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Abstract

The present thesis deals with the performance sisagnd the configuration design of
lightweight cellular solids and sandwich structur&pecial emphasis is devoted to the
topological optimization of periodic cellular sadidbased on the superelement method and to
the bending and dynamic analysis and the core nlesigandwich panels considering the size
effect of sandwich cores.

The multi-step homogenization is applied to cal®ilthe effective elastic constants of
multi-layered honeycomb sandwich on the basis ef 3D homogenization method. The
effective results are credible by comparison witiheo methods including classical formula,
energy method and engineering empirical method.nTllee inverse homogenization is
applied to design the configuration of the microsture. It concerns the maximization of
uni-axial or multi-axial elastic moduli and thernzainductivities.

An integrated topology optimization procedure isvaleped for the global stiffness
maximization of different cellular solids such aguare, cyclic-symmetry, and cylinder
structures. Each RVE (representative volume eleyr@nperiodic cellular solids is modeled
by the SE (superelement). The technique of linkhmydesign variables is adopted to ensure
the periodicity of the optimal configuration ovdretwhole structure after optimization. The
various optimal configurations of RVE-SEs permiiltostrate the influence of size variation
of RVE-SE on the optimal results. The computatioeélciency is studied during the
optimization process when the superelement methadopted.

Special studies on the size effect are carriedrotlie bending and dynamic analysis and the
core design of sandwich panels. A homogenizatiothateis adopted to predict the effective
properties of the material unit cell in its limése. So it's unable to represent the scale effect
of the unit cell. The bending and dynamic resporefesandwich panel with different size
cores tend to ones with homogenized cores withedsang the size and increasing the
number of unit cells in sandwich cores. The sizgatian of unit cells also greatly influences
the optimal configuration of sandwich cores. Speaitention is devoted to the influence of
size effect on the optimal results. The objectiadugs are not monotonous when increasing
the number of unit cells. From the static analgsid optimization results, the size effect is
relevant with the boundary conditions. From theaigit analysis and optimization results,
the size effect has both sides.

Keywords: topology optimization, homogenization method, safgmnent method, sandwich
structure, cellular solids, size effect



Résumé

Le travail présenté dans ce mémoire concerne laforpgnces de l'analyse et de

I'optimisation de structures composites légeresyghe « solides cellulaires et sandwichs ».
Une étude spécifique est consacrée a l'optimisatapologique de solides cellulaires a

périodicité. La méthode de super élément est dppél et appliquée a I'analyse statique et
dynamique de plaques composites en flexion coremidédtinfluence de la topologie et des

dimensions de cellules périodiques constituantriecsire.

La méthode multi-phase d’homogénéisation 3D estiguae pour calculer les propriétés
élastiques équivalentes de structures multi-counlte d’abeille.  Nos résultats sont
conformes a ceux obtenus par des méthodes classichasées sur I'approche énergétique ou
sur les méthodes empiriques d’ingénieur. Ensuite,raéthode inverse d’homogénéisation est
appliguée pour obtenir une configuration de la m&tructure. Elle concerne la maximisation

de propriétés élastiques uni-axial ou multi-axiabaque de conductivités thermiques.

L'optimisation topologique est mise en ceuvre pouaximiser la rigidité globale de

différentes structures cellulaires comprenant leBules carrées, a symétrie cyclique ou
cylindrique. Tous les éléments volumiques reprigdésn (RVE — representative volume
element) d’'une structure cellulaire périodique soradélisés en utilisant la méthode de
super-élément (SE). La technique de liaison deakbas d’optimisation est utilisée afin de
supposer la périodicité dans les structures opimdles différentes configurations optimales
RVE-SE étudiées permettent d’illustrer I'influencedu parametre d’échelle entre RVE et

SE sur le processus d’optimisation.

Pour finir, un travail particulier est consacrd’iafluence de l'effet d’échelle dans le
super-€lément et dans la micro-structure dans deecde I'optimisation topologique des
structures composites en statique et en dynamiee.relations entre les dimensions d’'une
cellule et le nombre de cellules dans une plaquee alfférentes conditions aux limites et

leurs influences sur les solutions optimales etigsta et en dynamique sont étudiées.

Keywords : structures composites, optimisation topologiquethade d’homogénéisation,
méthode de super-élément, effet de I'échelle Helee
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1. Introduction

How do you make a structure stronger?
The answer, it seems, is to fill it with thousanfiboles.
It might be seem counterintuitive, but holes cad sakilience to a material by

absorbing stresses or the energy of an impact.

------ Will Knight

Microscopic holes are the secret of wood's restesn

New Scientist 08 October 2005, issue 2520



2 Chapter 1

1.1 Structures and materials

In this part, we describe the general relationdtepwveen structures and materials and
introduce the research objects of this thesis e tesearch situation.

When the structures are mentioned in the engingdigtd, people naturally first bethink
of building, civil engineering, mechanical struesy and so on. The human being has
achieved creative and extraordinary successeseisttiictural engineering with the great
developments of materials science and structuralysis. Eiffel tower and Chinese
national stadium as seen in Fig.1.1 are the besieeoves. All these structures are
constituted of different types of elements suckcalsimns, beams, plates, arches, shells
and catenaries. At this level, we call them the nostcuctures. Moreover, these structural
elements also have various structural forms angl #nie made of materials with special

properties.

Fig.1.1 (a) Eiffel tower (b) Chinese national stadi

Actually, the material properties can be determibgdheir constituent elements and their
forming way. It means that the desired propertiesaamaterial can be obtained by
designing the form of its constituent elements. &emnal can be seen as a kind of structure
and at this level; the material structure is na@&dicrostructure.

Ashby (Ashby [2000]) ever saidWhen modern man builds large load-bearing structure
he uses dense solids; steel, concrete, glass. Watare does the same, she generally uses
cellular materials; wood, bone, coral. There mustdnod reasons for.it Many natural

and human-made materials exhibit structures on ntiwe one length scale; in some
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materials, the structural elements themselves bpeeific structures (Lakes [1993]). This
structural hierarchy can influence the materialpgrties. In fact, the difference between a
structure and a material is not clearly defined.niaraw the lines between what you
understand as a homogeneous material when yout sehi your bare eyes, and the
inhomogeneous material structure that you cleaty is made up of a fixed geometry or
mixing of materials. For instance, a compositeyighis definition a material even though
it consists of two or more components, but a hooeyx core built up of two different

components is a structure (Lukkassen and Meid€l03D). Good understanding of the
effects of innovative structure may guide the sgath of new materials with physical
properties, tailored for specific application. Tbellular solids and sandwich structures

embody perfectly this relationship between strietamd material.
1.1.1Cellular solids

A cellular solid is one made up of an interconnéctetwork of solid struts or plates which
form the edges and faces of cells. There exisettypical structures: the two-dimensional
honeycomb, the three-dimensional open cell foam thedthree-dimensional closed cell
foam as shown in Fig.1.2 (Gibson [2005]; Gibson astiby [1997]). Man-made cellular

solids have been widely utilized in the form ofustural honeycombs in aircraft and as
well in the form of foams for packing, cushioninghergy absorption applications,
sandwich panel cores, structural purposes and #ieprotection systems. Natural

materials such as wood, cancellous bone, coralleaces have a cellular structure. All

these conventional cellular materials exhibit teal properties.

Fig.1.2 (a) Honeycomb (b) Open cell foam (c) Closeltifoam

Some theoretical attempts to understand the gepraatt the fundamental principles of

the mechanics of cellular solids have begun with telebrated geometrician Leonard
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Euler (De Boor [1998]). Since then, many scient#std researchers committed themselves
to studying the geometric, mechanical, thermaleledtrical characteristics of these solids.
The most widely known of them is the attempt preabby Gibson and Ashby (Gibson
and Ashby [1997]) in which an extensive record ba structure and the properties of
cellular solids is given. They are the pioneers field. Grenestedt (Grenestedt [1998];
Grenestedt [1999a]; Grenestedt [1999b]) has inyat&d the influence of wavy distortions
of cell walls and cell shape variations on elastitfness of cellular solids and calculated
the effective elastic behavior of several cellidalids with the analytical and numerical
methods. Li (Li [2005]) has studied the microstuetproperty relations of
two-dimensional cellular solids having irregulardl cghapes and non-uniform cell wall
thickness, and has found that the elastic moduliegse as cell shapes became more
irregular, but decrease as cell wall thickness [g=ts uniform. Huang (Huang [2005]) has
theoretically derived the elastic moduli and stteegof hexagonal honeycombs with
non-straight cell edges from a curved cell edge ehodnd has concluded that the
normalized elastic moduli and strengths of reghkxagonal honeycombs decreased with
increasing cell curvature and waviness. Tglo(Tekazlu [2007]) has explored the
physical mechanisms that were responsible for the-dependent elastic behavior of
cellular solids with a discrete microstructural rehdand has assessed the capability of
generalized continuum theories to capture sizecefféOnck (Onck [2001]) and Andrews
(Andrews [2001]) have studied theoretically and eskpentally size effects for the
modulus and strength of regular, hexagonal honepeomnder uni-axial and shear
loadings.

The beforehand mentioned authors have accountedhérconventional properties of
cellular solids. Lakes (Lakes [1987]) has preseatedvel foam structure which exhibited
a negative Poisson’s ratio. Such a material expéatdsally when stretched, conversely
with ordinary materials. Foams with negative Pamsseatios are made from conventional
low-density open-cell polymer foams through caushngribs of each cell to permanently
protrude inward. An idealized reentrant unit is whoin Fig.1.3 (a). In the following
twenty years, Lakes and his colleagues have caougd series of studies on structures
and materials with the negative Poisson’s ratiogfChand Lakes [1989]; Chen and Lakes
[1996]; Choi and Lakes [1992]; Lakes [1991]; Lak2601]; Lakes and Witt [2002]) and

positive or negative thermal expansion of unboundednitude (Lakes [1996]; Lakes
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[2007]). As shown in Fig.1.3 (b) and (c), new metksrwith non-conventional and extreme
properties are obtained by virtue of the desigrohgnnovative structures. Therefore we

call them structural materials.

(a) (b) (©)
Fig.1.3 (a) Idealized reentrant unit produced hysyetrical collapse of a 24-sided
polyhedron with cubic symmetry. (b) Artificial hoymomb with inverted cells, in which
the structural elements unfolding causes the lagsi@ansion and a negative Poisson’s
ratio. (c) Cellular solid which undergoes thermgbansion via lateral bending

displacement of ribs with an unusual connectivity.

1.1.2Sandwich structures

Sandwich structures represent a special form ofrairlated composite material or
structural elements, which have a relatively thiaghtweight and compliant core material
to separate thin, stiff and strong face sheets.1Hyy The faces are usually made of
aluminum alloys, stainless steels, titanium allagd composite materials. And the typical
cores can be a honeycomb or corrugated type miatariaellular foam, a truss type
structure and so on. The faces and the core areddy adhesive bonding, which ensures
the load transfer between the sandwich constitparis. Although these structures have a
low weight, they have high flexural stiffness andckling strength. Hence, sandwich
structures are being used extensively in astrotia@eronautic, marine, automotive,

architectural and many other applications.
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(d)

Fig.1.4 Sandwich structures with the different sore

(a) Foam cores (b) Truss cores (c) Honeycomb coreSd¢dugated cores

The rising demand for new materials with higher cdpe stiffness and strength has
stimulated a great development in the technology #reory of sandwich structures
(Borsellino [2004]; Castanie [2002]; Mamalis [200Rabczuk [2004]; etc.). Sandwich
structures usually have three structural forms:deéch beams, sandwich plates and
sandwich shells with the various cores. Aiminghag tollowing failure modes: wrinkle or
bulking, yielding or fracture, fatigue, impact dageathe failure of the bond between the
face and cores and so on, a great deal of studtesaaried out on the basis of classical
laminate theories about beam, plate and shell.

A sample of selected papers published in recentsya@ following which review the state
of the art and provide numerous cross-referencesisrsubject. Daniel and Abot (Daniel
and Abot [2000]) experimentally determined the @leat behavior of composite sandwich
beam and compared the results with predictionshebretical models. In the reference
(Banerjee [2007]), Banerjee has developed an acuhgnamic stiffness model for a
three-layered sandwich beam of unequal thicknessesvestigate its free vibration
characteristics. Birman (Birman [2004]) has anady#tee dynamic wrinkling of the facing
for sandwich beams. Wang (Wang [2000]) has invastd) the damping behavior of
laminated honeycomb cantilever beams with fine exoloialls enclosed in the cells as
dampers. For sandwich panel, Besant (Besant [2(@#&}icted the behavior under low
velocity impact of sandwich panels by a finite edgmprocedure and proposed a suitable
yield criteria based on experimental observati@hignestedt and Reany (Grenestedt and
Reany [2007]) have investigated numerically, anedyfty and experimentally compression
wrinkling of composite sandwich panels with corngghskins. Valdevit (Valdevit [2006])
has studied experimentally and computationally ibading response of steel sandwich

panels with corrugated cores in transverse anditlatigal loading orientations. In
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references (Zenkour [2005a; 2005b]), Zenkour ubedsinusoidal shear deformation plate
theory to study the buckling and free vibratiortteg simply supported functionally graded
sandwich plate. Much more studies on sandwich pailebe reviewed in chapter 5 and
chapter 6. For sandwich shell, Hutchinson (Hutatn$2000]) addressed buckling of
cylindrical sandwich shells subject to axial conggien for shells having foamed metal
cores and obtained optimal face sheet thickness, ttickness and core density which
minimized the weight of a shell with a specifiecadocarrying capacity and imposed
constraints by wrinkling and yielding of the fadeests and yielding of the core. Tanov
(Tanov [2000]) came up with a third order shearodefble shell element for finite
element analysis and behavior prediction of sanlvgicells. Kalamkarov (Kalamkarov
[2007]) applied himself to the analytical developmeof the method of two-scale
asymptotic homogenization to determine the effectalastic stiffness of hexagonal
honeycomb-cored structural sandwich composite shkeladdition, the optimal design of
sandwich structures is also performed. Normallyg gandwich structures with the
variables of cell sizes, the thickness of face @mé, layer group fiber angles, core relative
density and so on, are designed for the weightmigation subjected to the constraints of
the deflection, the fundamental frequency, the bagkthe yielding and the wrinkling, or
for the behavior maximization of heat transferjstesce to bending and torsion or their
combination, and the sound transmission loss. Gairgg strictly speaking structural
design for sandwich structures, we can evoke (KE®999]; Liu [2006; 2007]; Mai [2007];
Sciuva [2003]; Tan [2007]; Thamburaj [2002]; Tia20p5]; Wang [2003]; Zok [2003]).
Designs of structures and materials and theirioglahip are narrated as follows.

1.2 Design of structures and materials

With higher performance requirements for innovatp®ducts being proposed, huge
challenges appear in the designs of structuresraterials. Conventional trial-and-error or
empirical methods and single structural designsictsatisfy these requirements. In recent
years, integrated designs of structures and mkdréve been paid great attention to with
the development of topology optimization technigue to their capability of attaining the
desirable functions. Many achievements reviewedeiction 1.2.4 have been obtained in

this research field.
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1.2.10verview of topology optimization

Structural design has experienced three phasesgsighape and topology optimizations
(Bendsge [2003]) that implements the designing gaore of a product from the
preliminary configuration to the final refinemehtowever its innovative design is mainly
completed in the phase of the topology optimizatiodeed, the choice of the appropriate
topology of a structure in the conceptual phaggerserally the most decisive factor for the
efficiency of a novel product (Eschenauer [2001]).

The size and shape optimization does not allow gesof the structural topology during
the solution process. So, topology optimizatiomisst valuable as preprocessing tools for
sizing and shape optimizations as seen in FigKlir (2002]).

s
7
7
/ optimisation
4
v
Design problem ;
post-processing
FE representation
of optimal design
\manufacturing
Boundary

representation of
optimal design

Final product

Fig.1.4 Design optimization of a short cantileveain

Topology optimization is often referred to as thgdut optimization or generalized shape
optimization (Kita [1999]; Olhoff [1998]; Rozvanyi995]). Since Bendsge and Kikuchi
(Bendsge [1988]) first implemented the topologyimation for continuum structures by
using the homogenization method two decades agoebearch and development in this
field have entered a new era. The classical methodlve the topology optimization
problem are as follows. At the beginning, the toggl optimization problem was
converted to a sizing problem with the introductioh a material density function.
Assuming that the structural material consists mfirginite number of infinitely small
periodic holes in the microscopic scale, the homaggion method was used to determine

the macroscopic performance of the material (Hagd®&98b]). Next, artificial density
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functions were employed to greatly reduce the cdmgucomplexity and boost the
development of topology optimization. General @il density functions include SIMP
(Solid Isotropic Material with Penalization) (Rief2001]; Rozvany [1995]; Bendsge
[1999]) and RAMP (Rational Approximation of MatdrRroperties) (Stolpe [2001]). They
are also used as density penalization models tpresp the intermediate densities when
topology optimization is transformed into a conting optimization problem. In addition,
many approaches have been studied to solve nurhieistability in topology optimization:
the perimeter method (Haber [1994; 1996]; Peter$$889]; Jog [2002]; Zhang [2003]),
the filtering technique (Sigmund [1994]), the logahdient constraint (Petersson [1998]),
the minimum member size control (Zhou [2001]) ahd MOLE (MOnotonicity based
minimum Length scale) method (Poulsen [2003]). Sigch (Sigmund [1998]) and Fuijii
(Fujii [2000]) have executed a detailed survey dre tprocedures dealing with
checkerboards, mesh-dependencies and local midimtae iterative computation, two
optimization algorithms (Kamat [1993]) were addezssnathematical programming (MP)
(Duysinx [1996]; Fleury [1989]; Pan [2000]; Bruyn¢2002]) and optimality criteria (OC)
(Hassani [1998c]). Xie (Xie [1993]) proposed theoletionary structural optimization
(ESO) for topology design based on the gradierdutation and material removing, which
has been extended as the bidirectional evolutiorsryctural optimization (BESO)
(Querin [1998]; Young [1999]). Liu (Liu [2000]) deloped a novel approach, called
Metamorphic Development (MD), which can allow austure to grow and degenerate
towards an optimum topological layout. In this noeththe optimization can start from the
simplest possible geometry (layout) or any degredevelopment of the structure rather
than from a complex ground mesh. Eschenauer (Eacken1994]) proposed the bubbles
method, in which the boundaries of the structuee @nsidered to be variable and the
shape optimizations of new bubbles and of the othaable boundaries of the component
are carried out as a shape optimization problenteRé, Level Set as an effective
approach was applied in topology optimization (W48003]; Allaire [2005]). In this
method, the optimized structure is implicitly repeated by a moving boundary embedded
in a scalar function (the level set function) ofhigher dimensionality. The optimum
topology of a structure can be obtained by theatiten of the implicit moving boundary.
The genetic algorithm (GA), an optimization techuggbased on the theory of natural
selection (Jakiela [2000]; Nakanishi [2001]) aneé tmavelet method (Yoon [2005]) are
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also applied to structural topology design problemsa word, the theory and method of
topology optimization have been tremendously dgyeioand gradually perfected in past
two decades. However, the study is still going on.

In practical applications, the topology optimizatiis mainly contributed to the structural
designs in the macrostructure and the materialgdssin the microstructure (Kruijf
[2007]).

1.2.2Structural designs by topology optimization

Structural designs with topology optimization cabsin finding the optimal structural

layout by minimizing or maximizing structural resps@s under constraints of volume,
stress, deflection and so on. Many kinds of examplan be evoked: compliance
minimization of statically loaded structures (Sigrdu[2001]) or due to the prestress
(Pedersen [2002]), minimum weight with stress camsts (Duysinx and Bendsge [1998];
Navarrina [2005]), maximization of the first eigeeduency (Pedersen [2000]),
maximization of the lowest buckling eigenvalue (dhf2004]), maximization of the

overall geometric advantage or mechanical effigrepicthe mechanism (Canfield [2000]),
maximization of the magnetic energy with the voluoomstraint (Yoo [2004]), minimum

resistance to heat dissipation (Kruijf [2007]). Aindalso has involved in multi-objective

and multi-physics designs. Krog (Krog [1999]) usednax-min formulation based on a
variable lower bound technique for the multi-obieettopology optimization problem of

statically loaded or freely vibrating disk and platructures. Min (Min [2000]) proposed a
unified topology design methodology to design ibiee structure which met both the
static and vibration requirements with the multjeaitive optimization approach. Sigmund
(Sigmund [2001a; 2001b]) applied the topology optation method to the design of
multiphysics actuators and electrothermomecharsgaiems with one- and two-material
structures. Yin (Yin [2002]) presented a new despgrameterization scheme for the
topology optimization problem involving three engidpmains and multiple materials for
the electro-thermal-compliant (ETC) design probldrhus it can be seen that, structural

designs with topology optimization focus on theusture behavior, not the material
property.
1.2.3Material designs by topology optimization

The material design with topology optimization astsin finding a reasonable material
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distribution in the unit cell in order to obtainetiprescribed properties. The development
on material designs has begun ever since Sigmugd(®d [1994]) advocated an inverse
homogenization method.

This structural material is made of periodic repreative volume elements (RVE) which
are designed as a kind of microstructure with @p®logy optimization technique to tailor
the material properties. It is involved in multiysics, multi-phase materials and
multi-objective designs. Sigmund (Sigmund [19950)dmled the microstructure as a truss
or thin frame structure to tailor extreme materiagdsich as isotropic materials with
Poisson’s ratio close to -1, 0 and 0.5. Jung (J@6§4]) designed the negative Poisson’s
ratio (-0.38) material with 15% volume constrairasbd on geometrically nonlinear
analysis. Diaz and Benard (Diaz [2003]) extendeel mhaterial design problem with
prescribed elastic properties by using polygon#écKikuchi (Kikuchi [1998]) and Nelli
Silva (Nelli Silva [1999]) adopted the extendecefixgrid method to solve a microstructure
design problem of periodic composite materials vptiescribed elastic properties and
thermal expansion coefficients, shear-only and tnegaPoisson’s ratio, as well as
piezoelectric materials with maximizing hydrostatioupling coefficient and figure of
merit. Sigmund and Torquato (Sigmund [1997]) emetbythe three-phase topology
optimization method to design materials with thexmmum directional thermal expansion,
the zero isotropic thermal expansion, and the egasotropic thermal expansion.
Gibiansky and Sigmund (Gibiansky [2000]) generatdte optimal layouts of
microstructure materials of two-dimensional thréage composites with the
maximization of bulk modulus in the Hashi-Shtrikmbhounds. Kruijf (Kruijf [2007])
explored material designs with multiple conflictirapjectives and tailored composite
materials with the effective thermal conductivitydabulk modulus attaining their upper
limits like Hashin-Shtrikman and Lurie-Cherkaev hda. Guest and Prevost (Guest [2006;
2007]) maximized the bulk modulus and permeabilitythe multi-physics problem of
periodic material designs according to the relaimportance or weights assigned by the
designer to the competing stiffness and flow termshe objective function. From the
above-mentioned works, it can be known that mdtdaaigns with topology optimization
demonstrate the broad capability of designing tlesv rmaterials with the periodic

microstructures.
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1.2.4Integrated design of structures and materials

There exists a natural and close relationship batwstructures and materials. Some
researchers analyzed in detail performances anlicafipns of structural materials and
came up with the concept of simultaneous desigissro€tures and materials.

Evans (Evans [1999]) examined the thermomechampicgerties of cellular metals that
suggest their implementation in ultralight struesyrand pointed out that there were
substantial opportunities to greatly improve tlibérmal performance by tailoring cell size
and density. Burgueno (Burgueno [2005]) concluded elxperimental and analytical
studies that hierarchical cellular designs can owerthe performance of bio-composite
beams and plates and that the further improvenmethidir mechanical efficiency can be
achieved through optimized microstructures or Mhavigal topological material
arrangement. Soto (Soto [2000]) used the naturaisbdesign model for designing
simultaneously the global structural topology amel fbcal material properties. Actually he
solved two optimization problems: the global desiginfinding the optimum global
material distribution for given local material peygies and the local design of finding the
optimum local material properties for the givenlglbmaterial distribution. Xia and Wang
(Xia [2008]) proposed a level set based methodcsiimultaneous optimization of material
property (via material volume fraction) and topolagf functionally graded structures for
maximizing the structural performance. This optiatian problem can be regarded as
structural topology optimization with multi-phaseatarials.

Here we define integrated designs of structures raaterials. The configuration and
constituents of the microscopic periodic unit cate designed in order to satisfy the
requirements of the macro-structural performanaes wesponses specified in section
1.2.2.

Structural designs and material designs with togploptimization have laid substantial
foundation on the implementation of integrated giesiof structures and materials. In the
early foundational work of topology optimization §Bdsge [1988]), structural topology
designs are implemented by using the homogenizatiethod to predict the material
properties. They made a good preparation for iategrdesigns of structures and materials
in theories and methods. Takano and Zako (TakaB00[2 proposed the integrated and
computational design methodology of graded micuzstires of heterogeneous materials

for the emergence of macroscopic function. Rodsg(lRodrigues [2002]) presented an
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authentic model for simultaneous optimization otistures and materials. In this model,
the general layout of structures was first obtaiftedhe minimum compliance design, and
then the finite elements with the intermediate dgns the general layout are further

designed as microstructures by the topology opation technique. Sun (Sun [2006])

made a systematic investigation on the key thendyraethods of topology optimization of

materials and structures and implemented integi@dgsayns of structures and materials for
the global stiffness maximization of the overallusture and local design of material

microstructures based on the homogenization me#imadscale-related computing. As a
research hotspot and an efficient approach, integrdesigns of structures and materials
can fully and deeply dig the potential performaneesl properties of structures and
materials. However, as a multidisciplinary task alwed in structure, material and

optimization, there exist some problems to be shlve.g. size effects, computing

efficiency, numerical stability in the optimizatioprocedure and appropriate material
interpolation models for multi-physics.

1.3 Objective

In the past, people have passively selected andl sisgctures and materials that couldn’t
provide the desired performance for different indas, for instance, lightweight,
high-performance, multi-function and so on. Nowagjay appears necessary to actively
seek new structures and materials. That explamsléivelopment of theories and methods
for the analysis and design of structures and nadger

Many research works focus on sandwich structures aallular solids which have the
remarkable performances and characteristics, mgeigely concerning computation of
effective properties (Grenestedt [1999b]; Hohe EA]OKim [2003]; Saha [2007a; 2007b]),
analysis of structural responses (Cunningham [2023@3b]) and optimal designs (Denli
[2007]; Wen [2007]; Yu [2006]; Zok [2003]). With ¢hdevelopment of numerical
techniques such as the finite element method, henipgtion method and topology
optimization, the analysis and design of sandwtdlctures and cellular solids has entered
a new phase.

In this context, predecessors’ works above-mentiaaned numerical tools, this thesis has
three main goals:

1) To use the three-dimensional homogenization metbambmpute effective properties
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of unit cells in multilayer structures and matesial

2) To attempt the superelement method to improve tmpatational efficiency in
designs of periodic structures and materials.

3) To explore the size effect in static and dynamispomse analysis and integrated

designs of sandwich structures and materials.

1.4 Outline of the thesis

The aim of this thesis is to carry out the desidrumit cell in periodic structures and

materials on the basis of the computation of thefiective properties by using

three-dimensional homogenization method, and egpsize effects in the analysis and
designs of sandwich structures and materials aedntlethod to improve the design
efficiency.

In chapter 2, using the three-dimensional homogdioz method and the finite element
technique, we evaluate the effective elastic canistaf the three-dimensional honeycomb
sandwich panel. We consider the three-dimensiommaleyxcomb core as a two-phase
composite and model it with the finite element tegbe. We also use three variations of
our three-dimensional homogenization method (oap;gtvo-step, and multi-step ones) to
evaluate the overall effective elastic constantstied three-dimensional honeycomb
sandwich with upper and lower skins. The compuésdillts of the one-step, two-step, and
multi-step homogenization methods are compared thitse of the engineering empirical
method.

Chapter 3 deals with the design of the stiffnesg #ermal conduction coefficient of

three-dimensional microstructure unit cells witke thiven volume fraction by using the

homogenization method and the finite element method

In chapter 4, an integrated topology optimizatioacgdure is implemented for the global
stiffness maximization of square, cyclic-symmetng &ylindrical cellular solids. To retain

the structural periodicity and reduce the computinge, superelement (SE) and design
variable linking techniques are introduced to cb@maze the representative volume
element (RVE) layout. Then, the formulated topolagimization problem is solved by

the dual optimization algorithm. Besides, the ga#ddmperimeter constraint is employed to
prevent checkerboards in the design process. Tealawe structural efficiency of the

obtained topology designs, a comparative studyhef équivalent torsional rigidity of
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cyclic-symmetry structures is made between theimbtaoptimal configuration, the foam
material and the specific configuration.

In chapter 5, bending responses of sandwich pawdls periodic honeycomb and
corrugated cores which have different sizes ands#tmee structural forms are calculated
numerically. Simultaneously, the theoretical sang of sandwich panels with the effective
core are also computed by using the Levy and Nawathods on the basis of the classical
laminate plate theory. And then, considering thpempand lower skins as non-designable
domains, the three-dimensional configurations a@flescelated sandwich cores with the
different sizes are designed for the global st#genaximization of the sandwich panel.
The topology optimization problem is solved by theal optimization scheme. And the
quadratic perimeter constraint is employed to elate checkerboards occurring in the
design process.

In chapter 6, we firstly compute the natural fregues for simply supported sandwich
panels with homogenized cores by the dynamic aisalgt laminate plate including
transverse shear deformation and with periodic Yoovab cores with different sizes by
the finite element analysis, respectively. And thenth the upper and lower skins as
non-designable domains, three dimensional conftgurs of scale-related sandwich cores
with different sizes are designed for the naturafjfiency maximization of the sandwich
panel.

Finally, in chapter 7, we summarize the methodsrates in the computation of effective
properties, analysis and designs of sandwich strestand materials. Then we draw the
future work for the analysis and optimal designlightweight sandwich structures and

materials.






2. Calculation of effective elastic constants for honeycomb

sandwich structures

In this chapter, the effective elastic propertiek lmneycomb sandwich
structures are calculated using the homogenizatieethod. Then they are
compared with analytical methods.

The effective constants of 3D honeycomb core amapuated by using
Gibson’s formula and its modification, energy methand homogenization
method.

Finally, the 3D honeycomb sandwiches are studiedl @e considered as a
multi-layered structure. Therefore, a multi-stepromgenization procedure is
applied to obtain their effective properties. Tingi@eering empirical method

is also used.
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2.1 Introduction

It has been underlined in section 1.1.2, chapténal sandwich structures have several
different cores: the honeycomb core is one of thEney are extensively applied in many
industries in the form of plates and shells becaafstheir excellent strength-to-weight
characteristics. For this reason, it appears vemportant to study their mechanical
behavior including bending, vibration, buckling,pact, thermal insulation and so on.
However, the presence of thick cores means thatntleehanical characteristics of
sandwich shells are different from classical lartedashells or monolayer structures.

The classical laminated theory cannot be directlgduto analyze the mechanical behavior
of honeycomb sandwich structures. It needs to bugldthe micromechanical model or
obtain the effective elastic constants of honeycosabdwich structures. Then, their
mechanical behavior can be analyzed numerically thedretically. Currently, several
approaches can be applied to compute effectivetielasnstants of the honeycomb
sandwich structure: engineering empirical method (M000]), energy method (Hohe
[2000]; Zhang [2007]), Gibson’s formula and its nfmétions (Fu [1999]), general
micromechanical method (Kalamkarov [2007]) and hgemzation method
(Sanchez-Palencia [1980]; Hassani [1996]). Thesthaods have their own advantages to
evaluate the effective elastic constants. Howewerme of them are restricted to
two-dimensional sandwich beams and plates on this lof the beam or thin plate theory.
The homogenization method has strictly theoreficahdation. So it has been adopted to
predict various equivalent properties of periodiemposite structures, for instance,
effective moduli (Peng [2002]), thermal conductiast (Laschet [2002]), piezoelectric
coefficients (Berger [2005]), and so on.

In this chapter, we evaluate the effective elastimstants of the three-dimensional
honeycomb sandwich structure by using the threeedgsional homogenization method

and the finite element technique. All finite elerhenodels are built in the platform

SAMCER®. The different effective approaches and computimgthods are utilized in

order to deeply study the equivalent propertieeafeycomb sandwich structures. As the
theoretical foundation of computing effective prdjgs of periodic cellular solids and

designing structural materials with prescribed praps, the homogenization formulation
and its finite element solution are firstly derived detail in section 2.2. As Hassani
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(Hassani [1996]), we consider, in section 2.3, 3@ honeycomb core as a two-phase
composite and we obtain the effective elastic @onist with the 3D homogenization
method and the finite element technique. Then,rethreethods (Gibson [1982]; Fu [1999];
Zhang [2007]; Hassani [1996]) are exploited to catephe effective elastic constants of
the hexagonal honeycomb core. By comparison as rshowable 2.3 and Fig.2.3, we
validate the 3D homogenization method. In sectigh e use three variations of our 3D
homogenization method (one-step, two-step, andisigp ones explained with the aid of
Fig.2.4) to evaluate the overall effective elastimstants of the 3D honeycomb sandwich
with upper and lower skins; the evaluation resatts given in Table 2.4. We exploit these
three homogenization methods and the engineeringriead method of Wo (Wo [2000])
to calculate three kinds of effective elastic mo@fil3D honeycomb sandwich panel. The
computed results are given and compared in TableFmally in section 2.5, we give the
final conclusions on calculating effective elastionstants of honeycomb sandwich

structures with the homogenization method.

2.2Homogenization method (HM)

Cellular materials, composed of periodically repeti microstructure cells, can be
analyzed by using averaging method such as homzagéon to determine macroscopic
material behavior. The homogenization method isethasn a two-scale asymptotic
expansion of material behaviors with periodic ucefls. The overall properties of an
elastic body can be described with two differertles: the macroscopic or global lexel
and the microscopic or local levgl The global levelx is related to the local levsl

asy = x/ &, where £ is a very small positive number, which is a rektsize of the

periodic cell.

It is assumed that a physical quantdy(x, y) of a composite structure with periodic

microstructures is given by:

D(x, y) =D(x y+ V) 2.
dx o0x &0y

whereY is the length of periodicity.

We introduce now the general elasticity problemaafomposite structure with periodic
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microstructures as seen in Fig. 2.1. The virtuapldicement equation can be constructed

as:

ISE ou; ov
QW 0>q axl

where f* are the body forcest are the surface forcesp’ are the hole boundary

—de=[_fvde+| Wd/-+j ¢ vdsOvO V (2.3)

forces in unit cells (see Fig.2.1(c)y; is an arbitrary function that satisfies the bougda
condition.

According to the symmetry of linear elasticity, keowEj}, = E, = E = E; . The
stress-strain  and  strain-displacement  relations  arespectively oy =Ej, €

andeg =(Uu,+4y,)/2. u", € and o depend on the macroscopic level and

microscopic levey . Using a double-scale asymptotic expansion, tselatement field

can be written as:
uw ()= (% y+e d( x y+e? d( x y+-- (2.4)

where u'(x y) definedin (x,y)0QxY is theY-periodic function.

O[O Y
OO O A @ lflgl
OIOTO y
4 >
(b) (©)

Fig.2.1 Elastic problem with periodic microstructsire

(a) General elasticity problem (b) Cellular structuce Unit cell

For aY-periodic functiorp(y), we have

I|mj€¢( de_Mng y)dYd2 (2.5)

where Y| is the volume of unit cell.

Substituting Egs. (2.2) and (2.4) into Eq. (2.3),0kéain



Calculation on effective elastic constants for hymoenb sandwich structures 21

Louwov  1fog 04y oyay
Qf B £2 oy, ayJ X ay dy 0yox

{ e Ouk v (atﬂJrﬂjﬂ:lJrg(...)}dQ (2.6)

ay ox 0y )oy
Q+j wdr+j Fyvds OvOy,

whereV,,, ={ v(x, y) defined for(x, y)DQXY‘ 0 Yy Y-periodic; v smooth enough;

v[Fg =0}. All the functions are assumed sufficiently smooso whene - 0", all

integrals exist. By equating the terms with the sgmwer of £, using the divergence
theorem and applying the periodicity conditionstba opposite faces of, the general
elasticity problem of Eqg. (2.3) with the periodiade cells in a cellular body is decomposed
into two parts: one solves the equilibrium problefrEg. (2.7) in the microscopic level,
the other solves the equilibrium problem of Eq8)2n the macroscopic level. The detailed
derivations can be found in Refs. (Guedes [199(]sddni [1996; 1998a]). It is also

concluded that the first term of the expansionubbnly depends on the macroscopic scale

X.
out auzjav( Y)
E, kKX |2 2dY=| fy(ydYy OvO Yy (2.7)
IY jkI (axl ayl ay] IY
ou,(X) av
j Eljkl( ) k( ) a)(()gd-o
: 2.8
= r(x)md;uj b(Yy(Rde+[ t(Yv( Y, OvD Y =
Q' an Q y Iy i i ’
E;, is the homogenized elastic tensor, and
B 0=, il (ﬁk. o ame (29)
7,(X) are the average residual stresses within thedcellto the tractionsp® inside the
holes, and
0<//
u (X) |Y|'[ Ejk| —- dY (210)

b(x) are the average body forces, and
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h(x):ﬁ [ tav 2.10)

¢, is the displacement field due to the tractigis. x are the microscopic

displacement fields within unit cells under theipéic boundary condition, and then

0xy V(Y o[ £ OV(Y

(= .y dy = E, dy dy (2.12)
0y, ov.(y) —

[, Ex oy O [ pv(ydY (2.13)

As shown above, the microscopic and macroscopicl@nts are not coupled when- 0.

The homogenized elastic constants can be computbdwhe base cell by solving Egs.
(2.12) and (2.13) with the finite element analygis x“ and ¢, . The mechanical

response of the general elasticity problem with pgeFiodic microstructures can be

analyzed under the consideration of homogenouststes.

2.3 Effective calculation of 3D honeycomb core

2.3.1Numerical solution of homogenized elastic constantef 3D honeycomb core
based on HM

To calculate the effective elastic tenEgir, as defined in Eq. (2.9), it is necessary to

determine the microscopic displacement figfd which is theY-periodic solution of Eq.
(2.12). For the 3D problem, Eq. (2.9) and Eqg. (2.1dth different values ofkl

( kl=11,22,33,12,23,1) provide essential equations to find the elements thod
homogenized matrix.

From Eq. (2.9), it follows that:

! ﬁuﬁ,—k. (D-E. (Ve [y

:ﬁIY[EijM(Y)_Uu ()(kl)}dy (2.14)

= %nzai}ij[Eijm (y)-g (X" )]d%
2l ™

m=1
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where |Y| is the volume of unit cell]Y,| is the volume of each element in the unit cell;
nele is the number of finite elements in the unit celf;(x) and o, (x") are

respectively strain and stress tensors correspgrtismcharacteristic displacemept! of
unit cell, obtained by solving the following Eq.18).
From Eg. (2.12), the conventional stiffness equmatibmicroscopic base cell is:

Kxy" =FX (2.15)

Here, the stiffness matrix of the microscopic baakand the initial strain loads are:

nele nele

K=>k =) [ BIEBdy (2.16)
e=1 el ¢
Fo =R ZL,L BT E £ dy (2.17)
e=1 el ¢

where & are the unit initial strains in the microscopis®aell. For 3D microstructure
homogenization,sl' have six different cases corresponding to six lesbs.
The finite element model of unit cell of the honeytd core can be seen in Fig.2.2. We

assume that the cell wall is made of the isotropéterials withE; = 0.91GPa, and the hole
is replaced by weak materials; = 0.00001GPa. Both Poisson’s ratios are 0.3. The ddti

wall thickness to side length of unit cil t/a=~/3/6.

Y1 Y2

Fig.2.2 Finite element model of 3D honeycomb core

According to Hooke’s Law relating stress and stfam (2.18) for orthotropic materials,
the overall general equations in term of the ppgatimaterials directions are following as
in Eq. (2.19):



24

Chapter 2

SRR

| C. C, C; O
C, C, C4 O
Cs Gy C3 O

Cu
sym

Cii = EL(1-vyuv3) /A
C.= Ezz(l_ V13V31) /A
C33 = E33(1_ V12V21) A
Cio = (Vor + Vai Vi) Eff A= (Vpst Vgvih ELA
Crs = (Var + VorVa) B/ A= (gt Viovo) EA
Cos = (Vg t VipVa) EJ A =(Vt vy vih ELA

C44 = G23
C55 = Gl3
C66 = G12

o O o o

© O o oo
,H oM M M o mm

A=1- VipVor = VpVao™ Vg Vg™ 2 VoVa Vg

(2.18)

(2.19)

whereEqs, Ex, Eo, Giz, Gos, Gi3,V 12, V23 and v 13 are elastic constants in the principal

materials directions. We obtain effective elastimstants as seen in Table 2.1 and the

corresponding effective elastic matrix of the hamyb core as seen in Eq. (2.20) by the

finite element analysis and the code program.

Table 2.1 Effective elastic constants

Eii/GPa| 0.03229932 | Gi,/GPa| 0.009252872 V12 0.7777879
E,o/GPa| 0.03213468 | Gy,3/GPal 0.05289672 Vo3 0.03993055
Esz/GPa 0.2414293 Gi13/GPal 0.05303416 V13 0.04013513

[ 0.08977385 ]

0.07139982 0.08931070 symmetric

0.04835210 0.04821316 0.2703989

Ei};, = (2.20)
0.009252872
0 0.05289672

0.05303416
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From Table 2.1, the effective elastic moduli alongand y directions are less than one
along ¥ direction. Moreover the effective shear moduliyitys and y-y3 planes are
greater than one inpyy, plane. These facts demonstrate that the coreeirhdimeycomb
sandwich structure mainly carry the transversersioaas. In addition, the effective elastic
moduli along y and y directions are not equal. This shows the honeycsimnizture has
weakly anisotropic characteristics iy, plane and the elastic modulus alonglyection

is bigger than along,ydirection. This conclusion is the same as the moposed by Fu
(Fu [1999)).

2.3.20ther methods for the calculation of effective eld& constants of hexagonal
honeycomb core

The hexagonal honeycomb core is the most popularlaesolid used as the sandwich
core. Besides the homogenization method, theré ssigral methods to compute effective
elastic constants of hexagonal honeycomb core:d@ibgormula (Gibson [1982]) and its
modification (Fu [1999]), energy method (Zhang [2])0In the following we will adopt
respectively these methods to calculate the effecgiroperties of the 2D hexagonal
honeycomb core.
For preliminary calculation in design or where aajraccuracy is not needed, one uses
simpler forms for some of the expressions in EQL9P

C,=E,/(Q-v,v,)

C,, = E,,/(1-v,V,)

C,=C,=V,E /(1- v,,v,) = V,,E,J(A- v, V)

Cis =Gy,

(2.21)

2.3.2.1Gibson’s formula

Because the thickness of sandwich core is muchebitgan upper and lower skins, the
in-plane stiffness and bending stiffness cannoigbnered. Gibson (Gibson [1982]) gave
the analytical formulation of Eq. (2.22) - Eq. @)20 calculate the effective properties of
the hexagonal honeycomb core considering the sahdwaire as an orthotropic layer.

£ cost
a’® (B +sind)sirf 8

E,=E =0.05055¢GPa (2.22)

v = cos 8 _
(B +sind) sing

(2.23)
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t* (B +sinb)
E,, = E_ 1Y) - 05055(GPa 2.24
? "a® coso (2.24)
(B +sind) sing
vy, = =1 2.25
21 C0§0 ( )
; |
6, =L _B+SN9) 4 51263866Pa (2.26)
a® B*(2B8+1) cod

where S =1 for the hexagonal honeycomb cor@8=7/6; E=0.91GPa is the elastic

modulus of the cell wall made. The ratio of walickness to side length of unit ced

t/a=+/3/6.
2.3.2.2Modifications of Gibson’s formula

For the uni-axial elongation case, the Gibson’snida coincides with the experimental
results. However the stiffness matrix cannot beaioled through the Gibson’s formula
because the stretching deformation of the cell walignored. Thus Fu (Fu [1999])
modified the Gibson’s formula as follows:

2 3
E,= % E(l— 3|t—2J|t—3 = 0.03791666GPa (2.27)
2
v, =1- 4|t—2 = 0.6666: (2)28
_ 4 5t \t° _ |
E,, = A E 1—5”—2 B 0.0435339GPa (2.29)
2
V,, = 1—38)’:—2 =0.7777¢ (2.30)

The stretch deformation has little influence on thensverse shear modulus
G1,=0.01263888GPa.

According to Eq. (2.21), the in-plane effectivesti@a matrix of the hexagonal honeycomb

core is obtained as follows:
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i Ell V21Ell ]
1=VipVor 17 ViV, 0.07875 0.06028
er =| V2B = =10.06028 0.09042 (2.31)
1_V12V21 1- VioVo 0.0126
GlZ

2.3.2.3Energy method

According to the average-field theory (Hori [1999e strains and stresses of effective
honeycomb cores are the volume average of thespmneling strains and stresses within

the microstructure unit cell of the honeycomb core:

- 1
a-ngadg (2.32)

-1
a-ngedQ (2.33)

From Hooke’s Law relating stress and strain EqLR.the effective elastic matrix for the
2D honeycomb core is given as the following Eq342.which reflects the relations
between the average strains and stresses.

o | [El, B 0 &

o |=|EY, EY,, O | & (2.34)

5-3 0 0 E1|;12 23

The strain energy per unit volume of unit cellxpreessed as:

1
E =EJ'Q(0151+02£2+0§3) dQ
1 (2.35)
:—(01£1+0'2£2+0'3€3)
2
For the 2D honeycomb core, we can obtain the éfiealastic matrix through the finite

element analysis with the four displacement loagksan Table 2.2. The displacement load

u equals &2; v equals/_3a/2. Herea is the side length of cell wall. Of course, the
effective properties of 3D honeycomb core can &lscachieved by the energy method
when sufficient boundary conditions are given. €Hective results are seen as Table 2.3.
Actually, the strain energy-based method and homiaggon method are just two variants
of the same definition of effective material prapes (Sigmund [1994; 1997]) and they are
physically identical (Zhang [2007]).



28 Chapter 2

The effective elastic properties can be writtertarenergy form as:

pars™ pq

" 1 . 4
ot s £ = 1], B’ =€ 5% =AY (2.36)

From Egs. (2.34) and (2.35), the relationship betwthe effective elastic properties and

the strain energy of microstructure in the straiargy-based method can be stated as
E(e°%) = ElL &5 (237

pars™ pq

By comparing Eq. (2.36) with Eq. (2.37), one cam th&at they are equivalent in fact.

Table 2.2 Boundary conditions and correspondirgjrsgnergy

. Strain ) Energy
Boundary conditions . Strain energy
fields value
u - L @_1_n
e =0 E =§E““ 0.0401
0
£ =|1 E® :% E 0.039852
0
m ﬁwz -3 _ (3 _ 1_4
il e =0 E _EE“” 0.005584
o 1
| &= @=L +E +EL)| 01434
& = g') E _§(2E1122+ E1111+ 222) )
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2.3.3Comparison of the results of different methods

From Gibson’s formula, obviously the effective ¢lasnatrix can’t be determined because

ofv,v,,=1. So we give the comparison of effective elastinstants of honeycomb core

according to modifications of Gibson’s formula, ene method and homogenization
method as seen in Table 2.3 and Fig. 2.3.

Table 2.3 Comparison of effective elastic constahtsoneycomb core

Components E.../GPa| E,,/GPa| E},,/GPa| E}},,/GPa

Modifications of Gibson’s formula
(Fu and Yin [1999])
Energy method
(Zhang [2007])

0.07875 | 0.06028 0.09042 0.01264

0.080334 | 0.063458| 0.07984| 0.008501

2D homogenization

, 0.080334 | 0.063458| 0.07984| 0.008501
(Hassani [1996])

3D homogenization 0.089774 0.0713998089311 | 0.009253

GPa
0.1 [

0.08 | ;\‘ ‘/
0.06 | "/'—'/.

0.04 I
0.02 [
- « o -
0 1 2 3 4

——E, - Ellez —A— Eszzz —— Elglz
1—Modifications of Gibson’s formula;-2Energy method,;

3—2D homogenization;-4-3D homogenization

Fig.2.3 Comparison of effective elastic constarfitsameycomb core

Comparing the elastic moduli in Table 2.3, we catice that computing results with
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different methods coincide approximately. The s of each curve in Fig.2.3 reflects
this fact. The comparison results also indicate whkdity of each effective method.
However, we can obtain all elastic constants of ti@neycomb core using 3D
homogenization that provides the complete datatlier analysis and evaluation of the

mechanical responses of honeycomb structures.

2.4 Effective calculation of 3D honeycomb sandwich

2.4.1Multi-step homogenization of 3D honeycomb sandwich

The 3D honecycomb sandwich can be considered agea df multilayered structure
composed of upper and lower skins and a core.

Hohe (Hohe [2003]) directly determined the in-plamending and transverse shear
stiffness components of structural sandwich pabglameans of a strain energy based
procedure which assumed equivalence of a représengalate element for the given
microstructure and a similar homogeneous plate etenif the strain energy of both
elements is equal. Considering the skin effect, (Xu [2002]) proposed a multi-pass
homogenization method to derive elastic tensorsgimeral honeycomb sandwiches. In
this method, firstly a spatial heterogeneous problMas transferred into a material
heterogeneous problem with consequent intermeeéigiévalent properties. Secondly the
2D heterogeneous problem was analytically homogehia a unit cell by the variational
approximations of displacement field. Finally thiéeetive elastic tensors of honeycomb
sandwiches were obtained. Both of the two methamlsdgenized the 3D honeycomb
sandwich structure based on the analysis of 2[2 giatictures. Here, we directly adopt the
3D homogenization method to evaluate the overdicafe elastic constants of the
honeycomb sandwich with upper and lower skins. Asnsin Fig.2.4, there are three
variations: (1) direct equivalent (one-step); (@3tfy homogenizing the honeycomb core,
and then combining with the lower and upper skims{step); (3) firstty homogenizing
the honeycomb core, and then, in turn combininghwite lower and upper skins
(multi-step).

Although these three methods are based on the hemmagion method, the substantial
difference lies in that the former method simul@msy homogenizes three variations of

isotropic materials; the latter two methods firstigtain the orthotropic equivalent core,
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and then simultaneously or in turn combine withltdweer and upper skins.

Upper skin .

Equivalence of
<%

Honeycomb core honeycomb core

Lower skin

1. Equivalence of
honeycomb sandwich

3. Equivalence of
honeycomb sandwich
-

=

Fig.2.4 Equivalence of honeycomb sandwich strudbyrene, two and multi-step

homogenization schemes

Now we build the finite element model of the horayd sandwich structure with one unit
cell as seen in Fig.2.5. We assume that the lomgruaper skins are made of the isotropic

material and have elastic modulds 2.0GPa, Poisson’s rat= 0.3 and thickneshk; =

1.25mm. The honeycomb core has the same materiah asig.2.2 and thickness
h=16.25mm. So the total thickness of the honeyconamdwich structure is
h=h+2h=18.75 {-face,c-core). The computing results with the three meshar listed in
Table 2.4.

Fig.2.5 Finite element model of honeycomb sandwtcihicture with one unit cell
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Table 2.4 Comparison of effective elastic constantis three methods

Elastic Multi-step
constants One-step fwo-step first second
E11/GPa 0.3471983 0.3075509 0.1844299 0.3075508
E,./GPa 0.3469135 0.3072475 0.1841251 0.3075508
Ess/GPa 0.2802617 0.2913491 0.2710600 0.2913491
G1J/GPa 0.1301219 0.1105833 0.0635370 0.1105833
Gy9/GPa 0.0592139 0.0603957 0.0566659 0.06039%57
Gi1/GPa 0.0593021 0.0605510 0.0568124 0.0605510
V1o 0.3335783 0.3920744 0.4543954 O.392074|5
Vs 0.1510265 0.1287283 0.1071237 0.1289385
Vs 0.1516072 0.1289882 0.1073589 0.1287782

From Table 2.4, we can see that computing resttts different methods nearly identical,

especially for two-step and multi-step method. THect demonstrates that the

homogenization sequence has little influence onivaégnt moduli values of the

honeycomb sandwich structure obtained by the homanggon method.

2.4.2Engineering empirical method

In the engineering design, tension or shear loadsapplied in three directions of the

honeycomb sandwich structure. And then accordirtgecequilibrium condition and strain

compatibility, the tension and shear moduli aldmgé¢ directions can be calculated. In this

section, we use the engineering empirical method [2@00]) to compute the equivalent

elastic moduli of the honeycomb sandwich structMve. compare this approach with the

homogenization method. Here the elastic moduli @fidycomb cores are the same as

Table 2.1. In the following formula (2.38)~(2.43F,,, E,,, E;, G,, G,; and G,

are the equivalent elastic moduli of the honeycaabdwich; E;,,, E;,,, E;s, G,

G;,; and G,,, are the elastic moduli of the lower and upper skig_,, E.,, Es;.

G.,, G.,; and G, are the elastic moduli of honeycomb cores.
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(1) Tension moduli in plane

- h
Eu_ f11 py h Ecllh

2x1.25 0032325— 0.29466GF
18.75

(2.38)
=2.0x

2t
E.=Ep i+ Bt

2x1.25, 032135 282% 2945176
5 18.75

(2.39)

=2.0%

(2) Shear moduli

1_2  h

Gl3 Gfl3h QI3h

o 2x125 1625  _46 515051 (2.40)
T 0.76923 18.75 0.053034 18.75

= G,, = 0.060551GPa

1_ 2 he
GZ3 Gf23h CiZf’)h

2x125 1625 165574601 (2.41)

© 0.76923 18.75 0.052896%2 18.75
— G,, =0.06039573GPa
2t
G.=G, T+ G

2x1.25 4 009252872:2-2%  .11058¢C
18.75

=0. 76923<

(2.42)
(3) Transverse tension moduli

2t
1_ 2t _ h _ 2x125 1625 _5ceen
E, E.h E.h 20x1875 02414298 18.75 (2.43)

= E,, =0.2734931GPa

2.4.3Comparisons of the results for honeycomb sandwich

We obtain the main elastic moduli of the honeycosalmdwich using the engineering
empirical method. The resultant comparisons withttbmogenization method can be seen

in Table 2.5 and Fig.2.5.
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Table 2.5 Comparison of main elastic moduli

Transverse
Tension moduli _
) Shear moduli tension
in plane :
moduli

E11/GPa E22/GPa G]_?,/Gpa nglGPa G]_z/GPa E33/GPa

Engineering
empirical method | 0.29466| 0.29452| 0.06055| 0.0604 | 0.110583L 0.2735
(Wo [2000])

one-step
o 0.3472| 0.3469] 0.0593 0.0592 0.1301R2 0.2803
homogenization

two-step
o 0.30755( 0.30725| 0.06055| 0.0604 | 0.1105838 0.29135
homogenization

multi-step
o 0.30755| 0.30755| 0.06055| 0.0604 | 0.1105838 0.29135
homogenization

GPa
0.4
0.35 |
- B2
>\0.257 Py
0.2 —— g2
0.15 | MM —— @3
0.1 —— /3
0.05 I - - K 7,
0
1 2 X 3 4

1—Engineering empirical method-20ne-step homogenization;

3—Two-step homogenization—4Multi-step homogenization

Fig.2.5 Comparison of equivalent elastic moduli

As we can notice from Table 2.5, the equivalenstedanoduli of the honeycomb sandwich
respectively calculated with 3D homogenization @mgiineering empirical methods are
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basically identical. The flathess of each curveR.2.5 reflects the consistency of
computing results with different methods. In aduiti observing the expressions in the
engineering empirical method, we find that eaclstelanodulus only depends on the ratio
between the thickness of the honeycomb tgead the thickness of lower and upper skins
tr. Therefore, the engineering empirical method juls¢ the homogenization method
cannot embody the influence of the unit cell saae equivalent elastic moduli. This
approximate computation is valid only when the wetl is very small relative to the

whole structure.

2.5Summary

Firstly, by calculating and comparing the effect®astic constants of honeycomb core
with different methods, we have confimed the ngd#s and validity of 3D
homogenization method and provide the backgroumdtfe computation of effective
elastic constants of honeycomb sandwich structures.

Secondly, combining 3D homogenization method wité finite element technique, one
can obtain all effective elastic constants of haoeyb sandwich structures. Fairly good
agreement with the engineering empirical method adestrates that the multi-step
homogenization method is valid and that the egaiMasequence has no influence on the
equivalent results.

Although the present study is directed to an amalyf sandwich structures with
honeycomb cores, the multi-step homogenization atetan be applied to a much broader
class of layered structures that consist of a bgwreous medium such as hybrid
composites and braided structures. Moreover weaatssmemploy this method to design the
3D configuration of unit cells of cellular strucégrwith the specific properties.






3.Topo| ogical design of 3D microstructure

In this chapter, maximization of elastic moduli ahérmal conductivities is
used to design the material microstructure. This based on the

homogenization method and topology optimization.

The single objective and multi-objective designs amployed to maximize
uni-axial and multi-axial properties. Actually thaulti-objective design is
transformed into the single objective through thecter aggregation.

Different initial structures have been used in tiptimization process.
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3.1Introduction

In the previous chapter, we have used the homogeoiz method with the asymptotic
expansion to passively predict effective properbégeriodic unit cells of honeycomb
sandwich structures within the finite element framek.

In fact, we would like to achieve the desired prtips of material microstructures by
using the topology optimization in conjunction witie homogenization method and the
finite element technique. Usually cellular matesiaind solids, which are constituted of
ordered microstructures and formed by the periagejgetition of unit cells, possess
excellent properties which are sensitive to thefigonation of the microstructure cells.
Therefore new types of cellular materials and solidth the specific properties can be
designed by establishing relationships betweenlogyoand performance to satisfy the
special requirement for structural performance.

In the mid 1990ies, Sigmund (Sigmund [1994; 199897]) proposed the topological
optimization method to design periodic microstruetuof a material to obtain prescribed
constitutive properties.

The microstructure was modeled as a truss or ttamé structure in two and three
dimensions. He also used a topology optimizatiac@dure to determine the distribution
of three phases in order to design composites @itreme or unusual thermal expansion
behaviors. Neves (Neves [2000]) presented 2D coamtipnal models which addressed the
problem of finding the optimal representative mgtractural element for periodic media
that maximized either a weighted sum of equivakdrain energy densities for specified
multiple macroscopic strain fields, or a linear ¢onation of the equivalent material
properties.

All these works have pursued the optimal layouteungiven constraints based on the
inverse homogenization method which was requiredpmate the evaluation of effective
elastic tensor during the optimization process. doorks have been reviewed in chapter
1. Continuing along previous works, we explore ttapological design of 3D
microstructure cell combining the finite elemenalysis with the optimal algorithm.

In this chapter, we first introduce the generalbem of topology optimization and the
optimal scheme that are adopted in our works. Tlenestablish the optimal models.
Single equivalent constant and a linear combinatibthe equivalent material properties

with regard to elastic constants and thermal cotdticcoefficients are maximized under
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the constraint of specific volume fraction. Numatg, 3D microstructures with the

maximum stiffness and thermal conductivity in senghd multiple directions are designed
and satisfactory results are obtained. Lastly, ¥8e @oint out that the initial values of

design variables have great influence on the optooafiguration of 3D microstructures

and several test examples are given to show tferelifice between optimal layouts.

3.2Formulation of topology optimization problem

The topology optimization problem can be formulaésdollows: to determine an optimal
distribution of material within the given designndain. The amount of material is bounded
to a given percentage of the design domain.

Let us consider the general linear elasticity peabkubject to the applied body forfca a

bounded open domaif and the surface traction forces t bp Assume thaQ has a

smooth boundary™ comprising the free boundarly;, 'y, where displacements are

prescribed and; where traction forces are applied. It is also assiithat =0Q=I"{Ul qul';

and TrnlgnTl=>@. The boundary value condition and the stressrstrand

strain-displacement relationships are describddlmsving:
—divo(u) = f inQ
u=u, onl (3.1)
o(u)[h=g, onl,

OxOQ, o(u) = ELE(U)
(3.2)

1 T
£(u) —E(Du+(Du) )
The material distribution problem, is controlled dylesign variable that can be expressed
by a switch function defined as

=L T xoe. 53
X) = .
p 0 if x0Q/Q,

whereQ denotes the entire design domain &hddenotes the domain occupied by solid
elastic materials.

The general mathematical model of topology optitmrafor minimizing the objective
function, subjected to the volume constraintsoisniulated with a discrete valued design
(O for void and 1 for solid):
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Min f(p)
P
st jQ pdQ <V (3.4)
pP(X)=0o0r1,0x0Q

where V is the upper bound of volume constraimt, is the volume density and (o)

is a performance criterion.

This topology optimization problem is generally \&i numerically using the finite
element discretization approach. The design dofamdivided inton finite elements and
the density functionp is discretized correspondingly into element wisastant density

functions. The formulation of topology optimizatiaexpressed as:
st V(X)=) xysV (3.5)

This discrete problem is difficult to solve becausfeits highly combinational nature

(Bendsge [1989]; Duysinx [2007]). Beckers (Beck¢i®99; 2000]) developed a

mathematical programming method combining the duathod and convex separable
approximate scheme to directly solve structuralnoigation problems involving discrete

variables. However the solution procedure is ratoenplicated. Normally we consider an
alternative formulation to allow the density vategvarying continuously from O to 1 via
all intermediate densities. The optimal model oa tmaterial distribution problem can be
written as follows:

Mxin f(X)

st. V(X):Zn: Xy< V (3.6)

wheredis a positively small quantity to avoid the sirautly of the stiffness matrix.

Now we can employ the sensitivity analysis and mat#tical programming algorithms to
efficiently solve the material distribution problefdnfortunately numerical instabilities

may occur: checkerboards and mesh-dependency. d¢n the discrete topology

optimization problem without additional constrairgsll-posed.

To suppress the intermediate densities, two dernmtyalization models are generally

employed: the SIMP method (Solid Isotropic Micrasture with Penalization) proposed
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by Bendsge and Sigmund (Bendsge [1999]; Rozvan§2]1%nd the RAMP (Rational
Approximation of Material Properties) scheme praabsy Stolpe and Svanberg (Stolpe
[2001]). These approaches assume that the follovglagionships exist between the elastic

modulusE; of thei-th element with the density valgand the solid elastic modulis:

E =x"E (for SIMP) (3.7)
_ XK
E = ) (for RAMP) (3.8)

wherep=1 andg=>1 are penalization factors. From Fig.3.1 and F&j.the use of SIMP and
RAMP material models will force the topology optration towards limiting values=0
(void) andx;=1 (solid).

B
E, 1

4
D

0 02 04 06 0.8 1 X

Fig.3.1 Relative stiffness with respect to dengdyiable for the SIMP material model for

the different penalization factops
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0 0.2 04 06 0.8 1%

Fig.3.2 Relative stiffness with respect to densdyiable for the RAMP material model for

the different penalization factogs

In a finite element context, the use of SIMP andMEA material model leads to a
mesh-dependence. To prevent numerical instabildfethe iterative procedure, a few of
control methods reviewed in chapter 1 are propodédhave mainly adopted two of them

in our work: the perimeter control and the senaitifiltering.

(1) Perimeter control

In the perimeter control scheme, a global condtraim the perimeter of structural
boundaries is imposed. The perimeter of boundarfes structure is the summation of
length of boundaries between solid and void inGHetopology optimization problem. It is
obvious from an example as seen in Fig. 3.3 thatpérimeter constraint can limit the
number of holes in the domain (Bendsge [2003]).uAsag the unit thickness of the
domain,V is the volume an@ is the perimeter of the internal holes. For tixedi volume,

the number of holes decreases with the perimetarbeg small.
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V =1-77[0.5 = 0.214¢
P =2mr[0.5= 3.141¢

@

2
\Y, =1-4I]TEEO—2'SJ = 0.214¢

P= 4[277&2'5: 6.2832

(b)

2
Vv :1-16I]TEEOT'5] = 0.214¢

P= 16[277@'%5 = 12.566¢

(©)

Figue 3.3 An example for explaining the perimetantool
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Suppose that; andx; are the values of the density variable on the saih of an element

edge or interface in the discretized structure,thed the total perimeter is given by
K
P(X) =D k|x - x| 9B
k=1

Whenx;=x;, the perimeter function is non-differentiable, dmproximate expression of Eq.
(3.9) can be formulated as:

P(X)=glk( (>§2‘>3-2)+€2—€) (3.10)

whereK is the total number of element interfaceslenotes the edge length for 2D or the
interface area for 3D of tHeth interface between adjacent elemerdadj. The symbole
is an artificial smoothing parameter with positigeall value that guarantees the
differentiability of the perimeter function. In theptimization problem, the constraint
P(X)< P is treated with an interior penalty method. Thepempbound P with the
gradual relaxation controls jumps of material dgngariations at all adjacent elements.
The sensitivity in Eg. (3.10) is expressed as fedio

oP

> &

SRR

Obviously, the perimeter function is non-monotonduscause its first-order partial

alil (3.11)

derivative may be either positive or negative delr@nupon values of design variables. A
variant perimeter constraint of quadratic form regmsed here to restrict variations of

element densities over the whole design domainr{@f2003]).
K
P(X)=> L(x-x)*<P (3.12)
k

Sun (Sun [2006]) implemented this approach andqueg a generalized perimeter control

method for irregular finite elements.

(2) Sensitivity filtering

Getting inspiration from filtering technique in ig&@ processing, filtering of design
sensitivities in the each iteration of topologyioptzation process can efficiently control
the checkerboard phenomenon and ensure mesh-irdepsn This approach is to modify
the design sensitivity of a specific element, bagseda weighted average of the element
sensitivities in a fixed neighborhood. Such a filsepurely heuristic. The scheme works by
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modifying the element sensitivities of the objeetiunction as follows (Bendsge [2003]):

Z=(a) w2 AA (3.13)

The convolution operator (weight facton‘ﬁi IS written as:
H, =1 ~disk(k ), {iON|distk )< [}, k=1;--,N (3.14)

The operatodist(k,i) is defined as the distance between the centeleafemtk and the
center of element. The convolution operatoH; is zero outside the filter area. The
convolution operator for elements seen to decay linearly with the distance fréement

k. In this fashion, an element with low sensitivititains a much higher sensitivity after
the modification if the sensitivities of elementsthin the zone of radius., of this
element have higher values. This guarantees thatevar a member is formed during the
optimization process, the radius of the membernisgeneral not belowm, It is
worthwhile noting that the filtering sensitivity ©eerges to the original sensitivity when
rmin@pproaches zero and that all sensitivities wilegal (resulting in an even distribution
of material) whem i, approaches infinity.

3.3 Topological design of 3D material microstructure

3.3.10ptimization algorithm
A general optimization problem with constraintstated as follows:

Find X =(x, %,"**, X)

Mxin 9,(X)

st g (X)s g™ j=L.--,m (3.15)

XSX<%  i=lee,n

Most of the time, this optimization problem is nlimear and non-explicit with respect to
the design variables. In order to efficiently sottes problem, explicit approximations of
the actual functions, that are, explicit sub-proide are built to replace the real
optimization problem. These sub-problems are obthiby expanding the objective
function and the constraints in the neighborhood given design point. In our work, we
adopt the optimal solver CONLIN (CONvex LINearizat) (Fleury [1989]) with a dual
sub-iteration scheme developed by Fleury (Fleu§881) and Zhang (Zhang [1997,;
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2003]). The convex linear approximation is basedirshorder derivatives as follows.

= 0g. 0
§,00=g(X)+Y g'a; (= -3 g'(x)m () (3.16)

where Ej(X)(j:O,1,~-~,m) are the explicit form of original functions, sym&o

Y. and ) denote the summation over the terms with positive megative first order

derivatives, respectivel)* designate the developing point.
To prevent numerical instabilities in topology opization, a variant perimeter constraint
of quadratic form, see Eq. (3.12), is used in thestruction of each explicit optimization

sub-problem.
3.3.20ptimal model

Here, topology optimization of the material micrasture is performed to find the
maximum stiffness and the optimal heat transferhpatong desired directions.
Homogenization method is firstly applied to achiee effective elastic matrix and
thermal conductivity matrix of 3D unit cells. Theriulation of calculating homogenized
elastic constants shown as follows has been deniveldapter 2:

3.17
Ijkl( ) |Y|'[ [ﬁkl ﬁpm ame ( )

In order to solve the thermal conductivity problerh cellular materials composed of

periodically repetitive microstructure cells, themiperature field with the double scale
asymptotic expansion can also be written as:

TE=T(x y)+&'T(x Yy+e*T( x y+-- (3.18)
The heat conduction is similar to the elasticitglgem. Starting from the equation of heat

conduction in the general 3D case, the equatidreaf balance is obtained.

G[K,” aT(X)} f (319
ox | ' ox '

where KijH are the effective thermal conductivities dependinghe following equation.

H — 1 a¢
Ki'=—| | K —-K —/—dY 3.20
” IYIL( 5 apr 320

wherein ¢ is the solution of the partial differential equatiwith the periodic boundary
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conditions as follows:

9 Ki =K, 99 |- 0 onY (3.21)
9y, 9,

The objective functions are selected to be the gmyndiagonal quantities or a weighted
combination of them. Making use of the abbreviatipn- | for the 3D problem defined
by 11-1, 222, 33»3, 124, 235 and 3b6.

The optimization model for the maximum stiffnesststed as follows:

6
max f => wEj (%)

k=1

subject toV <V,
j & Zl X\ (3.22)

M —

™V, =2 k(%= %)< P
k=1

0<d<sx <1 t=1n

The optimization model for the optimal heat condurcipath is similarly written as:

3
max f=> wK (x)

k=1

subject toV <V,
j & Zl X\ (3.23)

()= L5 ) s P

0<5SXt_S1 t=1n
where E/! are the effective elastic constants am{' are the effective thermal
conductivities. w, is the weighted coefficient Zwkzl). Suppose a unit cell is

discretized into a finite element model. Designialales x, (t=1,n) are assigned to each

element as pseudo-densities. Following the SIMP, ke element thermo-mechanical
properties depend upon the density variable inxpoomential form.

E=xE (3.24)
K, = P, (3.25)

where E: and K: respectively designate the nominal stiffness ma#md thermal

conductivity matrix of element t with solid matdyithe exponenp in the SIMP law is
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often chosen to bp=3 or 4 for the penalty/(x) is the total material volume limited by its
upper boundV over the unit cell. A small value 08 =10° is used to avoid the singularity
of the elementary stiffness matrix during optimiaat TV, denotes the total variatiof\)

control used to regularize the solid-void pattemd ahe checkerboard control of the

material layout.
3.3.3Sensitivity analysis

After evaluation of the elastic properties of mgtracture cells by finite element
computation of homogenization problem, the sengjtnf objective functions with respect
to the pseudo-density design variables(t=1,n) have to be solved before carrying out
the optimization step. From Eq. (3.22) and Eq.33B.the sensitivity of objective function
is actually the sensitivity of effective propertiggh respect to design variables.

Starting from Eq. (3.17), the sensitivity of eff@et elasticity tensor components with

respect to the design variables can be calculated a

%y _ 1 = AT % dy (3.26)
oX |Y|*¥[ aX aX "pma%

After the finite element discretization, the ab@epiation can be rewritten in the following

form:

aElH 13 aEe a e e
—5= V2 Z(—Jkl B (Eupm Iglm)jve

0%, 0% 0%
aEI}H __Z(anpm ekI Ee a‘g’erl:rl’n v (3 27)
V aX[ V ~ a){ pm jpm a)g e .
-V aEi}kl _ aEme £tk lzn: agekl
V axt a)g pm V pory upm e
From Eq. (3.24),
0
5 - Zp E (3.28)
So the sensitivity formulation can be expressed as:
aE”I;l(l _ agekl

L (Ejy ~ Epm€'hin) za,pm v,
ekI

(Eljkl -a'y ) \]}ezn;Eupm Ve

a (3.29)

<|< <|=<
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Similarly from Eq. (3.20) and Eq. (3.25), the sémgy of effective thermal conductivity

with respect to the design variables after thedisiement discretization can be calculated

> _IYII{GX ax( ZZD

__Z[GKE -2 czf)j@e

as:

|p ayp

__t aKi}_aKtD(p' Zn:
ox 0x dy,) V& Ja>g 636

_v, P 0@
Kt—
Y, xt( “ apr V; ! axt(aypj

In the above formulationy/ is the volume of microstructure cell amdis the volume of

(3.30)

each element in the microstructure cell. The dedarhicrostructure design procedure is
given as seen in Fig.3.4.
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Beginning

'

Building the FE model of microstructure
with periodic boundary conditions and
initializing the designable variables

-
-

Y

Finite element solution of
displacement or temperature ficld

v

Computing the effective
elastic constants or thermal conductivity

'

Sensitivity analysis

v

Optimizing and
updating designing variables

Y

Convergence”

Fig.3.4 Flow chart of microstructure design progedu

3.3.4Microstructure design for maximum stiffness

In this section, the microstructure of cellularigsl will be designed with isotropic

materials (elastic modul&s=0.9GPz and Poisson’s ratjg =0.3). The unit cell is meshed
with 8x8x8=512 elements. Suppose the volume fraction ofsthl@ is of 50%. In the

optimization procedure, the iteration begins wiiffiedent distributions of element density

values that satisfy the volume constraint overuthi¢ cell.

3.3.4.1Single objective design for the maximization of miostructure stiffness

Here, two FE models with different initial valueseagiven. In the first model, the
distribution of element density is layered symnueaiity. In another model, the density
variable values of eight central elements are While others are 0.5. The distribution of

element density values satisfies the volume comstralwo completely different
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configurations are obtained as shown in the Taldleaéhd the effective elastic constants of
optimal microstructure with maximizing the uniaxstiffness are seen in the Table 3.2.
Obviously, the latter result is better for maximigithe uniaxial stiffness because the latter

materials located along direction 1 are stiffentkize former one.

Table 3.1 Optimal configuration with maximizatiohumiaxial stiffness

Max E/)

. , ] ) Optimal configuration
Initial model Optimal configuration . .
(only with solids)

The
first
model

The
second

model

Table 3.2 Effective elastic constants of optimatmostructure

ElH1 =0.49949¢GPa E;2 =0.49949¢GPa E; =0.00013¢tGPa
The first model
ElH2 =0.17481'GPa E;3 =0.00003<GPa El*; =0.00003¢GPa

EY =0.52214(GPa E, =0.31091¢GPa E!, =0.31091¢(GPa

The second mode
El”2 =0.11378(GPa 5;3 =0.02814¢GPa El”3 =0.11378(GPa

3.3.4.2Multi-objective design for the maximization of microstructure stiffness

Two FE models with the same initial density digitibn are also given as the above

example. As we can see in the Table 3.3 and TaBleb®th kinds of material layouts are
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mainly located along diagonal directions in theigiespace. This illustrates that optimal

results are reasonable. Note that the centraipéne optimal microstructure of the second

model is void. In addition the first optimal mictngcture is not symmetric because of the

asymmetric initial model. But, its object values greater than the second one because the

former materials distributed along diagonal direesi are more. That is the reason why the

former uni-axial stiffness is smaller than thedatt

Table 3.3 Optimal configuration with maximizatiohtbree shear stiffness terms

Max Ej; +Ejs+ By

Optimal configuration

Cases| Optimal configuration Isoline figure ) _
(only with solids)
] P
T " v
h ol
e aa W Ee
first N !’ - g X ') |
0.3 ~ K
model i i o.z.".‘.hl ‘ #,
L S
The > o ) ’ L Fy \ ‘
Tesee - Vgavaed
second HH’ g YAYS
model EHH g 4L
N 5 L
W A

Table 3.4 Effective elastic constants of optimatmnostructure

The first model

EX =0.20683:GPa E!, =0.23002:GPa E', =0.18701:GPa

EY =0.09130:GPa E!, =0.09241¢GPa E/, =0.08831:GPa

The second mode

E" =0.26439GPa E, = 0.26439GPa E!, =0.26439GPa

EY =0.07992:GPa E, =0.07992:GPa E/ =0.07992:GPa
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3.3.5Microstructure design for maximum thermal conductivity

In this section, the microstructure of cellularidslwill still be designed with isotropic

materials (thermal conductivity of the solid gart100(W/(m-K)). The unit cell is meshed

with 10x10x10=1000 elements.

3.3.5.1Single objective design for the maximization of miostructure conductivity

Here, two models are given with the volume fractf@3% which have the opposite initial
density distribution. That is, in the first modelensity values of central elements are
greater than outside elements. The second modetevsersed. Therefore optimal
microstructures are too completely different cqumesling to the initial values. But their
thermal conductivity values are close. Optimal ltssare shown in the Table 3.5.

Table 3.5 Maximization of single thermal condudyvi

Max K
Cases| Optimal configuration Effective thermal conductivity (W/(rK))
The K1 =690.676¢€
first K} =511.067¢
model K" =511.067¢
The K =689.703:
second Kj, =528.417.
model K" =528.417:

3.3.5.2Multi-objective design for the maximization of microstructure conductivity

In this section, uniaxial thermal conductivitiesnis defined in multi-directions are
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maximized simultaneously with equal weighting cmédints. The volume fraction is 50%.
Optimal microstructures are given in the Table Bécause the thermal conductivity has
no coupled terms, the material layout is mainlgradid to symmetrical axes (as shown in

the Table 3.6), which corresponds to the heat teamgle.

Table 3.6 Maximization of multiple thermal conduwdies

Max Kii + K3, Kip + Ko+ K5,
Optimal
configuration
Effective thermal K} =465.0967 K, =389.89¢
Conductivity K} =465.0967 K} =389.89¢
(WI(mK)) K& = 2.292E-0¢ K& = 389.89
3.4Summary

In this chapter, combining the finite element aheé homogenization method for the
numerical prediction of the effective material pedges, we have applied the topology
optimization techniques to maximize the stiffnesd thermal conductivity of 3D unit cells.
Maximization of uniaxial and multiaxial materialguerties is considered as single and
multiobjective optimization problems. Optimal maaédayouts are successfully obtained
with the given material volume fraction. In additja conclusion is drawn that the initial
layout of the unit cell has a great effect on tpémal topology, which illustrates that the
solution of topology optimization is not unique wahthe microstructure is designed with
the homogenization method. That is also the logéilmozation which we often meet. In
this part, the local optimization appears becabsedifferent initial models are given. In
future works, other methods can be pursued foglbieal optimization, including the exact

methods and heuristic strategies.
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4. Topology optimization of periodic cellular solids

In this chapter, an integrated topology optimizatiprocedure is developed
for the global stiffness maximization of squareclicysymmetry and
cylindrical cellular solids. To retain the structlrperiodicity and reduce the
computational time, superelement (SE) and desigabla linking techniques
are introduced to characterize the RVE layout. Togology optimization
problem is solved using the dual optimization ailgn. In addition, the
polar moments of inertia of the optimal cyclic-syetmyn structures are

calculated and compared with the triangular subgalhd foam cores.
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4.1 Introduction

As reviewed in section 1.1.1 of chapter 1, mangaeshes have been focused on cellular
solids (Gibson and Ashby [1997]; Gibson [2005]; Bv&t al. [2001]) in recent years. This
is a kind of lightweight structures that can bessified into two types according to the cell
characteristics. One is regular such as the hexdmmeycomb cell; the other is irregular
such as the foam-like cell. Actually, honeycomb aahdwich are available for the
marketing (e.g., see http://www.hexcel.com/markats) cellular solids have been used in
panel structures of the aircraft, satellite, boatl aero-engine components. This is a
research front across the material and structw@dines. From the design point of view,
the key issue is to optimize the cell shape, simktapology in order to maximally exploit
remarkable performances, e.g., impacting resistaraggacity of energy absorption, sound
and heat insulation under specific loading condgio

At present, the RVE topology design of cellularid®lis mainly developed for the
optimization of material effective properties andaro-structural performances. Sigmund
(Sigmund [1994; 1997; 2000]) obtained material wstructure configurations with the
extreme thermal expansion coefficients and the theg®oisson’s ratio by optimizing the
distribution of two or three isotropic material glea. Neves (Neves [2000]) carried out the
topological optimization of the periodic linear mostructure for the maximization of shear
and bulk moduli. Yi (Yi [2000]) implemented the optl design of microstructures of
viscoelastic composites following the inverse hosrogation approach. The objective
function was defined as a combination of storagéuhe, loss modulus, and loss tangent
at operating frequencies with linear and exponemtéaghting factors on each component
in order to improve stiffness and damping charasties. Another development of
designing the RVE configuration concerns the opaton of macrostructural
performances, e.g., stiffness, frequency, bucklogd and so on. Assuming that the
macrostructure is made of microstructures of alsintaterial phase with a known volume
fraction, Fujii (Fujii [2001]) and Rodrigues (Rodtes [2002]) studied the maximization
of macrostructural stiffness. Based on the scdse@ method and the proposed design
element (DE) concept, Zhang and Sun (Zhang and [3006]) carried out the RVE
topological optimization for the stiffness maximuand revealed the scale effect of 2D
cellular structures in a systematical way as opgpdseéhe homogenization method. Takano
and Zako (Takano and Zako [2000]) proposed a desigthodology of graded
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microstructures of heterogeneous materials foretmergence of macroscopic function.
The microstructure design of a plate was perforraued the macroscopic deflection was
controlled under the condition of the temperatuigridbution. Nelli Silva (Nelli Silva
[1998]) developed the optimal design of piezocontposgnicrostructures using the
topology optimization techniques and the homogeitimgheory. The problem consisted in
finding the distribution of the material and voidgses in a periodic unit cell that optimizes
the performance characteristics of the piezocongasibjected to constraints such as
property symmetry and stiffness. Guest and Pref@@sést and Prevost [2006]) optimized
multifunctional porous material microstructures $tiffness and fluid permeability.
However, when the RVE configuration is optimizelde humber of RVEs that form the
cellular solid and the number of finite elementeath RVE affect directly the computing
scale and computational efficiency in the iteratdesign of the whole structure. In the
earlier work of Yang and Lu (Yang and Lu [1996]het superelement method was
employed when a structure was locally designed dpplogy optimization. The fixed
non-designable domain and the designable part medeled as two superelements. The
benefit is that only the stiffness matrix assodatath the designable part of the structure
needs to be reformulated each iteration.

In this chapter, the introduction of the superelet{&E) technique relies on the fact that
RVE is periodically distributed. As illustrated ithe following examples of square,
cyclic-symmetry and cylindrical structures, thispegach can decrease the finite element
computation cost for the integrated design of ni@terand structures. Meanwhile, by
means of the SIMP model, the dual solution stratyy quadratic perimeter control that
are presented in chapter 3, one can achieve th@otpp design of RVE without the
checkerboard patterns in the material layout. Esellts demonstrate that the scale effect
of the RVE upon the optimal configuration is im@ort and the obtained equivalent
torsional resistances of the optimal cyclic-symmetellular solids are more significant
when compared with the results given in the liter@i{\Wang and McDowell [2003]). Here,
it is necessary to notice that although consideseimples are relatively simple, they are
illustrative to validate the superelement technigund the design procedure which can be
used later in practical applications of cellulaustures.
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4.2 Representative volume element (RVE) and supereleme{SE)

IO ICC)
CICCCC)
CICCIC C)
CICCIC JC)

X

®— the retained nodes ¢— the condensed nodes
1_.,2 _ — M
Xi= X7=...= Xt
(©)

Fig.4.1 (a) Macrostructure (b) Cellular Structure
(c)Super-element (RVE-SE) with design variableiligk

As shown in Fig.4.1, in a local region of a maawstural body, cellular solids are
spatially formed by a periodic repetition of a loastell made of different or
inhomogeneous materials. Suppose that the repegsendimension of the microstructure,
d, in the micro level y is much smaller than theresentative dimension of the
macrostructure, D, in the level x. Before the RWihftguration is optimized to attain the
requirements of macrostructural responses, each iRvitodeled by the SE that is further
discretized into finite elements. According to meriodicity, all the degrees of freedom
(d.o.f.) associated with the interface connectiwelas between adjacent RVE-SEs are
retained including the d.o.f. of the boundary nodeswhich the force and displacement
loads are applied. All the others d.o.f. inside RwE-SEs are condensed.

For a static problem of a structure, the genesdicstinite element equation is
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KU=F 4.2)
The SE method consists in condensing the stiffnestsix K and the load vectdf. Denote
Uc andUg to be condensed and retained d.o.f., respectitredyabove equation system can

be rewritten as follows:

EERlE
KRC KRR U R FR

where F. and F; are the equivalent force vectors applied on thedenosed nodes and

retained nodes, respectivelX,;, and K.. are partial stiffness matrices of condensed

and retained nodes, respectively.

From the first line of Eq. (4.2), the following engssion is obtained:

Uc =Kee(Fe—Keddr) (4.3)
Its substitution into Eq. (4.2) results in
(KRR_ KRCK(_:%ZK CR) Wg=Fg-K R(K_(:ZL(E ( (4.4)
The compact form is:
Krdd r= Fr (4.5)

This is a reduced equation system compared toZEd). (Once the displacement vectéy

is known, the condensed displacement vedtowill be derived from Eq. (4.3).

The advantage of integrating the SE method in tmpobptimization procedure is that the

computational cost related to Eq. (4.5) is much legportant than the cost of direct finite

element analysis. Three steps are defined in tHe-8 formulation:

1) Creation of the superelement for the RVE finitened@at model by generating the
stiffness matrices of the retained and condensddsio

2) Development of the superelements by translating aothting the RVE-SE

periodically. This includes the generation of théfriess matrixK,., and force

vector F, for Eqg. (4.5) and the solution of the latter foe tdisplacement vectod .

of all retained nodes.

3) Recovery of the results including displacements stnelsses within the RVE-SE by
solving Eq. (4.3).

Before Eq. (4.4) is assembled and solved, the iegestiffness matrices of condensed

nodes are obtained. That means that a large swadem is decomposed and simplified.
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As a numerical method, the superelement technguesll adapted to the analysis of large
scale structures. Especially in the topology opation of periodic structures, much
computing iterations are needed that are time-coimgy In fact, if the number of SE is

small, then the number of condensed d.o.f will bggér for each SE so tha .
becomes larger and.., will be smaller. As a result, the creation timeS# associated

with the construction ofK . will increase, the time of using of SEs associatét K,
for the solution of Eq. (4.5) will decrease and tinee of recovery of SEs associated with
K.e Will increase for each SE. However, it is obsertedt with the increase of the

number of SE, the total computational time decreaae illustrated in Table 4.5 and
Fig.4.9.

4.3 Optimal model and sensitivity analysis

Consider the topology optimization problem of tigedity maximization of cellular solids
subjected to the volume constraint. To ensure tiatoptimal configuration is periodic
over the whole structure after optimization, theige variable linking technique is used to
equalize the density variables for the finite elataehaving the same positions in different

RVE-SEs. This connection is geometrically showfio4.1.
find x={x, %, -, )g}T OR

Min C=F'U=UTK(xU :i(u‘)T K'(x)U'

i=1

st. K(XYU=F
dxvs {0y (4.6)
j=1

P(X) = Z LOx, - x,)°< P

0< xmineslxj <1

(i=42;,-m j=12;--n)
whereC is the total compliance of the cellular solid,,igtrain energyn is the number of
RVE-SEs; U' is the displacement vector of thiéh RVE-SE;n is the finite element

number in an RVE-SE, that defines also the numbelesign variables;x; is the design

variable of thg-th element; v‘j is the volume of thg-th element in thé-th RVE-SE; f,
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is the prescribed volume fractioV, is the volume of theé-th RVE-SE; P(x) is the

guadratic perimeter constraint introduced to atb&l checkerboard effect in the RVE-SE;

|_ is the interface length between adjacent elenjeanslj+1; P is the upper limit of the

e

perimeter constraint. Detailed explanations Bfx) can be found in Ref. (Zhang and
Duysinx [2003]).
In this chapter, the SIMP law is used for topolagyimization. The following exponential

relation holds between design variabte,, and the stiffness matrixK‘j, of thej-th finite

element located in theth RVE-SE.

Ki(%) = (%)’ K’ 4.7)
where K? is the real stiffness matrix of elemgnbefore penaltyp is the penalty factor
(p=4 in this chapter).

By differentiating Eq. (4.1), it follows that
6U K-la_K

ax[ 0%

With the above expression, the sensitivity of thigective function with respect to each

(4.8)

variable X; can be thus calculated as follows:

€ _ 0 (pry)=pr VY= K"l) Ku=-um®y 4.9)
ox  0x OX 0x 0%
As only the element is concerned witk,, the following expression can be derived from
Eq. (4.7)
K (%) _ P i
=Fk 4.10
x X (%) (4.10)

Thus, Eq. (4.9) can be rewritten for contributi@mighe elements involved inm number
of RVE-SEs.

9 _roK, KX,
ox, v axtU Zl,zl(u ) ox Yi
_ i 0K (X)), i_ P&, Ty i
- (Ut) t—Ut___ (Ut) Kt( )Ut (4.11)
;‘ 0X, xté %

__ P&~
=-Ps¢c

where U‘j and C} denote the displacement vector and compliancehefj-th finite
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element in thei-th RVE-SE, respectively. Therefore, the compliarsansitivity of a
periodic cellular solid is equal to the summatidnstrain energies of concerned finite
elements multiplied by a negative scaling factor.

To have a global view, the whole design procedwresisting of five phases (creation of
the SE, utilization of the SE, recovery of each SEnsitivity analysis and optimization) is

shown in Fig.4.2.
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Creation of the SE by FEA
(Creating the FE model of RVE and
defining the variables, materials and retained spde

Y

A

Utilization of the SE by FEA
(Creating the RVE-SE model of cellular solids by
translating and rotating the SE, defining the b@md
conditions and solving the system finite elemeniatigpn)

A

Recovery of each SE by FE#&

m
3 (the number of SE)

Obtaining the potential
energy of each SE

v

Computing the sensitivity

A
Optimization
(dual optimization scheme
5 and perimeter constraint)

no

Convergence

Fig.4.2 Flowchart of RVE-SE topology optimizatioropedure

4.4 Topology optimization of periodic cellular solids

According to the proposed design procedure, sewerrakrical examples are studied below,
including square, cyclic-symmetry, and three-dinn@meal cylinder cellular structures.



66 Chapter 4

These cellular structures are periodically pamiéid into RVEs, and each of them is
modeled into an SE. With the given load conditiahg, objective function is defined by
the rigidity maximization of global cellular solid¥he perimeter control is introduced at
the level of topology optimization of the RVE-SEnfiguration.

4.4.1Square structure

For this example, the solid volume fractions of 58f6l 30% are considered, respectively.
As shown in Fig.4.3, the design domain of the sguegllular solid has a dimension
LxL=24x%24 and the thickness is 0.1. The left sidehef ¢ellular solid is fixed and a
downward forceF=100 is applied on the right-bottom point. Youngisodulus and
Poisson’s ratio of the material aE=1000 andv=0.3, respectively. Note that the units are
omitted here with assumption of their consistemcéhis chapter. The total finite element
number of the cellular solid is kept to be 5760@rewhen the size of each periodic
RVE-SEIx| changes. It makes sure that the size of eacle fadment in the different size
RVE-SE is same. According to the given size of RME-the square cellular structure is
divided into 2x2, 4x4, 6x6, 8x8 and 10x10 unit €elfThe optimal configurations are
shown in Table 4.1 and Table 4.2.

N

RVE
SE |4/
|«L>
The number of RVE-SEs is kxk. | L
L
(k= I_)

T

N

[y
-

\/a

Fig.4.3 Design domain definition of square cellidalid and involved RVE-SE

a. Volume fraction 50%
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Table 4.1 Optimal topology of RVE-SE with 50% volerinaction

Number of
RVE-SEs 10x10=100 8x8=64 6x6=36 4x4=16 2x2=4
(m)

Number of
finite

elements 576 900 1600 3600 14400
in one

RVE-SE (n)

RVE-SE

configuration

g
o

Cellular

solids

AA4444q
V... V.V,
V.

a
A4444q
..V,
V... V.V,
... V. V.

Minimum
_ 1357.28785| 1292.30204 1185.08543 1106.27691 948344
compliance

1400 |
1300 | a
1200 | 36

C 1100 [ 16
1000 |
900 |
800

100

0 20 40 60 80 100 120
m

C-Compliance, m-Number of RVE-SEs

Fig.4.4 Influence of the number of RVE-SEs on dtrcal rigidity

b. Volume fraction 30%
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Table 4.2 Optimal topology of RVE-SE with 30% volerinaction

Number of
RVE-SEs 10x10=100 8x8=64 6x6=36 4x4=16 2x2=4
(m)

Number of
finite

elements 576 900 1600 3600 14400
in one

RVE-SE (n)

RVE-SE

configuratio

n

Cellular

Y'Y ¥ ¥ ¥V ¥V
I

solids

VY Y Y Y Y Y vy
g
I

¥ Y ¥ ¥ ¥y Y

4
4
I
L1

Minimum 2728.63264| 2605.22415 2472.74417 2115.91H68 1576.5

compliance

3000 |
2700 | 100
2400 [ 6

C 2100 | 16
1800 |
1500 [ 4
1200

0 20 40 60 80 100 120
m

C-Compliance, m-Number of RVE-SEs

Fig.4.5 Influence of the number of RVE-SEs on dtrtal rigidity
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In Table 4.1 and Table 4.2, it is shown that fdixad finite element mesh discretizing the

cellular solid, the size variation of the RVE-SHlwnake the optimal configuration change

and this scale effect is particularly important wieesmall number of RVE-SEs is used. As
shown in Fig.4.4 and Fig.4.5, the global rigidity eellular solids decreases with the

reduction of RVE-SE dimension (increase of m) beeathe constraint defined by the

periodic condition is more and more severe forrtfaerial layout over the design domain.

In fact, the periodic arrangement of cellular cédlsot always an efficient design strategy.
From this example, it can be observed that sinegé#riodicity condition enhanced by the

decrease of RVE-SE dimension reduces the desigresffee more reasonable distribution

of materials is restricted so that the structureobees thinner and thinner where the load is
applied and hence the compliance increases witteasig cell number. Therefore, the

periodicity condition has to be properly imposedtbe local region of a structure where

regular cells of desired configurations are needédanwhile, the designed cells can

change gradually from one region to another asegtadaterials. This point needs further
investigations in the future work.

4.4.2Cyclic-symmetry structure

4.4.2.1Configuration design

Fig.4.6 Design domain of cyclic-symmetry cellulatig@ and involved RVE-SE

A cyclic-symmetry cellular solid is shown in Figs4.The inner and outer radii are 10 and
21.25, respectively. The thickness is 0.1. Supplsenner circle is fixed and an upward
force F=100 is applied on the right-end point of the outecle. Young’s modulus and

Poisson’s ratio of the material 4000 and/=0.3, respectively. The total finite element

number is 72000 for the cellular solid. The cydisnmetry cellular solid is divided into
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different size RVE-SEs along the circumferentiatediion according to the different

degree. The solid volume fractions of 50% and 3@&«ansidered, respectively.

a. Volume fraction 50%

Table 4.3 Optimal topology of RVE-SE with 50% volerinaction

Number of
RVE-SEs (m)

32(0=11.25)

16(8=22.5)

8(6=45)

4(60=90")

Number of
finite elements
in one
RVE-SE (n)

2250

4500

9000

18000

RVE-SE

configuration

Cellular solids

Minimum

compliance

264.00308

251.07365

248.98018

190.3304]

270 |
256 |
240 |
225 |
210 |
195 | 4

32

180

10 15 20
m

25 30 35

C-compilance, m-numpoper o1 RvE-oES

Fig.4.7 Influence of number of RVE-SEs on stiffness
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b. Volume fraction 30%

Table 4.4 Optimal topology of RVE-SE with 30% volerinaction

Number of
32(6=11.25) | 16(6=22.5) 8(6=45) 4(6=90)
RVE-SEs (m)
Number of
finite elements
2250 4500 9000 18000

in one RVE-SE
(n)

RVE-SE

configuration

Cellular solids

Minimum

compliance

452.28918

425.89111

406.36349

NI

318.83632

480
450
420

C 390
360
330
300

4

32

0 5

10 15 20

m

25

C-Compliance, m-Number of RVE-SEs

30 35

Fig.4.8 Influence of number of RVE-SEs on stiffness

Similarly, results given in Table 4.3 and Table ghéw a strong dependence of the optimal

topology upon the size of RVE-SE. A clear distribntof materials becomes more and
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more important along the outer contour when a esfient of the RVE-SE is made along
the circumferential direction. In Fig.4.7 and Fi§.4we can see that the global rigidity of

cellular solid reduces while the number of the RYE-increases.

Table 4.5 CPU Time during the finite element analygolume fraction 30%)

Number of . . .
Time of Time of Time of
RVE-SEs . o Total time
m) creation of SH utilization of SEs| recovery of SEs
m
32 2.20 Sec. 2.52 Sec. 0.53%x32=16.96 $2¢.68 Sec
16 5.58 Sec. 1.52 Sec. 0.97x16=15.52 Sec. 22.62 Sec
12.94 Sec. 1.22 Sec. 1.73x8=13.84 Sec. 28.00 Sec.
4 35.86 Sec. 1.02 Sec. 3.55x4=14.68 Sec. 51.56 Sec.
Time of direct FE analysis without super-element .0BbSBec.

60 (&1
55 |
50 I 4
45 f
Ta
35
30
25 f
20

10 |

—® 30

0 5 10 15 25

m
T-Time (Second), m-Number of RVE-SEs

20 30 35

Fig.4.9 Comparison of total computing time withpest to the number of RVE-SEs

For this test, a comparison of the computatiormaktis given in Table 4.5 and plotted in
Fig.4.9. Clearly, the total time decreases whemtimaber of RVE-SESs increases. In detalil,
as the decrease of the RVE-SE number leads tocasaise of the finite element number in
each RVE-SE, the number of both retained and ca®tkd.o.f. in each RVE-SE increases
correspondingly. Therefore, the time used in theation phase and the time used for the
recovery of one RVE-SE become more and more impbri@ppositely, the time of
utilization of SEs, that depends upon the RVE-Skoer is less. In contrast, if the whole
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cyclic-symmetry structure is directly analyzed bg finite element method, it takes 59.00
Sec. Thus, the increase of RVE-SE number is beakfic improve the computational

efficiency.
4.4.2.2Comparison of polar moments of inertia and torsion&resistance

As it is known, the polar moment of inertia and #esond moment of area are important
measures of torsional and bending rigidities forcrass-sectional shape. Wang and
McDowell (Wang and McDowell [2003]) considered tlecular sandwich bar with
triangular subcells as shown in Fig.10. The eqgenatorsional and bending rigidities of
the bar structure are estimated using standardytaosl approaches. In our work, the
topology of cyclic-symmetry structures is optimiZed the maximum rigidity based on the
RVE-SE method. It is therefore interesting to makeomparative study between both
solutions.

(1) Comparison with the cross section of triangulasubcells

In order to compute the polar moments of inertiaptimal topologies obtained with the
different number of RVE-SEs, the corresponding téinelement models are firstly
converted into a discretized geometry models. Thabd say, we keep the finite elements
with solid materials and delete those with void enals. And then the retained finite
elements are transformed into the discretized gagnaeeas. According to the definition
of polar moments of inertia, the polar momentshefiia of combined areas with respect to
an axis are equal to the sum of the moments ofignef all areas with respect to the same
axis. Here, the polar moments of inertia will beomuatically evaluated by the ANSYS®

software.

(a) (b)
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Fig.4.10 (a) A supercell with circle and triangtésells (m=8)

(b) A single representative cell wall for analysis

According to Wang and McDowell [2003], assunfie=21.25 and r =10 for the outer
and inner radii respectively, same as in the alogeéc-symmetry example. Here, the wall

thickness is set to bé¢ =t, =0.1(R-r)= 1.12% Consequently, areas of the core, outer and

inner circular skins equal
A =m(R-1t)°-m(r+t)*=883.57 (4.12a)

A =R -1 R- )" =146.2¢

(4.12b)
A =m(r+t)’ -m?=74.66 (4.12¢)
The lengths of the core, outer and inner circutansare as follows:
S, =2mBD=2 ns/ R+ -2 Rcoz{%)j (4.13a)
S =2nR (4.13b)
S =2nr (4.13c)

Following Wang and McDowell [2003], the relativengéty of the corep, is given as:

2mi‘t\/ R+r-2 cho{@

=t = 4.14
pc At n_(Rz _ rz) ( )
The solid volume fractiorf, , can be then written as
fV:—'A”Jr'APLp“Dt (4.15)
A+A+A

In our applications, 0, = 0.375whenf, = 50%, and o, = 0.175whenf, = 30%. Following

Wang and McDowell [2003], the polar moment of ireedf the core is calculated as
1 1 2
Jo :§4A2 254( m%BDC) t (4.16a)

whereS g, = Rrsing. By combining Eq. (4.13a) and Eq. (4.14), Eq. §4)lis developed

as
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R r? ( R’ - r2) ,oc*(sin

40)2

2

J =

c

R?+ r*—2Rrco

Besides, the polar moments of inertia of the inaade outside face sheets are readily

&
2

, P=
m

calculated by the membrane analogy method as

J, 2%4AI2¢ = 27rr’f = 7068.5¢

J, :Si4A§t0 = 277R*t, = 67828.0:

0

Finally, the total polar moment of inertia i$ = J, + J_+ J and corresponding values are

given in Table 4.6 for different numbers of subgell

Table 4.6 Comparison of polar moments of inertia

(4.16b)

(4.16c)

(4.16d)

Number of RVE-SEs (m) 32 16 8 4
Ref. (Wang
Polar moments 44 McDowell | 7.6294E+04 8.0180E+04 9.2132E+04 1.1215E+05
of inertiaJ 2003)
(f,=50%, Optimal
0. =0.375) structures | 1.6618E+05 1.6714E+05 1.6805E+05 1.3089E+05
(Table 4.3)
Ref. (Wang
Polar moments ang McDowell | 7.5549E+04 7.7362E+04 8.2940E+04 9.2280E+04
of inertiaJ 2003)
(f,=30%, Optimal
0. =0.175) structures | 9.3349E+04 9.8358E+04 9.5136E+04 7.8060E+04

(Table 4.4)
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1.
80E+H05 £ =50%

1.65E+05 |
150405 [/

1.356405 4/
J 12005 |
1. 05E+05
9. 00E+04

7. 50E+04

6. 00E+04

—— Optimal structures ——- Ref. (Wang and McDovadlD3)

Fig.4.11 Comparison of polar moments of inertia

(2)Comparison with the foam core

Alternatively, when the core of the circular sanchvitructure consists of the stochastic
metallic foam, the equivalent normalized torsiomasistance of metal foam can be
estimated for open and closed cells (Gibson andAE097]).

« For the open cell foam core material,

IG 3 (R Py

> 16 ?'EJ (#2) 4.17)
» For the closed cell foam core material,

G _3 (R P e *

e —E”(F‘EJE(WZ(PC) +(1- )] (4.18)

where G, is the effective shear modulus of stochastic mieain, w is the fraction of

solids (Gibson and Ashby [1997]) which is contaimedthe cell faces. For most stochastic

foams, w is in the range of 0.6~0.8. Here le=0.6 for generic stochastic metal foams.
0. is the relative density of the stochastic metahfio

« For the triangular subcells core (Wang and McDo&003]), the equivalent normalized

torsional resistance is
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2

jG (R2 - rz),o: (sin;oj
G _ o 4.19
R2r2 S ¢ ( )

R? + r2—2cho&2

where G, is the shear modulus of the solid cell wall.

Therefore, the equivalent normalized torsionalstesice of circular sandwich is then
T :(J0+‘]i)G+Jch
eff R2 r.2 R2 r2

where G=E/(2(1+vV)) is the shear modulus of the inner and outer walsre,

(4.20)

letG, = G, E=4000 andv=0.3. The equivalent normalized torsional resistanare given

in Table 4.7 for the three types of sandwich stres.

For the optimal configuration, the equivalent nolige torsional resistance can be

calculated as

JE

== 4.21
eff 2R2I'2(1+ V) ( )
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Table 4.7 Comparison of equivalent normalized toal stiffness

Number of RVE-SEs (m) 32 16 8 4

Optimal Structures
5661.71| 5694.42 5725.4p 4459.39

(Table 4.3)
Equivalent torsional ™ Ref (Wang and
stiffness 2599.316| 2731.711 3138.913| 3820.921
McDowell 2003)
(f,=50%, With open cell foam
. 3974.5
p. =0.375) core
With closed cell foan
4581.6
core
Optimal Structures
3180.38| 4459.39 3241.26 2659.48
(Table 4.4)
Equivalent torsional™ Ref “(Wang and
Stiffness 2573.935| 2635.703 2825.744| 3143.955
McDowell 2003)
(f,=30%, With open cell foam
. 2861.6
p. =0.175) core
With closed cell foan
3371.5

core

It is shown that the polar moments of inertia aiedi by traditional approaches used in the
literature (Wang and McDowell [2003]) decrease gedly with increasing the RVE-SE
number. In comparison, the polar moments of ined&sociated with the optimal
topologies under the point-wise tangential loathis work are however larger and do not
change monotonously. The reasons that cause diffezsults consist in that in triangular
subcells structures the mass distribution is clésethe axis of rotation because
configurations of unit cells are invariable whee timensions of unit cells become small,
and in the optimized structures the mass distooutif optimal topologies is the farthest to

the axis of rotation when m=8 féy=50% and m=16 for f,=30%.
Similarly, the comparison given in Table 4.7 indesathat for f,=50%, the optimal
structure has the largest torsional stiffness whemumber RVE-SE is m=8. Fof,=30%,

the optimal structure attains the maximal torsigstdfness whem=16. In addition, it is
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seen that for the current ratio of f/Bhe normalized torsional stiffness of the circular
sandwich obtained by the traditional approach eflilerature (Wang and McDowell 2003)
is smaller than that of the stochastic metal foafteerefore, it is necessary to adopt
different types of cores in terms of the ratio &R IS0 as to obtain the better torsional
stiffness.

4.4.3Cyclic-symmetry with non-designable domain

The number o

O0—— Non-designable domain
Fig.4.12 Cyclic-symmetry cellular solid and invoivRVE-SE

with non-designable domain

A cyclic-symmetry cellular solid with the non-desaple domains in the inner and outer
circle is shown in Fig.4.12. The inner and outeliiran the designable domain are 11.125
and 20.125, respectively. The width of two non-geable domains is 1.125. The thickness
is 0.1. Similarly suppose the inner circle is fixaad an upward forceé=100 is applied on
the right-end point of the outer circle. Young’s sotus and Poisson’s ratio of the material
are E=4000 andv=0.3, respectively. The solid volume fractions 1@%td 30% in the
designable domain are considered, correspondirigetsolid volume fractions 28% and
44% for the whole cellular structure.
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Table 4.8 Optimal topology of RVE-SE with 10% volerinaction

Number of
RVE-SE

32(6=11.28)

16(0=22.5)

8(6=4%)

RVE-SE
configuration

Cellular
solids
(designable
domain)

Whole
structure

Minimum
compliance

370.38

368.65

391.43
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Table 4.9 Optimal topology of RVE-SE with 30% volerinaction

Number of

RVE-SE 32(9=11.28) 16(6=22.5)) 8(6 = 45)

RVE-SE | _,
configuration| §

Cellular
solids
(designable
domain)

Whole
structure

Minimum

. 132.7 130.04 95.41
compliance

Similarly, the results given in Table 4.8 and Ta#lé show a strong dependence of the
optimal topology upon the size of RVE-SE. Compaweth the examples in 4.4.2; the
non-designable domains have the great influenad@woptimal configurations of RVE-SE.
Normally, with increasing the number of RVE-SEgdecreasing the size of RVE-SEs, the
minimum compliance reduces. However, from Table W& know that the minimum
compliance becomes oppositely big when the numbBWV&-SEs is eight and the volume
fraction is 10% in the designable domain. Thatsilates that the optimal results are

affected by the material amount and the non-debigrdomain.
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4.4.4Cylinder structure

The numb

A

_ 360
12
Fig.4.13 Designable domain of cylinder structurd svolved RVE-SE

k

In this example, a cylindrical design space is show Fig.4.13. The inner radilR of
cylinder structure is 58 and its wall thickness 0.5. The cylinder heighitis 20. Suppose
the four places distributed averagely in the bot@nmm fixed and every node on the top
surface is acted by a downward fogsel0 as seen in Fig.4.13. The Young’s modulus and
Poisson’s ratio of the material ak==1000 andv=0.3, respectively. The total number of
finite elements is 38400 for this cylindrical cé#lu solid. Here we use the 3D finite
elements to discretize the cylinder structure. ddleular solid is averagely divided into 32,
16, 8 and 4 RVE-SEs along the circumferential dioecwhich have the corresponding
number of 3D finite elements 1200, 2400, 4800 a6d09 There are 20 finite elements
along the height direction and one finite elemdah@ the wall thickness direction. The
solid volume fractions of 50% and 30% are considienespectively. The optimal

configurations are seen from Fig.4.15 to Fig.4.21.

a. Volume fraction 50%
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(b)

(a) (b)
Fig.4.15 Optimal configurations with (a) Unit c@t) Cellular cylinder with 16 unit cells

(a) (b)
Fig.4.16 Optimal configurations with (a) Unit c@tl) Cellular cylinder with 8 unit cells
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() (b)
Fig.4.17 Optimal configurations with (a) Unit c@h) Cellular cylinder with 4 unit cells

b. Volume fraction 30%

(a) (b)
Fig.4.19 Optimal configurations with (a) Unit c@t) Cellular cylinder with 16 unit cells
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Gy,

Ny — 1/

(a) (b)
Fig.4.20 Optimal configurations with (a) Unit c@t) Cellular cylinder with 8 unit cells

(a) (b)
Fig.4.21 Optimal configurations with (a) Unit c@t) Cellular cylinder with 4 unit cells

Table 4.10 Optimal topology of RVE-SE with 50% &t®6 volume fraction

Number of
32(0=11.28)|16(8=225)| 8(6=45") 4(60=90")
RVE-SEs (m)
Number of
finite elements 1200 2400 4800 9600

in one RVE-SE (n)

Minimum compliance

3.3138E+07 | 3.2657E+07 2.7950E+(07 2.6840E+07
50% volume fraction

Minimum compliance

6.2081E+07 | 5.9221E+07 5.05332E+04.67372E+07

30% volume fraction
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7.00E+07 |
6. 00EH07 - —*
5. 00E+07 |- /

C 4. 00E+07 | .
3.00E+07 | .__4/"
2. 00EH07 |
1. 00407  —®vol une fracti on 30% ™ vol une fraction 50%
0. 00E+00 | | ‘ | ‘ ‘ ‘

0 5 10 15 20 25 30 35

m
C-Compliance, m-Number of RVE-SEs

Fig.4.22 Influence of the number of RVE-SEs ondtrcal rigidity

Similarly, the results given from Fig.4.15 to Fi@2 show a strong dependence of the
optimal topology upon the size of RVE-SE and theéemal amount. From Table 4.10 and
Fig.4.22, we can see that the global rigidity ofircdrical cellular solid reduces with

respect to the number increase of the RVE-SE.

4.5 Summary

In conclusion, this chapter is mainly focused oe tmplementation of the RVE-SE
topology optimization procedure. AN RVE-SE topologptimization procedure is
developed for the structural rigidity maximizatioh cellular solids. A flowchart is given
for the RVE-SE topology optimization procedure efipdic structure and the computation
efficiency is analyzed for different numbers of RBEs. Several examples including
square, cyclic-symmetry and cylindrical cellulaldid® are considered to investigate the
scale effects of RVE-SE upon the optimal topologied the computation efficiency. The
optimal results show that the size variation of RME-SE influences greatly the optimal
configuration which is not unique. It is advantage®o adopt the SE technique so that the
integrated design of the cellular material andcitme can be made efficiently. Besides, the
comparisons of the equivalent torsional resistantdise optimal cyclic-symmetry cellular
solids reveal that the innovative configurationstlod circular sandwich structure can be
obtained for a better performance of torsionalstasice by means of the proposed design
procedure.



5.Bending analysis of sandwich panels and topological

design of cores

In this chapter, the bending analysis and the laymsign of the multilayered
sandwich panels with the size variation of diff¢reores are developed. The
hexagonal and square honeycomb cores and the cawcte X corrugated

cores are analyzed. Bending responses of sandvaichlp are also computed
numerically and theoretically using the homogenizeres. According to the
ratio of the span dimensions to thickness, Levy [dadier methods in the
laminate plate theory are used for sandwich pamweth the homogenized
honeycomb cores. And then, considering the uppeéroattom skin layers as
non-designable parts, the 3D layout optimizationschle-related sandwich

cores with different sizes are carried out for giebal stiffness maximization.
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5.1 Introduction

In the Chapter 1 and Chapter 2, we have pointedtt@mit sandwich panel is a kind of
typical structural form in sandwich structures. Blgy a sandwich panel is composed of
the upper and lower skins and a lightweight coren@on patterns of the sandwich core
such as foam, truss, honeycombs and corrugated ¢@ibson and Ashby [1997]; Wicks
and Hutchinson [2004]; Petras and Sutcliffe [199&]ldevit et al. [2006]) are as shown in
Fig.1.4. In these sandwich cores, the detailecwdifit structural forms are involved, e.g.,
the foam core with the open or close cells, difiéteuss configurations, honeycomb cores
and the corrugated cores with different shapes,Mdtceover, such attractive properties as
high specific stiffness and strength, high impanergy absorption, sound damping,
electromagnetic wave absorption, thermal insulafad non combustibility (Lukkassen
and Meidell [2003]; Zhu and Sankar [2007]; Stylésale [2007]) can be obtained by the
optimal design. Therefore, sandwich panels arensitely used in the aerospace, building,
automobile, package, and shipbuilding industries.

Most studies on the sandwich panel presently facughe two following aspects. Firstly,
different kinds of methods involved in the homogation technique, the analytical and
the experimental method are pursued to obtain fileeteve properties of sandwich panels
with the various cores. Buannic (Buannic [2003]inpaited the effective properties of the
corrugated core sandwich panel with the homogeobizamethod and derived the
equivalent Kirchhoff-Love and Reissner-Mindlin hogemeous plate. Meraghni (Meraghni
[1999]) developed three approaches of finite eldmamalysis, analytical study and
experimental tests to determine the mechanicalgrtigs of the honeycomb and tubular
cores for sandwich panels. Xu and Qiao (Xu and Q2@®2]) applied the multi-pass
homogenization technique to solve the equivalaffhess of the sandwich with the skin
effect. Hohe and Becker (Hohe and Becker [2001kdedua strain energy-based
representative volume element procedure for thera@bation of the effective properties
of two-dimensional cellular sandwich cores withiadny cell topology and geometry. Xue
and Hutchinson (Xue and Hutchinson [2004]) propoaedalid constitutive model for
quasi-static deformation of three kinds of metaiendwich cores. Secondly, structural
responses of sandwich panels including the bendimgact, vibration and bulking
responses are also evaluated. Romanoff and VaRtengnoff and Varsta [2007])

evaluated the bending response of web-core sangatés by transforming an originally
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discrete core into an equivalent homogenous comtmwith the effect of thick-face-plates.
The equivalent stiffness properties of the plateendetermined by analytical formulations.
Glenn and Hyer (Glenn and Hyer [2005]) developetiery to predict the out-of-plane
deflections of sandwich plates. Paik (Paik [1998yestigated the strength characteristics
of aluminum sandwich panels with aluminum honeycarate. Koissin (Koissin [2004])
addressed the elastic response of sandwich pankeleal static and dynamic loading. Meo
(Meo [2005]) made an experimental investigation andchumerical simulation on the
impact damage over a range of sandwich panels. Téwgaled the load distribution in
damaged sandwich structures and studied the fa@@hanisms of such a structure in the
presence of impact damage. Pokharel and Mahen@akhérel and Mahendran [2004])
investigated local buckling behavior of sandwichngla using experimental and finite
element analysis. Frostig and Thomsen (Frostig @hdmsen [2004]) presented free
vibration analysis of sandwich panels with a flégilcore based on the high-order
sandwich panel theory. Chang (Chang [2005]) preskeatclosed-form solution based on
the Mindlin-Reissner plate theory to describe tleddvior of corrugated-core sandwich
plate in bending with various boundary conditions.

The above-presented researchers and many othegschaved out plenty of outstanding
and in-depth studies on the sandwich panel. Howéseer attentions are paid on the size
effect of sandwich cores concerning the mechamicgerties of sandwich panels. Tekoglu
and Onck (Tekoglu and Onck [2005]) pointed out timetchanical properties of cellular
materials depended strongly on the ratio of theciapen size to the cell size. The size
effect was studied by Onck (Onck [2001]) for theplane elastic constants of hexagonal
honeycombs based on the finite element modelingextpa@rimental tests. Recently, Dai
and Zhang (Dai and Zhang [2008]) theoretically antherically studied size effects of the
2D basic cell of sandwich beams in a systematic aray demonstrated the importance of
size effect. Therefore, it's necessary to furthgslere the size effect of 3D sandwich cores
in analyzing the mechanical response of sandwicielpa

In this chapter, firstly, we introduce the claskieaninate plate theory that is used for the
analysis of sandwich panel. Secondly, the bendasganses of sandwich panels with the
honeycombs and corrugated cores of different sszescomputed numerically. And also,
the laminate plate theory and the finite elementhiod are adopted to analyze the bending

responses of sandwich panels with the homogenizeescpredicted by the 3D
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homogenization method. And then, the representatndume elements (RVES)

configuration of sandwich cores is optimized by Huale-related method for the global
stiffness maximization of sandwich panel. By meahthe SIMP model, the dual solution
strategy and quadratic perimeter control (Zhang@uagsinx [2003]), one can achieve the
topology design of RVE of sandwich cores withowt theckerboard patterns.

5.2 Laminate plate theory

The sandwich panel can be considered as a muéirddyplate when the sandwich core is
homogenized by the homogenization method. Thergtbeelaminate plate theory (Vinson
and Sierakowski [1987]; Reddy [1984]) can be usednalyze its bending response.
According to the assumption of the laminate plagoty that the lines perpendicular to the
surface of the laminate remain straight and pengefat to the deformed surface as well.
The functional forms of the displacements for dmmihate plate are:

ux y,2=y(x y+ @( xy

V(% Y, 2= y(x 9+ B(xY (5.1)

W(x Y, 2= w(x Y
whereup, Vo andwy are the displacements of the mid-plane (thahesxty plane in Fig.5.1
below) of the laminate plate oy andz direction respectively. The second terms in the
first two equations are related to the rotationstted lineal element. In classical plate
theory,
_ = _ 0w
a= -=, b= _a_y (b.2

The equilibrium equations for the three dimensiaiasticity can be written as follows:

9o, ., do,, 99, ., F =0
ox ady o0z
99y 9%, 9% ¢ g (5.3)
ox oay o0z '
00,, , 99y, 00, E =0
ox oy 9z °

In the classical laminate plate theory, we definé ase stress resultants)( stress couples

(M), and shear resultant®)for the overall plate.
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NX O-X
Ny Uy Mx Ux

_ +h/2 d M _ +h/2 d' 54
NXV _J-—hlz Ty (U2 y _.[—hlz Ty 20 (5.4)
Qx axz Mxy Xy,
Qy gy,

Then the body force item&, Fy, F,,) are neglected. It is further assumed that theepb
composed of a laminated composite material thatigsplane symmetric. From Eq. (5.3)
and Eqg. (5.4) through integrating term by term asreach layer, the plate equilibrium

equations for the bending of the plate, due tadhleads can be expressed as

oM. OM
X 4 Xy _ e O .
x oy Q >
oM oM
Xy Y =0 .6
ox oy < ®
0
0Q, + Qy +P(x y)=0 (5.7)
ox oy

Eq. (5.5) and Eq. (5.6) can be substituted into(&Eq.), which generates
2 2 2
0 |\/|X+26 Mxy+6 M,
ox* 0xdy 0y
From the following equation:
N A Bl ¢
s ol ®

and according to Eqg. (5.1) and Eq. (5.2) and thaioms among displacements, strains and

=-P(x,Y) (5.8)

stresses of the laminate plate, we obtain:
M, =Dk, + Dk,
M, =Dk, + D,k, 16)
M,, =2DgK,,

where
— 2 a 2 — n 2
kX:a_a:—aW'k :%:—a W,K< =1 a—a+% =—aW (511)
ox ox Y 9oy oy ¥ 2\lax oy Y
D, :li(q) [ -1] (5.12)
ij 3k:1 1 ) -1 ’

Here the principal material directions (1, 2, 3)ncade with the x-y-z coordinate system.
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The Q; quantities are the stiffness matrix quantities tieve the following simple forms

by ignoring the fine accuracy.

Q11 = Elll(l_ V12V21)
sz = E22/ (1_ V12V21)

(5.13)
Q12 = QZl = V21Ell/(1_ V12V2) = VlZEZZ(l_ V12V2)J
Q66 = C;12
Substitute Eq. (5.10) and Eq. (5.11) into Eq. (5a8)ich results in:
a'w 9'w 9*w
DllW +2(D,, + 2D66)0X26y2 +D 226y4 =P(x,y) (5.14)

According to Eq.(5.14), the bending response dralwich panel, except transverse shear
deformation and coupling terms subjected to a datdrstributed loadP(x, y) can be

obtained by the Levy solution and the Navier soluti

5.3 Analysis of bending responses of sandwich panels

5.3.1Sandwich panels with the honeycomb cores
5.3.1.1Hexagonal core

A sandwich panel with the hexagonal honeycomb caseshown in Fig.5.1, is simply
supported on the left and right side. The line |8atlOON/m is applied on the center of the
plate. The sandwich panel has the dimensions assigis: width a=0.8865m, length
b=1.5354m, thickness,ah=0.0125m, k=0.0375m (u-upper skin, I-lower skin, c-core),
and the material properties: elastic moduykE=2.0GPa and £0.91GPa.

3 |hy
________________ / 1]ho ¥
upper skin

lower skin
? honeycomb core

2

N

Fig.5.1 Sandwich panel with hexagonal cores

The effective material properties of hexagonal lyonenb core are obtained by the 3D
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homogenization method.

E'=3.118352E+0Pa E| =3.116449E+PRE, =2.414286& Pt

G, =8.770264E+0Ba G, =5.272060E+FAG, =5.273566E P:

v, =7.818590E-01y;, =3.874876E-02, =3.872511E-02
According to the boundary conditions on those edgés 0)=0,w(x, b)=0, andV,(x, 0)=0,
My(x, b)=0, Levy assumed the following solution formEx.(5.14): a single infinite half
range sine series:

niry

W(x y)= 3 gn(¥sin (5.15)
n=1 b

The load P(x y) is also expanded in terms of a half range sinéesefThen, by

substituting Eqg. (5.15) into Eq. (5.14), the equatconcerningg,(X) is obtained. Its

solution is composed of the particular solutigp (x) and the homogenous solution
@ (x) that has three different forms depending on thative plate stiffness in various

directions.

The total potential energy is:

U = ["W(x2) P(x5) dx (5.16)

Via the calculation, the Levy solution convergesswithe expansion numberequals to 5.
The maximum displacement module is 2.94%h0 and the total potential energy is
2.44x10°N-m. The deformation of the sandwich panel is shimfig.5.2.

Fig.5.2 Levy solution of sandwich panel with hexaglocores

The bending response of the sandwich panel matleed#-layered homogeneous media is
obtained via the finite element software SAMCERFhe maximum displacement module
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is 2.57x10'm, and the total potential energy is 2.139%dm. The detailed deformation is
shown in Fig.5.3.

VALUE * 1.E -6
257

232.3
207.6
182.8
158.1
133.3
108.6

83.8

59.1

34.3

9.6

Fig.5.3 Finite element solution of sandwich panghwhe homogenized core

The finite element models of sandwich panels whth different size hexagonal cores are
built and their bending responses are calculat@@bie 5.1. The total potential energy and
the maximum displacement module tend towards tHetiso obtained by using the
homogenization method, as shown in Fig 5.4.
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Table 5.1 Bending deflections of sandwich panets different size hexagonal cores

Bending values of sandwich
Number . . . panels
ofum | Dot | Bendng esponses f Toal poretal - i
cells P energy displacement

(N-m) module (m)
1x1=1 ’ 4.239329E-02  6.193E-04
2x2=4 0 2.507296E-02  3.374E-04
3x3=9 0 2.261694E-02  2.657E-04
4x4=16 Q 2.183737E-02|  2.668E-04
6x6=36 ’ 2.134839E-02|  2.578E-04

4.50E-02

-%' 7.00E-04
- 4.00E-02 - 2
E" 3.50E-02 - g 6.00E-04
§ 3.00E-02 f TE 5.00E-04
F 250801 | — A §  4.00E-04
.\ 2 &
< 2.00E-02 r v -
g 2 3.00E-04 _ _
.;' 1.50E-02 [ —4— FE solution with different size cores = = *
: 2.00E-04 o .
& 100E-02 r FE solution with homogenized cores g —4—TFE SOlutfon wgth different size cores
. £ 1.00E-04 FE solution with homogenized cores
30003 ¢ — Levy solution " Levy solution
0.00E+00 : : L : : S 0.00E+00 . L L .
0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40
Number of unit cclls Number of unite cells

Fig.5.4 (a) Total potential energy and (b) Maximdisplacement module of sandwich

panel with the hexagonal core
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5.3.1.2Square core

Consider a sandwich panel with the square honeyamond as shown in Fig.5.5. All the
four edges are simply supported. The uniform serfaadingg=100N/nf is applied on the
upper surface. The sandwich panel has the dimensiassigned as: a=1.1m,
h,=h=0.0125m, k=0.0375m (u-upper skin, l|-lower skin, c-core), attte material
properties: elastic muduli,EE=2.0GPa and £0.91GPa.

mlﬁg >y
a 43"_ E TR TIRTTTE K
,5 1‘? 1qu ) 4 upper skin
5 y o4 4 Tower skin
B + honeycomb core

Fig.5.5 Sandwich panel with square cores

The effective properties of the square honeyconb ace obtained by the homogenization
method.

E. =8.769525E+07R& = 8.769525E+07BA=  1.579339P4(

G. =4.154834E+05P&G = 3.270143E+07Rd = 3.270143Pa

v, =-6.337963E-03V, = 1.665797E-0d = 1.665797E-01

According to the boundary conditions on the fouges] in the Navier approach we can
simply expand the deflection(x, y) and the applied uniform loadirgfx, y) into a doubly

infinite half range sine series.

mrx
w(X, y) = zz q”““ Y (5.17)
me1 =1 D7T a
a(x, y) = zz qmsin@( sinY (5.18)
m=1 =1 a a
where

4 =-2  mn=135,. (5.19)
mn7
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D= Dn(mj +2(D,,+2D,,) (ﬂznjz +D ZZ(IT (5.20)

a a

The total potential energy is:
U = [, w(x ) o xy) dxeh (5.21)

Via the calculation, the Navier solution convergédeen the expansion numbeis 7. The
maximum displacement is 1.687%¥0, and the total potential energy is 1.4X80m. The

deformation of the sandwich panel for the detashiewn in Fig.5.6.

=
Satunataaielat
e S S
:
efodbee, e
RS o
L

Fig.5.6 Navier solution of sandwich panel with Htgiare core

Similar to the previous analysis, for this kind s#indwich panel made of three-layered
homogeneous media, the maximum displacement mddule975x10m, and the total
potential energy is 9.868xT8-m. The deformation is shown in Fig.5.7.

Fig.5.7 Finite element solution of sandwich panghwhe homogenized core

Likewise, the finite element models of sandwichegdamwith the different size square cores
are built and their bending responses are calallatéable 5.2.
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Table 5.2 Bending deflections of sandwich panehwlifferent size square cores

Bending values of sandwich
panels
Number _ _ _ Total
. Different size Bending responses of Maximum
of unit : otential :
i cores sandwich panels P displacement
oo energy module
(N'm) (m)
1x1=1 O . 1.283338E-2|  3.927E-4
2x2=4 ® ’ 2.40426E-3 0.4306E-4
3x3=9 @ < r 1.580408E-3|  0.3158E-4
4x4=16 @ . ' 1.37336E-3 0.2495E-4
6x6=36 @ . 1.277849E-3|  0.2383E-4
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1. 40E-02 2. 00E-04
* 2 1.80E-04
= 1. 20E-02 ! e .
b . 2 1.60E-04 [
»E: LOOE-02 " --.4--FE solution with different size cores = 1.40E-04 [ 7% "FE sclution with different size cores
— ! . . 5 Navier soluticn
= 8 00F-03 | - Navier solutien £ 1.20E-04
= o M . 5] FE sclution with homogenized cores
= ! —FE solution with homogenized cores = 1.00E-04
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= 4. 00E-03 E 6. 00E-05 :
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< 50003 - % i 4 00E-05 IO R
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Fig.5.8 (a) Total potential energy and (b) Maximdisplacement module of sandwich

panel with the square core

5.3.1.3Discussion

According to the figures and tables of the above axamples, it is found that bending
response of sandwich panel tend to a limit casé e decreasing size of honeycomb
core. This limit case is approximately the bendnegponse of sandwich panel with
homogenized cores with the same boundary conditidinthe same time, we also find that
the coincidence between Levy solution and FE smhutvith homogenized hexagonal cores
is worse than that between Navier solution and diti®n with homogenized square cores.
The reason lies in the fact that the ratio of th@ans dimensions to thickness

(a=al(h,+h+1h)) is 14.184 for the hexagonal core and 17.6 for shaare core.

According to the basic assumption of the lamindsgeptheory, the classical lamination
theory is only valid for thin laminates with smdisplacement in the transverse direction
(Vinson and Sierakowski [1987]). Therefore, whee tiatioo increases, the theoretical

solution is closer to the finite element solutiothwhe homogenized core.

5.3.2Sandwich panels with the corrugated cores

In this section, the bending responses of sandwiaghel with corrugated cores are
analyzed with different sizes. Two forms of theesr.e. the circle-core and the X-core are
involved here. The boundary condition of three pinending is the same as in Fig.5.1.
The material properties of two sandwich panelsamsgned as: EE=2.0GPa for upper
and lower skins, E£0.91GPa for cores. The difference between thedaawich panels

lies in that the simply supported sides are pdrali¢he extended direction of the unit cell
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for the circle-core, and vertical to the extend@@daion of the unit cell for the X-core.
Here, only finite element solutions with the difat size cores and homogenized cores are
obtained. The levy method is not adopted becauseadtio of the span dimensions to
thickness of sandwich panelsr EW/(h,+ h+ h)) is 1.9 for circle core and 2.857 for
x-core. The laminate plate theory is no more apple by the validation of examples in

section 5.3.1.

5.3.2.1Circle-core

For the sandwich structure with the circle-core, timensions are set as: length L=2.4m,

width W=0.8m, thickness gh=0.01m, B=0.40m (u-upper skin, I-lower skin, c-core).
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Table 5.3 Bending deflections of sandwich strudwréh different size circle cores

Bending value of sandwich

structures

Number of | Different size| Bending response of Total potential Maximum
unit cells cores sandwich structures energy displacement
module
(N'm)
(m)

1x6=6 000000 1.254997E2 8.635E-2
2x12=24 7.11977E1 4.823E-2
3x18=54 6.45108E1 4.359E-2
4%24=96 5.938279E1 4.013E-2
5x30=150 5.345289E1 3.6E-2
6x36=216 5.17339E1 3.072E-2

The effecitive properties of the circle core aréaoted by the homogenization method as

follows.

E. =4.388174E+05P& =4.461644E+05E4,
G, =5.557200E+05P&5, =1.132639E+07R4,
v, =8.938214E-01y,, =1.891106E-08,

=1.922768E-03

=6283E+07Pa
=16B3E+07P:
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Bending deflections of sandwich structure with lleenogenized core is shown in Fig.5.9.

Fig.5.9 Finite element solution of sandwich struetwith the homogenized core

1. 00E-01

o 9.00E-02

< 8. 00E-02 |
. ~ T.00E-02
& L. 40E+02 5 L L ——FE solution with different size cores
L 1.20E+02 = 6.00E-02
s = 9 —FE solution with homogenized cores
. 1.00E+02 T; 5. 00E-02
= 8.00E+01 & 4.00E-02 |-
3 6.00E+01 R E 3.00E-02 -
2 4.00E+01 ] . . . = 2.00E-02
~ 5 —4—FE solution with different size cores o
'Lj 2. 00E+01 ——FE solution with homogenized cores = 1L.00E-0Z r
= 0.00E+00 L L L ! 0. 00E+00

0 20 100 130 200 250 0 50 100 150 200 250
Number of unit cells Number of unit cells
() (b)

Fig.5.10 (a) Total potential energy and (b) Maximdisplacement module of sandwich
structure with the circle core
Fig.5.10 shows the values of the potential energy the maximum displacement versus
the number of the unit cells that have been usédarsandwich core.

5.3.2.2X-core

For the sandwich structure with the X-core, the afisions are: length L=2.0m, width

W=1.2m, thickness &h=0.01m, Bh=0.4m (u-upper skin, I-lower skin, c-core).
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Table 5.4 Bending deflections of sandwich strucwrih different size X-cores

Bending value of sandwich

structures

Number of | Different size| Bending response of Total potential Maximum
unit cells cores sandwich structures energy displacement
module
(N'm)
(m)

1x4=4 m o 6.230433E-03 8.917E-5

2x8=16 | (L0 ’ 3.401562E-03 3.589E-5
3x12=36 | (il ’ 3.165816E-03 3.015E-5
4x16=64 ’ 3.124686E-03 2.938E-5
6x24=144 : ’ 3.117234E-03 2.913E-5

The effecitive properties of the X-core are obtdibg the homogenization method.
E.=3.927310E+04P& =1.666816E+05Ba, =503@E+07Pa

G, =2.988478E+06P&G, =1542861E+07Rd,  =8UBE+06P:

v, =4.839506E-01y;, =1.983178E-O04, =8.416942E-04

The bending deformation of sandwich structure wvtfite homogenized core is shown in
Fig.5.11. And the values of the potential energy e maximum displacement versus the
number of the unit cells that have been used irsétmelwich core are plotted as shown in
Fig.5.12.
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Fig.5.11 Finite element solution of sandwich stuuetwith the homogenized core
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Fig.5.12 (a) Total potential energy and (b) Maximdisplacement module of sandwich

panel with the X-core

As known from Table 5.3, Table 5.4 and Fig.5.9,.%:it0, Fig.5.11, Fig.5.12, the bending
responses of sandwich structures with both cirokes and X-cores similarly converge to
those obtained with homogenized cores when the sitboneycomb cores decrease. But
the latter is faster and closer. There are twooreasOn the one hand, the latter ratio of
span dimensions to thickness is bigger. On therdtard, the simply supported sides are
vertical to the extended direction of the unit delf the X-core so that they are more
homogeneous than circle cores under the actionedfransverse line load.

Therefore, for both the honeycomb core and theugated core, the bending response of
sandwich panel has the common regularity with tlze sffect that the overall bending
stiffness gradually increases along with the rafithe specimen size to the cell size. The

conclusion is also verified by Tekoglu and Onckkdgu and Onck [2005]).
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5.4 Topology design of sandwich cores

5.4.10ptimization model

The topology optimization problem of minimizing tiglobal compliance of the sandwich
panel subjected to the volume constraint is comsttleThe upper and lower skins are
assigned as non-designable domains. To ensurestlogligity of the optimal configuration
of the sandwich core base cell in the designabiead, the periodic condition is imposed

by the variable-linking method. The detailed optimadel can be expressed as follows:
Min = C=U"K(x)U
x={x, %+ %} DR
= CD + CND
=> (U)K (x)U, +ULK U,
i=1
st K(XU=F

n | (5.22)
PRV A
j=1

P(x) = Zr; L OX = X,)°< P
0< xminz X <1
i=12;,--m j=212,--n)
whereC is the total compliance of the sandwich paneis the number of the core unit
cells; C, and C_, are respectively compliances of the sandwich corihe designable
domain and the non-designable domaibk. is the displacement vector of th¢h core
unit cell; n is the finite element number in a single core weit and also the number of

design variables;x; is the design variable of theh element; vij is the volume of the

jth element in the-th core unit cell; f, is the prescribed volume fractioW, is the

volume of the-th core unit cellxmn=107 is used to avoid the singularity of the elementary

stiffnress matrix during optimization;P(x) is the quadratic perimeter constraint

introduced to avoid the checkerboard effect indtie unit cell; |, is the interface length

between adjacent elemerjtandj+1; P is the upper limit of the perimeter constraint.

Detailed explanations oP(x) can be found in the literature (Zhang and Duy$2003]).
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5.4.2Sensitivity analysis

Here the SIMP interpolation model is used for thyotogical design of sandwich cores.

The following power relation holds between desigmiable x; and the stiffness matrix
K,‘Dl. of thej-th finite element located in theth unit cell.

Kby () = (%)°KS, 5.23)
where Kg,. is the stiffness matrix of elemgnivhen it is solidp is the penalty factomp&4d

in this chapter).
For a structure, the general static finite elenagptation is

KU=F (5.24)
By differentiating Eq. (5.24), it follows that

v _ -K™ oK —U 5.25)

ax 0%

With the above expression, the sensitivity of thgective function with respect to each
variable x; can be derived as follows:

— =—(F K'l) Ku=u%y (5.26)

oCc_ o0 (FTU) + oU oK
6x axj 6>g )g 0 X

As only the elemerijtis concerned withx; , the following expression can be derived from
Eq. (5.23)
0K, (x,)
ox.

J

=P Ki(x) (5.27)
%

Thus, Eq. (5.26) can be rewritten as

ai_-u 10K, U
0X; 0x,
oK (X)), mo
= Z(Uoj) D’ UDJ‘—;pZ(UDj)TK (X Uy, (5.28)
X; =1
__ P& A
=T &S

where u,gj and C,‘Dj are the displacement vector and compliance of jitte finite

element in thé-th core unit cell, respectively. And from Eq. (B)2we obtain:
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9C _0G ,9Gp _9G __ P9 (5.29)
ox, ox  0x  0X Xz O '

J ] ]

Therefore, the compliance sensitivity of a sandwpelmel is equal to the summation of
strain energies of the variable-linking finite elemts in the designable domain multiplied
by a negative scaling factor.

5.4.3Numerical examples
5.4.3.10ptimal configurations

Here, the configurations of unit cells in sandwedres with different sizes and different
boundary conditions are designed. The solid volumaetions of 10% and 30% are
considered respectively. The perimeter controhieoduced to generate checkerboard-free
and mesh independent structural layouts. In thegdakle domain, the sandwich cores are
respectively divided into 1, 4, 9, 16 and 36 unéllx whose sizes are changed

proportionally in the x and y directions.

(1) Sandwich panel with three points bending

In this example, the boundary conditions are timeesas those defined as shown in Fig.5.1.
The optimization configurations of sandwich cores given in Table 5.5 for 10% volume
fraction and in Table 5.6 for 30% volume fractidfig.5.13 gives the comparison of

objective values with the different size cores.
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Table 5.5 Optimal configuration of sandwich coraghwlifferent size unit cells and

volume fraction 10% for sandwich panel with thesthpoints bending

Potential
Number of
_ Unit cell Sandwich cores energy
unit cells
(N-m)
_ P - ' — ///,/' ' e
Ix1=l | g .,"'-\-... < .,"'"--. 4.266181E-2
2x2=4 | & s -&\“ (,\"‘. 3.379944E-2
- 4 ,/ : N -
3x3=9 3.32211E-2
4x4=16 2.87177E-2
6x6=36 2.79763E-2
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Table 5.6 Optimal configuration of sandwich coraghwlifferent size unit cells and

volume fraction 30% for sandwich panel with thesthpoints bending

Potential
Number of
_ Unit cell Sandwich cores energy
unit cells
(N-m)

1x1=1 2.14914E-2

2x2=4 2.17498E-2

3x3=9 2.11298E-2
4x4=16 2.07999E-2
6x6=36 2.07306E-2

4.50E-02 _ _
o 4.00E-02 YMO%_F Volume fraction 30%
£ 3.50E-02 |
€ 3.00E-02[ .
= 2.50E-02f
£ 200E-02/ ®——=—= .
O 1.50E-02

1.00E-02

0 4 8 12 16 20 24 28 32 36 40

Number of unit cells

Fig.5.13 Objective function values with the diffetaize cores for three points bending
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In Table 5.5 and Table 5.6, the optimal configunagi of unit cells are dependent on the
size. However the material in one unit cell is bakly distributed in its two edges along

the longitudinal (y) direction. In Fig.5.13, the jettive function value is gradually

decreased with the increasing number of unit ceipecially for the 10% volume fraction

because the material distribution is more and nhar@ogeneous in the x-y plane. When
the volume fraction is set to be 30%, the objectivection values are close to each other.
That illustrates that the size of unit cell hasditnfluence on the objective function values
when the amount of material is bigger.

(2) Sandwich plate with four edges clamped

In this example, the four edges of sandwich plagecdamped as shown in Fig.5.5. The
optimal configurations of sandwich cores are illasd in Table 5.7 for 10% volume

fraction and in Table 5.8 for 30% volume fractidfig.5.14 gives the comparison of

objective function values with the different sizees.
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Table 5.7 Optimal configuration of sandwich coraghwlifferent size unit cells and

volume fraction 10% for sandwich panel with therfedges clamped

Potential
Number of
_ Unit cell Sandwich cores energy
unit cells
(N-m)
_ //" //"

1x1=1 - / < - / 3.159064E-3

2x2=4 2.562556E-3

3x3=9 1.874002E-3
4x4=16 2.400981E-3
6x6=36 2.158045E-3
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Table 5.8 Optimal configuration of sandwich coraghwlifferent size unit cells and

volume fraction 30% for sandwich panel with therfedges clamped

Potential
Number of
_ Unit cell Sandwich cores energy
unit cells
(N-m)
1x1=1 ({V\ 1.130067E-3
ox2=4 @ 1.188605E-3
3x3=9 Q 1.215906E-3
4x4=16 o 1.170257E-3
6x6=36 ° 1.106158E-3

3.50E-03
£ 2.50E-03|
E 2.00E-03|
= 1.50E-03|
S 100E-03/ ™ W M —®— _—
O 5.00E-04 -
0.00E+00

0 4 8 12 16 20 24 28 32 36 40
Number of unit cells
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Fig.5.14 Objective function values with the diffetaize cores for four clamped edges

For the plate with four edges clamped and a surfaading, the material of optimal
configurations is distributed averagely on the hamtal and longitudinal directions.
Observing the optimal configurations of unit cetisTable 5.7 and Table 5.8, we find that
the material moves towards the edge of each utlg akwng with the decreasing size of
unit cells. Actually, when a designable space isdeéid into many parts, the material is
factitiously separated and homogeneously distribute Fig.5.14, when the volume
fraction is 10%, the objective function values hgveat difference. However the objective
function values are very close when the volumetiwacis 30%. This once again
demonstrates that the size of unit cell has & littfluence on the objective values when the

amount of material is bigger.
5.4.3.2Discussion

Intuitively, the reduction of design space res#rittie reasonable distribution of material
with the decreasing size of unit cells. Howeveour examples, conversely the optimal
results are better with increasing the number df cglls, especially for the 10% volume
fraction. On the one hand, only the in-plane sike@rot cells is different and the size of
unit cells along the loading direction does notyyasn the other hand, the material
distribution in the optimal configurations is moamd more homogeneous for overall
sandwich panels with increasing the number of geils. So the decreasing size of unit
cells prompts the more beneficial distribution ofplane materials. And the analysis
results in section 5.3 also show that the bend@sgponse of sandwich panel tends to the
one with homogenized sandwich cores and the samnmedboy conditions when decreasing
the size of unit cells. From another point of vi@nJy in the case of sufficient amount of
material, the material distribution is more flexabWhen the design space becomes bigger.
That is the reason why the objective function valaee very close when the volume
fraction is 30% in two numerical examples. Consedyein practical applications, the
topology optimization considering the size effetthee sandwich core is a concept design
that shows some suitable configurations with th#age number and size of unit cells and

the given amount of material under the specificriatauy condition.
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5.5 Summary

In this chapter, we analyzed the bending respoatsandwich panels with the cores of
different layout. The configurations of sandwichre® were designed by topology
optimization method considering the in-plane siffect. Conclusions can be drawn as
follows: (1) with the decreasing of the size ofturells, the deformation of the sandwich
panel with different size cores tends to the oné¢hwiomogenized cores. So the
homogenization method is valid in analyzing thedsaoh panel when the number of core
unit cells is large enough. (2) It is verified thia¢ classical laminate plate theory is adapted
to the analysis for sandwich panel with the homageshsandwich core when the ratm

of span dimensions to thickness of sandwich paaébkfees the requirement of the
lamination theory. (3) The size of the unit celtdluences the optimal configuration of
sandwich cores. Some new forms of sandwich coresbeaobtained using topology
optimization. And the optimal results converge torat value when increasing the number
of unit cells. On the basis of this research, tlghdr order laminate plate theory can be
adopted in order to improve the analytical accurdoy sandwich panel with the
homogenized cores. In the next chapter, we willtioole to study the influence of size
effect of sandwich cores on the free vibrationthimn dynamic analysis of sandwich panels
and the configuration design of sandwich cores.



6.Dynamic analysis of sandwich panels and optimal

design of cores

In this chapter, free vibrations of sandwich panelgh the different size
hexagonal and square honeycomb cores and homogerspees are

numerically analyzed. The boundary conditions apresented by the four
simply supported edges. The first five orders gémifrequencies of sandwich
panels for the different cores are compared. Initald, the laminate plate
theory including transverse shear deformation igized to calculate the

natural frequencies of sandwich panel with the hgemized cores. And then,
considering the upper and bottom skins as non-debig parts, unit cells
with different sizes in sandwich cores are desighed the first order

eigen-frequency maximization with the limitatiomsmoerning 10% and 30%

volume fractions.



116 Chapter 6

6.1 Introduction

Dynamic response prediction of sandwich panelsls® @f considerable interest for
engineers and researchers. Because of their supentmrmance under dynamic loading,
sandwich structures are more extensively usedwida range of industrial applications
such as aeronautical, naval and vehicle construc##o important facet is a correct
understanding of the dynamic behavior of such airat systems. Many research works
have been developed concerning their dynamic behalhe major research approaches
include the analytical methods based on variou® [@ad shell theories and the numerical
methods using the finite element analysis. Qatuty(Q2002]) reviewed recent research
advances in the dynamic behavior of shells fromftfiewing points of view: theoretical
aspects, analysis methodology, and different effeoncerning various shell geometries.
Yuan and Dawe (Yuan and Dawe [2002; 2004]) develapspline finite strip method for
predicting the natural frequencies and modes ofatitn and the buckling stresses of
rectangular sandwich panels. Nayak (Nayak [20088duwo new Estrain finite element
formulations of Reddy’s higher-order theory to detme the natural frequencies of
various composite and sandwich plates. Rao andi[lRaa and Desai [2004]) presented a
semi-analytical method to evaluate the naturaldesgies for simply supported, cross-ply
laminated and sandwich plates by using higher ondiged theory. Prusty and Satsangi
(Prusty and Satsangi [2001]) carried out the temtsidynamic response analysis of
composite stiffened plates and shells using fiaieanent method and Newmark's method.
They derived the formulation of the general curgbéil-element using the eight-node
isoparametric quadratic element on the basis ofiMtirFReissner's theory and satisfying C
continuity for the interpolation functions. Meunind Shenoi (Meunier and Shenoi [1999])
studied the free vibration behavior of FRP (fibeinforced plastic) sandwich plates using
analytical methods based on either FSDT (first-osdeear deformation theory) or HSDT
(high-order shear deformation theory), and alscestigated the influence of material
property parameters and plate geometry variablegtural frequencies. Kim (Kim [2007])
developed two enhanced plate theories for laminatetl sandwich plates via the mixed
variational formulation to study free vibration l@iminated and sandwich plates. Ghosh
and Biswal (Ghosh and Biswal [1996]) studied theefvibration response of stiffened
laminated plates using higher-order shear defoomatheory that assumed a realistic

cross-sectional deformation pattern and elimin#teduse of shear correction coefficients.
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Most of these researches focus on the vibratiofysisaof sandwich panels with flexible
foam and honeycomb cores and stiffener plates tfiraleveloping the different plate
theories. They enriched and extended the plateidseand their applications.

In this chapter, we mainly study the size effectsahdwich cores on the free vibration
response of the simply supported honeycomb sandvdokls, and investigate the optimal
configurations of sandwich cores with the respectdifferent core size for the free
vibration response. Our works include the followitwgo aspects. Firstly, the natural
frequencies for simply-supported sandwich paneth e periodic honeycomb cores are
calculated numerically with the different sizes aaghe configuration of unit cells. At the
same time, we obtain the equivalent propertiesaantigich cores with the homogenization
method. And then we make the vibration analysis sahdwich panels with the
homogenized core using the finite element methadl laminate plate theory including
transverse shear deformation and compared witlpteeious analysis results. Thus the
relationship of vibration responses between theemiht size cores and the homogenized
core is revealed. Secondly, with the upper and ftoskéns as non-designable domains,
three dimensional configurations of scale-relatudsvich cores with the different size are
designed for the natural frequency maximizationtted sandwich panel. The topology
optimization problem is solved by the GCM (globaingergence method) using the
software BOSS-QUATTRO V5.0 on the basis of the mxkegradient sensitivity. And the
sensitivity filtering is employed to eliminate clkecboards occurring in the design process
(Sigmund [1998]). Similarly numerical results relvdee influence of the size variation of
involved unit cells on the optimal topology.

6.2 Dynamic analysis of sandwich panel

6.2.1Dynamic analysis of laminate plate including transerse shear deformation
As given in the (Vinson and Sierakowski [1987]); tbe laminate plate simply supported
on all four edges, the solutions for the flexurération may be written as

w(x, y, ) = ZZ C;nnsm— sm— Y g (6.1)

m=1 r=l

acx,y,t)= zz A cos— smT Y da (6.2)

m=1 r=1
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B(x y,1)= Zz Bmsm— co byé“’ (6.3)

m=1 n=1
The governing differential equations including ttransverse shear deformation and

neglecting the rotatory inertia terms are following

o’a oa 08 _ 0w
Dlly + D666_y2 + (D12+ D 66)0—)6)/_ ZASE(O' +E(j =0 (6-4)
0’a 0 0 ow
(D12+D66) X3y Deea)g Dzzayf_ZA ‘('B+a_yj=o (6.5)
oa o0°w 6,8 0°w 0°w
—+ +2 h 6.6
whereh is the thickness of laminate plate and
1 N
pzﬁzpk(hk_hk—l) (2
k=1
5= 4 1 -
Aj :ZZ(QJ )k[*ﬂ - fﬂ-l‘g(*f‘ Ij—l)p} | ]=4,5 (6.8)
k=1

Substituting the solutions (Eq.(6.1)-EqQ.(6.3)) intahe governing equations
(Eq.(6.4)-Eq.(6.6)) results in a set of homogenampsations as follows

L:Ll I‘12 L13 A‘nn O
L12 I-22 I-23 an = O (69)
L13 L23 L'33 Cmn O

where L, =L,,— phaf, .

The square of the remaining natural frequency carmolitained by solving the above

homogeneous equations.

_[(Ln 22 L212)L33+2L14- AL Jz 7L 1-1 :L/ph(l- b 2_2L2)1 (6.10)

where,m and n are the number ot andy axial half-waves respectively. Ii_=mn/a

andi, =nm/b,
= Dy/An + Dedl, +2A, (6.11)
L, = (D, + DA A, (6.12)
Ly =2A, (6.13)

L22 = D66/1n%1 + DZZ/‘r? + 2'6\41

(6.14)
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L, =2A, A (6.15)

Ly = 2AA0 + 2A A0 (6.16)

6.2.2With hexagonal honeycomb cores

A sandwich panel with the hexagonal honeycomb caseshown in Fig.6.1, is simply
supported on the four bottom edges. The dimensibtize sandwich panel are following:
width a=0.8865m, length b=1.5354m, thicknegsht+0.01m, B=0.03m (u-upper skin,
I-lower skin, and c-core). The elastic moduli of tipper and lower skins are 210GPa. The
density is 7800kg/fh For the core, the elastic modulus is 75GPa aadiénsity is 2700
kg/m® (solid or black part). In order to calculate tlffeetive elastic constants of sandwich
core, we assume that the void or white part isrg weak material: the elastic modulus is
0.00001GPa and density is 0.00001ky/m

AZ
- b N
TER > Y
00 T T - ST S - - T - ¥/ - )
_.::f:;'éc ’Zg—uppﬁr skin
,"é lower skin

honeycomb core

g
3 &
/ & & & & & P P !

X

Fig.6.1 Sandwich panel with four simply-supportedes and hexagonal honeycomb cores

The effective material properties of hexagonal lyopenb core are obtained by the 3D

homogenization method.

E"=2.570071E+09P&" = 2.568502E+09Ba=  1.989796Pa
G!=7.228240E+08Pa&! = 4.345104E+09Ra=  4.346297Pa (6.17)
v'=7.818590E-01' = 3.874876E-02 = 3.872511E-02

And the effective density of hexagonal honeycomie ¢®

0e=((St-Suoid) X2700+S4ax0.00001)/$=716.32653388kg/f (6.18)

where $ is the area of whole core in the x-y plane apgh & the area of void part.
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Sr=4x0.767709844%0.443237483=1.36111111 9.1

Sv0ic=8%0.5%(0.219345669+0.43869133&).379917843=1.00000000124  (6.20)

The average of the mass density across the thiskoesandwich panel is

N
=%Zpk(hk—hk_l)=oi%(7800x 0.02+ 716.3266 0.3 3549.7kg/m’ (6.21)
k=1 .

According to Eq.(6.10), the natural frequenciesahdwich panel with the homogenized

core are obtained in Table 6.1.

Table 6.1 Natural frequencies with different valoésn and n

m.n m=1 m=1 m=1 m=2 m=2 m=2 m=3 m=3 m=3
’ n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3
Natural
272.75| 474.17| 803.55| 868.13| 1061.99| 1379.2| 1810.4| 1992.7| 2291.4
frequency

The finite element models of sandwich panels whh different sizes of hexagonal cores
and the homogenized cores are built and their eigguencies and the first five orders of
vibration modes are calculated as shown in Talléd Table 6.6. The variation tendency
of the first five orders of vibration frequencieghwdifferent size hexagonal cores is shown
in Fig 6.2 to Fig.6.6.

Table 6.2 The first order vibration response wité different size hexagonal cores

Number of Homogenized

unit cell x1 2x2 3x3 4 55 core

preen | 3| 5| 22 5 T P

Frequency, 158.651 262.166 290.595 302.899 309.461 17.9682

Mode of

sandwich - ' - -> - ->

panel




Dynamic analysis of sandwich panels and optimaibtiesf cores 121

First order frequency

3.30E+02

3.00E+02 1

/4/_,.’—/0

2.50E+02
2.00E+02
1.50E+02 ~
1.00E+02 ~
5.00E+01 o

—+— FE solution with different size cores
—— FE solution with homogenized core
—— Analytical solution with homogenized core

0.00E+00

10 15 20 235

Number of unit cells

Fig.6.2 Frequency variation of first order vibratieith different size hexagonal cores

Table 6.3 The second order vibration response thétdifferent size hexagonal cores

Number of Homogenized
unit cell 1x1 3 4 55 core
different o

sizes cores

Frequency 164.100 al 414.361 437.267 449470 67.1@9
Mode of
sandwich - .. .. ‘. ..

panel
5.60E+02
g 4.80E+02
£, 4.00E+02
35 3.20E+02
E 2.40E+02 —— FE solution with different size cores
§ 1.60E+02 —— FE solution with homogenized core
% 8.00E+01
0.00E+00 . ‘ . . .

5 10 15 20 23

Number of unit cells

Fig.6.4 Frequency variation of second order vilratvith different size hexagonal cores



122

Chapter 6

Table 6.3 The third order vibration response wlih different size hexagonal cores

Number of Homogenized
unit cell Ix1 2 >3 a4 55 core
different o

sizes cores

Frequency 311.883 452.918 606.443 657.847 683.032 20.171
Mode of < . - -

sandwich - « % wme .‘ ~‘ -~

panel
8.40E+02 -
g 7.20E+02 -
£, 6.00E+02 -
& 4.80E+02 -
-qcz 3.60E+02 - —+— FE solution with different size cores
_';; 2.40E+02 - —— FE solution with homogenized core
£ 1208402 1
0.00E+00 . ‘ . ‘ \

0

5 10

15 20

Number of unit cells

23

Fig.6.4 Frequency variation of third order vibratiwith different size hexagonal cores

Table 6.5 The fourth order vibration response whthdifferent size hexagonal cores

Number of Homogenized
unit cell 1x1 2x2 3 x4 55 core
different o

sizes cores

Frequency, 330.122 453.406 624.765 674.202 698.656 32.976
Mode of -
sandwich| 5 o S | S| s

panel
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8.40E+02 -
7.20E+02 ~
6.00E+02 ~
4.80E+02

3.60E+02 —+— FE solution with different size cores
2.40E+02 -

1.20E+02
0.00E+00 T T T T 1
0 5 10 15 20 25

—— FE solution with homogenized core

Fourth order frequency

Number of unit cells

Fig.6.5 Frequency variation of fourth order viboatiwith different size hexagonal cores

Table 6.6 The fifth order vibration response wtik tlifferent size hexagonal cores

Number of Homogenized
unit cell 1x1 2x2 3 4 55 core

g | | S 5B 4 P

Frequency| 338.457  453.438 733.716 806.044  8418.07 93.485

Mode pf -
sandwich
panel

-
. - S ’," =

1.05F+03
9.00E+02 ~

7.50E+02 -

6.00E+02 +

4.50E+02 - / —+— FE solution with different size cores
3.00E+02 -
1.50E+02 +

0.00E+00 T T T T )
0 5 10 15 20 25

Fifth order frequency

—— FE solution with homogenized core

Number of unit cells

Fig.6.6 Frequency variation of fifth order vibratiwith different size hexagonal cores

6.2.3With square honeycomb cores

Consider a sandwich panel with the square honeyommd as shown in Fig.6.7. All the
four edges are simply supported. The dimensionhefsandwich panel are assigned as:
a=1.1m, h=h=0.01m, KR=0.03m (u-upper skin, |-lower skin, and c-core)miar to the
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hexagonal core in the section 6.2.1, the elastidulh@f the upper and lower skins are
210GPa. The density is 7800kd/nfror the core, the elastic modulus is 75GPa aed th
density is 2700 kg/fh(solid or black part). In the same way, we asstima¢ the void or
white part is a very weak material: the elastic olod is 0.00001GPa and density is
0.00001kg/m

AZ
a
..f:;’ / =Rl
7 'é)'é 208 8 2 / “»upper skin
”,éf lower skin
_’Lé honeycomb core

’/J = 5 - 2 [l

X T E
|

Fig.6.7 Sandwich panel with four simply-supportedes and square honeycomb cores

With the 3D homogenization method, the effectivetarial properties of square
honeycomb core are

E'=7.227631E+09P& = 7.227631E+09Ba= 1.301653P4&
G,=3.424314E+07P& = 2.695173E+09Ba= 2.695173Pa (6.22)
v, =-6.337963E-03/ = 1.665797E-0f = 1.665797E-01

And the effective density of square honeycomb ®smilarly computed as,
0.=((1.2 -%)102700+10 0.00001)/121 =468.5kg/m’ (6.23)

The average of the mass density across the thiskoesandwich panel:
N
o= %Z o(h,—h_)= Oios(7800x 0.02+ 468.598 0.03 3401.1kg/m’ (6.24)
k=1 .

According to Eq.(6.10), the natural frequenciesahdwich panel with the homogenized
core are obtained in Table 6.7.
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Table 6.7 Natural frequencies with different valoésn and n
mn m=1 m=1 m=1 m=2 m=2 m=2 m=3 m=3 m=3
' n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3
Natural
271.29| 669.17| 1308.9| 669.17| 1055.2| 1677.6| 1308.9| 1677.6| 2273.3
frequency

The finite element models of sandwich panels whih different sizes of square cores and

the homogenized core are built and their first fivders of eigen-frequencies and vibration

modes are calculated as seen in Table 6.8 to Babke The variation tendency of the first

five orders of vibration frequencies with differesize square cores is shown in Fig 6.8 to

Fig.6.12.

Table 6.8 The first order vibration response wiité tlifferent size square cores

Number of Homogenized
unit cell 1x1 2x2 3 4 55 core
Different
size cores

Frequency| 86.2326 217.758 255.191 272.099 280.880 94.7929
Mode of
sandwich | | | | - - -

panel

3.60E+02 -
s
§ 3.00E+02 -
2.40E+02 -
1.80E+02 -
1.20E+02 -
6.00E+01
0.00E+00

First order frequ

—+— FE solution with different size cores

—— FE solution with homogenized core

—— Amnalytical solution with homogenized core

T
0 3

T
10

T
15

Number of unit cells

T
20

1
25

Fig.6.8 Frequency variation of first order vibratiwith different size square cores



126

Chapter 6

Table 6.9 The second order vibration response thétdifferent size square cores

Number of Homogenized
unit cell Ix1 2 >3 a4 55 core
Different
Size cores

Frequency| 87.7724 309.870 447 477 497.928 523.819 63.487
Mode of '
sandwich - - . A% e v -

panel

&' 6.00E+02 1

% 5.00E+02

£ 4.00E+02 -

5 3.00E+02 - o _

= —+— FE solution with different size cores
2.00E+02 L .

= —— FE solution with homogenized core

S 1.00E+02

@ 0.00E+00

0

10

15

Number of unit cells

20

25

Fig.6.9 Frequency variation of second order viloratvith different size square cores

Table 6.10 The third order vibration response whehdifferent size square cores

Number of Homogenized
unit cell 1x1 22 3 4 55 core
Different

size cores

Frequency, 171.702 309.870 447 477 497.928 523.819 63.4%7
Mode of

. - -’ - -
. -

e | - - w . N




Dynamic analysis of sandwich panels and optimaibtiesf cores

127

6.00E+02

5.00E+02
4.00E+02
3.00E+02
2.00E+02
1.00E+H)2

—e— FE zolution with different size cores
—— FE solution with homogenized core

Third order frequency

0.00E+H00 ~
0

15

5

10

Number of unit cells

20

25

Fig.6.10 Frequency variation of third order viboatwith different size square cores

Table 6.11 The fourth order vibration response whehdi

fferent size square cores

Number of Homogenized
unit cell Ix1 22 >3 x4 55 core
Different

size cores

Frequency 171.702 330.987 597.467 698.005 747.543 24.285
Mode of - - -
sandwich| ‘S EE R e I e U O

- R d -

panel

5 LODEF03

 8.00E+02

E 6.00E+02

-‘-E 4.00E+02 o )

s —+— FE solution with different size cores

‘g 2.00E+02 —— FE solution with homogenized core

£ 0.00E+00 1 . . . . .

0 10 15 2

Number of unit cells

Fig.6.11 Frequency variation of fourth order vilwatwith

0 25

different size square cores



128 Chapter 6

Table 6.12 The fifth order vibration response with different size square cores

Number of Homogenized
unit cell Ix1 2x2 33 4 55 core

preen | < IS €

Frequency| 179.032 337.720 646.546 781.996 850.521 68.868

Mode of
- - - - - W -
panel

B 1.20E+03

§ 1.00E+03

E 8.00E+02

5 6.00E+02

=

g 4.00E+02 —e— T'E solution with different size cores
£ 2.00E+02 —— FE solution with homogenized eore
E

0.00E+00 T T
0 5 10 15 20 23

Number of unit cells

Fig.6.12 Frequency variation of fifth order vibatiwith different size square cores

6.2.4Discussion

From Tables 6.2-6.6, Tables 6.8-6.12 and Fig.652-6i9.6.8-6.12 for two types of

sandwich panels with hexagonal and square honeycomds, it is also demonstrated that
the vibration frequencies and modes of sandwiclelptand to the limit values with the

homogenized cores when increasing the number ofcelis or decreasing the size of unit
cells. This fact can be easily explained. We caagime that the material distributions are
more and more homogeneous with the increasing numibeanit cells under the same

material amount and configurations of unit cellbefiefore the performance of sandwich
panels for the free vibration is improved. In adhf the natural frequencies of sandwich
panels are obtained with the laminated plate thdogluding the transverse shear
deformation on the basis of the homogenized cdrks. fundamental frequency occurs
with m=n=1, which is for one half sine wave in each dirattiNatural frequencies for the
two sandwich panels are listed in Table 6.1 ander&b/ with the differentn andn.

Variation ofm has greater influence on natural frequencies thimm sandwich panel with
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the hexagonal core becauseis the number ok axial half-waves corresponding to the
short side. By observing the Fig.6.2 and Fig.6l& tleviation between the analytical
solution and the FE solution with homogenized sguares is less than with homogenized
hexagonal cores. Similar to section 5.3.1, theorafi the span dimensions to thickness
(a=a/h) is 17.73 for the hexagonal core which is less tfoa the square coren(=22).
Therefore, the laminated plate theory for dynammalysis is also more applicable to the
thin plate.

6.3 Topology design of sandwich cores

6.3.1O0ptimization model

The configurations of sandwich cores are designgdnmiaximizing the first order
eigen-frequency of the whole sandwich panel subgedb the volume constraint of
sandwich cores. The upper and lower skins are derell as the non-designable domains.
Similarly the variable linking method is adoptedarder to ensure the periodicity of the
optimal configuration of sandwich core in the desigle domain. The detailed optimal

model can be expressed as follows:

Max_ Min «f

x={ %, X2,-~-,)$1}TDF€ k=1,--5

st (K-«¢fM)g =0

Doxvs f 0y (6.25)

i=1
0< Xein < X <1
(| :1’2’... ,n)

where «, and ¢ are respectively the eigen-frequencies and eigedes of the

sandwich paneK andM are respectively the stiffness matrix and massixnat sandwich

panel; x(i=1,2;-- ,n) are the design variables which are the pseudoitteEnsf each

element in one unit cell of sandwich coreis the number of finite elements in a single
core unit cell and also the number of design véemb,i,=10° is used to avoid the

singularity during the optimal process; is the volume of the-th element in the core

unit cell; f, is the prescribed volume fractiolV, is the volume of the core unit cell.

6.3.2Sensitivity analysis
Pedersen (Pedersen [2000]) pointed out that otieeofnain problems in the optimization
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of eigen-frequencies using topology optimizatiorthis occurrence of localized modes in
low density areas and the author discussed senathlods of avoiding localized modes.
Here we choose an elastic modulus value for the maiterialE,i;=10°Esoi. RAMP and

SIMP interpolation models are used for the stiffn@matrix and the mass matrix

respectively.

_N -3 X 3
K= E 10°+—>——(1-107) K, 6.26
i=l( +1+ p(d- X )( )j l ( )
M =Zn XM, (6.27)

wherep andq are the penalization factors. In later exampe35 andg=1 are used (Luo
[2004]). According to the mass-to-stiffness ratldafsen [2005]), the problem of the
localized modes in the low-density areas can b&lado

The generalized eigenvalue problem can be cabkeiform,
(K—wa)qJ] =0 6.48)

By substituting Eq. (6.26) and Eq. (6.27) into E§28) and differentiating Eq. (6.28), it
follows that,

i T n _3 # _ 3 _ 2n . # _
25t

(6.29)
After the derivation, the sensitivity of the eigiaguency squared is obtained,
0t
0%,

In the sensitivity expression,

_[(1+p)(1-107) L, X o
Cp_((“p(l—xt))z }/ [10 1ep(a-x) 710 )] o0

(6.32)

=of (C,0SER- GO KER (6.30)

6.33)
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(¢) Mg
gMg

whereSERrepresents the strain energy ratio of elemieahdKER represents the kinetic

KER= .36)

energy ratio of element Filtering is used on the sensitivities of theim@ation to prevent
checkerboard patterns in the design. For the detailthis filter, see Section 3.2 in Chapter
3 and the reference (Sigmund and Petersson [1998]).

6.3.3Numerical examples

The structural configurations of the sandwich cavéh different size are designed within
a sandwich panel with four simply supported eddd® design model is shown as Fig.
6.13. The solid volume fractions of 10% and 30% rectangular and square unit cells
respectively are considered. In the designable durttee sandwich cores are respectively
divided into 1, 4, 9, 16 and 25 unit cells whoseesiare changed proportionally in the x

and y directions.

Lo _|=“hl|h= > v
A T=h, h:lr b

- - ® & B & ﬁ_/é
. Non-designable domain

Non-designable domain
Designable domain with

periodic and different
2 2 2 2 2 size cores

s
s
o
&
s

Fig.6.13 Design model of sandwich panel with faor@y-supported edges

(1) For rectangular unit cells
The optimization configurations of sandwich cores seen in Table 6.13 for 10% volume
fraction and Table 6.14 for 30% volume fractiong.Bil4 gives the comparison of

objective values with the different size cores.
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Table 6.13 Optimal results of sandwich cores wiffedent size unit cells and volume

fraction 10% for rectangular unit cells

Number L
) ) ) Natural Vibration mode of
of unit Unit cell Sandwich cores :
frequency gsandwich panel
cells
<o -
1x1=1 > T > = 21.95247
< <=
-~
2x24 - ] # r e w1303
-
-
e P e
3= ' P ee” o%” 21.9582
3x3=9 ‘ 2 q;,"g 1.9
] P S
4x4=16 N 9--'__.;-..'_'_':_:;,-_!_. 21.1315
.
5x5=25 . 23.48789
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Table 6.14 Optimal results of sandwich cores wiffecent size unit cells and volume

fraction 30% for rectangular unit cells

Number —

) ) . Natural Vibration mode of
of unit Unit cell Sandwich cores X .

frequency gandwich panel
cells
- <=
1x1=1 s S 32,5751
- - -—" -

2x2=4 ’ ’ ”,/" 311322
3%3=9 ’ ‘ % 32,5003
4x4=16 ' ‘ % 33.8549
5%5=25 ~ % 33.6996

Fig.6.14 Objective values with the different sioees for rectangular unit cells
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Table 6.13 and Table 6.14 show that the optimafigorations of unit cells are greatly
influenced by the size variation. For the firstea$ 10% volume fraction, the material is
mainly distributed along th& direction when the number of unit cells is 1, 4 &h
Because of the decrease of the material amounthendize of unit cells, the material is
concentrated together when the number of unit ¢cell$ and 25. However for the second
case of 30% volume fraction, the materials is nyadlitributed along thg direction when
the number of unit cells is 1. With the increasimgmber of unit cells, the material
gradually goes along thedirection. This shows that the distribution tresfdmaterial is
completely different because of the different antoofnmaterials although they have the
same size of unit cells.

(2) For square unit cells

The optimization configurations of sandwich cores ahown in Table 6.15 for 10%
volume fraction and Table 6.16 for 30% volume fi@ct Fig.6.15 gives the comparison of
objective values with the different size cores.

Table 6.15 Optimal results of sandwich cores witfedent size unit cells and volume

fraction 10% for square unit cells

Number el el e of
of umit Unit cell Sandwich cores ) e ke 10_11 Racen
" frequency sandwich panel
cells
Ix1=1 - & - 21.631
- o &,
- - =3
2x2=4 & - sZTave 19.353
F - - <
‘ & ‘Q
[
. s
LA e .. o a
3x3=0 | P m atat 8%e 2 21.615
. e "-‘.in-: O
&% ' ’
5%5=25 * % s | 29569 =
ﬁ"{"
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Table 6.16 Optimal results of sandwich cores wiffecent size unit cells and volume

fraction 30% for square unit cells

Number Vibration mode
N . } Natural )
of unit Unit cell Sandwich cores of sandwich
frequency
cells panel
x2=4 209925
3x3=9 208739
4x4=16 31.52846
5x5=25 31.59089

35
30
25
20
15
10

First order eigenvall

. —— volume fraction 10%
- —=— yolume fraction 30¢

0 5 10 15 20 25 30

Number of unit cells

Fig.6.15 Objective values with the different sioees for square unit cells
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Table 6.15 and Table 6.16 show that the optimafigorations of unit cells are obviously
different with the size variation. However the mmetieis mostly distributed at the four
symmetrical places.

In Fig.6.14 and Fig.6.15, one can see that theseetvamples have a common point: the
objective values are not monotonously changing withincreasing number of unit cells.
Moreover both of them have the same trends forsdume volume fraction with the
increasing number of unit cells. We think that tleincidence is reasonable. In the
following, we will analyze this phenomenon from twgpects. Firstly we have known
from Fig.6.6 and Fig.6.8 and the analysis resuftssection 6.2 that the vibration
frequencies of sandwich panel increase and tedtbvalues of the homogenized cores
with increasing the number of unit cells or deciregishe size of unit cells. Secondly when
we reduce the number of unit cells or increasesike of unit cells, the design space
becomes larger, so it is beneficial to the moreieffit distribution of material in order to
improve the vibration performance of sandwich paiberefore the first order eigen-value
is greater when the number of unit cells equals tha@ when the number of unit cells
equals 4, 9, 16 or 25. After the decreasing, sagenevalues start to rise and even exceed
it with the creasing number of unit cells. So tbasncidence is also the result of trade-off
between the two aspects.

6.4 Summary

In this chapter, we firstly realized the free viiwa analysis of simply supported sandwich
panels with the different form and size cores. Ahen the configurations of sandwich
cores were designed by topology optimization careng the in-plane size effect of
sandwich cores. Conclusions can be drawn as folfows the dynamic point of view: (1)
when decreasing the size of unit cells and incnggtfie number of unit cells, the dynamic
response of the sandwich panel with different saes tends to the one with homogenized
cores. So the homogenization method is also validnialyzing the dynamic response of
sandwich panel when the number of core unit csllange enough. (2) The size variation
of unit cells greatly influences the optimal cownfigtion of sandwich cores. In order to
fully exert the function of sandwich panel with tlggven size cores, the innovative

configuration of sandwich cores can be obtainethkbytopology optimization.



[ .Conclusions and future works

In this chapter, we conclude our works and refemthto the goal of this thesis
concerning the analysis and optimal design of lghght sandwich
structures and materials .The future works to beettgped in this domain are

also proposed and discussed.
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7.1 Conclusions

In the introduction of this thesis, we stated ooalgas follows:
1) To use the three-dimensional homogenization methazhlculate effective properties
of unit cells in multilayer structures and matesial
2) To use the superelement method in order to imptbgecomputational efficiency in
designs of periodic structures and materials.
3) To explore the size effect in static and dynamispomse analysis and integrated
designs of sandwich structures and materials.
To establish these goals, we first described, iap@dr 2, the homogenization method and
its numerical application to calculate the effeetiglastic constants for 3D honeycomb
cores. We compared the obtained results with othethods including the Gibson’s
formula and its modification as well as the enargthod. Thus we confirmed the validity
and accuracy of 3D homogenization method. The hmrap sandwich is a kind of typical
multiplayer structure. Based on the effective claliton of honeycomb core, we adopted
the multi-step layered homogenization method to maen the effective properties of
honeycomb sandwich structure. Fairly good agreemétit the engineering empirical
method shows that the multi-step layered homogénizas valid and adaptable for
calculating the effective properties of multilaysructures and materials. Inspired by the
calculation of effective properties of 3D honeycooares by the homogenization method,
the prescribed properties for cellular materialsl atructures can be obtained by the
inverse homogenization design.
In chapter 3, we applied the topology optimizati@echnique and the homogenization
method to design the 3D microstructures with theximeation of the stiffness and
thermal conductivity. Optimal structural layouts ahit cells are obtained by the
maximization of uniaxial and multiaxial stiffnessica thermal conductivity that is
considered as single and multiobjective optimizapooblems.
In chapter 4, we proposed an RVE-SE topology opttion procedure for the structural
rigidity maximization of cellular solids. According the periodic characteristics of RVEs
in cellular solids, we used the superelement toeghedch RVE. The benefits of using the
superelement method are: (1) the improvement ofpeation efficiency in the iteration
process for the optimal design of periodic struesuand materials; (2) the automatic

implementation of mutual scale relation among thER Through several examples
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including square, cyclic-symmetry, cyclic-symmetngth non-designable domain and
cylindrical cellular solids, we developed the tampl design method of various periodic
cellular solids using the superelement techniquesides, the comparisons of the
equivalent torsional stiffness of the optimal cgediymmetry cellular solids reveal that the
innovative configurations of the circular sandwsthucture can be obtained for a better
performance of torsional stiffness by means ofptsgosed design procedure.

In chapter 5 and chapter 6, we respectively andlyzending response and dynamic
response of sandwich panels and designed the oofigarations considering the in-plane
size variation of sandwich cores. From the analyssilts, with decreasing the size of unit
cells, the bending deformation and the dynamic aese of the sandwich panel with
different size cores tend to the ones with homagshicores. For the static response, the
total potential energy and maximum displacemensasfdwich panels are reducing with
increasing the number of unit cells or decreasigsize of unit cells as shown in Fig.5.4
and Fig.5.8. For the dynamic response, the firgeé forders of eigen-frequencies of
sandwich panels are rising with increasing the nremab unit cells or decreasing the size
of unit cells as shown in Fig.6.2 to Fig.6.6 andnirFig.6.8 to Fig.6.12. This illustrates
that the decrease of the size of unit cells ofitbeease of the number of unit cells can help
to improve the structure behavior of sandwich panEtom the optimal results, the size
variation of the unit cells influences the optin@infiguration of sandwich cores. The
objective function values are not monotonous with increasing number of unit cells.
From Fig.5.13 and Fig.5.14 for the stiffness maxation and Fig.6.14 and Fig.6.15 for
the maximization of the first order vibration fresuecy, the size variation has a greater
influence on the objective function values with 108lume fraction than with 30%
volume fraction. It is shown that the optimal reéswdre influenced not only by the size of
unit cells but also by the material amount. Morepwe the topology optimization of
sandwich cores under the bending response, theosimait cells only varies in thg-y
plane. However the load is along thdirection. So sometimes the size effect of unlisce
on optimal results is not predominant. For the ropti design of sandwich cores
considering the dynamic response, the size vamatib unit cells brings two totally
opposite effects on the optimal results. When desing) the size of unit cells or increasing
the number of unit cells, on the one hand the despgce becomes smaller so that it is not

beneficial to the more efficient distribution of teaal; on the other hand the material
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distribution factitiously becomes more and more bganeous. Therefore the optimal
result is the trade-off between the two aspects.

To summarize, the major contributions of this these the following:

< Proposing multi-step homogenization method for cotimg the equivalent properties
of the three dimensional multi-layered sandwichdtres.

<~ First application of the superelement method toigmeshe configurations of
representative volume elements for periodic cellstdids.

<~ Systematic study of the size effect on structuesiponses of honeycomb sandwich

panels and the topology design of sandwich cores.

7.2 Future works

Based on the research works in this thesis, thpesob future developments is identified
and recommended as follows:

(1) Microstructure design subject to local stress qairsis

In our work, we implemented the microstructure gesiubject to the volume constraint on
the base of the inverse homogenization. Howeverstioictures built from materials with
periodic microstructure it is necessary to consgtegngth, instability and vibration at the
microscale level. That is to say, the local stresgical load and vibration frequency
constraints are added in the microstructure delegides the volume constraints. Some
well-known scholars have attempted this aspeceséarch. Neves (Neves [2002]) carried
out the topology optimization of periodic microsttures by maximizing a given linear
combination of the homogenized elastic properties iatroducing a lower bound on the
local critical load value. In this research, itaalmay be concerned with the microstructure
design to satisfy the macrostructure response sultge the local constraints at the
microscale level.

(2) Improvement of computational efficiency in the mgltale design of structures and
materials

As we know, during the multi-scale design of stmues and materials, the computational
cost is very tremendous. In chapter 4, we mademgplsi attempt in this research by
introducing the superelement method. In the futmeak, we can further study the
application of superelement method in the multiessakesign of structures and materials

with the periodicity to improve the computationélaency.
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(3) Size effect on buckling response of sandwich stingst concerning the topology design
of sandwich cores

The sandwich panels with periodic honeycomb coresansitive to local buckling effects
under loading conditions such as direct compressommding, or their combinations.
Therefore, it is necessary to analyze the stalolityandwich panels with the different size
cores concerning the static and dynamic analyssemted in chapter 5 and in chapter 6.
The configurations of unit cells in sandwich comnsidering the size effect can be
designed by maximizing the buckling load underdhen boundary conditions. Therefore
we can reveal the importance of the influence pé siariation of unit cells in sandwich
cores on the topology design of unit cells andstinecture responses of sandwich panels.
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