DPIM

‘These de Doctorat

école doctorale sciences pour I'ingénieur et microtechniques

UNIVERSITE DE/FRANCHE-€ OM TE

THESE présentée par
ALEXANDRE VERNOTTE

pour obtenir le

Grade de Docteur de
'Université de Franche-Comté

Spécialité : Informatique

Pattern-Driven and Model-Based Vulnerability
Testing for Web Applications

Approche de test a partir de patterns et modeles pour les vulnérabilités des
applications Web

Unité de Recherche:
Institut Femto-ST - UMR CNRS 6174
Soutenue publiquement le 29 Octobre 2015 devant le Jury composé de :

OLcA KOUCHNARENKO Présidente Professeur a I'Université de Franche-
Comté, France

RoLanD GROZ Rapporteur Professeur a I'lnstitut Polytechnique
de Grenoble, France

Franz WOTAWA Rapporteur Professeur a Technische Universitat
Graz, Autriche

FREDRIK SEEHUSEN Examinateur Senior Researcher a SINTEF ICT,
Norvege

BRUNO LEGEARD Directeur de thése Professeur a I'Université de Franche-
Comté, France

FABIEN PEUREUX Co-encadrant de these Maitre de Conférence a I'Université de

Franche-Comté, France

ACKNOWLEDGEMENTS

En premier lieu, je remercie Messieurs Bruno Legeard et Fabien Peureux pour avoir su-
pervisé mes travaux de these. Bruno Legeard d’abord, pour m’avoir transmis sa grande
vision du monde de la recherche, pour ses inombrables conseils, et pour sa disponibilité.
Fabien Peureux ensuite, pour m’avoir assisté de multiples fagons pendant ces trois an-
nées, principalement pour lutter tant que faire se pouvait contre ma facheuse tendance
a étre téte en l'air. Cela va sans dire, son aide inestimable au quotidien a constitué un
facteur important pour la réussite de ma thése, et je lui en suis infiniment reconnaissant.

Je remercie sincerement Madame Olga Kouchnarenko pour m’avoir fait I'honneur de
présider mon jury de thése.

As well, | warmly thank Franz Wotawa and Roland Groz for accepting to report on my
research, and Fredrik Seehusen for being an examiner of my PhD.

Je remercie également Monsieur Franck Lebeau pour avoir été moteur lors du démarrage
de mes travaux, m'ayant ainsi permis de minimiser les premiers moments difficiles du
thesard tentant d’apprivoiser son domaine de recherche.

Je tiens également a remercier Madame Elizabeta Fourneret pour sa disponibilité et son
efficacité quant a la relecture de mon manuscrit de these.

Enfin, merci aux accolytes du 427C, Julien et Romain, ainsi qu’aux “sympathisants” du
bureau, JM, Alban, Hadrien, Maria et j'en passe, pour leur bonne humeur, leur humour
certainement criticable mais néanmoins appréciable, et pour m’avoir offert une raison
supplémentaire de me diriger chaque jour avec plaisir vers le DISC.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

LIST OF ORIGINAL PUBLICATIONS

Alexandre Vernotte, Cornel Botea, Bruno Legeard, Arthur Molnar, and

Fabien Peureux. Risk-driven vulnerability testing: Results from ehealth experiments
using patterns and model-based approach. In RISK’15, 3rd Int. Workshop on Risk
Assessment and Risk-Driven Testing, jun 2015.

Mark Utting, Fabrice Bouquet, Elizabeta Fourneret, Bruno Legeard, Fabien Peureux,
and Alexandre Vernotte. Chapter: Recent advances in model-based testing. In Ad-
vances in Computers. Elsevier, 2015. To appear.

Bruno Legeard, Fabien Peureux, Martin Schneider, Fredrik Seehusen, and Alexandre
Vernotte. The PMVT approach: a RASEN innovation for security pattern and model-
based vulnerability testing. White paper, RASEN FP7 EU founded Research Project,
April 2015. Available at http://www.rasenproject.eu (Accessed: 2015-05-04).

Cornel Botea and Alexandre Vernotte. The RASEN FP7 project innovations. Exhibi-
tion at the Cyber Security & Privacy Innovation Forum 2015, Brussels, Belgium, April
2015.

Alexandre Vernotte, Bruno Legeard, and Fabien Peureux. A pattern-driven and
model-based test generation toolchain for Web vulnerability. In Demo Session of
ESS0S’15, the Int. Symposium on Engineering Secure Software and Systems, Milan,
Italy, March 2015.

Alexandre Vernotte, Frédéric Dadeau, Franck Lebeau, Bruno Legeard, Fabien
Peureux, and Francois Piat. Efficient detection of multi-step cross-site scripting vul-
nerabilities. In Information Systems Security - 10th Int. Conf., ICISS 2014, Hyderabad,
India, December 16-20, 2014, Proceedings, volume 8080 of LNCS, pages 358-377.
Springer, 2014.

Julien Botella, Bruno Legeard, Fabien Peureux, and Alexandre Vernotte. Risk-based
vulnerability testing using security test patterns. In ISoLA’14, 6th Int. Symposium on
Leveraging Applications of Formal Methods, Verification and Validation, volume 8803,
pages 337-352, Corfu, Greece, oct 2014. Springer.

Alexandre Vernotte, Bruno Legeard, and Fabien Peureux. Test de vulnérabilité Web
a base de patterns et de modeéles. In 6-émes journées nationales du GDR CNRS du
Génie de la Programmation et du Logiciel, pages 123—124, Paris, France, June 2014.

Alain Ribault, Bruno Legeard, and Alexandre Vernotte. Les tests et le développe-
ment sécurisé peuvent-ils réduire les failles d’'un systéme et les risques de hacking ?
Magazine Programmez, 173:12—13, April 2014.

[10] Franck Lebeau, Bruno Legeard, Fabien Peureux, and Alexandre Vernotte. Généra-

tion de tests de vulnérabilité web a partir de modéles. In AFADL'13, 12émes journées
Francophones sur les Approches Formelles dans I’Assistance Au Développement de
Logiciels, pages 49—63, Nancy, France, April 2013.

Vii

http://www.rasenproject.eu

viii LIST OF ORIGINAL PUBLICATIONS

[11] Franck Lebeau, Bruno Legeard, Fabien Peureux, and Alexandre Vernotte. Model-
based vulnerability testing for web applications. In SECTEST’13, 4th Int. Workshop on
Security Testing. In conjunction with ICST’13, 6th IEEE Int. Conf. on Software Testing,
Verification and Validation, pages 445 — 452, Luxembourg, Luxembourg, mar 2013.
IEEE Computer Society Press.

[12] Bruno Legeard and Alexandre Vernotte. Active testing techniques. Tutorial talk at
ICST’13, 6th IEEE Int. Conf. on Software Testing, Verification and Validation, Luxem-
bourg, Luxembourg, March 2013.

[13] Alexandre Vernotte. Research questions for model-based vulnerability testing of web
applications. In ICST’13 PhD Symposium, held during the 6th IEEE Int. Conf. on Soft-
ware Testing, Verification and Validation, pages 505-506, Luxembourg, Luxembourg,
mar 2013. IEEE Computer Society Press.

1

CONTENTS

Overview of Research

1.1 Cybersecuritythreats

1.2 Motivation and Research Objectives

1.3 Research Scope

1.4 Contributions of the Thesis

1.41
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6

Domain-Specific Modeling Language
Vulnerability Test Pattern Formalization
Pattern-driven and Model-based Vulnerability Testing process
toolchain
Experimentation
Contribution within the FP7 RASEN Project

1.5 Dissertation Structure

Presentation of the targeted Vulnerabilities

2.1 Cross-Site Scripting L
2.2 SQLInjections

2.3 Cross-Site Request Forgery

2.4 Privilege Escalation

State of the Art

3.1 Static Application Security Testing

3.2 Dynamic Application Security Testing.

3.2.1
3.2.2

Automated Penetration Testing: Web application Scanners

Manual/Tool-aided Penetration Testing: Ethical Hacking

3.3 Model-Based Vulnerability Testing

3.3.1
3.3.2
3.3.3

Pattern-Based and Attack-Model Based Approaches
Model-Checking Approaches

Fuzzing Approaches

3.4 Synthesis e

X CONTENTS

4 Background 39|

4.1 Certifylt: Software Testing basedonUMLandOCL 391

411 Modeling Notation 41

4.1.1.1 Class Diagrams: Static Structure 41l

4.1.1.2 Object Diagrams: Initial state 42,

4.1.1.3 State-machine Diagrams: Dynamic structure 43

4.1.1.4 Object Constraint Language: Constraints and Actions . . . [44]

412 TestSelection. 45}

4.1.2.1 Functional Behavioral Testing 45

41.22 TestPurposesinCertifylt 46}

413 TestGeneration 501

4.1.4 Test Concretization, Execution and Verdict Assignment 1]

4.2 Certifylt for Vulnerability Testing K2

5 PMVT: Process and Modeling Notation 23]

51 PMVTProcess i i e e e s e e

5.2 Running Example: Cuiteur. L 56!

5.3 Web application Modeling Notation 60
5.3.1 DASTML: a Dedicated Language for Vulnerability Testing of Web

applications 60

532 PMVTwith UMLAMBT 65

5.3.2.1 Generic Class Diagram: PMVT Metamodel 65

5.3.2.2 Specific Class Diagram: Application-dependent Information [70l

5.3.2.3 Object Diagram: Structure Content 721

5.3.2.4 State-machine: Dynamic Structure 73

5.3.2.5 ModelingConcepts 74

5.3.3 From DASTMLto UML4AMBT 8]

5.4 Synthesis e 80

6 PMVT: Formalization of Vulnerability Test Patterns Bl

6.1 Augmented Test Purpose Language for PMVT 82

6.2 SMA Test purposes for Web application Vulnerability Testing B85

6.2.1 Cross-Site Scripting 85

6.2.2 SQLInjections 88

6.2.3 Cross-Site Request Forgeries 94

6.2.4 Privilege Escalation o oo 96

CONTENTS

6.3 Synthesis

7 toolchain

7.1 Implementation of the PMVT Approach

711
71.2
71.3
7.1.4

7.2 PMVT tools for Concrete Vulnerability Testing
PMVT Test Publisher.
Executable Test Scripts
CSRF Web Server
Web Page Comparator
7.3 RASEN: Test Selection from Risk Assessment

7.21
7.2.2
7.2.3
7.2.4

8 Evaluation

8.1 Case Studies

8.1.1
8.1.2
8.1.3
8.1.4

8.2.1
8.2.2

8.3 Experiment Results

8.3.1
8.3.2
8.3.3
8.3.4

8.4 Threats to Validity

8.5 Discussion

9 Conclusion

9.1 Summary

9.2 Future works

9.2.1

Modeling Activity
Test Purpose Activity

Test Generation Activity

Test Concretization and Execution Activities

Medipedia Web Portal
8.2 Web application Vulnerability Scanners
IBM AppScan

ronWasp

Experimental Setup

Improvements of the PMVT Approach

Xi

[100]

Xii

9.2.2

A Appendix

CONTENTS

9.2.1.1 ModellInference
9.2.1.2 Compositionwith Scanners
9.2.1.3 Verdict Assignment
Evolutions of the PMVT Approach

9.2.2.1 Extension to Address Insecure Direct Object References

9.2.2.2 Online MBT

1395

138

. 138

139

LIST OF FIGURES

2.1 Stored XSS typicalworkflow
2.2 XSS usage example: server-side and client-sidecode {4
2.3 SAQL Injection: Typical Workflow
2.4 Authentication: Server-side and Client-side 16
2.5 CSRF:Typical Workflow 19
3.1 Web application Vulnerability Testing Overview 26]
4.1 Smartesting Certifylt Process 40]
4.2 OCL4MBT expression: D/CC coverage
4.3 Test Purposes workflow for the production of testtargets 47
51 PMVT:General Process it S6i
5.2 Cuiteur: Login and Registration System
5.3 Cuiteur: HomePage 58]
5.4 Cuiteur: ProfilePage (9
5.5 Cuiteur: User SearchPage 59l
5.6 Syntax of the DAST Modeling Language
5.7 From DASTML to UML4AMBT 65
5.8 PMVT: GenericClass Diagram 66i
5.9 PMVT Class Diagram: Specific Entities of Cuiteur [
5.10 PMVT Object Diagram of Cuiteur 72
5.11 PMVT State-Machine of Cuiteur [74]
5.12 Action Handling: Nominal and Attack Traces /6
6.1 Generic Vulnerability Test Pattern 8

6.2 Abstract XSS Attack Trace on Cuiteur 88]
6.3 Error-based and Time-Based Abstract SQL Injection Attack Traces on Cuiteur [93]
6.4 Abstract SQL Injection Attack Traces on Cuiteur
6.5 Abstract CSRF Attack Trace on Cuiteur 96
6.6 Abstract Privilege Escalation Attack Traces on Cuiteur 99

Xiii

Xiv

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1

9.1
9.2

A1
A2
A3
A4
A5
A6
A7

LIST OF FIGURES

Overview of the PMVT toolchain {02
PMVT: Modeling Environment {03
PMVT: Test Purposes Editor {04
PMVT: Test Purposes Catalog
PMVT: Test Generation Environment
PMVT: Test Concretization and Execution Environment {07
RASEN: PMVT guided by Risk Assessment 112
Medipedia Services Architecture {21l
PMVT Model Inference Process UsingaProxy
PMVT Model Inference Process Using Selenium IDE
Syntax of the Test Purpose Language 148]
Test Pattern for multistep XSS attacks 149
Test Pattern of Error-Based SQL Injectionattacks [149]
Test Pattern for Time-Based SQL Injection attacks 150!
Test Pattern for Boolean-Based SQL Injection attacks
Test Pattern for Cross-Site Request Forgery attacks

Test Pattern of Privilege Escalation attacks

6.1
6.2
6.3
6.4
6.5
6.6
6.7

8.1
8.2
8.3
8.4
8.5

9.1
9.2

LIST OF TABLES

Test Purpose for Cross-Site Scripting 871
Test Purpose for Error-based SQL Injections 89
Test purpose for Time Delay SQL Injections
Test purpose for Boolean-based SQL Injections
Test Purpose for Cross-Site Request Forgeries 95
Test Purpose for Privilege Escalationof Pages
Test Purpose for Privilege Escalation of Actions 98
Wackopicko: ExperimentResults L. 124
Cuiteur: ExperimentResults,
Bookshop: ExperimentResults L.
Medipedia: ExperimentResults {27
Stud-e: ExperimentResults L L [128]
Test Purpose combining PMVT and Scanners for All Injections {37
Test Purpose for Insecure Direct Object ReferencesinPages 139

XV

1

OVERVIEW OF RESEARCH

Contents
1.1 Cybersecuritythreats il
1.2 Motivation and Research Objectives
1.3 ResearchScope it it i it e et @
1.4 ContributionsoftheThesis
1.4.1 Domain-Specific Modeling Language 6
1.4.2 Vulnerability Test Pattern Formalization @
1.4.3 Pattern-driven and Model-based Vulnerability Testing process . . [l
1.4.4 toolchain [3]]
1.4.5 Experimentation £
1.4.6 Contribution within the FP7 RASEN Project 9
1.5 DissertationStructure qa

This thesis was conducted within the VESONTIO team, Département Informatique des
Systémes Complexes (DISC) of the Institut Femto-STm of the Université de Franche-
Comté (Besancon - France), between October 2012 and October 2015. The work pre-
sented in this document has been produced as part of the EU FP7 research project
RASENZ

1.1/ CYBERSECURITY THREATS

In recent years, the increase of attacks over the information and communication sys-
tems has been mainly focused on the vulnerabilities present in Web applications [65} 116].
Based on the current state of the art on security (see Section [3) and on security reports
such as OWASP Top Ten 2013 [76], CWE/SANS 25 [52] and WhiteHat Website Security
Statistic Report 2014 [75], Web applications are the most popular targets when speaking
of cyberattacks. The fact that modern society’s reliance on the Web keeps increasing
foregrounds the challenges of IT security, particularly in terms of data privacy, data in-
tegrity and service availability. Economically, the digital revolution has resulted in the fast
growth of a new buoyant market, greatly welcomed especially in these times of crisis.
In France for instance, digital economy in 2014 represented 5.2% of its Gross Domestic

Thttp://www.femto-st.fr/| [Last visited: August 2015]
Zhttp://www.rasenproject.eu [Last visited: August 2015]

http://www.femto-st.fr/
http://www.rasenproject.eu

2 CHAPTER 1. OVERVIEW OF RESEARCH

Product (GDP) and 3.7% of employmenﬂ With financial gain in sight, it is no surprise that
organized crime has become the most frequently seen threat actor for Web application
attacks [65].

Risks of security breaches inside Web applications have increased over the past ten
years. Building a Web application today involves combining an entire mosaic of technolo-
gies, both on the client side and the server side. Web applications are becoming more and
more complex and ubiquitous, and the need for security of such systems has never been
this alarming. As a consequence, a significant growth has been observed in application-
level vulnerabilities, with thousands of vulnerabilities detected and disclosed annually in
public databases such as MITRE CVE - Common Vulnerabilities and Exposures [52]. The
most common vulnerabilities found on these databases especially emphasize the lack of
resistance to code injection, but other vulnerability kinds based on the logic of applica-
tions are also well represented. Often referred as the big 4 of the internet, Google, Apple,
Facebook and Amazon have all been suffering recently from vulnerabilities inside their
services. The iCloud scandaF_f] from 2014, where thousands of people had their private
data disclosed, is a vivid example. Another one is the stored Cross-Site Scripting vulnera-
bility inside Facebook Chat/Messenger that allowed hackers to access private messages
of other users?]

The next section foregrounds the motivation of the thesis by showing that the need for
improved security is far from being met, as current vulnerability testing techniques are
unstructured, time consuming, and lack precision and accuracy.

1.2/ MOTIVATION AND RESEARCH OBJECTIVES: A PRECISE AND
ACCURATE VULNERABILITY TESTING TECHNIQUE

Current techniques to test / counteract / eliminate vulnerabilities are not precise and ac-
curate enough. Indeed, making the Internet a safer place and improving the confidence
of users in their ability to use Web applications for actions like purchases and banking is
a great challenge.

A widespread “quickfix-style” solution that provides an additional security layer to current
Web applications is client-side and server-side prevention. Taking the form of a browser
functionality (client-side) or an application firewall (server-side), these mechanisms act
as guardians that analyze traffic and sanitize or reject any input/request considered as
potentially malicious. However, they lack completeness since they miss a lot of vulnera-
bilities. The complexity of Cross-Site scripting with its near-to-infinite number of variants
is a vivid exampleﬁ In addition, they have poor knowledge of the applications they pro-
tect, which is necessary to efficiently filter out malicious requests without encroaching
nominal user interactions.

Another technique strongly advised by security consortia[] is defensive programming: it
consists of a set of good practices and habits one should follow during application de-
velopment. The underlying idea is to never assume anything good concerning user be-

3http://www.justice.gouv.fr/include_htm/pub/rap_cybercriminalite.pdf| [Last visited: August 2015]

4http://www.bbc.com/news/technology-29237469 [Last visited: August 2015]

Shitp://www.breaksec.com/?p=6129 [Last visited: August 2015]

8http://www.mediafire.com/view/7a57hv5z25s58Ih/WAF_Bypassing By RAFAYBALOCH.pdf Last vis-
ited: August 2015]

"https://www.owasp.org/index.php/Secure_Coding_Principles|[Last visited: August 2015]

http://www.justice.gouv.fr/include_htm/pub/rap_cybercriminalite.pdf
http://www.bbc.com/news/technology-29237469
http://www.breaksec.com/?p=6129
http://www.mediafire.com/view/7a57hv5z25s58lh/WAF_Bypassing_By_RAFAYBALOCH.pdf
https://www.owasp.org/index.php/Secure_Coding_Principles

1.2. MOTIVATION AND RESEARCH OBJECTIVES 3

haviors and supplied inputs, by writing programs that check their own operations with
assertions to restrict inputs and behaviors solely to the ones that are intended. In addi-
tion, Web application frameworks nowadays (e.g., Symfonyff] Djangd®} Raild™®) provide
assistance to defensive programming with built-in security features regarding input vali-
dation, form manipulation, authentication and authorization mechanisms. The OWASP
consortium also provide guidance on how to code in a secure manner.

However, designing an application following defensive programming rules is not enough
in practice to prevent vulnerability proliferation because it is subjected to human errors,
which by nature are inevitable, and the rising complexity of Web applications hardens the
task even more.

Vulnerability proliferation can be overcome by deploying an application-level vulnerability
testing campaign: it consists of a set of intrusive test cases, each targeting a certain vul-
nerability type. It may be done manually, automatically, or somewhere in the middle; it can
rely on the source code (white-box), on the running application as a whole (black-box) or
again, somewhere between the two of them (gray-box). Each technique possesses ad-
vantages and drawbacks, be it about its efficiency or its deploying cost (see Chapter [3|for
more information on the state of the art about vulnerability testing).

Application-level vulnerability testing is first performed by developers, but they often lack
the sufficient in-depth knowledge in recent vulnerabilities and related exploits. This kind
of tests can also be achieved by companies specialized in security testing, for example in
Penetration Testing. These companies monitor the constant discovery of such vulnerabil-
ities as well as the constant evolution of attack techniques. But they mainly use manual
approaches, making the dissemination of their techniques very difficult, and the impact
of this knowledge very low. Moreover, such companies work in time boxes, and often
have to reduce their detection scope accordingly. Finally, Web application vulnerability
scanners can be used to semi-automate the detection of vulnerabilities, but they lack pre-
cision and accuracy since they have no knowledge of the application’s logic. Thereby,
they often generate false positive and false negative results, and human investigation is
often required [22, 30].

Model-Based Testing (MBT) [68] is a software testing approach in which both test cases
and expected results are automatically derived from an abstract model of the system
under test (SUT). More precisely, MBT techniques derive abstract test cases (including
stimuli and expected outputs) from an MBT model, which formalizes the behavioral as-
pects of the SUT in the context of its environment and at a given level of abstraction. The
test cases generated from such models allow the validation of the functional aspects of
the SUT by comparing back-to-back the results observed on the SUT with those speci-
fied by the MBT model. MBT is usually performed to automate and rationalize functional
black-box testing. It is a widely-used approach that has gained much interest in recent
years, from academic as well as industrial domains, especially by increasing and mas-
tering test coverage, including support for certification, and by providing the degree of
automation needed for accelerating the test process [20].

The strong lack of accuracy and precision in current vulnerability testing techniques rep-
resents the motivation of this thesis, to which we respond by proposing a Model-Based
Vulnerability Testing approach dedicated to Web application vulnerabilities. This trans-
lates in the two following research objectives (RO1 and RO»):

8https://symfony.com/| Last visited: August 2015]
%https://www.djangoproject.com/ Last visited: August 2015]
Ohttp://rubyonrails.org// Last visited: August 2015]

https://symfony.com/
https://www.djangoproject.com/
http://rubyonrails.org/

4 CHAPTER 1. OVERVIEW OF RESEARCH

RO1: DESIGN AN APPROACH THAT RELIES ON PATTERNS AND MODELS FOR BETTER AC-
CURACY AND PRECISION OF VULNERABILITY TESTING OF WEB APPLICATIONS

Vulnerability test patterns are used to describe testing procedures for each class of vul-
nerabilities [62]. Several security consortia, such as Mitre, CAPEC, and OWASP have all
issued test patterns for the detection of specific vulnerabilities. Research projects have
as well been focused on designing vulnerability test patterns, like the ITEA2 DIAMOND
project [70]. However, such patterns are informal and applying them remains manual.
Using vulnerability test patterns for automated testing still remains a challenge.

Our objective is to formalize vulnerability test patterns into a machine-readable language
that would enable to automatically generate test cases dedicated to the detection of the
targeted vulnerability. To achieve this, we propose to combine formalized test patterns
with a model of the Web application under test, in order to design a Model-Based Vulner-
ability Testing technique for the detection of Web application vulnerabilities. This way, we
combine the accuracy of patterns and the precision of the model to improve the overall
detection of vulnerabilities.

RO»: DESIGN AN APPROACH THAT IS USABLE, SCALABLE, EFFICIENT, AND WITH A GOOD
LEVEL OF AUTOMATION

Model-Based Testing techniques generally suffer of the high cost associated to the design
of models and test case concretization. Indeed, test cases generated from a model are
abstract, since the model is an abstraction of the system. It is the responsibility of the test
engineer to design the model and translate all test cases into executable scripts.
Moreover, Web application development is a fast-paced activity where time is essential.
Therefore, there is a strong need for a usable, scalable and efficient testing approach,
and automated as much as possible.

Our objective is to automate most activities of such approach for vulnerability testing
purposes, by narrowing the information contained in the model and generify formalized
test patterns. In addition, MBT techniques have proven to be scalable and efficient testing
approaches deployed for critical and complex systems.

These two RO raise 3 research questions, which we express in the next section.

1.3/ RESEARCH SCOPE

The purpose of this thesis is to investigate the main problem What is the effectiveness
and efficiency of pattern-based and model-based approaches such as the one we are
presenting for detecting Web vulnerabilities? This research challenge can be broken
down to 3 research questions that are expressed and developed below. We refer to these
questions in Section[8.5]to evaluate the experimentation results.

RQ1 To what extent test patterns applied to a model of the Web application under
test improves the accuracy and precision of vulnerability detection?

On the one hand, penetration testing is becoming more and more difficult as Web sites
are growing in size and complexity. For instance, the OWASP foundation recommends

1.4. CONTRIBUTIONS OF THE THESIS 5

that each user input of a Web application should be tested for XSS using a list of a
hundred XSS attack vector Considering a basic Web form composed of ten fields,
a thorough validation against XSS attacks would represents approximately 1000 tests,
which is clearly not realistic with manual penetration testing.

On the other hand, current automated vulnerability discovery techniques such as Web
application scanners (e.g., AppScan, Acunetix, and so forth) can test for a large percent-
age of technical vulnerabilities. However, they cannot test 100 percent of them since
they usually have issues when dealing with specific cases that require intelligence, like
infinite Web sites with random URL-based session IDs, or automated form submission.
Moreover, automated techniques also have issues to establish a verdict from a test case
execution, and as a result they often produce many false positives.

One research axis of this thesis is to determine if a pattern-driven and model-based test-
ing approach can ally advantages of both manual and automated techniques, by modeling
certain functional aspects of a System Under Test (SUT), especially navigational informa-
tion, to generate test cases that current techniques struggle to obtain.

RQ2 To what extent is it possible to provide generic test patterns for Web applica-
tion vulnerabilities?

A vulnerability test pattern is a formalization of a generic test procedure that aims to test
for a certain vulnerability. In the case of XSS/SQL Injections, it can be as simple as
insert this malicious vector in this area to observe this behavior. Or it may involve more
complex contrivances like forging a Web-form to highlight a CSRF (Cross-Site Request
Forgery) vulnerability, or browse-forcing parts of the Web application that are supposed
to be protected in the case of Privilege Escalation.

Each vulnerability type has a rather unique test pattern, and another aspect of this thesis
is about establishing if test patterns can be represented as test purposes and applied on
a model and interpreted by automated test generation engines.

RQ3 To what extent such Web application vulnerability testing process (based on
patterns and models) may be automated?

This is one of the most attractive properties of MBT in general: its capacity for automat-
ing test generation and execution. However, MBT techniques generally require human
intervention to provide a model of the system under test, and adapt the generated ab-
stract test cases to make them executable on the real system. Given the specificity of
our context, which concerns vulnerability testing for Web applications, we need to find out
the level of automation that can be reached for the major steps of such process, namely
model design, the application of generic patterns on these models, test generation, test
execution, and verdict assignment and reporting.

1.4/ CONTRIBUTIONS OF THE THESIS

This thesis proposes a novel and innovative security testing approach, called PMVT for
Pattern-driven and Model-based Vulnerability Testing, to address Web application vulner-
abilities. The PMVT approach aims to improve the accuracy and precision of Web ap-
plication vulnerability detection by proposing a test generation and execution technique

"https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet| [Last visited:
August 2015]

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

6 CHAPTER 1. OVERVIEW OF RESEARCH

driven by automated vulnerability test patterns composed with a model (called in the se-
quel PMVT model) of the system under test. Patterns describe generic test scenarios
that assess the robustness of the Web application w.r.t. a given kind of vulnerability. Test
generation is achieved by relying on the information contained in PMVT models, espe-
cially the location of the possible user inputs and their associated resurgences, to check
that user inputs are correctly sanitized before being displayed on a Web page. As a major
result, the PMVT approach increases the efficiency of penetration testers when detecting
technical as well as logical vulnerabilities.

To summarize, the main 5 contributions of this thesis are:

e The design of a Web application modeling language, called DASTML, dedicated to
vulnerability testing,

e The formalization of textual vulnerability test patterns into operational generic test
purposes and a contribution to the extension of the test purpose language,

e The creation of a model-based testing process, called PMVT, which composes for-
malized generic patterns and PMVT models for the computation of vulnerability test
cases,

e The engineering of a prototype toolchain that implements the PMVT approach and
instruments its activities,

e The experimentation of the PMVT toolchain on 5 case studies to evaluate the effec-
tiveness and efficiency of the PMVT approach.

The following sections of this chapter present each contribution of the thesis. Then we
provide a short description of the research context, the European FP7 research project
RASE and the story of how the PMVT approach was designed to be one of the key
elements of a security assessment tool suite.

1.4.1/ DOMAIN-SPECIFIC MODELING LANGUAGE

The PMVT process is an extension of MBT and as such, the modeling activity consists of
designing a PMVT model of the Web application under test that will be used to automati-
cally compute abstract vulnerability test cases. This activity is based on Certifylt [45], an
MBT toolchain designed by Smartestin which requires a model designed using the
UML4MBT notation [68],[13], a subset of UML / OCL introduced in Section

One of the main constraints in MBT is the design of models, which is known to be time
consuming. To address this issue, a Domain Specific Modeling Language (DSML) has
been developed, dubbed DASTML for Dynamic Application Security Testing Modeling
Language. It allows the modeling of the global structure of a Web application: the avail-
able pages, the available actions on each page, and the user inputs of each action poten-
tially used to inject attack vectors. It solely represents all the structural entities necessary
to generate vulnerability test cases. The transformation of a DASTML instantiation into
a valid UML4MBT model is automatically performed by a dedicated plug-in integrated to
the modeling environment.

2http://www.rasenproject.eu [Last visited: August 2015]
3http://smartesting.com/ [Last visited: August 2015]

http://www.rasenproject.eu
http://smartesting.com/

1.4. CONTRIBUTIONS OF THE THESIS 7

More precisely, DASTML is composed of 4 entities that match either an element or a
concept related to Web applications. Page entities represent the different pages that
compose the Web application under test. Navigation entities are typically a link or a button
that takes the user to another page, without altering the internal state of the application
nor triggering any function or service of the application. Action entities are similar to
navigation entities, except that they alter the internal state of the application and may
carry data (e.g, in case of a Web form or a parameterized URL). Data entities represent
user inputs and are each composed of a key and a value.

Entities interact with each other based on multiple relationships. For example, pages
where each user input is rendered back are known thanks to a relation between inputs
and pages entities.

The information contained in PMVT models is crucial, not only for conducting attacks, but
also for assessing whether these attacks succeeded or failed. An in-depth breakdown
of the metamodel |'*| of DASTML and a thorough description of each entity is given in
Section[5.3l

1.4.2/ VULNERABILITY TEST PATTERN FORMALIZATION

A Vulnerability Test Pattern is a normalized textual document describing the testing ob-
jective and procedure to detect a particular flaw in systems of a similar nature (e.g., Web
applications). As such, there are as many patterns as there are types of application-level
flaws. The approach presented in this thesis is based on pattern catalogues provided by
dedicated organizations, for instance OWASP and SANS[T_5], as well as research projects
such as the ITEA2 research project DIAMONDSFE] [7Q]. Nonetheless, Vulnerability Test
Patterns are still textual and cannot be processed automatically.

One motivation of this thesis is centered on using textual patterns as starting point and
formalizing them into operational test purposes, in order to automate testing strategies’
implementation and execution. A test purpose is a high-level expression that formalizes
a testing objective to drive the automated test generation on the PMVT model. Test pur-
poses are written in a dedicated language, called Smartesting Test Purpose Language.
It has been originally designed to drive model-based test generation for security compo-
nents, typically Smart card applications and cryptographic components [11]. This lan-
guage has been augmented in order to make test purposes generic, and thus enable
the translation of vulnerability test patterns. Thereby, within the context of vulnerability
testing, a test purpose formalizes a given textual pattern in order to drive the vulnerability
test generation on the PMVT model. Basically, such a test purpose is a sequence of
significant steps that has to be exercised by the test case scenario in order to assess the
robustness of the application under test w.r.t. the related vulnerability. Each step of a
test purpose is a request, such as calling an operation, activating a behavior or reaching
a state.

As a result, multiple test purposes have been designed to tackle major vulnerabilities from
the OWASP Top 10, that is to say Cross-Site Scripting, SQL Injection, Cross-Site Request
Forgeries, and Privilege Escalation. A detailed presentation of each vulnerability lies in
Chapter[2] and their associated test purposes are depicted in Chapter[6]

"http://dictionary.reference.com/browse/metamodel Last visited[August 2015]
Shitps://www.sans.org/ [Last visited: August 2015]
8http://www.itea2-diamonds.org| [Last visited: August 2015]

http://dictionary.reference.com/browse/metamodel
https://www.sans.org/
http://www.itea2-diamonds.org

8 CHAPTER 1. OVERVIEW OF RESEARCH

1.4.3/ PATTERN-DRIVEN AND MODEL-BASED VULNERABILITY TESTING PRO-
CESS

Both test purposes and PMVT models are integrated in a model-based testing process
dedicated to the generation of vulnerability test cases for Web applications.

The PMVT process is a composition of 4 activities:

The first activity concerns the modeling of the Web application using the DASTML nota-
tion. This is done by exploring the application and collecting relevant information in the
model, such as the various pages or states, the possible user interactions within these
pages, as well as user inputs in Web forms, anchors, cookies and HTTP headers.

The second activity consists of the design and / or selection of Test Purposes to cover
specific vulnerabilities. PMVT test purposes are generic and can be applied on any Web
application that has been modeled using the DASTML notation. It is thus possible to se-
lect existing test purposes, such as the ones presented in this thesis, or design new ones
tailored to another vulnerability.

The third activity is about applying the selected test purposes on the model to automat-
ically generate vulnerability abstract test cases. The test generation engine uses test
purposes as guidance to animate the model for the computation of attack traces.

Finally, the last activity involves the concretization of the generated test cases and their
automated execution on the real application, along with an automated verdict assignment.

Each activity of the process is described in Section

1.4.4/ TOOLCHAIN

A prototype toolchain that supports the PMVT process has been developed as part of
this thesis to conduct experiments, and thus assess the validity of the approach. It is
built on top of the model-based testing software Certifylt[8,45], provided by the company
SmartestindT_7]. Certifylt is a test generator that takes as input a test model, written with
UML4MBT, which represents the behavior of the SUT to compute abstract test cases.

The PMVT toolchain embeds several tools to enable test engineers to complete each
activity of the process. It relies on IBM Rational Software Architec@ for the modeling
and test purpose design/selection activities. The RSA modeler that initially allows UML
modeling is augmented with Certifylt plugins that enable the design of UML4MBT models
and test purposes. An additional plugin, developed as part of this thesis, allows the
creation of DASTML model as well as their transformation in a UML4MBT model.

The Certifylt test generation engine is responsible for composing test purposes and mod-
els to compute abstract vulnerability test cases. A second dedicated PMVT algorithm,
plugged to the test generation engine, exports the abstract test cases in JUnit test scripts
integrated to a Mavenizedzg] Java project.

Each JUnit test script contains a sequence of Seleniun'Eo'] primitives (e.g., load a Web
page, click on a link, fill a form field, etc.) that emulate a headless Web browser and
reproduce user actions to conduct attacks. Note that test engineers must provide a table
that matches each abstract data from the model and the concrete data from the real

"http://www.smartesting.com [Last visited: August 2015]
Bhttps://www.ibm.com/developerworks/downloads/r/architect/ [Last visited: August 2015]
"Shttp://maven.apache.org/ [Last visited: August 2015]

20http://www.seleniumhq.org/, [Last visited: August 2015]

http://www.smartesting.com
https://www.ibm.com/developerworks/downloads/r/architect/
http://maven.apache.org/
http://www.seleniumhq.org/

1.4. CONTRIBUTIONS OF THE THESIS 9

application, and in some cases may have to adapt Selenium primitives.

1.4.5/ EXPERIMENTATION

Experiments have been conducted on 5 Web applications. Three of them are dummy ap-
plications that have been made vulnerable for experimentation purposes: (i) Wackopicko
is an open-source photo-sharing platform developed by Adam Doupé [5], (ii) Cuiteur and
(iii) Bookshop are clones of Twitter and Amazon respectively, and have been initially de-
veloped at the Institut FEMTO-ST for a Web development course. The last two Web
applications are real-life systems, both online at the moment of writing, with several thou-
sands of users: (iv) a Romanian eHealth portal called Medipedia (which is also used for
experimentation as part of the FP7 RASEN project, see Section [1.4.6] for more informa-
tion), and (v) a French elLearning portal called stud-E (due to confidentiality issues, we
chose to change its name).

To evaluate the robustness of the real-life case studies and assess the efficiency and
effectiveness of the PMVT approach, test cases were generated to tackle 4 of the most
commonly exploited Web application Vulnerabilities: Cross-Site Scripting, SQL Injections,
Cross-Site Request Forgeries, and Privilege Escalation vulnerabilities (see Chapter 2| for
a presentation of each vulnerability type).

Chapter [/] provides a full description of the toolchain and Chapter [8| presents and dis-
cusses experimentation results of the PMVT toolchain on the 5 Web applications.

In the following section, we introduce the European research project RASEN in which this
work has been conducted.

1.4.6/ CONTRIBUTION WITHIN THE FP7 RASEN PROJECT

The PMVT approach presented in this document has been designed in the context of the
EU FP7 research project RASEI\@ This collaborative research project, driven by SIN-
TEF ICT, has been underway since October 2012 and will complete in October 2015. It
addresses risk assessment, legal compliance, and testing within the area of cybersecu-
rity. To achieve this goal, the project brings together 8 partners from 4 European countries
(Germany, Norway, France, and Romania). The partners fill one or more of the 3 possible
roles in the RASEN project:

e Research Partners: Fraunhofer FOKUS, Université de Franche-Comté / Femto-ST,
SINTEF, University of Oslo.

e Technology Providers: Smartesting, Software AG.

e Use Case Providers: Evry, Info World, Software AG.

The RASEN project develops an approach that allows organizations to conduct security
risk assessments for large-scale networked systems and verify the assessment by means
of security testing.

21http://www.rasenproject.eu| [Last visited: August 2015]

http://www.rasenproject.eu

10 CHAPTER 1. OVERVIEW OF RESEARCH

The RASEN project addresses cybersecurity issues by making interrelated and syner-
getic risk management activity and security testing. On the one hand, it provides support
for deriving test cases from risk assessment results, and on the other hand, it proposes
to use the related test results to verify or update the risk picture and therefore risk as-
sessment.

In a more concrete way, the RASEN project addresses these challenges by means of
3 innovations. The first innovation [60] is a method for risk-based security testing and
legal compliance assessment, which provides a unified approach toward cybersecurity
that addresses both technical and non-technical issues across different levels in the or-
ganizational hierarchy. The second innovation [69] is a tool for risk management, called
RACOMAT, which combines risk-based security testing with test-based risk assessment
into a unified iterative process. The third innovation [46] is an application-specific risk-
based security testing approach that derives test cases from risk assessment results and
test patterns.

The PMVT test generation technique, based on PMVT models and driven by test patterns,
is the keystone of the third innovation, which combines the PMVT approach with the
CORAS method[49], a risk assessment technique based on models. The principle of
this combination is to use the CORAS risk assessment results to guide the PMVT test
generation process by selecting and prioritizing test patterns related to the identified risks.
It also provide traceability between risks and generated test cases to get feedback from
test execution and to highlight which risks revealed to be real vulnerabilities.

1.5/ DISSERTATION STRUCTURE

This thesis dissertation is organized as follows.

The first 4 chapters lay down the context, motivation, and background of the thesis. We
expose the research objectives, the research questions and the contributions in Chap-
ter[11 Then, Chapter [2| defines the 4 targeted vulnerability types that are tackled by the
proposed approach. Subsequently, Chapter|3]is dedicated to the state of the art and prac-
tice about Web application security testing. Finally, Chapter [4] presents the background
work on top of which the PMVT approach is built.

In the next 3 chapters, we detail the technical contributions of the thesis. Chapter [5] de-
scribes the overall PMVT Process and the modeling notation. Chapter [6] the test pattern
formalization into a machine-readable language and its instantiation to address the 4 vul-
nerability types. We present the prototype toolchain that supports the PMVT process in
Chapter|[7] along with its general work-flow.

Chapter [focuses on experimentation and evaluation. We describe the 5 case studies
we included to demonstrate the validity of the experimentation results, which we present
and discuss in depth in this chapter.

This document concludes with Chapter [0 We summarize the work completed during this
thesis and discuss future works based on what has been achieved.

2

PRESENTATION OF THE TARGETED
VULNERABILITIES

Contents
21 Cross-SiteScripting
22 SQLInjections i e e e e
2.3 Cross-Site RequestForgery sl
2.4 PrivilegeEscalation 00000, 21]

Web applications present all the risks that threaten normal applications: compromising,
information leak, reputation damage, information and money loss. A standard Web appli-
cation relies on 3 artifacts: the client, the Web server, and the storage unit. In general,
the client is a Web browser (e.g., Firefox, Chrome, |IE), manually handled by a physical
person. The Web server (e.g., Apache, IIS, nginx) receives requests sent by the client
and issues responses. The communication between them takes place using the Hyper-
text Transfer Protocol (HTTP). The Web server’s end goal is to deliver Web pages to the
client. The storage back-end is usually a database (e.g., MySQL, PostgreSQL, Mon-
goDB). Its purpose is to store data that can be retrieved later, at will.

A typical work-flow involving the 3 artifacts would consists of the client sending an HTTP
request to the Web server that contains data meant to be stored, for instance a blog ar-
ticle. The Web server receives and processes the request, passing the attached data to
the storage back-end for storage. Some time later, in another context, the client issues
a new HTTP request, whose purpose is to receive the previously sent data. The Web
server processes the request, queries the database to retrieve the relevant data, uses it
to compute an HTTP response and sends it to the client.

All these components can present different vulnerabilities and security issues, and may
have different behaviors that will impact the existence and exploitability of vulnerability.
For instance, if a careless user clicks on a malicious link and downloads a Trojan on his
computer, or installs a malicious extension on his Web browser, the hacker behind the
trap can steal the victim’s credentials and compromise any system that the victim has
access. As another example, if the database of a Web application has not been updated
to the last version, and if the form fields of this application are not protected against SQL
Injections, by sending the correct sequence of attack vectors a miscreant can get access
to the root shell of the Web server.

The purpose of this section is to lay down all the vulnerability types that are tackled by the
PMVT approach. These vulnerability types have been chosen specifically based on their

11

12 CHAPTER 2. PRESENTATION OF THE TARGETED VULNERABILITIES

high severity and prevalence, and their complex detectability. Each type is provided with
explanations on its workings and is illustrated with a usage example. We start with Cross-
Site Scripting, a threatening vulnerability because of its almost-infinite attack vector list.
It continues with the most prevalent vulnerability of all according to the OWASP TOP 10,
SQL Injections. Then it highlights Cross-Site Request Forgeries, a direct consequence
of the statelessness simulation of the Web by browsers. Finally, we end this section
with Privilege Escalation vulnerabilities, which are closely related to the logic of Web
applications, thus complexifying their detection.

2.1/ CROSS-SITE SCRIPTING

It is quite common for one to receive emails, sometimes from trusted acquaintances,
requiring to click on a given link leading to a legitimate Website (e.g., by advertising a
sales promotion). However, if one happens to click on the link he/she might become
victim of session stealing, or get redirected to a malicious Website.

This popular hacking phenomena is known as Cross-Site Scripting (XSS). XSS repre-
sents a great part of the most prevalent and dangerous cyber-attacks against Web ap-
plications reported during the last decade; see, for example, OWASP Top Ten 2013 [76],
CWE/SANS 25 [52] and WhiteHat Website Security Statistic Report 2014 [75]. In the
latter, XSS appears to represent between 35% and 67% (depending on the programming
language) of all the serious vulnerabilities discovered in a large panel of Web applications.
As another example, Claudio Criscione reports at GTAC 2013 that nearly 60% of secu-
rity bugs detected in Google software are XSS vulnerabilitiesﬂ XSS was first disclosed
in 1996 during the debut of the Internet, when the first e-stores came online, when the
most enhanced Web applications were using HTML frames, and most importantly when
Javascript was released. This dynamic programming language revolutionized the Web as
people knew it, and developers were suddenly able to create dynamic and interactive ap-
plications with floating menus, pop-ups, and content altering without the need to refresh
the current page. It also received a great welcome from the hacker community who saw
in this language new ways to tamper with Web applications.

An XSS vulnerability occurs each time an application stores (with more or less persis-
tence) a user input and uses it to compute an output without proper sanitation. When
injecting a malicious input, such as a piece of code, it is therefore possible to have it ex-
ecuted by Web browsers. Indeed, if this data is displayed to all the visitors of a Website
(e.g., in a reply of a forum post), then the code is executed on each visitor’s browser,
potentially causing severe damages (and not necessarily visible). XSS is easy to put into
practice and presents a great number of variants; it is also an entry point for many ex-
ploits. For example, attackers can steal session credentials and hijack an active session,
access sensitive or restricted information, or spy on a user's Web browsing habits.

XSS vulnerabilities can be classified into 4 categories?}
When the untrusted injected data (the attack vector) is directly displayed/executed after
being injected, we speak of reflected XSS, and the response containing the attack vector

https://developers.google.com/google-test-automation-conference/2013/presentations[Last visited: Au-
gust 2015]

2https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_%28XSS%29 [Last visited:
February 2014]

https://developers.google.com/google-test-automation-conference/2013/presentations
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_%28XSS%29

2.1. CROSS-SITE SCRIPTING 13

Al =

Attacker]Ii

Injects <script>...</script>

©)

Send sensitive
data to Attacker

@

Browse Web Application

©)

Web Server & DMBS

®

Sends <html>...<script>...</script>...></htm[>

ol

P f: —
Victims

Figure 2.1 — Stored XSS typical workflow

is immediately produced and sent back to the user.

On the opposite, in stored XSS vulnerabilities the attack vector is stored (no matter how)
by the application and retrieved later in another context.

A special case of XSS, called multi-step XSS, requires a user to perform several actions
on the applications (mainly navigation steps) to display/execute the attack vector. In this
thesis, we highlight two types of multi-step XSS: multi-step in a testing, and multi-step
in the conducting of the attack. The first type concerns XSS attacks, reflected or stored,
that are not observable in the immediate server response, but take place in another part
of the application, or in another context (e.g., requiring to authenticate with another user
role). The second type encompasses XSS attacks that require several steps between the
injection and the actual storage of the payload in the DMBS of the application. Notice
that these two groups are not exclusive, and certain complex XSS attacks can be of both
types.

The last category, named DOM-based XSS, works at the level of the victim’s browser
by injecting the attack vector in the URL, replacing a parameter used by a local script to
modify the DOMP| of a Web page.

The difficulty of handling XSS issues is mainly due to the increasing complexity of appli-
cations’ logic: developers need to think of a systematic protection of the displayed data,
which is an error-prone exercise as a given user input may be subsequently displayed in
a large variety of places in the application.

STORED XSS: USAGE EXAMPLE

As an example for stored XSS, we consider a forum board where users can hold con-
versations in the form of posted messages. Creating a new topic or posting a reply is
done through a specific page containing an HTML form with input fields. Upon submis-

Shitp://www.w3.0rg/TR/WD-DOM/introduction.html| [Last visited: August 2015]

http://www.w3.org/TR/WD-DOM/introduction.html

14 CHAPTER 2. PRESENTATION OF THE TARGETED VULNERABILITIES

sion, either a new discussion thread is created or the posted message is appended to
the thread. We also consider a miscreant that has detected a stored XSS vulnerability
in the “body” input field of the form responsible for new messages. The server-side and
client-side source code of this page is shown in Figure [2.2]

A typical stored XSS scenario is depicted in figure On step @, the attacker sets the
trap by injecting a malicious script inside the “body” field input of the message posting
form:

<SCRIPT>
document.location="http://evil.com/store-sid.php?sid="+document.cookie
</SCRIPT>

This script, which will be referred as {payload} from now on, redirects browsers to the
URL “evil.com” using the document.location method. It also appends the content of the
document.cookie variable, which contains the session ID of the victim.

<html>
<?php [...]
// DB query for message posts <div>
foreach ($msg in $messages) { <p>You will never believe this</p>
echo(’'<div><p>’.$msg[title ']. </p>", <p>
‘<p>’.$msg['body’]. </p>", {payload}
‘<div/>"); </p></div>
} [...]
?> </html>
(a) server-side code (b) client-side code

Figure 2.2 — XSS usage example: server-side and client-side code

User inputs are not sanitized by the server, which sends the raw data to the DBMS for
storage. Then, in step @, a curious user decides to visit the topic created by the attacker.
The Webserver makes a request to the DBMS, retrieves the payload, inserts it on the
output document, and sends the response to the user (as shown on step ®). Code
fragments from the server-side and client-side, as depicted in figure show that both
input values title and body are not sanitized and rendered back as is. Step @, the victim’s
browser interprets the DOM and executes the malicious script, resulting in the disclosure
of their session ID. The attacker can therefore spoof requests using a received ID and
impersonate victims.

COMPLEXITY OF TESTING

The 1st, 2nd and 4th categories of XSS are usually well-identified and easily detected by
current vulnerability detection techniques (e.g., Web application vulnerability scanners,
see Section [3.2.7).

However, the 3rd category, which concerns multi-step XSS, represents a challenging is-
sue [22]. Indeed, the result of an attack cannot be seen immediately, and the applications’
logic must be taken into account to know in which part of the application and in which con-
text a given user input is supposed to be sent back to the client.

2.2. SQL INJECTIONS 15

Attacker 5 g,éeft_sl,__ Web Server Sends SELECT... pBMS
=4 usr='a' OR 1=1;
@ .
I

Passes sensitive Sends sensitive
data to Attacker data to Web server

Figure 2.3 — SQL Injection: Typical Workflow

2.2/ SQL INJECTIONS

Injections (such as SQL, but also OS, LDAP|7_f], and so on) are considered the most threat-
ening and prevalent vulnerability type. It has always been on top of the OWASP TOP 10
since its first version, published in 2003. Indeed, injection vulnerabilities can be extremely
severe: sensitive data read, removal or corruption, authentication bypass, identity spoof,
denial of access, and in some cases host takeover. They are also very common since
they may be present each time data with inadequate validation is interpreted. Last but not
least, it is quite straightforward for an attacker to conduct an injection vulnerability. During
this thesis, we focused on SQL Injections.

SQL is a special-purpose programming language initially developed by IBM in the early
1970s. There are many varieties of SQL, but today the most commonly used are based
on the ISO/IEC 9075:2011 standard®l The most commonly used variants are MySQL,
Oracle, PostgreSQL, Microsoft SQL, etc. Each variant comes with subtleties in its syntax,
giving plenty of opportunities for hackers to find targeted injector vectors that might be
missed by generic protection mechanisms.

SQL Injections were mentioned for the first time in 1998 by Rain.Forest.Puppyﬁ (a hacker,
security consultant, and author of the RFPOLICY, a method of contacting vendors about
security vulnerabilities found in their products) in a Phrack articleﬂ His conclusion about
SQL Injections became a popular quotation: “don’t assume user’s input is OK for SQL
queries”. Even today, whereas SQL Injections have been around for almost 20 years and
a lot of protection mechanisms have been designed, recent reports show that the number
of exploits from SQL Injections is still alarming. In a report from 2014 [48], Ponemon
Institute LLC expresses that 65% of organizations participating in the study experienced
an SQL Injection attack that successfully evaded their perimeter defenses in the last 12
months.

Very much like XSS, SQL Injection attacks exploit the trust applications have in their
users. They take place when data coming from an untrusted source enters an application

4https://tools.ietf.org/html/rfc4510 [Last visited: August 2015]

Shttp://www.iso.org/iso/home/search.htm?qt=90758&sort=rel&type=simple&published=on [Last visited:
August 2015]

8hitp://lists.jammed.com/ISN/2001/10/0032.html [Last visited: August 2015]

http://www.phrack.org/archives/issues/54/8.txt [Last visited: August 2015]

https://tools.ietf.org/html/rfc4510
http://www.iso.org/iso/home/search.htm?qt=9075&sort=rel&type=simple&published=on
http://lists.jammed.com/ISN/2001/10/0032.html
http://www.phrack.org/archives/issues/54/8.txt

16 CHAPTER 2. PRESENTATION OF THE TARGETED VULNERABILITIES

(e.g., through a form input field), and is used to construct an SQL query, for instance
untrusted data injected into data-plane input and sent to an SQL interpreter. By supplying
an SQL code fragment instead of a nominal value as input, with respect to the syntax of
the initial SQL query, hackers can alter the semantic of the request. As a consequence,
the database server is tricked into running an arbitrary, unauthorized, unintended SQL
query that implies unwanted effects on the integrity of its data.

Examples of SQL Injection exploits, such as the one presented in Figure and dis-
cussed later in the next section, are anything but rareﬁ In 2011, various Websites owned
by Sony (sonymusics, sonypictures) were compromised by LulzSec, a black hat computer
hacker group. They managed to dump the entire database and disclosed its content to
the Internef’] In December of 2014 archos.com, the Website of the French smartphone
maker Archos, was compromised by an SQL Injection attack conducted by a hacking
group know as “Focus’m They claimed to have dumped 100,000 customer records.

SQL INJECTION: USAGE EXAMPLE

<?php
Username [
/ Email $usr = $ POST["usr’];
$pw = $ POST['pw’];
Password // build query:

$sql = "SELECT x FROM users "+

"WHERE usr = ’'$usr’ and pw=MD5($pw’)";
// execute query:

Login $result = mysql_query($sql) or die();
[...]

7>

+ Remember Me?

Don't have an account? Register Forgot Password?
(a) Authentication form (b) Server-side Authentication Process

Figure 2.4 — Authentication: Server-side and Client-side

To illustrate SQL Injections we consider an eLearning Web portal, where users have ac-
cess to various courses. They can download course material, do exercises and quizzes,
pass exams, send messages to their teachers and fellow students, and so on. To get
access to the platform, students must authenticate to the portal by providing their creden-
tials (username and password).

We present below the syntax of the SQL query, whose purpose is to verify whether a user
entry matches the provided username and password:

SELECT + FROM users WHERE usr="$usr’ and pw=MD5('$pw’);

When students provide their credentials using the authentication form (see Figure [2.4d),
for instance “john” as username and “@doedoe1!” as password, the server configures
the query by replacing $usr and $pw by their corresponding value and submits the crafted
request to the DBMS for interpretation (see Figure [2.4b). The problem in the server

8http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/ [Last visited: August 2015]
%http://www.pcmag.com/article2/0,2817,2386362,00.asp| [Last visited: August 2015]
"Ohittp://www.scmagazineuk.com/up-to- 100k-archos-customers-compromised-by-sgl-injection-
attack/article/395642/ [Last visited: August 2015]

http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/
http://www.pcmag.com/article2/0,2817,2386362,00.asp
http://www.scmagazineuk.com/up-to-100k-archos-customers-compromised-by-sql-injection-attack/article/395642/
http://www.scmagazineuk.com/up-to-100k-archos-customers-compromised-by-sql-injection-attack/article/395642/

2.2. SQL INJECTIONS 17

implementation comes from the lack of input sanitation: the received values are passed
on raw to the DBMS. As result, attackers can supply an SQL fragment as input and alter
the initial semantics of the query. A general scenario for SQL Injection is depicted in

Figure[2.3
For example, if a miscreant injects a’ or 1=1;- aslogin and a random value as password
(step @), it changes the query:

SELECT x FROM users WHERE usr="a’ or 1=1;—— and pw=MD5($pw’) ;

The SQL fragment injected by the miscreant is composed of 3 distinct parts:

e| a [thepurpose of the first partis to respect the SQL syntax imposed by the
preamble of the query. It provides a value, a, and closes the Boolean equality test
with a simple quote;

e | or1=1 [this is the part that modifies the semantic of the query by changing the
comparison predicate of the “WHERE” clause. Because 1=1 is always true, when

coupled with a “OR” operator it cancels “WHERE” clause.

e[— [thislastpartcloses the query and comment the rest of the initial request,
to preserve the syntactic correctness of the request.

The conduction of this attack is depicted in Figure[2.3] Upon reception of the credentials,
the Webserver configures the SQL query and passes it on the DBMS (step @ in the
figure). The injection of this particular payload forces the DBMS to retrieve the whole
content of the “users” table (step @ in the figure). As a result, depending on how the
server treats the resulting data, the miscreant may be able to bypass the authentication
form and log in using the credentials of the first users entry (step @ in the figure). It often
corresponds to the first user registered, therefore the probabilities that this user holds
extensive permissions (e.g., a teacher or worse, an administrator) on the application are
high.

COMPLEXITY OF TESTING

Detecting SQL Injection vulnerabilities, like Cross-Site Scripting, can be performed by in-
jecting attack vectors through user input and analyzing the server’s response. In some
cases, it may be very simple to fingerprint a database to unveil a vulnerability; by sup-
plying as input a certain attack vector that will affect the syntactic correctness of the
initial SQL query, it is possible to make the execution of the request fail on the back end
database, which will generate an SQL exception. The evidence of an SQL exception er-
ror is often a manifestation of a vulnerability that can be exploited. Most automated tools
are able to detect these vulnerabilities with a high level of confidence. In other cases
though, it can be much more complex: when the back end database does not generate
exception errors. There is no technical telltale on whether the request was interpreted,
and one must resort to other techniques while being “blindfolded”. These vulnerabilities
are referred as Blind SQL Injections.

When it comes to Blind SQL Injections, fingerprinting techniques consists of performing
several attacks directed toward the same input, each one with a different goal, to seek
for variations in the server’s responses. For example, time-delay techniques compare the

18 CHAPTER 2. PRESENTATION OF THE TARGETED VULNERABILITIES

server’s response time between two injections. One attack vector will compromise the
syntax of the query, resulting in a fast response from the server since it does not involve
any search over the database. The second attack vector, on the other end, will alter the
request to return as many entries as possible: the end-goal is to force processing time.
Observation is done by comparing response times; a big enough time gap is a good
indication of the presence of an SQL Injection vulnerability. Another technique compares
the nature of the responses, and generally involves 3 injection vectors. The first one is
a nominal input that triggers the intended behavior of the application. The second one
tries to change the semantic of the request to return as much entries as possible. The
third vector is the opposite: it tries to make the request return no entry. A difference in
the outputs is an indicator of the presence of a vulnerability. The detection of Blind SQL
vulnerabilities is a source of trouble for automated tools because identifying variations in
responses often implies understanding the workings and the logic of a Web application,
thus requiring human intervention.

Along the lines of XSS, SQL Injections can be multi-step (also mentioned as “second
order SQL Injections”), when injections are not immediately sent to the DBMS, but require
specific user actions from the injection page to reach the actual execution of the query.
Automated tools struggle to detect these vulnerabilities because, once again, they are
generic and hence, not aware of the logic of Web application [7].

2.3/ CROSS-SITE REQUEST FORGERY

Cross-Site Request Forgery (CSRF) has often been an underestimated vulnerability, but
it is well present in the OWASP TOP 10 since 2007, being ranked 5th in 2007 and 2010,
and 8th in 2013. Although protecting Web applications against this vulnerability is straight-
forward, many CSRF attacks are still reported on a regular basis. The fact is that CSRF
attacks remain in the shadow of the most common, highest profile vulnerabilities like
Cross-Site Scripting and SQL Injections. As opposed to Cross-Site Scripting attacks that
exploit the trust a user (or rather his Web-browser) has in a Web application, Cross-Site
Request Forgery attacks exploit the trust a Web application has in its users. However, ex-
ploiting a CSRF vulnerability needs only basic knowledge of the targeted Web application
to quickly identify relevant actions and victims to trick (e.g., by using phishing). During
the last decade, lots of Web applications have been compromised by CSRF attacks. The
most explicit example is the “Samy Worm” [42], which in fact is a combination of an XSS
vulnerability with a CSRF vulnerability. This worm infected millions of Myspace accounts
in less than a day. Several other major Web applications have been compromised like
Ebay, Youtube and INGDirect.

Actions of a Web application (GET and POST requests) are usually linked to specific
URLs (e.g., http://bank.com/transfer.php?amount=10000&receiver=42982875983).
A direct request to such a URL allows its associated action to be performed. A CSRF
attack consists of tricking a victim into making a specific request through his/her browser,
that will ultimately lead to unwanted consequences on a trusted Web application. It is
qualified as malicious because it indirectly impersonates a user to perform actions only
he/she or a restricted group of users is allowed to do, and without him/her knowing. A
typical action would be to modify a user’s contact email, his/her password, or add items
to a shopping cart and even activate the payment if the user has stored his/her credit
card’s info. That is, CSRF attacks target actions that modify the internal state of the Web

2.3. CROSS-SITE REQUEST FORGERY 19

% Processes
“] request
F O\ Collects results

Attacker >~ @

Fishing
- @ Login to the

XSS Web Application

©)

U
M Sends request
- without consent
Victim

Figure 2.5 — CSRF: Typical Workflow

application, but they can also be conducted to access sensitive data. As shown by the
previous example, major targets are social networks, Webmail clients, banking Websites,
etc.

CSREF attacks are possible when the targeted Web application does not check whether
an incoming request is really originating from the user owning the active session. More
precisely, there are 3 different ways for a user to send a GET or POST requele] to a
Web application: (i) from the application, by clicking on a link or submitting a form, (ii)
from the outside, by clicking on a link on a Website that points the URL responsible for
the request, and (iii) by manually typing the URL in the browser’s navigation bar. If the
Web application cannot determine how the request has been made, then it is vulnerable
to CSRF.

CSRF: UsAGE EXAMPLE

We consider in this example a banking Web portal where users can manage their ac-
count: check their balance, go through recent transactions, and transfer money to other
accounts. One common mistake made by the developers of such portal is the absence of
URL rewriting, resulting in the disclosure of sensitive actions. For example, the URL that
triggers a money transfer from the current session to the account n° 28728472647 has
the following structure:

https://www.bank.com/money_transfer.asp?amount=1000&target_acc=28728472647

It should be noted that actions being displayed in URLs is not a prerequisite for the pres-
ence of a CSRF vulnerability. Hackers can record traffic between their browser and Web
application to deduce URLs and key values.

"http://www.w3schools.com/tags/ref_httpmethods.asp| [Last visited: August 2015]

http://www.w3schools.com/tags/ref_httpmethods.asp

20 CHAPTER 2. PRESENTATION OF THE TARGETED VULNERABILITIES

A hacker has detected the vulnerability and decided to deploy a scam in order to steal
money from other accounts, by forcing clients to make the transfer themselves without
their consent.

In step @ (as shown on Figure 2.5), the future victim authenticates to the vulnerable Web
portal. Although authentication is not always mandatory to exploit a CSRF vulnerability,
sensitive actions with consequences on a system are often session-related.

In step @, the attacker tries to trick the victim into issuing the request, for instance with
fishing; it can take the form of an email containing a direct link, or it can be embedded in
an XSS vulnerability.

In step ®, the victim has been tricked (e.g., clicked on the link), resulting in an unwanted
request toward the vulnerable Web application. Because the victim has a running session
on the application, his browser appends the corresponding credentials to the request.

In step @, the banking portal receives the request along with credentials. Since it has no
protection against CSRF, the action is performed.

In step ® the attacker receives the money he/she stole from the victim without his/her
consent.

COMPLEXITY OF TESTING

CSRF mitigation can be easily implemented. The preferred protection mechanism against
CSRF is the synchronizer token pattern. It consists of generating a unique randomly-
generated token, which is inserted into sensitive URLs (as a key/value parameter) and
Web forms (as a hidden field). Users who click on a link or submit a Web form will there-
fore send the token along with their input data. In this way, servers check for the good
reception of the token. If the received token is missing or if it is different from the one
that was generated and sent with the last server response, then the incoming request is
dismissed. This mechanism ensures that requests are made from within the Web appli-
cation GUI.

Another protection mechanism is the challenge-response method, which involves a veri-
fication step by the user before an action is completed. However, many Web application
developers ignore these protection mechanisms, and a detection phase is required.

Automated, universal CSRF detection is a tough challenge, especially if it is based on re-
quest/response analysis: for instance, the presence of tokens in requests and responses
does not ensure that they are processed by the server. Hence, the most reliable method
to check whether a Web application is vulnerable to CSRF is to actually tamper with it, if
possible in a harmless way.

Nevertheless, a common test scenario for CSRF detection consists of first performing the
action under test in a nominal way, following the application’s intended behavior, and sav-
ing the server’s response for comparison. In a second step, it implies simulating a user
caught in a fishing scam, for example by clicking on a link whose consequence is to send
a direct request to the server to perform the action under test. The user must be authen-
ticated to the Web application beforehand. Then, verdict is assigned by comparing the
two responses. Another test scenario consists of swapping tokens between two separate
user sessions and observe whether the server performed the actions or rejected them.
However, this technique only shows if tokens are taken into account and does not ensure
the presence of a CSRF vulnerability, since the presence of tokens may only be a decoy.

Although efficient, these scenarios are not straightforward, especially if conducted au-

2.4. PRIVILEGE ESCALATION 21

tomatically. First, they require the ability to authenticate as a user with permissions to
perform the action under test. Being able to provide valid credentials and successfully
authenticate to a Web application is not always as straightforward as one thinks for au-
tomated scanners. Second, it means navigating to the page displaying the action, which
requires some knowledge of the application’s logic. Third, automatic verdict assignment
is often complex because there may be no direct telltale indicating that an action has
been completed or rejected.

2.4/ PRIVILEGE ESCALATION

The 3 previous vulnerability types addressed in this chapter, XSS, SQL Injection and
CSREF, are all technical flaws. While there are cases where understanding the application
under test is mandatory to conduct vulnerability testing, the detection process is often
mechanical and can be performed the same way on most systems. On the contrary
to these vulnerability types, Privilege Escalation is a logical vulnerability, meaning it is
closely linked to the logic of applications. Privilege Escalation is part of a greater vulnera-
bility type known as Missing Function Level Access Control, which is the 7th most highly
ranked Web security risk, according to OWASP.

Whereas authenticating to a Website is probably one of the most frequent tasks per-
formed by users multiple times every day, in Web applications with different user roles,
an authentication mechanism is not enough to handle the delivery of content tailored to
the user and its associated role. In these cases, users must have the authorization to ac-
cess privileged functions. Authorization determines whether the authenticated user can
perform an action and whether the resources can be accessed, depending on its “role”.
Roles management is usually handled with the help of an Access Control List (ACL),
which is a list of Access Control Entries (ACE). An ACE is a combination of two values:
a user or a role, and a type of resource or a specific resource. In other words, an ACE
allows a certain user to access a certain resource.

However, the main problem is that Web application development languages do not embed
built-in support for authorization policies specification. Therefore, access control mecha-
nisms are implemented by Web developers, potentially making them flawed by design. A
common error is to rely on the GUI to restrict user actions. It consists of hiding/disabling
direct links to restricted areas to users that don’t have the sufficient privileges. In this
scenario, all it takes for one to access a function is its URL. Finding URLs to restricted
functions is just a matter of time (URL bruteforcing, social engineering, etc.).

In other cases, the authorization scheme is extremely complex that makes it prone to
human errors and at risk of not being restrictive enough. Indeed, reports of vulnerabilities
related to permissions, privileges and access control are very frequent. Moreover, they
are often associated with a high CVSS Severity and their victims are first class companies

such as IBM?| Ciscd™} or Samsund™|

2https://Web.nvd.nist.gov/view/vuln/detail ?vulnld=CVE-2015-0160| [Last visited: August 2015]
3https://Web.nvd.nist.gov/view/vuln/detail ?vulnld=CVE-2015-0713| [Last visited: August 2015]
"4https://Web.nvd.nist.gov/view/vuln/detail ?vuinld=CVE-2015-3435 [Last visited: August 2015]

https://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-0160
https://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-0713
https://Web.nvd.ni