 

stiffness matrices of the retained and condensed nodes.  

2) Development of the superelements by translating and rotating the RVE-SE 

periodically. This includes the generation of the stiffness matrix *
RRK  and force 

vector *
RF  for Eq. (4.5) and the solution of the latter for the displacement vector RU  

of all retained nodes. 

3) Recovery of the results including displacements and stresses within the RVE-SE by 

solving Eq. (4.3). 

Before Eq. (4.4) is assembled and solved, the inverted stiffness matrices of condensed 

nodes are obtained. That means that a large scale problem is decomposed and simplified. 
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As a numerical method, the superelement technique is well adapted to the analysis of large 

scale structures. Especially in the topology optimization of periodic structures, much 

computing iterations are needed that are time-consuming. In fact, if the number of SE is 

small, then the number of condensed d.o.f will be bigger for each SE so that CCK  

becomes larger and *
RRK  will be smaller. As a result, the creation time of SE associated 

with the construction of CCK will increase, the time of using of SEs associated with *
RRK  

for the solution of Eq. (4.5) will decrease and the time of recovery of SEs associated with 

CCK  will increase for each SE. However, it is observed that with the increase of the 

number of SE, the total computational time decreases as illustrated in Table 4.5 and 

Fig.4.9. 

 

4.3 Optimal model and sensitivity analysis 

Consider the topology optimization problem of the rigidity maximization of cellular solids 

subjected to the volume constraint. To ensure that the optimal configuration is periodic 

over the whole structure after optimization, the design variable linking technique is used to 

equalize the density variables for the finite elements having the same positions in different 

RVE-SEs. This connection is geometrically shown in Fig.4.1. 
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where C is the total compliance of the cellular solid, i.e., strain energy, m is the number of 

RVE-SEs; iU  is the displacement vector of the i-th RVE-SE; n is the finite element 

number in an RVE-SE, that defines also the number of design variables; jx  is the design 

variable of the j-th element; i
jv  is the volume of the j-th element in the i-th RVE-SE; vf  
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is the prescribed volume fraction; 0
iV  is the volume of the i-th RVE-SE; ( )P x  is the 

quadratic perimeter constraint introduced to avoid the checkerboard effect in the RVE-SE; 

el  is the interface length between adjacent elements j and j+1; P  is the upper limit of the 

perimeter constraint. Detailed explanations of ( )P x  can be found in Ref. (Zhang and 

Duysinx [2003]). 

In this chapter, the SIMP law is used for topology optimization. The following exponential 

relation holds between design variable, jx , and the stiffness matrix, i
jK , of the j-th finite 

element located in the i-th RVE-SE. 

0( ) ( )i p

j j j jK x x K=                                                     (4.7) 

where 0
jK  is the real stiffness matrix of element j before penalty, p is the penalty factor 

(p=4 in this chapter).  

By differentiating Eq. (4.1), it follows that 

1

t t

U K
K U

x x
−∂ ∂= −

∂ ∂
                                                           (4.8) 

With the above expression, the sensitivity of the objective function with respect to each 

variable jx  can be thus calculated as follows: 

( )T T T 1 T( )
t t t t t

C U K K
F U F F K U U U

x x x x x
−∂ ∂ ∂ ∂ ∂= = = − = −

∂ ∂ ∂ ∂ ∂
                      (4.9) 

As only the element t is concerned withtx , the following expression can be derived from 

Eq. (4.7) 

( )
( )

i
it t
t t

t t

K x p
K x

x x

∂ =
∂

                                                        (4.10) 

Thus, Eq. (4.9) can be rewritten for contributions of the elements t involved in m number 

of RVE-SEs. 
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                            (4.11) 

where i
jU  and i

jC  denote the displacement vector and compliance of the j-th finite 
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element in the i-th RVE-SE, respectively. Therefore, the compliance sensitivity of a 

periodic cellular solid is equal to the summation of strain energies of concerned finite 

elements multiplied by a negative scaling factor.   

To have a global view, the whole design procedure consisting of five phases (creation of 

the SE, utilization of the SE, recovery of each SE, sensitivity analysis and optimization) is 

shown in Fig.4.2. 
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Creation of the SE by FEA
(Creating the FE model of RVE and 

defining the variables, materials and retained nodes)

Utilization of the SE by FEA
(Creating the  RVE-SE model of cellular solids by 

translating and rotating the SE, defining the boundary 
conditions and solving the system finite element equation)

Recovery of each SE by FEA

Obtaining the potential 
energy of each SE

Computing the sensitivity

Optimization
(dual optimization scheme 
and perimeter constraint)

Convergence

End

no

yes

m
(the number of SE)

1

2

4

5

3

 

Fig.4.2 Flowchart of RVE-SE topology optimization procedure 

 

4.4 Topology optimization of periodic cellular solids 

According to the proposed design procedure, several numerical examples are studied below, 

including square, cyclic-symmetry, and three-dimensional cylinder cellular structures. 
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These cellular structures are periodically partitioned into RVEs, and each of them is 

modeled into an SE. With the given load conditions, the objective function is defined by 

the rigidity maximization of global cellular solids. The perimeter control is introduced at 

the level of topology optimization of the RVE-SE configuration.  

4.4.1 Square structure 

For this example, the solid volume fractions of 50% and 30% are considered, respectively. 

As shown in Fig.4.3, the design domain of the square cellular solid has a dimension 

L×L=24×24 and the thickness is 0.1. The left side of the cellular solid is fixed and a 

downward force F=100 is applied on the right-bottom point. Young’s modulus and 

Poisson’s ratio of the material are E=1000 and v=0.3, respectively. Note that the units are 

omitted here with assumption of their consistence in this chapter. The total finite element 

number of the cellular solid is kept to be 57600 even when the size of each periodic 

RVE-SE l×l changes. It makes sure that the size of each finite element in the different size 

RVE-SE is same. According to the given size of RVE-SE, the square cellular structure is 

divided into 2×2, 4×4, 6×6, 8×8 and 10×10 unit cells. The optimal configurations are 

shown in Table 4.1 and Table 4.2. 

 

The number of RVE-SEs is k×k.

RVE 

SE

L

L

l

l

F

( )
L

k
l

=

 

Fig.4.3 Design domain definition of square cellular solid and involved RVE-SE 

 

a. Volume fraction 50％％％％ 
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Table 4.1 Optimal topology of RVE-SE with 50% volume fraction 

Number of 

RVE-SEs 

(m) 

10×10=100 8×8=64 6×6=36 4×4=16 2×2=4 

Number of 

finite 

elements 

in one 

RVE-SE (n) 

576 900 1600 3600 14400 

RVE-SE 

configuration 
     

Cellular 

solids 

     

Minimum 

compliance 
1357.28785 1292.30204 1185.08543 1106.27691 948.54478 

 

 

Fig.4.4 Influence of the number of RVE-SEs on structural rigidity 

 

b. Volume fraction 30％％％％ 
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Table 4.2 Optimal topology of RVE-SE with 30% volume fraction 

Number of 

RVE-SEs 

(m) 

10×10=100 8×8=64 6×6=36 4×4=16 2×2=4 

Number of  

finite 

elements 

in one 

RVE-SE (n) 

576 900 1600 3600 14400 

RVE-SE 

configuratio

n      

Cellular  

solids 

     

            

Minimum  

compliance 

2728.63264 2605.22415 2472.74417 2115.91568 1576.5010 

 

 

Fig.4.5 Influence of the number of RVE-SEs on structural rigidity 

 

64
36

16

4

100

1200
1500
1800
2100
2400
2700
3000

0 20 40 60 80 100 120
m

C

C-Compliance, m-Number of RVE-SEs 



Topology optimization of periodic cellular solids                                          69 

 

In Table 4.1 and Table 4.2, it is shown that for a fixed finite element mesh discretizing the 

cellular solid, the size variation of the RVE-SE will make the optimal configuration change 

and this scale effect is particularly important when a small number of RVE-SEs is used. As 

shown in Fig.4.4 and Fig.4.5, the global rigidity of cellular solids decreases with the 

reduction of RVE-SE dimension (increase of m) because the constraint defined by the 

periodic condition is more and more severe for the material layout over the design domain. 

In fact, the periodic arrangement of cellular cells is not always an efficient design strategy. 

From this example, it can be observed that since the periodicity condition enhanced by the 

decrease of RVE-SE dimension reduces the design space, the more reasonable distribution 

of materials is restricted so that the structure becomes thinner and thinner where the load is 

applied and hence the compliance increases with increasing cell number. Therefore, the 

periodicity condition has to be properly imposed on the local region of a structure where 

regular cells of desired configurations are needed. Meanwhile, the designed cells can 

change gradually from one region to another as graded materials. This point needs further 

investigations in the future work. 

4.4.2 Cyclic-symmetry structure 

4.4.2.1 Configuration design 

 

Fig.4.6 Design domain of cyclic-symmetry cellular solid and involved RVE-SE 

 

A cyclic-symmetry cellular solid is shown in Fig.4.6. The inner and outer radii are 10 and 

21.25, respectively. The thickness is 0.1. Suppose the inner circle is fixed and an upward 

force F=100 is applied on the right-end point of the outer circle. Young’s modulus and 

Poisson’s ratio of the material are E=4000 and v=0.3, respectively. The total finite element 

number is 72000 for the cellular solid. The cyclic-symmetry cellular solid is divided into 
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different size RVE-SEs along the circumferential direction according to the different 

degree. The solid volume fractions of 50% and 30% are considered, respectively. 

 

a. Volume fraction 50％％％％ 

Table 4.3 Optimal topology of RVE-SE with 50% volume fraction 

Number of 

RVE-SEs (m) 
32 0( 11.25 )θ =  16 0( 22.5 )θ =  8 0( 45 )θ =  4 0( 90 )θ =  

Number of  

finite elements  

in one 

RVE-SE (n) 

2250 4500 9000 18000 

RVE-SE 

configuration  
 

  

Cellular solids 

    

Minimum 

compliance 
264.00308 251.07365 248.98018 190.33041 

 

 

Fig.4.7 Influence of number of RVE-SEs on stiffness 
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b. Volume fraction 30％％％％ 

Table 4.4 Optimal topology of RVE-SE with 30% volume fraction 

Number of 

RVE-SEs (m) 
32 0( 11.25 )θ =  16 0( 22.5 )θ =  8 0( 45 )θ =  4 0( 90 )θ =  

Number of 

finite elements 

in one RVE-SE 

(n) 

2250 4500 9000 18000 

RVE-SE 

configuration  
 

  

Cellular solids 

    

Minimum 

compliance 
452.28918 425.89111 406.36349 318.83632 

 

 

Fig.4.8 Influence of number of RVE-SEs on stiffness 

 

Similarly, results given in Table 4.3 and Table 4.4 show a strong dependence of the optimal 

topology upon the size of RVE-SE. A clear distribution of materials becomes more and 
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more important along the outer contour when a refinement of the RVE-SE is made along 

the circumferential direction. In Fig.4.7 and Fig.4.8, we can see that the global rigidity of 

cellular solid reduces while the number of the RVE-SE increases. 

 

Table 4.5 CPU Time during the finite element analysis (volume fraction 30%) 

Number of 

RVE-SEs 

(m) 

Time of 

creation of SE 

Time of 

utilization of SEs 

Time of 

recovery of SEs 
Total time 

32 2.20 Sec. 2.52 Sec. 0.53×32= 16.96 Sec. 21.68 Sec. 

16 5.58 Sec. 1.52 Sec. 0.97×16=15.52 Sec. 22.62 Sec. 

8 12.94 Sec. 1.22 Sec. 1.73×8=13.84 Sec. 28.00 Sec. 

4 35.86 Sec. 1.02 Sec. 3.55×4=14.68 Sec. 51.56 Sec. 

Time of direct FE analysis without super-element 59.00 Sec. 

 

 

Fig.4.9 Comparison of total computing time with respect to the number of RVE-SEs 

 

For this test, a comparison of the computational time is given in Table 4.5 and plotted in 

Fig.4.9. Clearly, the total time decreases when the number of RVE-SEs increases. In detail, 

as the decrease of the RVE-SE number leads to an increase of the finite element number in 

each RVE-SE, the number of both retained and condensed d.o.f. in each RVE-SE increases 

correspondingly. Therefore, the time used in the creation phase and the time used for the 

recovery of one RVE-SE become more and more important. Oppositely, the time of 

utilization of SEs, that depends upon the RVE-SE number is less. In contrast, if the whole 
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cyclic-symmetry structure is directly analyzed by the finite element method, it takes 59.00 

Sec. Thus, the increase of RVE-SE number is beneficial to improve the computational 

efficiency. 

4.4.2.2 Comparison of polar moments of inertia and torsional resistance 

As it is known, the polar moment of inertia and the second moment of area are important 

measures of torsional and bending rigidities for a cross-sectional shape. Wang and 

McDowell (Wang and McDowell [2003]) considered the circular sandwich bar with 

triangular subcells as shown in Fig.10. The equivalent torsional and bending rigidities of 

the bar structure are estimated using standard analytical approaches. In our work, the 

topology of cyclic-symmetry structures is optimized for the maximum rigidity based on the 

RVE-SE method. It is therefore interesting to make a comparative study between both 

solutions. 

(1) Comparison with the cross section of triangular subcells 

In order to compute the polar moments of inertia of optimal topologies obtained with the 

different number of RVE-SEs, the corresponding finite element models are firstly 

converted into a discretized geometry models. That is to say, we keep the finite elements 

with solid materials and delete those with void materials. And then the retained finite 

elements are transformed into the discretized geometry areas. According to the definition 

of polar moments of inertia, the polar moments of inertia of combined areas with respect to 

an axis are equal to the sum of the moments of inertia of all areas with respect to the same 

axis. Here, the polar moments of inertia will be automatically evaluated by the ANSYS® 

software.  

 
(a) (b) 
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Fig.4.10 (a) A supercell with circle and triangle subcells (m=8) 

(b) A single representative cell wall for analysis 

 

According to Wang and McDowell [2003], assume 21.25R =  and 10r =  for the outer 

and inner radii respectively, same as in the above cyclic-symmetry example. Here, the wall 

thickness is set to be 0.1( ) 1.125i ot t R r= = − = . Consequently, areas of the core, outer and 

inner circular skins equal 

2 2( ) ( ) 883.57c o iA R t r tπ π= − − + =
                                    (4.12a) 

( )22 146.23o oA R R tπ π= − − =
                                (4.12b) 

( )2 2 74.66i iA r t rπ π= + − =                                      (4.12c) 

The lengths of the core, outer and inner circular skins are as follows:  

2 22 2 2 cos
2cS mBD m R r Rr
φ = = + −  
 

                                (4.13a) 

2oS Rπ=                                                                (4.13b) 

2iS rπ=                                                                 (4.13c) 

Following Wang and McDowell [2003], the relative density of the core, *
cρ  is given as: 

2 2

*
2 2

2 2 cos
2

( )

c
c c

c
c

mt R r Rr
t S

A R r

φ

ρ
π

 + −  
 = =

−
                                     (4.14) 

The solid volume fraction, fv , can be then written as 

 
*

o i c c
v

c o i

A A A
f

A A A

ρ+ +=
+ +

                                                       (4.15) 

In our applications, * 0.375cρ = when fv = 50%, and * 0.175cρ = when fv = 30%. Following 

Wang and McDowell [2003], the polar moment of inertia of the core is calculated as 

( )221 1
4 4c c OBDC c

c c

J A t mS t
S S

≈ =                                            (4.16a) 

where sin
2OBDCS Rr
φ= . By combining Eq. (4.13a) and Eq. (4.14), Eq. (4.16a) is developed 

as 
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( )
2

2 2 2 2 *

2 2

sin
2

2 cos
2

c

c

R r R r
J

R r Rr

φπ ρ

φ

 −  
 =

+ −
, 

2

m

πφ =                                   (4.16b) 

Besides, the polar moments of inertia of the inside and outside face sheets are readily 

calculated by the membrane analogy method as 

2 31
4 2 7068.58i i i i

i

J A t r t
S

π≈ = =                                             (4.16c) 

2 31
4 2 67828.03o o o o

o

J A t R t
S

π≈ = =                                          (4.16d) 

Finally, the total polar moment of inertia is o c iJ J J J= + +  and corresponding values are 

given in Table 4.6 for different numbers of subcells.  

 

Table 4.6 Comparison of polar moments of inertia 

Number of RVE-SEs (m) 32 16 8 4 

Ref. (Wang 

and McDowell 

2003) 

7.6294E+04 8.0180E+04 9.2132E+04 1.1215E+05 Polar moments 

of inertia J 

( vf = 50%, 

* 0.375cρ = ) 

Optimal 

structures 

(Table 4.3) 

1.6618E+05 1.6714E+05 1.6805E+05 1.3089E+05 

Ref. (Wang 

and McDowell 

2003) 

7.5549E+04 7.7362E+04 8.2940E+04 9.2280E+04 Polar moments 

of inertia J 

( vf =30%, 

* 0.175cρ = ) 

Optimal 

structures 

(Table 4.4) 

9.3349E+04 9.8358E+04 9.5136E+04 7.8060E+04 
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Fig.4.11 Comparison of polar moments of inertia 

 

(2)Comparison with the foam core 

Alternatively, when the core of the circular sandwich structure consists of the stochastic 

metallic foam, the equivalent normalized torsional resistance of metal foam can be 

estimated for open and closed cells (Gibson and Ashby [1997]).  

• For the open cell foam core material, 

( )
* 2 2

2*
2 2 2 2

3

16
c c

c

J G R r
E

R r r R
π ρ 

= − 
 

                                             (4.17) 

• For the closed cell foam core material, 

( )( )* 2 2
22 * *

2 2 2 2

3
(1 )

16
c c

c c

J G R r
E

R r r R
π ω ρ ω ρ 

= − + − 
 

                           (4.18) 

where *
cG  is the effective shear modulus of stochastic metal foam, ω  is the fraction of 

solids (Gibson and Ashby [1997]) which is contained in the cell faces. For most stochastic 

foams, ω  is in the range of 0.6~0.8. Here let ω =0.6 for generic stochastic metal foams. 

*
cρ  is the relative density of the stochastic metal foam. 

• For the triangular subcells core (Wang and McDowell [2003]), the equivalent normalized 

torsional resistance is 

6. 00E+04

7. 50E+04

9. 00E+04

1. 05E+05

1. 20E+05

1. 35E+05

1. 50E+05
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Optimal structures          Ref. (Wang and McDowdll 2003) 
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( )
2

2 2 *

2 2
2 2

sin
2

2 cos
2

c
c s

s

R r
J G

G
R r R r Rr

φρ
π φ

 −  
 =

+ −
                                           (4.19) 

where sG  is the shear modulus of the solid cell wall. 

Therefore, the equivalent normalized torsional resistance of circular sandwich is then 

( )
2 2 2 2

o i c c
eff

J J G J G
T

R r R r

+
= +                                             (4.20) 

where /(2(1 ))G E v= +  is the shear modulus of the inner and outer walls. Here, 

let sG G= , E=4000 and v=0.3. The equivalent normalized torsional resistances are given 

in Table 4.7 for the three types of sandwich structures. 

For the optimal configuration, the equivalent normalized torsional resistance can be 

calculated as 

2 22 (1 )eff

JE
T

R r v
=

+
                                                        (4.21) 
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Table 4.7 Comparison of equivalent normalized torsional stiffness 

Number of RVE-SEs (m) 32 16 8 4 

Optimal Structures  

(Table 4.3) 
5661.71 5694.42 5725.42 4459.39 

Ref. (Wang and 

McDowell 2003) 
2599.316 2731.711 3138.913 3820.921 

With open cell foam 

core 
3974.5 

Equivalent torsional 

stiffness 

( vf =50%, 

* 0.375cρ = ) 

With closed cell foam 

core 
4581.6 

Optimal Structures 

(Table 4.4) 
3180.38 4459.39 3241.26 2659.48 

Ref. (Wang and 

McDowell 2003) 
2573.935 2635.703 2825.744 3143.955 

With open cell foam 

core 
2861.6 

Equivalent torsional 

stiffness 

( vf =30%, 

* 0.175cρ = ) 

With closed cell foam 

core 
3371.5 

 

It is shown that the polar moments of inertia obtained by traditional approaches used in the 

literature (Wang and McDowell [2003]) decrease gradually with increasing the RVE-SE 

number. In comparison, the polar moments of inertia associated with the optimal 

topologies under the point-wise tangential load in this work are however larger and do not 

change monotonously. The reasons that cause different results consist in that in triangular 

subcells structures the mass distribution is close to the axis of rotation because 

configurations of unit cells are invariable when the dimensions of unit cells become small, 

and in the optimized structures the mass distribution of optimal topologies is the farthest to 

the axis of rotation when m=8 forvf =50% and m=16 for vf =30%.  

Similarly, the comparison given in Table 4.7 indicates that for vf =50%, the optimal 

structure has the largest torsional stiffness when the number RVE-SE is m=8. For vf =30%, 

the optimal structure attains the maximal torsional stiffness when m=16. In addition, it is 
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seen that for the current ratio of r/R, the normalized torsional stiffness of the circular 

sandwich obtained by the traditional approach of the literature (Wang and McDowell 2003) 

is smaller than that of the stochastic metal foams. Therefore, it is necessary to adopt 

different types of cores in terms of the ratio of r/R so as to obtain the better torsional 

stiffness. 

4.4.3 Cyclic-symmetry with non-designable domain 

Fig.4.12 Cyclic-symmetry cellular solid and involved RVE-SE 

with non-designable domain 

 

A cyclic-symmetry cellular solid with the non-designable domains in the inner and outer 

circle is shown in Fig.4.12. The inner and outer radii in the designable domain are 11.125 

and 20.125, respectively. The width of two non-designable domains is 1.125. The thickness 

is 0.1. Similarly suppose the inner circle is fixed and an upward force F=100 is applied on 

the right-end point of the outer circle. Young’s modulus and Poisson’s ratio of the material 

are E=4000 and v=0.3, respectively. The solid volume fractions 10% and 30% in the 

designable domain are considered, corresponding to the solid volume fractions 28% and 

44% for the whole cellular structure. 
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Table 4.8 Optimal topology of RVE-SE with 10% volume fraction 

Number of 
RVE-SE 

32 0( 11.25 )θ =  16 0( 22.5 )θ =  8 0( 45 )θ =  

RVE-SE 
configuration 

 

 

 

Cellular 
solids 

(designable 
domain) 

  

 

 
 

Whole 
structure 

  

 

 
 

Minimum 
compliance 

370.38 368.65 391.43 
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Table 4.9 Optimal topology of RVE-SE with 30% volume fraction 

Number of 
RVE-SE 

32 0( 11.25 )θ =  16 0( 22.5 )θ =  8 0( 45 )θ =  

RVE-SE 
configuration 

 

 

 

Cellular 
solids 

(designable 
domain) 

  

 

 
 

Whole 
structure 

  

 

 
 

Minimum 
compliance 

132.7 130.04 95.41 

 

Similarly, the results given in Table 4.8 and Table 4.9 show a strong dependence of the 

optimal topology upon the size of RVE-SE. Compared with the examples in 4.4.2; the 

non-designable domains have the great influence on the optimal configurations of RVE-SE. 

Normally, with increasing the number of RVE-SEs or decreasing the size of RVE-SEs, the 

minimum compliance reduces. However, from Table 4.8 we know that the minimum 

compliance becomes oppositely big when the number of RVE-SEs is eight and the volume 

fraction is 10% in the designable domain. That illustrates that the optimal results are 

affected by the material amount and the non-designable domain. 
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4.4.4 Cylinder structure 

Fig.4.13 Designable domain of cylinder structure and involved RVE-SE  
 

In this example, a cylindrical design space is shown in Fig.4.13. The inner radius R of 

cylinder structure is 58 and its wall thickness t is 0.5. The cylinder height h is 20. Suppose 

the four places distributed averagely in the bottom are fixed and every node on the top 

surface is acted by a downward force q=10 as seen in Fig.4.13. The Young’s modulus and 

Poisson’s ratio of the material are E=1000 and v=0.3, respectively. The total number of 

finite elements is 38400 for this cylindrical cellular solid. Here we use the 3D finite 

elements to discretize the cylinder structure. The cellular solid is averagely divided into 32, 

16, 8 and 4 RVE-SEs along the circumferential direction which have the corresponding 

number of 3D finite elements 1200, 2400, 4800 and 9600. There are 20 finite elements 

along the height direction and one finite element along the wall thickness direction. The 

solid volume fractions of 50% and 30% are considered, respectively. The optimal 

configurations are seen from Fig.4.15 to Fig.4.21. 

 

a. Volume fraction 50％％％％ 

 

 

RVE 
SE 

O 

θ  

The number of RVE-SEs is k. 

q  

360
k

θ
=  

R 
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(a)                      (b) 

Fig.4.14 Optimal configurations with (a) Unit cell (b) Cellular cylinder with 32 unit cells 
 

  
(a)                            (b) 

Fig.4.15 Optimal configurations with (a) Unit cell (b) Cellular cylinder with 16 unit cells 
 

  
(a)                              (b) 

Fig.4.16 Optimal configurations with (a) Unit cell (b) Cellular cylinder with 8 unit cells 
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(a)                                   (b) 

Fig.4.17 Optimal configurations with (a) Unit cell (b) Cellular cylinder with 4 unit cells 
 

 

b. Volume fraction 30％％％％ 

  
(a)                        (b) 

Fig.4.18 Optimal configurations with (a) Unit cell (b) Cellular cylinder with 32 unit cells 
 

 
(a)                       (b) 

Fig.4.19 Optimal configurations with (a) Unit cell (b) Cellular cylinder with 16 unit cells 
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(a)                            (b) 

Fig.4.20 Optimal configurations with (a) Unit cell (b) Cellular cylinder with 8 unit cells 
 

 
(a)                                (b) 

Fig.4.21 Optimal configurations with (a) Unit cell (b) Cellular cylinder with 4 unit cells 
 

Table 4.10 Optimal topology of RVE-SE with 50% and 30% volume fraction 

Number of 

RVE-SEs (m) 
32 0( 11.25 )θ =  16 0( 22.5 )θ =  8 0( 45 )θ =  4 0( 90 )θ =  

Number of 

finite elements 

in one RVE-SE (n) 

1200 2400 4800 9600 

Minimum compliance 

50% volume fraction 
3.3138E+07 3.2657E+07 2.7950E+07 2.6840E+07 

Minimum compliance 

30% volume fraction 
6.2081E+07 5.9221E+07 5.05332E+07 4.67372E+07 
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Fig.4.22 Influence of the number of RVE-SEs on structural rigidity 

 
Similarly, the results given from Fig.4.15 to Fig.4.21 show a strong dependence of the 

optimal topology upon the size of RVE-SE and the material amount. From Table 4.10 and 

Fig.4.22, we can see that the global rigidity of cylindrical cellular solid reduces with 

respect to the number increase of the RVE-SE. 

 

4.5 Summary 

In conclusion, this chapter is mainly focused on the implementation of the RVE-SE 

topology optimization procedure. AN RVE-SE topology optimization procedure is 

developed for the structural rigidity maximization of cellular solids. A flowchart is given 

for the RVE-SE topology optimization procedure of periodic structure and the computation 

efficiency is analyzed for different numbers of RVE-SEs. Several examples including 

square, cyclic-symmetry and cylindrical cellular solids are considered to investigate the 

scale effects of RVE-SE upon the optimal topologies and the computation efficiency. The 

optimal results show that the size variation of the RVE-SE influences greatly the optimal 

configuration which is not unique. It is advantageous to adopt the SE technique so that the 

integrated design of the cellular material and structure can be made efficiently. Besides, the 

comparisons of the equivalent torsional resistances of the optimal cyclic-symmetry cellular 

solids reveal that the innovative configurations of the circular sandwich structure can be 

obtained for a better performance of torsional resistance by means of the proposed design 

procedure. 
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5. Bending analysis of sandwich panels and topological 

design of cores 

 

In this chapter, the bending analysis and the layout design of the multilayered 

sandwich panels with the size variation of different cores are developed. The 

hexagonal and square honeycomb cores and the circle and X corrugated 

cores are analyzed. Bending responses of sandwich panels are also computed 

numerically and theoretically using the homogenized cores. According to the 

ratio of the span dimensions to thickness, Levy and Navier methods in the 

laminate plate theory are used for sandwich panels with the homogenized 

honeycomb cores. And then, considering the upper and bottom skin layers as 

non-designable parts, the 3D layout optimization of scale-related sandwich 

cores with different sizes are carried out for the global stiffness maximization. 
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5.1 Introduction 

In the Chapter 1 and Chapter 2, we have pointed out that sandwich panel is a kind of 

typical structural form in sandwich structures. Usually, a sandwich panel is composed of 

the upper and lower skins and a lightweight core. Common patterns of the sandwich core 

such as foam, truss, honeycombs and corrugated cores (Gibson and Ashby [1997]; Wicks 

and Hutchinson [2004]; Petras and Sutcliffe [1999]; Valdevit et al. [2006]) are as shown in 

Fig.1.4. In these sandwich cores, the detailed different structural forms are involved, e.g., 

the foam core with the open or close cells, different truss configurations, honeycomb cores 

and the corrugated cores with different shapes, etc. Moreover, such attractive properties as 

high specific stiffness and strength, high impact energy absorption, sound damping, 

electromagnetic wave absorption, thermal insulation and non combustibility (Lukkassen 

and Meidell [2003]; Zhu and Sankar [2007]; Styles et al. [2007]) can be obtained by the 

optimal design. Therefore, sandwich panels are extensively used in the aerospace, building, 

automobile, package, and shipbuilding industries. 

Most studies on the sandwich panel presently focus on the two following aspects. Firstly, 

different kinds of methods involved in the homogenization technique, the analytical and 

the experimental method are pursued to obtain the effective properties of sandwich panels 

with the various cores. Buannic (Buannic [2003]) computed the effective properties of the 

corrugated core sandwich panel with the homogenization method and derived the 

equivalent Kirchhoff-Love and Reissner-Mindlin homogeneous plate. Meraghni (Meraghni 

[1999]) developed three approaches of finite element analysis, analytical study and 

experimental tests to determine the mechanical properties of the honeycomb and tubular 

cores for sandwich panels. Xu and Qiao (Xu and Qiao [2002]) applied the multi-pass 

homogenization technique to solve the equivalent stiffness of the sandwich with the skin 

effect. Hohe and Becker (Hohe and Becker [2001b]) used a strain energy-based 

representative volume element procedure for the determination of the effective properties 

of two-dimensional cellular sandwich cores with arbitrary cell topology and geometry. Xue 

and Hutchinson (Xue and Hutchinson [2004]) proposed a valid constitutive model for 

quasi-static deformation of three kinds of metallic sandwich cores. Secondly, structural 

responses of sandwich panels including the bending, impact, vibration and bulking 

responses are also evaluated. Romanoff and Varsta (Romanoff and Varsta [2007]) 

evaluated the bending response of web-core sandwich plates by transforming an originally 
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discrete core into an equivalent homogenous continuum with the effect of thick-face-plates. 

The equivalent stiffness properties of the plate were determined by analytical formulations. 

Glenn and Hyer (Glenn and Hyer [2005]) developed a theory to predict the out-of-plane 

deflections of sandwich plates. Paik (Paik [1999]) investigated the strength characteristics 

of aluminum sandwich panels with aluminum honeycomb core. Koissin (Koissin [2004]) 

addressed the elastic response of sandwich panels to local static and dynamic loading. Meo 

(Meo [2005]) made an experimental investigation and a numerical simulation on the 

impact damage over a range of sandwich panels. They revealed the load distribution in 

damaged sandwich structures and studied the failure mechanisms of such a structure in the 

presence of impact damage. Pokharel and Mahendran (Pokharel and Mahendran [2004]) 

investigated local buckling behavior of sandwich panels using experimental and finite 

element analysis. Frostig and Thomsen (Frostig and Thomsen [2004]) presented free 

vibration analysis of sandwich panels with a flexible core based on the high-order 

sandwich panel theory. Chang (Chang [2005]) presented a closed-form solution based on 

the Mindlin-Reissner plate theory to describe the behavior of corrugated-core sandwich 

plate in bending with various boundary conditions. 

The above-presented researchers and many others have carried out plenty of outstanding 

and in-depth studies on the sandwich panel. However, fewer attentions are paid on the size 

effect of sandwich cores concerning the mechanical properties of sandwich panels. Tekoglu 

and Onck (Tekoglu and Onck [2005]) pointed out that mechanical properties of cellular 

materials depended strongly on the ratio of the specimen size to the cell size. The size 

effect was studied by Onck (Onck [2001]) for the in-plane elastic constants of hexagonal 

honeycombs based on the finite element modeling and experimental tests. Recently, Dai 

and Zhang (Dai and Zhang [2008]) theoretically and numerically studied size effects of the 

2D basic cell of sandwich beams in a systematic way and demonstrated the importance of 

size effect. Therefore, it’s necessary to further explore the size effect of 3D sandwich cores 

in analyzing the mechanical response of sandwich panel.  

In this chapter, firstly, we introduce the classical laminate plate theory that is used for the 

analysis of sandwich panel. Secondly, the bending responses of sandwich panels with the 

honeycombs and corrugated cores of different sizes are computed numerically. And also, 

the laminate plate theory and the finite element method are adopted to analyze the bending 

responses of sandwich panels with the homogenized cores predicted by the 3D 



90                                                                         Chapter 5 

 

homogenization method. And then, the representative volume elements (RVEs) 

configuration of sandwich cores is optimized by the scale-related method for the global 

stiffness maximization of sandwich panel. By means of the SIMP model, the dual solution 

strategy and quadratic perimeter control (Zhang and Duysinx [2003]), one can achieve the 

topology design of RVE of sandwich cores without the checkerboard patterns. 

 

5.2 Laminate plate theory 

The sandwich panel can be considered as a multi-layered plate when the sandwich core is 

homogenized by the homogenization method. Therefore, the laminate plate theory (Vinson 

and Sierakowski [1987]; Reddy [1984]) can be used to analyze its bending response. 

According to the assumption of the laminate plate theory that the lines perpendicular to the 

surface of the laminate remain straight and perpendicular to the deformed surface as well. 

The functional forms of the displacements for the laminate plate are: 

0

0

0

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

( , , ) ( , )

u x y z u x y z x y

v x y z v x y z x y

w x y z w x y

α
β

= +

= +
=

                                         (5.1) 

where u0, v0 and w0 are the displacements of the mid-plane (that is, the x-y plane in Fig.5.1 

below) of the laminate plate on x, y and z direction respectively. The second terms in the 

first two equations are related to the rotations of the lineal element. In classical plate 

theory,  

,
w w

x y
α β∂ ∂= − = −

∂ ∂
                                               (5.2) 

The equilibrium equations for the three dimensional elasticity can be written as follows: 

0

0

0

yxx zx
x

xy y zy
y

yzxz z
z

F
x y z

F
x y z

F
x y z

σσ σ

σ σ σ

σσ σ

∂∂ ∂+ + + =
∂ ∂ ∂

∂ ∂ ∂
+ + + =

∂ ∂ ∂
∂∂ ∂+ + + =

∂ ∂ ∂

                                           (5.3) 

In the classical laminate plate theory, we define and use stress resultants (N), stress couples 

(M), and shear resultants (Q) for the overall plate. 
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∫ ∫                          (5.4) 

Then the body force items (Fx, Fy, Fz,) are neglected. It is further assumed that the plate is 

composed of a laminated composite material that is mid-plane symmetric. From Eq. (5.3) 

and Eq. (5.4) through integrating term by term across each layer, the plate equilibrium 

equations for the bending of the plate, due to lateral loads can be expressed as 

0xyx
x

MM
Q

x y

∂∂ + − =
∂ ∂

                                                (5.5) 

0xy y
y

M M
Q

x y

∂ ∂
+ − =

∂ ∂
                                               (5.6) 

( , ) 0yx
QQ

P x y
x y

∂∂ + + =
∂ ∂

                                             (5.7) 

Eq. (5.5) and Eq. (5.6) can be substituted into Eq. (5.7), which generates 

2 22

2 2
2 ( , )xy yx

M MM
P x y

x x y y

∂ ∂∂ + + = −
∂ ∂ ∂ ∂

                                    (5.8) 

From the following equation: 

N A B

M B D k

ε     =     
     

                                                 (5.9) 

and according to Eq. (5.1) and Eq. (5.2) and the relations among displacements, strains and 

stresses of the laminate plate, we obtain: 

11 12

12 22

662

x x y

y x y

xy xy

M D k D k

M D k D k

M D k

= +

= +

=

                                                (5.10) 

where 

2 2 2

2 2

1
, ,

2x y xy

w w w
k k k

x x y y x y x y

α β α β ∂ ∂ ∂ ∂ ∂ ∂ ∂= = − = = − = + = − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
            (5.11) 

( ) 3 3
1

1

1

3

N

ij ij k k
k k

D Q h h −
=

 = − ∑                                            (5.12) 

Here the principal material directions (1, 2, 3) coincide with the x-y-z coordinate system.  
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The ijQ  quantities are the stiffness matrix quantities that have the following simple forms 

by ignoring the fine accuracy. 

11 11 12 21

22 22 12 21

12 21 21 11 12 21 12 22 12 21

66 12

/(1 )

/(1 )

/(1 ) /(1 )

Q E v v

Q E v v

Q Q v E v v v E v v

Q G

= −
= −
= = − = −
=

                         (5.13) 

Substitute Eq. (5.10) and Eq. (5.11) into Eq. (5.8), which results in: 

4 4 4

11 12 66 224 2 2 4
2( 2 ) ( , )

w w w
D D D D P x y

x x y y

∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

                       (5.14) 

According to Eq.(5.14), the bending response of a sandwich panel, except transverse shear 

deformation and coupling terms subjected to a lateral distributed load P(x, y), can be 

obtained by the Levy solution and the Navier solution. 

 

5.3 Analysis of bending responses of sandwich panels 

5.3.1 Sandwich panels with the honeycomb cores 

5.3.1.1 Hexagonal core 

A sandwich panel with the hexagonal honeycomb core, as shown in Fig.5.1, is simply 

supported on the left and right side. The line load P 100N/m is applied on the center of the 

plate. The sandwich panel has the dimensions assigned as: width a=0.8865m, length 

b=1.5354m, thickness hu=hl=0.0125m, hc=0.0375m (u-upper skin, l-lower skin, c-core), 

and the material properties: elastic moduli Eu=El=2.0GPa and Ec=0.91GPa.  

 

 

Fig.5.1 Sandwich panel with hexagonal cores 

 

The effective material properties of hexagonal honeycomb core are obtained by the 3D 
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homogenization method.  

=3.118352E+07 , =3.116449E+07 , =2.414286E+08

=8.770264E+06 , =5.272060E+07 , =5.273506E+07

=7.818590E-01, =3.874876E-02, =3.872511E-02

Pa Pa Pa

Pa Pa Pa

H H H

x y z

H H H

xy yz xz

H H H

xy xz yz

E E E

G G G

v v v

 

According to the boundary conditions on those edges: w(x, 0)=0, w(x, b)=0, and My(x, 0)=0, 

My(x, b)=0, Levy assumed the following solution form of Eq.(5.14): a single infinite half 

range sine series: 

( , ) ( ) sin
1

n y
w x y xn

n b

π
φ

∞
= ∑

=
                                            (5.15) 

The load ( , )P x y  is also expanded in terms of a half range sine series. Then, by 

substituting Eq. (5.15) into Eq. (5.14), the equation concerning ( )n xφ  is obtained. Its 

solution is composed of the particular solution ( )
P

xnφ  and the homogenous solution 

( )
H

xnφ  that has three different forms depending on the relative plate stiffness in various 

directions. 

The total potential energy is: 

0 2 2( , ) ( , )
a

b bU w x P x dx= ∫                                            (5.16) 

Via the calculation, the Levy solution converges when the expansion number n equals to 5. 

The maximum displacement module is 2.94×10-4m, and the total potential energy is 

2.44×10-2N·m. The deformation of the sandwich panel is shown in Fig.5.2. 

 

 

Fig.5.2 Levy solution of sandwich panel with hexagonal cores 

 

The bending response of the sandwich panel made of three-layered homogeneous media is 

obtained via the finite element software SAMCEF®. The maximum displacement module 
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is 2.57×10-4m, and the total potential energy is 2.139×10-2N·m. The detailed deformation is 

shown in Fig.5.3. 

 

 

Fig.5.3 Finite element solution of sandwich panel with the homogenized core 

 

The finite element models of sandwich panels with the different size hexagonal cores are 

built and their bending responses are calculated in Table 5.1. The total potential energy and 

the maximum displacement module tend towards the solution obtained by using the 

homogenization method, as shown in Fig 5.4.  
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Table 5.1 Bending deflections of sandwich panels with different size hexagonal cores 

Bending values of sandwich 
panels Number 

of unit 
cells 

Different size 
cores 

Bending responses of 
sandwich panels 

Total potential 
energy 

(N·m) 

Maximum 
displacement 
module (m) 

1×1=1 

 
 

4.239329E-02 6.193E-04 

2×2=4 

 
 

2.507296E-02 3.374E-04 

3×3=9 

 
 

2.261694E-02 2.657E-04 

4×4=16 

 
 

2.183737E-02 2.668E-04 

6×6=36 

 
 

2.134839E-02 2.578E-04 

 

      

(a)                                     (b) 

Fig.5.4 (a) Total potential energy and (b) Maximum displacement module of sandwich 

panel with the hexagonal core 
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5.3.1.2 Square core 

Consider a sandwich panel with the square honeycomb core as shown in Fig.5.5. All the 

four edges are simply supported. The uniform surface loading q=100N/m2 is applied on the 

upper surface. The sandwich panel has the dimensions assigned as: a=1.1m, 

hu=hl=0.0125m, hc=0.0375m (u-upper skin, l-lower skin, c-core), and the material 

properties: elastic muduli Eu=El=2.0GPa and Ec=0.91GPa. 

 

 

Fig.5.5 Sandwich panel with square cores 

 

The effective properties of the square honeycomb core are obtained by the homogenization 

method.  
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According to the boundary conditions on the four edges, in the Navier approach we can 

simply expand the deflection w(x, y) and the applied uniform loading q(x, y) into a doubly 

infinite half range sine series. 
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                            (5.20) 

The total potential energy is: 

( , ) ( , )
A

yU w x y q x dxdy= ∫∫                                            (5.21) 

Via the calculation, the Navier solution converges when the expansion number n is 7. The 

maximum displacement is 1.687×10-5m, and the total potential energy is 1.4×10-3N·m. The 

deformation of the sandwich panel for the detail is shown in Fig.5.6. 

 

 

Fig.5.6 Navier solution of sandwich panel with the square core 

 

Similar to the previous analysis, for this kind of sandwich panel made of three-layered 

homogeneous media, the maximum displacement module is 1.975×10-5m, and the total 

potential energy is 9.868×10-4N·m. The deformation is shown in Fig.5.7. 

 

 

Fig.5.7 Finite element solution of sandwich panel with the homogenized core 

 

Likewise, the finite element models of sandwich panels with the different size square cores 

are built and their bending responses are calculated in Table 5.2. 
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Table 5.2 Bending deflections of sandwich panel with different size square cores 

Bending values of sandwich 

panels 
Number 

of unit 

cells 

Different size 

cores 

Bending responses of 

sandwich panels 

Total 

potential 

energy  

(N·m) 

Maximum 

displacement 

module 

(m) 

1×1=1 

 
 

1.283338E-2 3.927E-4 

2×2=4 

 
 

2.40426E-3 0.4306E-4 

3×3=9 

 
 

1.580408E-3 0.3158E-4 

4×4=16 

 
 

1.37336E-3 0.2495E-4 

6×6=36 

 
 

1.277849E-3 0.2383E-4 
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(a)                                          (b) 

Fig.5.8 (a) Total potential energy and (b) Maximum displacement module of sandwich 

panel with the square core 

 

5.3.1.3 Discussion 

According to the figures and tables of the above two examples, it is found that bending 

response of sandwich panel tend to a limit case with the decreasing size of honeycomb 

core. This limit case is approximately the bending response of sandwich panel with 

homogenized cores with the same boundary conditions. At the same time, we also find that 

the coincidence between Levy solution and FE solution with homogenized hexagonal cores 

is worse than that between Navier solution and FE solution with homogenized square cores. 

The reason lies in the fact that the ratio of the span dimensions to thickness 

( /( )u c la h h hα = + + ) is 14.184 for the hexagonal core and 17.6 for the square core. 

According to the basic assumption of the laminate plate theory, the classical lamination 

theory is only valid for thin laminates with small displacement in the transverse direction 

(Vinson and Sierakowski [1987]). Therefore, when the ratioα  increases, the theoretical 

solution is closer to the finite element solution with the homogenized core. 

 

5.3.2 Sandwich panels with the corrugated cores 

In this section, the bending responses of sandwich panel with corrugated cores are 

analyzed with different sizes. Two forms of the cores i.e. the circle-core and the X-core are 

involved here. The boundary condition of three points bending is the same as in Fig.5.1. 

The material properties of two sandwich panels are assigned as: Eu=El=2.0GPa for upper 

and lower skins, Ec=0.91GPa for cores. The difference between the two sandwich panels 

lies in that the simply supported sides are parallel to the extended direction of the unit cell 
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for the circle-core, and vertical to the extended direction of the unit cell for the X-core. 

Here, only finite element solutions with the different size cores and homogenized cores are 

obtained. The levy method is not adopted because the ratio of the span dimensions to 

thickness of sandwich panels ( /( )u c lW h h hα = + + ) is 1.9 for circle core and 2.857 for 

x-core. The laminate plate theory is no more applicable by the validation of examples in 

section 5.3.1.  

 

5.3.2.1 Circle-core 

For the sandwich structure with the circle-core, the dimensions are set as: length L=2.4m, 

width W=0.8m, thickness hu=hl=0.01m, hc=0.40m (u-upper skin, l-lower skin, c-core). 
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Table 5.3 Bending deflections of sandwich structures with different size circle cores 

Bending value of sandwich 

structures 

Number of 

unit cells 

Different size 

cores 

Bending response of 

sandwich structures 
Total potential 

energy 

(N·m) 

Maximum 

displacement 

module  

(m) 

1×6=6  

 

1.254997E2 8.635E-2 

2×12=24  

 

7.11977E1 4.823E-2 

3×18=54  

 

6.45108E1 4.359E-2 

4×24=96  

 

5.938279E1 4.013E-2 

5×30=150  

 

5.345289E1 3.6E-2 

6×36=216  

 

5.17339E1 3.072E-2 

 

The effecitive properties of the circle core are obtained by the homogenization method as 

follows. 

=4.388174E+05Pa, =4.461644E+05Pa, =6.961283E+07Pa

=5.557200E+05Pa, =1.132639E+07Pa, =1.132639E+07Pa

=8.938214E-01, =1.891106E-03, =1.922768E-03

H H H

x y z

H H H

xy yz xz

H H H

xy xz yz

E E E

G G G

v v v
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Bending deflections of sandwich structure with the homogenized core is shown in Fig.5.9. 

 

 

 

Fig.5.9 Finite element solution of sandwich structure with the homogenized core 

 

   

(a)                                            (b) 

Fig.5.10 (a) Total potential energy and (b) Maximum displacement module of sandwich 

structure with the circle core 

Fig.5.10 shows the values of the potential energy and the maximum displacement versus 

the number of the unit cells that have been used in the sandwich core. 

5.3.2.2 X-core 

For the sandwich structure with the X-core, the dimensions are: length L=2.0m, width 

W=1.2m, thickness hu=hl=0.01m, hc=0.4m (u-upper skin, l-lower skin, c-core). 

 



Bending analysis of sandwich panels and topological design of cores                          103 

 

Table 5.4 Bending deflections of sandwich structures with different size X-cores 

Bending value of sandwich 

structures 

Number of 

unit cells 

Different size 

cores 

Bending response of 

sandwich structures 
Total potential 

energy 

(N·m) 

Maximum 

displacement 

module 

(m) 

1×4=4  

 

6.230433E-03 8.917E-5 

2×8=16  

 

3.401562E-03 3.589E-5 

3×12=36  

 

3.165816E-03 3.015E-5 

4×16=64  

 

3.124686E-03 2.938E-5 

6×24=144  

 

3.117234E-03 2.913E-5 

 

The effecitive properties of the X-core are obtained by the homogenization method. 

=3.927310E+04Pa, =1.666816E+05Pa, =5.940933E+07Pa

=2.988478E+06Pa, =1.542861E+07Pa, =8.097270E+06Pa

=4.839506E-01, =1.983178E-04, =8.416942E-04

H H H

x y z

H H H

xy yz xz

H H H

xy xz yz

E E E

G G G

v v v

 

The bending deformation of sandwich structure with the homogenized core is shown in 

Fig.5.11. And the values of the potential energy and the maximum displacement versus the 

number of the unit cells that have been used in the sandwich core are plotted as shown in 

Fig.5.12. 
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Fig.5.11 Finite element solution of sandwich structure with the homogenized core 

 

   

(a)                                      (b) 

Fig.5.12 (a) Total potential energy and (b) Maximum displacement module of sandwich 

panel with the X-core 

 

As known from Table 5.3, Table 5.4 and Fig.5.9, Fig.5.10, Fig.5.11, Fig.5.12, the bending 

responses of sandwich structures with both circle cores and X-cores similarly converge to 

those obtained with homogenized cores when the sizes of honeycomb cores decrease. But 

the latter is faster and closer. There are two reasons. On the one hand, the latter ratio α  of 

span dimensions to thickness is bigger. On the other hand, the simply supported sides are 

vertical to the extended direction of the unit cell for the X-core so that they are more 

homogeneous than circle cores under the action of the transverse line load. 

Therefore, for both the honeycomb core and the corrugated core, the bending response of 

sandwich panel has the common regularity with the size effect that the overall bending 

stiffness gradually increases along with the ratio of the specimen size to the cell size. The 

conclusion is also verified by Tekoglu and Onck (Tekoglu and Onck [2005]). 
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5.4 Topology design of sandwich cores 

5.4.1 Optimization model 

The topology optimization problem of minimizing the global compliance of the sandwich 

panel subjected to the volume constraint is considered. The upper and lower skins are 

assigned as non-designable domains. To ensure the periodicity of the optimal configuration 

of the sandwich core base cell in the designable domain, the periodic condition is imposed 

by the variable-linking method. The detailed optimal model can be expressed as follows: 
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where C is the total compliance of the sandwich panel, m is the number of the core unit 

cells; 
D

C  and 
ND

C  are respectively compliances of the sandwich core in the designable 

domain and the non-designable domains. i

D
U  is the displacement vector of the i-th core 

unit cell; n is the finite element number in a single core unit cell and also the number of 

design variables; jx  is the design variable of the j-th element; i
jv  is the volume of the 

j-th element in the i-th core unit cell; vf  is the prescribed volume fraction; 0
iV  is the 

volume of the i-th core unit cell; xmin=10-3 is used to avoid the singularity of the elementary 

stiffness matrix during optimization; ( )P x  is the quadratic perimeter constraint 

introduced to avoid the checkerboard effect in the core unit cell; el  is the interface length 

between adjacent elements j and j+1; P  is the upper limit of the perimeter constraint. 

Detailed explanations of ( )P x  can be found in the literature (Zhang and Duysinx [2003]). 

 



106                                                                         Chapter 5 

 

5.4.2 Sensitivity analysis 

Here the SIMP interpolation model is used for the topological design of sandwich cores. 

The following power relation holds between design variable jx  and the stiffness matrix 

i
DjK  of the j-th finite element located in the i-th unit cell. 

0( ) ( )i p

Dj j j Djx x=K K                                                   (5.23) 

where 0
DjK  is the stiffness matrix of element j when it is solid, p is the penalty factor (p=4 

in this chapter).  

For a structure, the general static finite element equation is 

=KU F                                                          (5.24) 

By differentiating Eq. (5.24), it follows that 

1

j jx x
−∂ ∂= −

∂ ∂
U K

K U                                                   (5.25) 

With the above expression, the sensitivity of the objective function with respect to each 

variable jx  can be derived as follows: 

( )T T T 1 T( )
j j j j j

C

x x x x x
−∂ ∂ ∂ ∂ ∂= = = − = −

∂ ∂ ∂ ∂ ∂
U K K

F U F F K U U U               (5.26) 

As only the element j is concerned with jx , the following expression can be derived from 

Eq. (5.23) 

( )
( )

i
Dj j i

Dj j
j j

x p
x

x x

∂
=
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K

K                                 (5.27) 

Thus, Eq. (5.26) can be rewritten as 

T

T T

1 1

1

( )
( ) ( ) ( )

D D
D D

j j

im m
Dj ji i i i i

Dj Dj Dj Dj j Dj
i ij j

m
i
Dj

ij

C
-

x x

x p
x

x x

p
C

x

= =

=

∂ ∂=
∂ ∂

∂
= − = −

∂

= −

∑ ∑

∑

K
U U

K
U U U K U              (5.28) 

where i
DjU  and i

DjC  are the displacement vector and compliance of the j-th finite 

element in the i-th core unit cell, respectively. And from Eq. (5.22), we obtain: 
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1

m
iD ND D
Dj

ij j j j j

C C C C p
C

x x x x x =

∂ ∂ ∂ ∂= + = = −
∂ ∂ ∂ ∂ ∑                                  (5.29) 

Therefore, the compliance sensitivity of a sandwich panel is equal to the summation of 

strain energies of the variable-linking finite elements in the designable domain multiplied 

by a negative scaling factor.   

 

5.4.3 Numerical examples 

5.4.3.1 Optimal configurations 

Here, the configurations of unit cells in sandwich cores with different sizes and different 

boundary conditions are designed. The solid volume fractions of 10% and 30% are 

considered respectively. The perimeter control is introduced to generate checkerboard-free 

and mesh independent structural layouts. In the designable domain, the sandwich cores are 

respectively divided into 1, 4, 9, 16 and 36 unit cells whose sizes are changed 

proportionally in the x and y directions.  

 

(1) Sandwich panel with three points bending 

In this example, the boundary conditions are the same as those defined as shown in Fig.5.1. 

The optimization configurations of sandwich cores are given in Table 5.5 for 10% volume 

fraction and in Table 5.6 for 30% volume fraction. Fig.5.13 gives the comparison of 

objective values with the different size cores. 
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Table 5.5 Optimal configuration of sandwich cores with different size unit cells and 

volume fraction 10% for sandwich panel with the three points bending 

Number of 

unit cells 
Unit cell Sandwich cores 

Potential 

energy 

(N·m) 

1x1=1 

  

4.266181E-2 

2x2=4 

  

3.379944E-2 

3x3=9 

  

3.32211E-2 

4x4=16 

  

2.87177E-2 

6x6=36 

  

2.79763E-2 
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Table 5.6 Optimal configuration of sandwich cores with different size unit cells and 

volume fraction 30% for sandwich panel with the three points bending 

Number of 

unit cells 
Unit cell Sandwich cores 

Potential 

energy 

(N·m) 

1x1=1 

  

2.14914E-2 

2x2=4 

  

2.17498E-2 

3x3=9 

  

2.11298E-2 

4x4=16 

  

2.07999E-2 

6x6=36 

  

2.07306E-2 

 

1.00E-02

1.50E-02
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Fig.5.13 Objective function values with the different size cores for three points bending 
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In Table 5.5 and Table 5.6, the optimal configurations of unit cells are dependent on the 

size. However the material in one unit cell is basically distributed in its two edges along 

the longitudinal (y) direction. In Fig.5.13, the objective function value is gradually 

decreased with the increasing number of unit cells, especially for the 10% volume fraction 

because the material distribution is more and more homogeneous in the x-y plane. When 

the volume fraction is set to be 30%, the objective function values are close to each other. 

That illustrates that the size of unit cell has little influence on the objective function values 

when the amount of material is bigger. 

(2) Sandwich plate with four edges clamped 

In this example, the four edges of sandwich plate are clamped as shown in Fig.5.5. The 

optimal configurations of sandwich cores are illustrated in Table 5.7 for 10% volume 

fraction and in Table 5.8 for 30% volume fraction. Fig.5.14 gives the comparison of 

objective function values with the different size cores. 

 



Bending analysis of sandwich panels and topological design of cores                          111 

 

Table 5.7 Optimal configuration of sandwich cores with different size unit cells and 

volume fraction 10% for sandwich panel with the four edges clamped 

Number of 

unit cells 
Unit cell Sandwich cores 

Potential 

energy 

(N·m) 

1x1=1 

  

3.159064E-3 

2x2=4 

  

2.562556E-3 

3x3=9 

  

1.874002E-3 

4x4=16 

  

2.400981E-3 

6x6=36 

 
 

2.158045E-3 
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Table 5.8 Optimal configuration of sandwich cores with different size unit cells and 

volume fraction 30% for sandwich panel with the four edges clamped 

Number of 

unit cells 
Unit cell Sandwich cores 

Potential 

energy 

(N·m) 

1x1=1 

  

1.130067E-3 

2x2=4 

  

1.188605E-3 

3x3=9 

  

1.215906E-3 

4x4=16 

  

1.170257E-3 

6x6=36 

  

1.106158E-3 
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Fig.5.14 Objective function values with the different size cores for four clamped edges 

 

For the plate with four edges clamped and a surface loading, the material of optimal 

configurations is distributed averagely on the horizontal and longitudinal directions. 

Observing the optimal configurations of unit cells in Table 5.7 and Table 5.8, we find that 

the material moves towards the edge of each unit cells along with the decreasing size of 

unit cells. Actually, when a designable space is divided into many parts, the material is 

factitiously separated and homogeneously distributed. In Fig.5.14, when the volume 

fraction is 10%, the objective function values have great difference. However the objective 

function values are very close when the volume fraction is 30%. This once again 

demonstrates that the size of unit cell has a little influence on the objective values when the 

amount of material is bigger.  

5.4.3.2 Discussion 

Intuitively, the reduction of design space restricts the reasonable distribution of material 

with the decreasing size of unit cells. However in our examples, conversely the optimal 

results are better with increasing the number of unit cells, especially for the 10% volume 

fraction. On the one hand, only the in-plane size of unit cells is different and the size of 

unit cells along the loading direction does not vary; on the other hand, the material 

distribution in the optimal configurations is more and more homogeneous for overall 

sandwich panels with increasing the number of unit cells. So the decreasing size of unit 

cells prompts the more beneficial distribution of in-plane materials. And the analysis 

results in section 5.3 also show that the bending response of sandwich panel tends to the 

one with homogenized sandwich cores and the same boundary conditions when decreasing 

the size of unit cells. From another point of view, only in the case of sufficient amount of 

material, the material distribution is more flexible when the design space becomes bigger. 

That is the reason why the objective function values are very close when the volume 

fraction is 30% in two numerical examples. Consequently in practical applications, the 

topology optimization considering the size effect of the sandwich core is a concept design 

that shows some suitable configurations with the certain number and size of unit cells and 

the given amount of material under the specific boundary condition.  
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5.5 Summary 

In this chapter, we analyzed the bending responses of sandwich panels with the cores of 

different layout. The configurations of sandwich cores were designed by topology 

optimization method considering the in-plane size effect. Conclusions can be drawn as 

follows: (1) with the decreasing of the size of unit cells, the deformation of the sandwich 

panel with different size cores tends to the one with homogenized cores. So the 

homogenization method is valid in analyzing the sandwich panel when the number of core 

unit cells is large enough. (2) It is verified that the classical laminate plate theory is adapted 

to the analysis for sandwich panel with the homogenized sandwich core when the ratio α  

of span dimensions to thickness of sandwich panel satisfies the requirement of the 

lamination theory. (3) The size of the unit cells influences the optimal configuration of 

sandwich cores. Some new forms of sandwich cores can be obtained using topology 

optimization. And the optimal results converge to a limit value when increasing the number 

of unit cells. On the basis of this research, the higher order laminate plate theory can be 

adopted in order to improve the analytical accuracy for sandwich panel with the 

homogenized cores. In the next chapter, we will continue to study the influence of size 

effect of sandwich cores on the free vibrations in the dynamic analysis of sandwich panels 

and the configuration design of sandwich cores. 

 

 



 

 

6. Dynamic analysis of sandwich panels and optimal 

design of cores 

 

In this chapter, free vibrations of sandwich panels with the different size 

hexagonal and square honeycomb cores and homogenized cores are 

numerically analyzed. The boundary conditions are represented by the four 

simply supported edges. The first five orders of eigen-frequencies of sandwich 

panels for the different cores are compared. In addition, the laminate plate 

theory including transverse shear deformation is utilized to calculate the 

natural frequencies of sandwich panel with the homogenized cores. And then, 

considering the upper and bottom skins as non-designable parts, unit cells 

with different sizes in sandwich cores are designed for the first order 

eigen-frequency maximization with the limitations concerning 10% and 30% 

volume fractions. 
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6.1 Introduction 

Dynamic response prediction of sandwich panels is also of considerable interest for 

engineers and researchers. Because of their superior performance under dynamic loading, 

sandwich structures are more extensively used in a wide range of industrial applications 

such as aeronautical, naval and vehicle construction. An important facet is a correct 

understanding of the dynamic behavior of such structural systems. Many research works 

have been developed concerning their dynamic behavior. The major research approaches 

include the analytical methods based on various plate and shell theories and the numerical 

methods using the finite element analysis. Qatu (Qatu [2002]) reviewed recent research 

advances in the dynamic behavior of shells from the following points of view: theoretical 

aspects, analysis methodology, and different effects concerning various shell geometries. 

Yuan and Dawe (Yuan and Dawe [2002; 2004]) developed a spline finite strip method for 

predicting the natural frequencies and modes of vibration and the buckling stresses of 

rectangular sandwich panels. Nayak (Nayak [2002]) used two new C0 strain finite element 

formulations of Reddy’s higher-order theory to determine the natural frequencies of 

various composite and sandwich plates. Rao and Desai (Rao and Desai [2004]) presented a 

semi-analytical method to evaluate the natural frequencies for simply supported, cross-ply 

laminated and sandwich plates by using higher order mixed theory. Prusty and Satsangi 

(Prusty and Satsangi [2001]) carried out the transient dynamic response analysis of 

composite stiffened plates and shells using finite element method and Newmark's method. 

They derived the formulation of the general curved-shell-element using the eight-node 

isoparametric quadratic element on the basis of Mindlin-Reissner's theory and satisfying C0 

continuity for the interpolation functions. Meunier and Shenoi (Meunier and Shenoi [1999]) 

studied the free vibration behavior of FRP (fiber reinforced plastic) sandwich plates using 

analytical methods based on either FSDT (first-order shear deformation theory) or HSDT 

(high-order shear deformation theory), and also investigated the influence of material 

property parameters and plate geometry variables on natural frequencies. Kim (Kim [2007]) 

developed two enhanced plate theories for laminated and sandwich plates via the mixed 

variational formulation to study free vibration of laminated and sandwich plates. Ghosh 

and Biswal (Ghosh and Biswal [1996]) studied the free-vibration response of stiffened 

laminated plates using higher-order shear deformation theory that assumed a realistic 

cross-sectional deformation pattern and eliminated the use of shear correction coefficients. 



Dynamic analysis of sandwich panels and optimal design of cores                            117 

 

Most of these researches focus on the vibration analysis of sandwich panels with flexible 

foam and honeycomb cores and stiffener plates through developing the different plate 

theories. They enriched and extended the plate theories and their applications. 

In this chapter, we mainly study the size effect of sandwich cores on the free vibration 

response of the simply supported honeycomb sandwich panels, and investigate the optimal 

configurations of sandwich cores with the respective different core size for the free 

vibration response. Our works include the following two aspects. Firstly, the natural 

frequencies for simply-supported sandwich panels with the periodic honeycomb cores are 

calculated numerically with the different sizes and same configuration of unit cells. At the 

same time, we obtain the equivalent properties of sandwich cores with the homogenization 

method. And then we make the vibration analysis of sandwich panels with the 

homogenized core using the finite element method and laminate plate theory including 

transverse shear deformation and compared with the previous analysis results. Thus the 

relationship of vibration responses between the different size cores and the homogenized 

core is revealed. Secondly, with the upper and lower skins as non-designable domains, 

three dimensional configurations of scale-related sandwich cores with the different size are 

designed for the natural frequency maximization of the sandwich panel. The topology 

optimization problem is solved by the GCM (global convergence method) using the 

software BOSS-QUATTRO V5.0 on the basis of the external gradient sensitivity. And the 

sensitivity filtering is employed to eliminate checkerboards occurring in the design process 

(Sigmund [1998]). Similarly numerical results reveal the influence of the size variation of 

involved unit cells on the optimal topology. 

  

6.2 Dynamic analysis of sandwich panel 

6.2.1 Dynamic analysis of laminate plate including transverse shear deformation 

As given in the (Vinson and Sierakowski [1987]), for the laminate plate simply supported 

on all four edges, the solutions for the flexural vibration may be written as  

1 1
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The governing differential equations including the transverse shear deformation and 

neglecting the rotatory inertia terms are following 

2 2 2

11 66 12 66 552 2
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where h is the thickness of laminate plate and 
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Substituting the solutions (Eq.(6.1)-Eq.(6.3)) into the governing equations 

(Eq.(6.4)-Eq.(6.6)) results in a set of homogeneous equations as follows 
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12 22 23

13 23 33
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mn

mn

mn
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                                          (6.9) 

where 2
33 33 mnL L hρ ω′ = − . 

The square of the remaining natural frequency can be obtained by solving the above 

homogeneous equations. 

2 2 2 2 2
11 22 12 33 12 23 13 22 13 11 23 11 22 12( ) 2 ( )mn L L L L L L L L L L L h L L Lω ρ = − + − − −           (6.10) 

where, m and n are the number of x and y axial half-waves respectively. If /m m aλ π=  

and /n n bλ π= , 

2 2
11 11 66 552m nL D D Aλ λ= + +                                                  (6.11) 

12 12 66( ) m nL D D λ λ= +                                                      (6.12) 

13 552 mL A λ=                                                              (6.13) 

2 2
22 66 22 442m nL D D Aλ λ= + +                                                  (6.14) 
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23 442 nL A λ=                                                              (6.15) 

2 2
33 55 442 2m nL A Aλ λ= +                                                      (6.16) 

 
6.2.2 With hexagonal honeycomb cores 

A sandwich panel with the hexagonal honeycomb core, as shown in Fig.6.1, is simply 

supported on the four bottom edges. The dimensions of the sandwich panel are following: 

width a=0.8865m, length b=1.5354m, thickness hu=hl=0.01m, hc=0.03m (u-upper skin, 

l-lower skin, and c-core). The elastic moduli of the upper and lower skins are 210GPa. The 

density is 7800kg/m3. For the core, the elastic modulus is 75GPa and the density is 2700 

kg/m3 (solid or black part). In order to calculate the effective elastic constants of sandwich 

core, we assume that the void or white part is a very weak material: the elastic modulus is 

0.00001GPa and density is 0.00001kg/m3. 

 

 

Fig.6.1 Sandwich panel with four simply-supported edges and hexagonal honeycomb cores 

 

The effective material properties of hexagonal honeycomb core are obtained by the 3D 

homogenization method. 

= , = , =

= , = , =

= , = , =

2.570071E+09Pa 2.568502E+09Pa 1.989796E+10Pa

7.228240E+08Pa 4.345104E+09Pa 4.346297E+09Pa

7.818590E-01 3.874876E-02 3.872511E-02

H H H

x y z

H H H

xy yz xz

H H H

xy xz yz

E E E

G G G

v v v

           (6.17) 

And the effective density of hexagonal honeycomb core is 

ρc=((ST-Svoid)×2700+Svoid×0.00001)/ST=716.32653388kg/m3              (6.18) 

where ST is the area of whole core in the x-y plane and Svoid is the area of void part. 
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ST=4×0.767709841×0.443237483=1.36111111                         (6.19) 

Svoid=8×0.5×(0.219345669+0.438691338)×0.379917843=1.00000000124   (6.20) 

The average of the mass density across the thickness for sandwich panel is 

( )1
1

1 1
( ) 7800 0.02 716.3265 0.03 3549.796

0.05

N

k k k
k

h h
h

ρ ρ −
=

= − = × + × =∑ kg/m3  (6.21) 

According to Eq.(6.10), the natural frequencies of sandwich panel with the homogenized 

core are obtained in Table 6.1. 

 

Table 6.1 Natural frequencies with different values of m and n  

m, n 
m=1 
n=1 

m=1 
n=2 

m=1 
n=3 

m=2 
n=1 

m=2 
n=2 

m=2 
n=3 

m=3 
n=1 

m=3 
n=2 

m=3 
n=3 

Natural 
frequency 

272.75 474.17 803.55 868.13 1061.99 1379.2 1810.4 1992.7 2291.4 

 

The finite element models of sandwich panels with the different sizes of hexagonal cores 

and the homogenized cores are built and their eigen-frequencies and the first five orders of 

vibration modes are calculated as shown in Table 6.2 to Table 6.6. The variation tendency 

of the first five orders of vibration frequencies with different size hexagonal cores is shown 

in Fig 6.2 to Fig.6.6. 

 

Table 6.2 The first order vibration response with the different size hexagonal cores 

Number of 
unit cell 1×1 2×2 3×3 4×4 5×5 

Homogenized 
core 

Different 
size cores  

Frequency 158.651 262.166 290.595 302.899 309.461 317.962 

Mode of 
sandwich 

panel  
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Fig.6.2 Frequency variation of first order vibration with different size hexagonal cores 

 

Table 6.3 The second order vibration response with the different size hexagonal cores 

Number of 
unit cell 1×1 2×2 3×3 4×4 5×5 

Homogenized 
core 

different 
sizes cores  

Frequency 164.100 354.534 414.361 437.267 449.470 467.109 

Mode of 
sandwich 

panel  

 

 

Fig.6.4 Frequency variation of second order vibration with different size hexagonal cores 
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Table 6.3 The third order vibration response with the different size hexagonal cores 

Number of 
unit cell 1×1 2×2 3×3 4×4 5×5 

Homogenized 
core 

different 
sizes cores  

Frequency 311.883 452.913 606.443 657.847 683.032 720.121 

Mode of 
sandwich 

panel  

 

 

Fig.6.4 Frequency variation of third order vibration with different size hexagonal cores 

 

Table 6.5 The fourth order vibration response with the different size hexagonal cores 

Number of 
unit cell 1×1 2×2 3×3 4×4 5×5 

Homogenized 
core 

different 
sizes cores  

Frequency 330.122 453.406 624.765 674.202 698.656 732.926 

Mode of 
sandwich 

panel  
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Fig.6.5 Frequency variation of fourth order vibration with different size hexagonal cores 

 

Table 6.6 The fifth order vibration response with the different size hexagonal cores 

Number of 
unit cell 1×1 2×2 3×3 4×4 5×5 

Homogenized 
core 

different 
sizes cores  

Frequency 338.457 453.438 733.716 806.044 8418.07 893.415 

Mode of 
sandwich 

panel  

 

 

Fig.6.6 Frequency variation of fifth order vibration with different size hexagonal cores 

 

6.2.3 With square honeycomb cores 

Consider a sandwich panel with the square honeycomb core as shown in Fig.6.7. All the 

four edges are simply supported. The dimensions of the sandwich panel are assigned as: 

a=1.1m, hu=hl=0.01m, hc=0.03m (u-upper skin, l-lower skin, and c-core). Similar to the 
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hexagonal core in the section 6.2.1, the elastic moduli of the upper and lower skins are 

210GPa. The density is 7800kg/m3. For the core, the elastic modulus is 75GPa and the 

density is 2700 kg/m3 (solid or black part). In the same way, we assume that the void or 

white part is a very weak material: the elastic modulus is 0.00001GPa and density is 

0.00001kg/m3. 

 

Fig.6.7 Sandwich panel with four simply-supported edges and square honeycomb cores 

 

With the 3D homogenization method, the effective material properties of square 

honeycomb core are 

= , = , =

= , = , =

= , = , =

7.227631E+09Pa 7.227631E+09Pa 1.301653E+10Pa

3.424314E+07Pa 2.695173E+09Pa 2.695173E+09Pa

-6.337963E-03 1.665797E-01 1.665797E-01

H H H

x y z

H H H

xy yz xz

H H H

xy xz yz

E E E

G G G

v v v

           (6.22) 

And the effective density of square honeycomb core is similarly computed as, 

2 2 2 2
c=((1.1 -1 ) 2700+1 0.00001)/1.1 =468.595ρ ∗ ∗ kg/m3                    (6.23) 

The average of the mass density across the thickness for sandwich panel: 

( )1
1

1 1
( ) 7800 0.02 468.595 0.03 3401.157

0.05

N

k k k
k

h h
h

ρ ρ −
=

= − = × + × =∑ kg/m3 (6.24) 

According to Eq.(6.10), the natural frequencies of sandwich panel with the homogenized 

core are obtained in Table 6.7. 
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Table 6.7 Natural frequencies with different values of m and n 

m, n 
m=1 
n=1 

m=1 
n=2 

m=1 
n=3 

m=2 
n=1 

m=2 
n=2 

m=2 
n=3 

m=3 
n=1 

m=3 
n=2 

m=3 
n=3 

Natural 
frequency 

271.29 669.17 1308.9 669.17 1055.2 1677.6 1308.9 1677.6 2273.3 

 

The finite element models of sandwich panels with the different sizes of square cores and 

the homogenized core are built and their first five orders of eigen-frequencies and vibration 

modes are calculated as seen in Table 6.8 to Table 6.12. The variation tendency of the first 

five orders of vibration frequencies with different size square cores is shown in Fig 6.8 to 

Fig.6.12. 

 

Table 6.8 The first order vibration response with the different size square cores 

Number of 
unit cell 1×1 2×2 3×3 4×4 5×5 

Homogenized 
core 

Different 
size cores  

Frequency 86.2326 217.753 255.191 272.099 280.880 294.799 

Mode of 
sandwich 

panel  

 

 

Fig.6.8 Frequency variation of first order vibration with different size square cores 
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Table 6.9 The second order vibration response with the different size square cores 

Number of 
unit cell 1×1 2×2 3×3 4×4 5×5 

Homogenized 
core 

Different 
size cores  

Frequency 87.7724 309.870 447.477 497.928 523.819 563.427 

Mode of 
sandwich 

panel  

 

 

Fig.6.9 Frequency variation of second order vibration with different size square cores 

 

Table 6.10 The third order vibration response with the different size square cores 

Number of 
unit cell 1×1 2×2 3×3 4×4 5×5 

Homogenized 
core 

Different 
size cores  

Frequency 171.702 309.870 447.477 497.928 523.819 563.427 

Mode of 
sandwich 

panel  
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Fig.6.10 Frequency variation of third order vibration with different size square cores 

 

Table 6.11 The fourth order vibration response with the different size square cores 

Number of 
unit cell 1×1 2×2 3×3 4×4 5×5 

Homogenized 
core 

Different 
size cores  

Frequency 171.702 330.987 597.467 698.005 747.543 824.285 

Mode of 
sandwich 

panel  

 

 

Fig.6.11 Frequency variation of fourth order vibration with different size square cores 
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Table 6.12 The fifth order vibration response with the different size square cores 

Number of 
unit cell 1×1 2×2 3×3 4×4 5×5 

Homogenized 
core 

Different 
size cores  

Frequency 179.032 337.729 646.546 781.996 850.521 968.868 

Mode of 
sandwich 

panel  

 

 

Fig.6.12 Frequency variation of fifth order vibration with different size square cores 

 

6.2.4 Discussion 

From Tables 6.2-6.6, Tables 6.8-6.12 and Fig.6.2-6.6, Fig.6.8-6.12 for two types of 

sandwich panels with hexagonal and square honeycomb cores, it is also demonstrated that 

the vibration frequencies and modes of sandwich panel tend to the limit values with the 

homogenized cores when increasing the number of unit cells or decreasing the size of unit 

cells. This fact can be easily explained. We can imagine that the material distributions are 

more and more homogeneous with the increasing number of unit cells under the same 

material amount and configurations of unit cells. Therefore the performance of sandwich 

panels for the free vibration is improved. In addition, the natural frequencies of sandwich 

panels are obtained with the laminated plate theory including the transverse shear 

deformation on the basis of the homogenized cores. The fundamental frequency occurs 

with m=n=1, which is for one half sine wave in each direction. Natural frequencies for the 

two sandwich panels are listed in Table 6.1 and Table 6.7 with the different m and n. 

Variation of m has greater influence on natural frequencies than n for sandwich panel with 
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the hexagonal core because m is the number of x axial half-waves corresponding to the 

short side. By observing the Fig.6.2 and Fig.6.8, the deviation between the analytical 

solution and the FE solution with homogenized square cores is less than with homogenized 

hexagonal cores. Similar to section 5.3.1, the ratio of the span dimensions to thickness 

( /a hα = ) is 17.73 for the hexagonal core which is less than for the square core ( 22α = ). 

Therefore, the laminated plate theory for dynamic analysis is also more applicable to the 

thin plate. 

 

6.3 Topology design of sandwich cores 

6.3.1 Optimization model 

The configurations of sandwich cores are designed by maximizing the first order 

eigen-frequency of the whole sandwich panel subjected to the volume constraint of 

sandwich cores. The upper and lower skins are considered as the non-designable domains. 

Similarly the variable linking method is adopted in order to ensure the periodicity of the 

optimal configuration of sandwich core in the designable domain. The detailed optimal 

model can be expressed as follows: 

{ }1 2

2
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2

0
1

min

. . ( ) 0

0 1
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== ∈

=

− =

≤ ⋅

< ≤ ≤
=

∑
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L

                                             (6.25) 

where kω  and kφ  are respectively the eigen-frequencies and eigen-modes of the 

sandwich panel. K and M are respectively the stiffness matrix and mass matrix of sandwich 

panel; ( 1,2, , )ix i n= L  are the design variables which are the pseudo densities of each 

element in one unit cell of sandwich core; n is the number of finite elements in a single 

core unit cell and also the number of design variables; xmin=10-3 is used to avoid the 

singularity during the optimal process; iv  is the volume of the i-th element in the core 

unit cell; vf  is the prescribed volume fraction; 0V  is the volume of the core unit cell. 

6.3.2 Sensitivity analysis 

Pedersen (Pedersen [2000]) pointed out that one of the main problems in the optimization 
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of eigen-frequencies using topology optimization is the occurrence of localized modes in 

low density areas and the author discussed several methods of avoiding localized modes. 

Here we choose an elastic modulus value for the void material Evoid=10-3Esolid. RAMP and 

SIMP interpolation models are used for the stiffness matrix and the mass matrix 

respectively. 

( )3 3
0

1

10 1 10
1 (1 )

n
i

i
i i

x
K K

p x
− −

=

 
= + − + − 
∑                                (6.26) 

0
1

n
q

i i
i

M x M
=

=∑                                                     (6.27) 

where p and q are the penalization factors. In later examples p=35 and q=1 are used (Luo 

[2004]). According to the mass-to-stiffness ratio (Hansen [2005]), the problem of the 

localized modes in the low-density areas can be avoided. 

The generalized eigenvalue problem can be cast in the form, 

2( ) 0j jK Mω φ− =                                                   (6.28) 

By substituting Eq. (6.26) and Eq. (6.27) into Eq. (6.28) and differentiating Eq. (6.28), it 

follows that, 

( ) ( )3 3 2 3 3
0 0

1 1

10 1 10 10 1 10 0
1 (1 ) 1 (1 )

n n
T i i
j i j i j

i it i i

x x
K M

x p x q x
φ ω φ− − − −

= =

     ∂ + − − + − =       ∂ + − + −     
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(6.29) 

After the derivation, the sensitivity of the eigen-frequency squared is obtained, 

( )
2

2j
j p q

t

C SER C KER
x

ω
ω

∂
= ∗ − ∗

∂
                                      (6.30) 

In the sensitivity expression, 

( ) ( )
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( )Tt t
j t j

T
j j

M
KER
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φ φ
φ φ

=                                                  (6.34) 

where SER represents the strain energy ratio of element t, and KER represents the kinetic 

energy ratio of element t. Filtering is used on the sensitivities of the optimization to prevent 

checkerboard patterns in the design. For the details on this filter, see Section 3.2 in Chapter 

3 and the reference (Sigmund and Petersson [1998]). 

6.3.3 Numerical examples 

The structural configurations of the sandwich cores with different size are designed within 

a sandwich panel with four simply supported edges. The design model is shown as Fig. 

6.13. The solid volume fractions of 10% and 30% for rectangular and square unit cells 

respectively are considered. In the designable domain, the sandwich cores are respectively 

divided into 1, 4, 9, 16 and 25 unit cells whose sizes are changed proportionally in the x 

and y directions.  

 

 

Fig.6.13 Design model of sandwich panel with four simply-supported edges 

 

(1) For rectangular unit cells 

The optimization configurations of sandwich cores are seen in Table 6.13 for 10% volume 

fraction and Table 6.14 for 30% volume fraction. Fig.6.14 gives the comparison of 

objective values with the different size cores. 
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Table 6.13 Optimal results of sandwich cores with different size unit cells and volume 

fraction 10% for rectangular unit cells 
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Table 6.14 Optimal results of sandwich cores with different size unit cells and volume 

fraction 30% for rectangular unit cells 
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Fig.6.14 Objective values with the different size cores for rectangular unit cells 
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Table 6.13 and Table 6.14 show that the optimal configurations of unit cells are greatly 

influenced by the size variation. For the first case of 10% volume fraction, the material is 

mainly distributed along the x direction when the number of unit cells is 1, 4 and 9. 

Because of the decrease of the material amount and the size of unit cells, the material is 

concentrated together when the number of unit cells is 16 and 25. However for the second 

case of 30% volume fraction, the materials is mainly distributed along the y direction when 

the number of unit cells is 1. With the increasing number of unit cells, the material 

gradually goes along the x direction. This shows that the distribution trend of material is 

completely different because of the different amount of materials although they have the 

same size of unit cells.  

(2) For square unit cells 

The optimization configurations of sandwich cores are shown in Table 6.15 for 10% 

volume fraction and Table 6.16 for 30% volume fraction. Fig.6.15 gives the comparison of 

objective values with the different size cores. 

 

Table 6.15 Optimal results of sandwich cores with different size unit cells and volume 

fraction 10% for square unit cells 

 



Dynamic analysis of sandwich panels and optimal design of cores                            135 

 

 

Table 6.16 Optimal results of sandwich cores with different size unit cells and volume 

fraction 30% for square unit cells 
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Fig.6.15 Objective values with the different size cores for square unit cells 
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Table 6.15 and Table 6.16 show that the optimal configurations of unit cells are obviously 

different with the size variation. However the material is mostly distributed at the four 

symmetrical places. 

In Fig.6.14 and Fig.6.15, one can see that these two examples have a common point: the 

objective values are not monotonously changing with the increasing number of unit cells. 

Moreover both of them have the same trends for the same volume fraction with the 

increasing number of unit cells. We think that this coincidence is reasonable. In the 

following, we will analyze this phenomenon from two aspects. Firstly we have known 

from Fig.6.6 and Fig.6.8 and the analysis results in section 6.2 that the vibration 

frequencies of sandwich panel increase and tend to limit values of the homogenized cores 

with increasing the number of unit cells or decreasing the size of unit cells. Secondly when 

we reduce the number of unit cells or increase the size of unit cells, the design space 

becomes larger, so it is beneficial to the more efficient distribution of material in order to 

improve the vibration performance of sandwich panel. Therefore the first order eigen-value 

is greater when the number of unit cells equals one than when the number of unit cells 

equals 4, 9, 16 or 25. After the decreasing, some eigen-values start to rise and even exceed 

it with the creasing number of unit cells. So this coincidence is also the result of trade-off 

between the two aspects. 

 

6.4 Summary 

In this chapter, we firstly realized the free vibration analysis of simply supported sandwich 

panels with the different form and size cores. And then the configurations of sandwich 

cores were designed by topology optimization considering the in-plane size effect of 

sandwich cores. Conclusions can be drawn as follows from the dynamic point of view: (1) 

when decreasing the size of unit cells and increasing the number of unit cells, the dynamic 

response of the sandwich panel with different size cores tends to the one with homogenized 

cores. So the homogenization method is also valid in analyzing the dynamic response of 

sandwich panel when the number of core unit cells is large enough. (2) The size variation 

of unit cells greatly influences the optimal configuration of sandwich cores. In order to 

fully exert the function of sandwich panel with the given size cores, the innovative 

configuration of sandwich cores can be obtained by the topology optimization. 

 



 

 

7. Conclusions and future works 

 

In this chapter, we conclude our works and refer them to the goal of this thesis 

concerning the analysis and optimal design of lightweight sandwich 

structures and materials .The future works to be developed in this domain are 

also proposed and discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



138                                                                        Chapter 7 

 

7.1 Conclusions 

In the introduction of this thesis, we stated our goal as follows: 

1) To use the three-dimensional homogenization method to calculate effective properties 

of unit cells in multilayer structures and materials. 

2) To use the superelement method in order to improve the computational efficiency in 

designs of periodic structures and materials. 

3) To explore the size effect in static and dynamic response analysis and integrated 

designs of sandwich structures and materials. 

To establish these goals, we first described, in Chapter 2, the homogenization method and 

its numerical application to calculate the effective elastic constants for 3D honeycomb 

cores. We compared the obtained results with other methods including the Gibson’s 

formula and its modification as well as the energy method. Thus we confirmed the validity 

and accuracy of 3D homogenization method. The honeycomb sandwich is a kind of typical 

multiplayer structure. Based on the effective calculation of honeycomb core, we adopted 

the multi-step layered homogenization method to compute the effective properties of 

honeycomb sandwich structure. Fairly good agreement with the engineering empirical 

method shows that the multi-step layered homogenization is valid and adaptable for 

calculating the effective properties of multilayer structures and materials. Inspired by the 

calculation of effective properties of 3D honeycomb cores by the homogenization method, 

the prescribed properties for cellular materials and structures can be obtained by the 

inverse homogenization design.  

In chapter 3, we applied the topology optimization technique and the homogenization 

method to design the 3D microstructures with the maximization of the stiffness and 

thermal conductivity. Optimal structural layouts of unit cells are obtained by the 

maximization of uniaxial and multiaxial stiffness and thermal conductivity that is 

considered as single and multiobjective optimization problems. 

In chapter 4, we proposed an RVE-SE topology optimization procedure for the structural 

rigidity maximization of cellular solids. According to the periodic characteristics of RVEs 

in cellular solids, we used the superelement to model each RVE. The benefits of using the 

superelement method are: (1) the improvement of computation efficiency in the iteration 

process for the optimal design of periodic structures and materials; (2) the automatic 

implementation of mutual scale relation among the RVEs. Through several examples 
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including square, cyclic-symmetry, cyclic-symmetry with non-designable domain and 

cylindrical cellular solids, we developed the topology design method of various periodic 

cellular solids using the superelement technique. Besides, the comparisons of the 

equivalent torsional stiffness of the optimal cyclic-symmetry cellular solids reveal that the 

innovative configurations of the circular sandwich structure can be obtained for a better 

performance of torsional stiffness by means of the proposed design procedure. 

In chapter 5 and chapter 6, we respectively analyzed bending response and dynamic 

response of sandwich panels and designed the core configurations considering the in-plane 

size variation of sandwich cores. From the analysis results, with decreasing the size of unit 

cells, the bending deformation and the dynamic response of the sandwich panel with 

different size cores tend to the ones with homogenized cores. For the static response, the 

total potential energy and maximum displacement of sandwich panels are reducing with 

increasing the number of unit cells or decreasing the size of unit cells as shown in Fig.5.4 

and Fig.5.8. For the dynamic response, the first five orders of eigen-frequencies of 

sandwich panels are rising with increasing the number of unit cells or decreasing the size 

of unit cells as shown in Fig.6.2 to Fig.6.6 and from Fig.6.8 to Fig.6.12. This illustrates 

that the decrease of the size of unit cells or the increase of the number of unit cells can help 

to improve the structure behavior of sandwich panels. From the optimal results, the size 

variation of the unit cells influences the optimal configuration of sandwich cores. The 

objective function values are not monotonous with the increasing number of unit cells. 

From Fig.5.13 and Fig.5.14 for the stiffness maximization and Fig.6.14 and Fig.6.15 for 

the maximization of the first order vibration frequency, the size variation has a greater 

influence on the objective function values with 10% volume fraction than with 30% 

volume fraction. It is shown that the optimal results are influenced not only by the size of 

unit cells but also by the material amount. Moreover, in the topology optimization of 

sandwich cores under the bending response, the size of unit cells only varies in the x-y 

plane. However the load is along the z direction. So sometimes the size effect of unit cells 

on optimal results is not predominant. For the optimal design of sandwich cores 

considering the dynamic response, the size variation of unit cells brings two totally 

opposite effects on the optimal results. When decreasing the size of unit cells or increasing 

the number of unit cells, on the one hand the design space becomes smaller so that it is not 

beneficial to the more efficient distribution of material; on the other hand the material 



140                                                                         Chapter 7 

 

distribution factitiously becomes more and more homogeneous. Therefore the optimal 

result is the trade-off between the two aspects.  

To summarize, the major contributions of this thesis are the following: 

� Proposing multi-step homogenization method for computing the equivalent properties 

of the three dimensional multi-layered sandwich structures. 

� First application of the superelement method to design the configurations of 

representative volume elements for periodic cellular solids. 

� Systematic study of the size effect on structural responses of honeycomb sandwich 

panels and the topology design of sandwich cores. 

 

7.2 Future works 

Based on the research works in this thesis, the scope of future developments is identified 

and recommended as follows: 

(1) Microstructure design subject to local stress constraints 

In our work, we implemented the microstructure design subject to the volume constraint on 

the base of the inverse homogenization. However, for structures built from materials with 

periodic microstructure it is necessary to consider strength, instability and vibration at the 

microscale level. That is to say, the local stress, critical load and vibration frequency 

constraints are added in the microstructure design besides the volume constraints. Some 

well-known scholars have attempted this aspect of research. Neves (Neves [2002]) carried 

out the topology optimization of periodic microstructures by maximizing a given linear 

combination of the homogenized elastic properties and introducing a lower bound on the 

local critical load value. In this research, it also may be concerned with the microstructure 

design to satisfy the macrostructure response subject to the local constraints at the 

microscale level. 

(2) Improvement of computational efficiency in the multi-scale design of structures and 

materials 

As we know, during the multi-scale design of structures and materials, the computational 

cost is very tremendous. In chapter 4, we made a simple attempt in this research by 

introducing the superelement method. In the future work, we can further study the 

application of superelement method in the multi-scale design of structures and materials 

with the periodicity to improve the computational efficiency. 
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(3) Size effect on buckling response of sandwich structures concerning the topology design 

of sandwich cores 

The sandwich panels with periodic honeycomb cores are sensitive to local buckling effects 

under loading conditions such as direct compression, bending, or their combinations. 

Therefore, it is necessary to analyze the stability of sandwich panels with the different size 

cores concerning the static and dynamic analysis presented in chapter 5 and in chapter 6. 

The configurations of unit cells in sandwich cores considering the size effect can be 

designed by maximizing the buckling load under the given boundary conditions. Therefore 

we can reveal the importance of the influence of size variation of unit cells in sandwich 

cores on the topology design of unit cells and the structure responses of sandwich panels.  
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