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Résumé

Ce manuscrit est consacré à l'étude du bruit de phase dans les oscillateurs optoélectron-
iques (OEO) à ligne à retard à �bre optique. Cette classe particulière d'oscillateurs dans la
gamme micro-onde a été développée (1994) récemment, et étudiée par di�érents groupes
de recherche dans le monde, du fait de son important potentiel en termes de très faible
bruit de phase à court terme (applications radar, spatial, et télécom haut débit).

Sur la base d'un modèle théorique s'appuyant sur une description temporelle, nous
avons étudié la dynamique de l'oscillateur, et ses propriétés de bruit de phase. L'équation
di�érentielle stochastique, non linéaire, et à retard, est directement dérivée de la descrip-
tion des di�érents éléments de la chaîne d'oscillation : la non linéarité prédominante d'un
modulateur électro-optique de Mach-Zehnder, le temps de retard induit par plusieurs
kilomètres de �bre, la dynamique résonante du �ltre micro-onde à 10 GHz sélecteur des
modes à retard, et les di�érentes sources de bruit additif et multiplicatif (laser, photodi-
ode, ampli�cateur RF). La linéarisation de ce modèle autour du point de fonctionnement a
permis d'obtenir une expression théorique du bruit de phase et d'amplitude de l'OEO. Ces
résultats sont confrontés à une exploration expérimentale des caractéristiques de bruit, à
la fois des composants utilisés, et du système complet de l'OEO en régime d'oscillation
monomode. Des techniques de mesure de bruit ultra-sensibles, utilisant des architectures
opto-électroniques d'un banc de mesure, ainsi que des principes de mesure par corréla-
tion, sont décrites. Une très bonne correspondance entre théorie et expérience est ainsi
obtenue. Le travail a abouti à l'identi�cation quantitative des principales sources de bruit
limitant les performances de l'OEO. Par l'utilisation de composants optimaux, un niveau
de bruit de phase de l'ordre de −143 dBrad2/Hz à 10 kHz de la porteuse à 10 GHz, a été
atteint. La discussion des sources de bruit résiduelles a également permis de proposer des
améliorations pour les architectures futures d'OEO.
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Abstract

This work is dedicated to the study of phase noise in �ber optic delay line optoelectronic
oscillators (OEO). This particular class of microwave range oscillator was recently intro-
duced (1994), and intensively explored due to its very attractive potential for ultra-low
short term phase noise features. It is intended for applications to Radar, Space, and high
bit rate optical telecommunications.

On the basis of a time domain theoretical approach, the dynamic and the phase noise
properties of the OEO was investigated. A stochastic, nonlinear, delay di�erential equa-
tion was derived directly from the description of the oscillator loop chain: the most rele-
vant nonlinearity of a Mach-Zehnder electro-optic modulator, the km-long �ber delay line,
the dynamics ruled by the microwave amplitude selective �lter, and the di�erent additive
and multiplicative noise sources (laser, photodiode, RF ampli�er). The linearization of
the model around the OEO monomode operating point led to the theoretical description
of the phase and amplitude noise performances. Those theoretical results are compared
with experimental investigations, covering both the device noise characteristics, as well as
the whole oscillator. Speci�c high sensitivity noise measurement techniques were devel-
oped using optoelectronic architectures of the measurement bench on the one hand, and
correlation principles on the other hand. A very good agreement between experiment and
theory is obtained, leading to a quantitative description of the OEO phase noise features,
and highlighting the most relevant noise sources limiting the performances. Selected de-
vices allowed to achieve an OEO phase noise as low as −143 dBrad2/Hz at 10 kHz from
the carrier at 10 GHz. The remaining limiting noise sources are �nally discussed, and
various possible improvements are suggested for future OEOs.
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1

Introduction

Oscillations are almost ubiquitous in the Universe as they are found in many, if not in all,
physical systems, every part of substance. They are used as a reference to measure time,
as a carrier to transfer information and energy. The oscillator can be de�ned as a system
that produces oscillations. Some examples of oscillators are the pendulum, the trumpet,
the electronic generator, the quantum generator (laser), and the atom to mention a few.
And the simplest, most used model of an oscillator is a harmonic oscillator. It is a physical
system that is bound to a position of stable equilibrium by a restoring force proportional
to the linear displacement from this position. It is widely used in various engineering
systems. Usually it is expected that a real harmonic oscillator is as closer, to an ideal
one as possible. But an ideal is not achievable and progress requires higher performances
from engineering systems. That is why the task of improving stability of real oscillators
is always actual.

There are several types and principles of sine wave (harmonic) oscillators in electronics.
A particular type in use depends on frequency region because di�erent principles better
work in frequency regions they are developed for. As a result of increasing information
tra�c volumes, modern telecommunication, radar, signal processing systems go to the X
� V bands (tens of GigaHertz). At present among other types of oscillators, optoelectronic
oscillators (OEO) manifest better stability and �exibility in this range.

The optoelectronic oscillator consists of a laser, a high speed optical intensity mod-
ulator, a long optical-�ber delay-line, a fast photodetector, a mode selection microwave
�lter, and an ampli�er. The modulator, the delay line, the photodetector, the �lter, and
the ampli�er form a closed loop. The laser produces a carrier for optical part or pump
energy to the loop. It is possible to have such oscillator functioning without ampli�er
inside the loop [1]. Stability or spectral purity of oscillations depends on energy stor-
age time of oscillator circuit. The optical �ber delay line determines the loop length or
the energy storage time and therefore determines the quality factor of the circuit. The
selection microwave �lter selects a mode of oscillation. As there is an optical part and
a microwave part, there is an optical and a microwave output, which is also a practical
advantage, depending on the possible application of the oscillator.

An electronic oscillator phase stabilization system based on a �ber-optic delay line was
presented in 1991 [2]. Then a con�guration, consisting of an electro-optical modulator that



2 Introduction

is fed back with a signal from the detected light at its output, was studied by a number of
investigators interested in the nonlinear dynamics [3, 4, 5, 6]. The use of this con�guration
as a possible oscillator was �rst suggested by Neyer and Voges [7]. The interest of their
investigations was, however, primarily focused on the nonlinear regime and the chaotic
dynamics of the oscillator. But Yao and Maleki focused in their research on the stable
oscillation dynamics and the noise properties of the oscillator [8]. The �rst OEO was
demonstrated by them in 1994 [9]. Then a number of researchers extensively studied
oscillator of this type [10, 11, 12]. Other types of optical energy storage components,
such as �ber Fabry-Perot resonators [13], �ber ring resonators [14], and optical micro-disk
resonators [15, 16, 17, 18] were proposed to use instead of an optical �ber delay line.

In this work, investigations are focused on the OEO architecture containing an optical
�ber delay line and on its phase noise properties.

This thesis is organized in four chapters. Chapter I contains some theory and principles
relevant to an electronic delay line oscillator. Chapter II considers the use of optical �ber
in such oscillator that makes it an optoelectronic delay-line oscillator due to the presence
of optical and electronic parts. It also considers a phase noise measurement bench built
with the use of optical �ber. Chapter III provides some equations and experiments that
allow estimating phase noise of an OEO. Chapter IV contains some architectures and
methods allowing to improve OEO phase noise performance, which were proposed after
analysis, considerations and estimations of the OEO phase noise.
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Chapter 1

Theory and principles of delay line

oscillators

In this chapter, basic theory and principles for representing physical processes in oscillators
and development of delay line oscillators are described. Theoretical developments on
oscillators in general are partly applicable to delay line oscillators, as their main di�erence
consists in the use of a delay line for de�ning and stabilizing oscillation frequency. The
presence of delay line requires however special issues, mainly when considering oscillator
noises. We will �rst concentrate on applicable theory and principles for oscillators in
general, and then particular issues concerned by delay line oscillator will be considered.

1.1 The oscillator

An electronic oscillator converts direct current (DC) to alternating current (AC) or, in
general, redistributes energy from one spectral range to others. It is inherently nonlinear.
If it were linear, oscillation amplitude would grow in�nitely in time. Therefore it is often
divided in two parts, the linear, usually passive, circuit and the nonlinear, usually active,
device. Then all the knowledge on linear phenomena can be applied to consider the linear
part. The nonlinear part can be approximated or linearized depending on phenomena
under study. More exact models require nonlinear di�erential equations.

The most used representation of an electronic oscillator is a feedback loop consisting
of an ampli�er and a positive feedback circuit. The basic form of a feedback oscillator is
shown as a block diagram in Fig. 1.1.

The input Vin is used to set the initial conditions from which oscillation starts, and to
introduce the equivalent noise of the loop components. Since ampli�er gainG is considered
as frequency independent, the feedback circuit is used to select oscillation frequency. In
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Figure 1.1: Block diagram of a feedback oscillator.

cases of harmonic oscillators, the feedback circuit frequency response |β(jω)| has a sharp
peak at ω = ω0.

We will also often use the Laplace transform representation of network functions of
linear circuits. Therefore the complex variable s = σ + jω will indicate the use of this
transform. In fact, the Fourier and Laplace transforms are closely related and passage
from one formalism to another is often done by simple change of variables.

Oscillation starts from noise or from the switch-on transient. So the system should be
unstable in its initial steady state.

The system transfer function of most systems can be represented or approximated as
a rational function of the form

H(s) =
b(s)

a(s)
, (1.1)

where a(s) and b(s) are polynomials.

The system (1.1) is stable if it has no poles in the right half plane (RHP) [19]. The
equation

a(s) = 0, (1.2)

is called the characteristic equation. The system is stable if the characteristic equation
does not have any roots with positive real parts.

The transfer function of the system in Fig. 1.1 is

H(s) =
G

1−Gβ(s)
. (1.3)

So, the characteristic equation of the system is

1−Gβ(s) = 0. (1.4)

Instead of resolving the characteristic equation, the Nyquist criterion is often used to
evaluate system stability. It is based on Nyquist plot that is a plot of real and imaginary
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parts of open loop transfer function for 0 ≤ ω ≤ ∞ (see Fig. 1.2). It is formulated in the
following way [19]. When the loop transfer function does not have poles in the right half
plane, the condition for stability is that the critical point −1 is to the left of the Nyquist
curve when it is traversed for increasing ω. The Nyquist plot also indicates what should
be done to move the curve from the critical point and increase the stability of system.
The �rst curve intersection with negative part of real axis gives the gain margin −1/gm.
It shows how much the loop gain can be increased before it reaches the critical point.
The phase margin ϕm shows the phase lag required to reach the critical point. Stability
margin sm shows the shortest distance from the curve to the critical point.

Figure 1.2: The Nyquist plot.

The open loop transfer function of the system Gβ(s) does not have any pole on the
right hand plane because the open loop is formed of an ampli�er and a passive circuit.
Therefore the system (Fig. 1.1) is unstable and oscillations can start if the critical point
−1 is to the right of the Nyquist plot.

In �simple� cases [20], the condition for the oscillation to increase as de�ned by Nyquist
criterion, can be reduced to the Barkhausen condition: the open loop transfer function
should be more than one |Gβ(jω)| > 1 and argGβ(jω) = 0 [mod 2π] at ω = ω0.

The Nyquist contour is �simple� if it has the following properties [20]:

� It turns clockwise with ω.

� It begins and ends in the origin (a bandpass �lter has this property).

� It crosses the real axis only once for positive ω. If it crosses the real axis more than
once, it should return to the origin (or far to the right from −1 + j0) between the
�resonance� crossings.
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In the next section we will see that our case is the �simple� one and we can use the
Barkhausen condition for oscillation to grow.

As amplitude approaches the determined level, loop gain should decrease to stop
further grow of amplitude.

As a condition for stationary oscillation, the Barkhausen condition [21] is often used

Gβ(jω) = 1, (1.5)

or

|Gβ(jω)| = 1, (1.6)

argGβ(jω) = 0mod 2π. (1.7)

1.2 A delay line oscillator

In a delay line oscillator, a delay line (with delay time τd) is used as a part of feedback cir-
cuit, that is βd(s) = e−sτd . It determines oscillation frequency by the phase relation (1.7).
In this case, multiple oscillation modes that are determined by the following equation are
possible

ωlτd = 2π l, integer l. (1.8)

Therefore a mode selection (narrow passband) �lter with the central frequency equal
to the desired mode l = m frequency ωm = 2π

τd
m should be also included in the feedback

circuit. A resonator type �lter is a good choice because it has the transfer function with
a non-�at maximum and allows to create the Barkhausen condition only for one mode
without necessity of very high quality factor Q. Its transfer function can be de�ned as
follows

βf(s) =
ωm
Q

s

s2 + ωm
Q
s+ ω2

m

. (1.9)

A delay line can de�ne stability of the system if it determines the frequency of the
system. Other components, primarily the �lter, have minor contribution. That is [21]

d

dω
arg βd(jω)� d

dω
arg βf(jω) at ω = ωm, (1.10)

because the higher the phase slope the less frequency deviations can be sustained in the
system. Equation (1.10) is equivalent to

τd � τf, (1.11)
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where τf is the �lter group delay

τf =
2Q

ωm
. (1.12)

As a consequence of the condition (1.11), �lter bandwidth contains several modes ωl.
Therefore it is necessary to consider positions of system poles to see possible oscillating
conditions. The transfer function of the open loop Gβ(s) = Gβd(s)βf(s) is

β(s) =
ωm
Q

Gs e−sτd

s2 + ωm
Q
s+ ω2

m

. (1.13)

And the system characteristic equation is

1− ωm
Q

Gs e−sτd

s2 + ωm
Q
s+ ω2

m

= 0. (1.14)

Solution of this characteristic equation is well described in Ref. [21]. The system
poles positions are illustrated in Fig. 1.3.

Figure 1.3: Symmetric positions of the poles of the transfer function H(s). H(s) describes
the delay-line oscillator with a resonator as the mode selection �lter.

The possible positions of poles with respect to ωm are as follows:

1. The mth pole created by the delay line exactly corresponds to ωm as shown in
Fig. 1.3.
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2. The mth pole created by the delay line shifted in relation to ωm as shown in Fig. 1.4.

3. The mth and (m+ 1)th or (m− 1)th poles created by the delay line are shifted so
that they both have equal position relating jω axis as shown in Fig. 1.5.

Figure 1.4: Asymmetric positions of poles of transfer function H(s) of the delay-line
oscillator with a resonator as the mode selection �lter.

The �rst case is optimal amongst others. The second and third cases produce ad-
ditional instabilities. So it is necessary to tune poles positions the have the optimal
positions. The tuning methods will be described further in the Section 2.1.

1.3 Stochastic nonlinear delay di�erential equations for

delay line oscillators

In previous sections, we considered the description of oscillator using deterministic linear
equations. It is an approximative description of oscillator processes, which is nevertheless
very helpful for understanding relatively simple processes. But to understand oscilla-
tor more deeply, a more complex model taking into account other physical processes is
necessary. When tackling the problem of high spectral purity of oscillations, we often
deal with stochastic processes. For example, the phase dynamics can be represented as
a Brownian motion [22] or as a di�usion [23]. We use the phase di�usion approach in
our work, according to which the phase of an oscillator undergoes a di�usion process,
similar to a one-dimensional Brownian motion because of small perturbations since it can
not be stabilized to a given value. Therefore stochastic description should be present in



1.3. Stochastic nonlinear delay differential equations for delay line

oscillators 9

Figure 1.5: Symmetric positions of poles of transfer function H(s) of the delay-line os-
cillator with a resonator as the mode selection �lter with two poles on the imaginary
axis.

the oscillator equation. As it was mentioned earlier, the oscillator is inherently nonlin-
ear. Therefore a nonlinear term describing nonlinear elements of the oscillator should be
included in the equation. A stochastic nonlinear delay di�erential equation is a relevant
tool to describe a delay line oscillator. Since the resonator �lter is included in the loop,
it is relevant to use the second-order di�erential equation of an LCR circuit, including a
nonlinear term and a time delay τd

d2x(t)

dt2
+
ωr
Q

dx(t)

dt
+ ω2

rx(t) + u(x(t− τd)) = 0, (1.15)

where x(t) is a system parameter (voltage, current etc.), ωr is the resonator central fre-
quency, Q is the quality factor of the resonator, u(x(t− τd)) is the function describing the
nonlinear element and the time delay.

In order to include noise e�ects in this equation, we will consider two main noise
contributions.

The �rst contribution is an additive noise, corresponding to random environmental and
internal �uctuations which are uncorrelated from the eventual existence of a microwave
signal. The e�ect of this noise can be accounted for by addition of a Langevin forcing term
in the right-hand side of Eq. (1.15). This additive noise can be assumed to be spectrally
white, and since we are interested by its intensity around the carrier frequency ω0, it can
be explicitly written as

ξa(t) =
1

2
ζa(t)e

jω0t +
1

2
ζ∗a (t)e−jω0t , (1.16)
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where ζa(t) is a complex Gaussian white noise, which correlation is 〈ζa(t)ζ∗a (t′)〉 = 4Daδ(t−
t′), so that the corresponding power density spectrum is |ξ̃a(ω)|2 = 2Da. The parameter
Da is referenced as the di�usion constant. Some authors considered possibilities to use
nonlinear coupling of oscillator present state with its delayed state to decrease the phase
di�usion [24, 25].

The second contribution is a multiplicative noise due to a noisy loop gain. We denote
the normalized gain parameter γ. If all the parameters of the system are noisy, then the
gain γ may be replaced by γ + δγ(t), where δγ(t) is the overall gain �uctuation. We
therefore introduce the dimensionless multiplicative noise

ηm(t) =
δγ(t)

γ
, (1.17)

which is in fact the relative gain �uctuation. Usually we have ηm(t) � 1. This noise is
in general spectrally complex, as it is the sum of very di�erent noise contributions (noise
from the photodetector, from the ampli�er, from CW energy source, etc.).

Thus introducing the two noise terms, Eq. (1.15) becomes

d2x(t)

dt2
+
ωr
Q

dx(t)

dt
+ ω2

rx(t) + (1 + ηm(t))u(x(t− τd)) = ξa(t). (1.18)

We will use this equation in Chapter 3 to derive relations for noise evaluation in an
OEO.

1.4 Bode's integral theorem, application to oscillators

Oscillator stability can be considered using the Bode's integral theorem. The Bode's
integral is used for analysis of stable feedback systems [19]. It holds that∫ ∞

0

ln |ε(iω)| dω = 0, (1.19)

where ε(iω) is the system sensitivity function. It says that if sensitivity is reduced for
one frequency it increases at another frequency. As it was developed for stable systems
it can not be directly applied for unstable systems, such as oscillators. But experience
shows that there is similar behavior of oscillators toward disturbances. Using this concept
emphasizes that while considering the oscillator noise, we should distinguish sources of
noise (noise spectra of disturbances) and the sensitivity of oscillator to the disturbances.
Their interaction gives us the noise pro�le of oscillator close to the carrier frequency. So,
it is important to see if we can apply a similar theorem to oscillators.

We de�ne a sensitivity function of oscillator (see Fig. 1.1) similar to the one in Ref. [19].
Let Vol = GVin be the output of the open-loop system and Vcl = GVin/(1 − Gβ(s)) the
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output of the closed-loop system. Then the sensitivity function of the feedback oscillator
is

ε(s) =
Vcl
Vol

=
1

1−Gβ(s)
, (1.20)

where G is the ampli�er gain, β(s) is the feedback transfer function.

Let's follow a proof [26] of the Bode integral theorem to see how we can use it for
oscillator analysis.

Let l(s) be a proper real, rational function of relative degree nr (di�erence between
number of poles and zeros of a function). Let's de�ne

g(s)
4
=

1

1 + l(s)
, (1.21)

and assume that g(s) has neither poles nor zeros in the closed right half-plane (RHP).
Then ∫ ∞

0

ln |g(jω)|dω =

{
0 for nr > 1

−κπ
2

for nr = 1 where κ
4
= lims→∞ s l(s).

(1.22)

Proof

Because ln g(s) is analytic in the closed RHP,∮
C

ln g(s)ds = 0, (1.23)

where C = Cj ∪ C∞ is the contour de�ned in Fig. 1.6.

Then ∮
C

ln g(s)ds = j

∫ ∞
−∞

ln g(jω)dω −
∫
C∞

ln(1 + l(s))ds. (1.24)

For the �rst integral on the right-hand side, we use the conjugate symmetry of g(s)
(g(s∗) = (g(s))∗) to obtain∫ ∞

−∞
ln g(jω)dω = 2

∫ ∞
0

ln |g(jω)|dω. (1.25)

For the second integral, we notice that, on C∞, l(s) can be approximated by

a

snr
, (1.26)



12 1. Theory and principles of delay line oscillators

Figure 1.6: Contour de�nition.

Figure 1.7: Phase loop block diagram [21].

where a = κ for nr = 1.

We can de�ne l(s) = −Gβ(s) for our case as follows

l(s) =
ωm
Q

(−G) s e−sτd

s2 + ωm
Q
s+ ω2

m

, (1.27)

where Q is the RF �lter quality factor, ωm is the central frequency of the RF �lter, τd > 0
is the delay time. It has nr = 1.

The sensitivity function of the oscillator (1.20) has a pole at jωm. It prevents us from
applying the Bode integral theorem directly. But we can use an in�nitesimal circular
indentation in C, constructed so as to leave the singularity outside and therefore apply
the theorem to analysis of the oscillator.



1.5. Oscillator noise characterization 13

Let's consider the phase-perturbation transfer function of a feedback oscillator as in-
troduced in Ref. [21]. Feedback oscillator phase noise model can be presented as in
Fig. 1.7.

H(s) =
Ψ(s)

Φ(s)
=

1

1−B(s)
. (1.28)

Since the feedback contains a delay line and a resonator

B(s) = e−sτd
1

1 + sτf
. (1.29)

Thus the sensitivity function for phase perturbations of the feedback oscillator

εphase(s) =
1

1− e−sτd
1+sτf

. (1.30)

It has a pole at s = 0 and the relative degree of the function l(s), nr = 1. So, the Bode
integral theorem can be applied with the in�nitesimal circular indentation in s = 0.

So, we can apply the Bode integral theorem to the amplitude and phase sensitivity
functions of the feedback oscillator. Therefore if we reduce oscillator noise sensitivity for
one frequency, it increases at other frequencies. We are mostly interested in the cases
where most of the sensitivity is concentrated near the oscillation frequency (in fact it is
usually the case). But there are sensitivity peaks of the delay line oscillator near the
ωl frequencies, and when we suppress them we should see an increase of the sensitivity
around them.

As we mentioned, we should distinguish between methods for reducing noise sources
in the system (laser noise, ampli�er noise, photodiode noise) and methods for reducing
the system sensitivity to the noises (multiple loops, RF �lter selectivity). Further in this
work we will consider the noise sources and methods for reducing oscillator sensitivity to
the noises.

1.5 Oscillator noise characterization

An ideal oscillator would generate a pure sine wave. In the frequency domain, this would
be represented as a pair of delta functions (positive and negative conjugates) at the oscil-
lator frequency, i.e., all the signal power is at a single frequency. Random perturbations
produce amplitude and phase modulation. That is why all real oscillators have the spec-
trum, which is spread in some degree. The phase noise components spread the power of
the delta functions to adjacent frequencies, resulting in sidebands.

A relatively simple model that was introduced in the early 1960's and was widely
accepted [27, 28] is

V (t) = (V0 + α(t)) sin[2πν0 + ϕ(t)], (1.31)
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where ϕ(t) is a random process denoting phase noise, V0 and ν0 are the nominal amplitude
and frequency respectively; and the amplitude noise α(t) can usually be neglected. Such
a quasi sinusoidal signal has an instantaneous frequency

ν(t) =
1

2π

d
dt

(2πν0t+ ϕ(t)) = ν0 +
1

2π

dϕ(t)

dt
. (1.32)

Frequency noise is the random process de�ned by

∆ν(t) ≡ ν(t)− ν0 =
1

2π

dϕ(t)

dt
. (1.33)

Very often normalized dimensionless frequency �uctuations are introduced

y(t) =
∆ν(t)

ν0

. (1.34)

It can be used for comparison of oscillators at di�erent nominal frequencies.

Two kinds of parameters are most often used to characterize the oscillator spectral
purity:

� spectral densities of phase and frequency �uctuations in the Fourier frequency do-
main;

� variances (or standard deviation) of the averaged frequency �uctuations in the time
domain.

In the Fourier frequency domain, phase and frequency �uctuations are characterized
by respective one-sided spectral densities Sϕ(f) and S∆ν(f). They have a simple relation

S∆ν(f) = f 2Sϕ(f) , (1.35)

which is caused by the time derivative between ϕ(t) and ∆ν(t). The spectral density
Sy(f) is also widely used and related to Sϕ(f) and S∆ν(f) by

Sy(f) =
1

ν2
0

S∆ν(f) =
f 2

ν2
0

Sϕ(f) . (1.36)

Time domain characterization of frequency stability is also widely used since it directly
shows frequency stability on a time interval. The most used variances are the Allan vari-
ance and the modi�ed Allan variance. They are related to spectral densities by integrals
and transfer functions but some information is, however, lost. The Allan variances are
useful for measuring oscillator stability by devices specially developed for this purpose.
They can be rather easily calculated from spectral densities when it is easy to decompose
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the phase or frequency noise spectral density to components of di�erent slopes. It should
be noted that some slopes can be characterized by only one value of Allan variance and
others require also to note the interval between samples τ . If there are spurs in the density
spectrum then the variance calculation becomes rather di�cult. For stationary Gaussian
random processes, the spectral density contains maximum information about the process.
The spectral density also gives more information about other random processes than the
Allan variance. It gives more insight in processes occurring in an oscillator. Further in
this work, we will use mainly the phase noise spectral densities to characterize oscillator
performance.

Phase noise power spectral density (PSD) is typically expressed in units of dBc/Hz (in
industrial applications) or dBrad2/Hz (in scienti�c applications) at various o�sets from
the carrier frequency. Phase noise can be measured and expressed as single sideband or
double sideband values. Manufacturers and engineers prefer the quantity L (f), which is
by de�nition

L (f) =
1

2
Sϕ(f), (1.37)

given in dBc/Hz.

Originally it was de�ned as

L (f) =
one-sideband noise power in 1 Hz bandwidth

carrier power
, (1.38)

but this de�nition gives signi�cant discrepancies between L (f) and Sϕ(f) in the presence
of large noise.

It has been shown from both theoretical considerations and experimental measure-
ments, that the spectral densities due to noise of oscillators can be represented by the
power law model where the spectral densities vary as a power of f [27, 28, 29]. More
speci�cally, Sϕ(f) can be written as the sum:

Sϕ(f) =
0∑
i≤0

bif
i . (1.39)

Frequently encountered phase noise processes [21] are presented in Table 1.1.

Low frequency �uctuations of power spectral density inversely proportional to fre-
quency are observed in various physical, technical, biological, and economic systems [30].
This peculiar phenomenon is called 1/f -noise or �icker noise. Flicker noise can be consid-
ered as one of the major limiting factors for frequency stability because it is ubiquitous
and seems to be a general �uctuation phenomenon mostly connected with collective mo-
tion of particles ([31], p. 1). Noises of other types are easier to eliminate. For example,
1/f 5 noises of thermal �uctuation can be decreased by thermal stabilization.



16 1. Theory and principles of delay line oscillators

law slope noise process

b0f
0 0 white phase noise

b−1f
−1 −1 �icker phase noise

b−2f
−2 −2 white frequency noise (or

random-walk of phase)
b−3f

−3 −3 �icker frequency noise
b−4f

−4 −4 random-walk of frequency

Table 1.1: Noise processes.

The terms of the power law of di�erent power are inherent to di�erent processes and
are a sort of signatures of the processes. Therefore they allow to see what happens in
oscillator and are widely used.

The Allan variance can be determined from the phase noise density spectrum using
[27]

σ2
y(τ) =

∫ ∞
0

Sy(f) |HA(jf)|2 df , (1.40)

where

|HA(jf)|2 = 2
sin(πτf)4

(πτf)2
. (1.41)

This general equation was converted in rather simple formulas for di�erent terms of
the power-law model ([31], p. 79). But the general equation should be applied for PSD of
more complex form that doesn't conform to the power law.

Also we will use the time jitter characterization since it better illustrates the in�uence
of phase noise spectrum pro�le and particularly the spurs on phase stability and is easier
to calculate than Allan variance. The time jitter can be calculated similar to [32] using
the following equation:

σ =
1

2πν0

√∫ fmax

fmin

Sϕ(f)df . (1.42)

This expression is based on the one for the integrated phase noise [33] and is more con-
venient for calculation based on the phase noise PSD.

1.6 State-of-the-art microwave oscillators

Microwave oscillators started with vacuum tubes in 1940. Their theory and technol-
ogy have been advancing for long time. Their varieties in the form of klystrons, re�ex
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klystrons, and magnetrons in microwave generation applications have so good perfor-
mance that they are in use up to the present time. By the late 1970s transistor dielectric
resonator oscillators could provide clean 10 mW of power at X-band in about one cubic
inch of volume. More recently, surface-mount hybrid oscillators and complete Monolithic
Millimetre-wave Integrated Circuits (MMIC) solutions are able to provide necessary per-
formance occupying much less volume and at a fraction of the cost. The requirement of
high spectral purity led to other approaches also. At present time, the most advanced in
terms of the spectral purity among them are based on using:

� a coaxial resonator with frequency multiplication;

� a dielectric resonator with frequency multiplication;

� a crystal resonator with frequency multiplication;

� a sapphire whispering gallery mode resonator;

� an optoelectronic oscillator using a very long delay line;

� an optoelectronic oscillator using a high Q optical resonator.

Examples of these oscillators and their phase noise levels (dBc/Hz) for output fre-
quency of about 10 GHz are presented in Table 1.2. These data are taken from the device
datasheets, which can be found on websites of the companies.

Company Model Type 10 Hz 100 Hz 1 kHz 10 kHz Ref.
Miteq DLCRO15000 coaxial −60 −79 −109 −118 [34]
Poseidon DRO-10.4-FR DRO −59 −86 −111 [21, 35]
Wenzel Agate I OCXO −82 −107 −127 [36]
Poseidon Shoebox WGM SLCO −114 −142 −162 [37, 35]
OEWaves OEO −80 −115 −145 −157 [38]

Table 1.2: Phase noise levels of di�erent microwave oscillators in dBc/Hz.

Frequency multiplication signi�cantly degrades the phase noise level. Therefore os-
cillators based on this principle do not show best phase noise levels even if they have
excellent results for fundamental frequencies.

The OEO oscillator of OEWaves has the best phase noise level in the indicated fre-
quency range. OEOs usually have higher spurious peaks but their output frequencies can
be easily tuned without phase noise level degradation. A sapphire loaded cavity oscillator
(SLCO) at the whispering gallery mode (WGM) [39] competes with OEO. It has very low
spurious peaks. But its frequency is �xed and can be possibly tuned only by temperature
in small range.

The phase noise spectrum of OEwaves OEO [38] is shown in Fig. 1.8. It seems that
it has some bump at frequencies higher than 10 kHz. Probably it is the trace of spurious
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peak. The bump at about 200 Hz can be caused by some problems of measurement or by
supply source noise.

Figure 1.8: OEwaves OEO phase noise spectrum [38].

Recently an OEO without an RF ampli�er in the loop was presented [40]. It operated
at 1.25 GHz and had improved �icker-noise performance (about -70 dBc/Hz at 10 Hz
o�set).

The very perspective direction is the use of crystalline whispering-gallery-mode res-
onators. They can provide Q factor much higher than the optical �ber delay lines can do
and they have very small dimensions (from several millimeters to several micrometers).
WGM resonators generally exhibit Q in the range from 105 in the case of ring structures,
to greater than 1011 for �uorite toroidal resonators [38]. They can be also used as res-
onant electro-optical modulators (EOM). Such resonators exhibit optical quality factors
in excess of 8 · 108. They require only sub-milliwatt of applied microwave power for deep
modulation of light.

1.7 Conclusion

Some basic principles of oscillator functioning and tools for its design and characterization
that are applicable for an OEO are considered in this chapter. A possibility to apply
the Bode's integral principle, which is used to predict behavior of stable control system
with a feedback loop with regard to perturbations, to characterize phase noise sensitivity
of an oscillator is discussed. Performances of state-of-the-art microwave oscillators are
compared.

The �rst optoelectronic oscillators comprised an optical �ber as an intrinsic component
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� delay line. Due to low loss, an optical �ber is irreplaceable for making long delay lines.
In the next chapter, an application of optical �ber as a delay line in oscillators and phase
noise measurement is discussed.



20 1. Theory and principles of delay line oscillators



21

Chapter 2

Fiber delay lines for oscillators and

phase noise measurement

Optical �ber has advantages over microwave coaxial cable, which enable its use as a long
delay line. The main advantage is a very low loss. Typical microwave coaxial cable loss
at 5 GHz is about 1 dB/m and it increases with frequency. Optical �ber loss is about 0.2
dB/km in a wide bandwidth. It enables to create delay lines of several kilometers length
for tens GHz frequency range, which is almost impossible with a microwave coaxial cable.
Optical �ber has a low thermal sensitivity of the delay. Its typical value is 6.85×10−6/K,
a factor of 10 better than the sapphire dielectric cavity. These features enable the imple-
mentation of high spectral purity oscillators and of high-sensitivity instruments for the
measurements of phase noise. In both cases, the optical bandwidth turns into wide-range
microwave tunability [41, 42] at virtually no cost in terms of phase noise.

The �ber refraction index has di�erent dispersion for di�erent spectral regions. The
presence of dispersion can play negative or positive role for a system performance. For
an example of positive role, it allows tuning the delay time through laser wavelength
adjustment [43]. But it can also create delay time �uctuation since the laser wavelength
�uctuates. The latter adds instability when dealing with an optoelectronic oscillator, and
is considered further in this chapter.

2.1 Optoelectronic delay line oscillator

In the basic con�guration, the optoelectronic �ber delay line microwave oscillator consists
(Fig. 2.1) of a laser, a high speed optical intensity modulator, an optical �ber delay
line, a fast photodetector, a mode selection microwave �lter, and an ampli�er. It has
two types of output: optical and microwave [44]. This combination of microwave and
optical domains is advantageous because it connects positive properties of optical and
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Figure 2.1: OEO basic architecture.

microwave components, with their own methods of physical signal processing. As it
was mentioned, optical technology allows creating wide band and long delay line with
low thermal sensitivity. The time delay can be �nely tuned with adjustment of laser
wavelength due to optical �ber dispersion. In their turn, semiconductor lasers allow
adjusting laser wavelength through their stabilized temperature. Transformation from
optical to microwave signal through the photodiode allows avoiding problems connected
with polarization and phase instability of optical beam in the output of the �ber delay
line. The microwave components allow more easily implementing mode selection and
ampli�cation without adding much of amplitude and phase noise.

Let's analyse the OEO in detail. For practical reasons, we had to use components avail-
able o�-the-shelf, mainly intended for telecommunications applications. The microwave
components limit the frequency range to 4-5 GHz around the central frequency of 10
GHz. The OEO is designed for low phase noise that includes high stability of the delay
line also. The oscillation frequency of 10 GHz was chosen since it is a typical frequency
for this class of oscillators.

We used continuous-wave semiconductor lasers EM4 (1561.83 nm, optical power up to
80 mW, EM4 Inc.) and CQF935 (1546.12 nm, optical power up to 24 mW, JDS Uniphase)
since they have di�erent noise and power characteristics and allow to compare their in�u-
ence on oscillator performance. They are powered and controlled by the Thorlabs laser
diode controllers LDC210C (up to 1 A) and LDC202C (up to 200 mA) and the Thorlabs
thermoelectric temperature controller TED200C. The region of 1550 nm wavelength is
the best choice for the low attenuation of the �ber.

Choosing the intensity-modulation method, we discarded a priori the direct modula-
tion of the laser because the chirp induced while applying modulation, inherently, enhances
the phase noise of the microwave signal. Thus, we opted for a Mach-Zehnder (MZ) electro-
optic modulator (EOM). Other modulators, for example based on the acousto-optic e�ect,
are not suitable to microwave modulation frequencies. We choose the EOspace LiNbO3

modulator AZ-1K1-12-PFA-SFA having low half-wave voltage (V π ' 4 V at 10 GHz), so
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that the maximum modulation is achieved with no more than 50 mW (+17 dBm) mi-
crowave power. This choice is important for stability of the half-transparency bias point
because the LiNbO3 is highly sensitive to temperature, thus to power and to thermal
gradients.

A thermalized 4 km �ber performed a time delay of τd = 20 µs on the microwave signal
carried by the optical beam (the corresponding free spectral range is Fτd = 1/τd = 50 kHz
and the Q factor is 628320 at 10 GHz). The optical �ber is a Corning SMF-28 wound on
a cylinder of 15 cm diameter and 2 cm height. The spool with �ber is enclosed in a 5 mm
thick Duralumin cylinder thermally insulated from the environment by 3 cm thick plastic
foam. The cylinder is temperature stabilized within a fraction of a milliKelvin with a PID
control.

For low noise at microwave frequencies, the photodetector can only be a InGaAs p-i-n
diode operated in strong reverse-bias conditions, thus as a photoconductor. Reverse bias
is necessary for high speed, as it reduces the junction capacitance. The need for low noise
excludes other detectors, like the avalanche diode. In our case, the photodetectors loaded
to a resistor are preferable to the (more modern) photodetectors with integrated transcon-
ductance ampli�er because of the possibility to choose a low �icker external ampli�er and
higher maximum input optical power, which allows to decrease the necessary ampli�er
gain. So, we used the InGaAs p-i-n photodiodes DSC40S (Discovery Semiconductors)
with a conversion factor ρ = 0.75 A/W. A 50 Ω resistor is included in the package (see
Fig. 2.2). Connection line impedance is also 50 Ω. Therefore current-to-voltage conversion
resistance is RPD = 25 Ω.

Figure 2.2: DSC40S internal circuit.

A narrow band microwave radio-frequency (RF) �lter of central frequency F0 =
ω0/2π = 10 GHz, and −3 dB bandwidth of ∆F = ∆ω/2π = 50 MHz was used as
the mode selection �lter.

We used microwave ampli�ers AML with gain G = 22 dB. They have special archi-
tecture to provide low �icker phase noise. Their typical level of �icker phase noise is
about −160 dBrad2/Hz at 10 kHz o�set. It is supposed [21] that such ampli�er consists
of several ampli�ers connected in parallel. But this architecture increases the noise �gure
of the whole ampli�er. It is indeed 6 dB, a higher value than the one of other microwave
ampli�ers.
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The optical �ber of 4 km length and the photodiode produce signi�cant re�ection
of light beam. This can disturb laser functioning and create multiple signal transitions
between photodiode and delay line. Therefore it is preferably to include optical isolators
between laser and delay line and between delay line and photodiode.

2.2 Mathematical model of OEO

In Section 1.3, we introduced the stochastic nonlinear delay di�erential equation (1.18)
that can well describe the OEO dynamics. But it should be transformed into the equation
describing OEO. For this purpose, the function of a nonlinear component is de�ned for
MZ EOM

u(t) = β cos2[x(t− τd) + φ], (2.1)

where β = πκρRPDPopt/2VπRF is the normalized loop gain, Popt is the laser power, φ =
πVB/2VπB is the Mach-Zehnder o�set phase, x(t) is the dimensionless variable x(t) =
πV (t)/2VπRF. All optical and electrical losses are gathered in a single attenuation factor
κ. We will not consider the noise terms in this section. So, the dynamics of OEO
microwave oscillation can be described as follows [45]

x+ τ
dx

dt
+

1

θ

∫ t

t0

x(s)ds = β cos2[x(t− τd) + φ], (2.2)

where τ = 1/∆ω and θ = ∆ω/ω2
0 are the characteristic timescale parameters of the

bandpass �lter.

Since we are interested by single-mode microwave oscillations, the solution of Eq. (2.2)
can be expressed under the form

x(t) =
1

2
A(t) ejω0t +

1

2
A∗(t) e−jω0t , (2.3)

where A(t) = A(t) exp[jψ(t)] is the slowly varying complex amplitude of the microwave
x(t). We can simplify signi�cantly the right-hand side term of Eq. (2.2) because the cosine
of a sinusoidal function of frequency ω0 can be expanded as a series of signal harmonics of
ω0. In other words, since x(t) is nearly sinusoidal around ω0, then the Fourier spectrum
of cos2[x(t− τd) + φ] is sharply distributed around the harmonics of ω0 according to the
relationship cos2 z = [1 + cos 2z]/2 and the Jacobi-Anger expansion

eiz cosα =
+∞∑

n=−∞

inJn(z)ejnα , (2.4)

where Jn is the n-th order Bessel function of the �rst kind. Hence, since the �lter of the
feedback loop is narrowly resonant around ω0, it can be demonstrated that discarding all
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the spectral components of the signal except the fundamental is an excellent approxima-
tion. Equation (2.2) can be rewritten as

x+
1

∆ω

dx
dt

+
ω2

0

∆ω

∫ t

t0

x(s)ds = −β sin 2φ

×J1[2|A(t− τd)|] cos[ω0(t− τd) + ψ(t− τd)] . (2.5)

The stable oscillation of the OEO is achieved at the Barkhausen condition (1.6). If
the open loop gain exceeds 1, the excessive energy goes to harmonics and is eliminated
due to the RF �lter and other band limited components (e.g. the photodiode). The
ampli�ers we use in the OEO have −1 dB gain compression at about 17 dBm of output
power, but the EOM has much higher nonlinearity. Other components do not manifest
signi�cant nonlinearity at the usual operation power. So we can use the EOM modulation
characteristic to estimate oscillation amplitude and power at given open loop gain.
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Figure 2.3: Normalized amplitude A vs. loop gain β.

For this purpose, we write the following equation based on Eq. (2.5) in a way similar
to the one described in Ref. [45]

A = βJ1[2A] . (2.6)

It assumes φ = ±π/4 [π], which is usual condition for MZ EOM in OEO. Since we are
interested in A ≤ 1, this Bessel function can be represented by the �rst three terms of its
Taylor expansion and this equation becomes

1

β
' 1− A2

2
+
A4

12
. (2.7)

Resolving this equation for A we get positive solutions meeting the condition A ≤ 1 as

A '
√

3−
√

12/β − 3 . (2.8)
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This equation is illustrated in Fig. 2.3. As one can see, after the threshold β = 1, the
amplitude quickly grows and then its growth slows down. The ampli�er gain compression
(17 dBm corresponds to A ' 0.9) was not taken into account in this equation. It should
produce additional slowdown of the amplitude growth.

This equation allows choosing proper open loop gain to achieve desired oscillation
power and estimating oscillation power using known parameters of the loop components.

2.3 Phase noise measurement

2.3.1 Phase noise measurement methods

When measuring the phase noise of high spectral purity oscillator, one deals with very
low noise components near a strong carrier. This requires measurement methods of high
dynamic range. The required dynamic range can only be achieved by suppressing the
carrier, which can be done in the following ways:

� convolution methods (high Q �lters);

� time domain product methods (using mixers) [46];

� vector di�erence methods (bridge technique) [47, 48].

For general phase-noise measurement, the time-domain product method is the most
appropriate. There are two ways of applying this method: with reference source or with
delay line. The �rst way requires an expensive highly stable and tunable source. When
measuring the phase noise of an oscillator of very high stability, a higher stability reference
source is required. These problems are not present with a delay line, and the measurement
setup time is also smaller. However, with delay line, high sensitivity is only achieved with
very long delay line. Of course, the delay line must exhibit suitably high stability and low
noise. Again the advantages of optical �ber become crucial.

A basic scheme for phase noise measurement including a delay line is shown in Fig. 2.4
[49].

Delaying the signal v(t) by τ , all time-varying parameters of v(t) are also delayed by
τ , thus the phase �uctuation ψ(t) turns into ψ(t−τ). By virtue of the time-shift theorem,
the Fourier transform of ψ(t − τ) is e−j2πτfΨ(jf). This enables the measurement of the
oscillator phase noise ψ(t) by observing the di�erence θ(t) = ψ(t)−ψ(t− τ). The double
balanced mixer saturated at both the inputs, used as a phase detector [50]. By inspection
on Fig. 2.4, it holds that

Θ(jf) = H(jf)Ψ(jf), (2.9)
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Figure 2.4: A basic scheme of phase noise measurement using a delay line [49].

where H(jf) = 1− e−j2πτf , and consequently

Sθ(f) = |H(jf)|2Sψ(f) (2.10)

|H(jf)|2 = 4 sin2(πfτ) (2.11)

The oscillator phase noise Sψ(f) is deduced by applying |H(jf)|−2 to the measured output
Sθ(f). In actual measurements it is important to keep the measurement and the use
of |H(jf)|2 separated because detecting most of the experimental mistakes on Sθ(f) is
signi�cantly easier than on Sψ(f). For f → 0, it holds |H(jf)|2 ∼ f 2. High slope processes
such as frequency �icker (Sψ(f) = b−3/f

3) dominate in this region, which compensates
the decreasing of sensitivity. The phase noise measurement is therefore possible. The
function |H(jf)|2 has a series of zeros, in the vicinity of which the experimental results
are not useful. In practice, the �rst zero sets the maximum measurement bandwidth to
0.9/τ , as discussed in [49].

Some devices, which are components of OEO, should be measured to make sure that
the phase noise is su�ciently low. When a pure sinusoidal signal si(t) of frequency ν
passes through a device under test (DUT), the latter adds its internally generated noise.
Then, the DUT output signal can be represented as

so(t) =
√
R0Po(1 + α(t)) cos(2πνt+ ϕ(t)), (2.12)

where R0 is the impedance and Po is the power at the output of the DUT; α(t) and ϕ(t)
are, respectively, the relative AM noise and the PM noise generated by the DUT.

A measurement system (see Fig. 2.5) similar to the one presented in Fig. 2.4 is tradi-
tionally used to measure phase noise of a device [51]. AM noise is usually much less than
PM noise and the saturated double balanced mixer is less sensitive to AM noise than to
PM noise. Therefore this system allows the measurement of PM noise.

When two identical DUTs are available, the measurement system can be modi�ed by
inserting the second device to the second branch. It doubles the DUT phase noise detected
by the mixer when the noise is statistically independent and thus increases the system
sensitivity. This measurement system is shown in Fig. 2.6. The device D1 is put in the
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Figure 2.5: A basic scheme of phase noise measurement [51].

Figure 2.6: The block scheme of components phase noise measurement. D1 is a device,
D2, D3 are devices of the same type each.

scheme to emphasize that the phase noise common for both branches is not detected by
the measurement system.

The voltage at the output of mixer is de�ned by the following equation

Vϕ(t) = ρϕ [(ϕc(t) + ϕx(t))− (ϕc(t) + ϕy(t))] = ρϕ [ϕx(t)− ϕy(t)] . (2.13)

As one can see, the phase noise common for the two branches is cancelled by the mixer
and only the di�erence of the phase noises in the two branches is measured. The phase
noise of the carrier and of other components in the common path (as ϕc(t)) is eliminated
by the mixer. Only the phase noise of the separate branches is measured, if the branches
are statistically independent. It is also supposed that their mean equals to zero. It can
be expressed in the following way

E
{
|X − Y |2

}
= E {(X − Y )(X∗ − Y ∗)}
= E {XX∗ −XY ∗ − Y X∗ + Y Y ∗}
= E {XX∗}+ E {Y Y ∗}
= 2 E {XX∗}
= 2SXX , (2.14)

where E {} stands for the statistical expectation, the uppercase X and Y are the single-
sided Fourier transform of the ϕx(t) and ϕy(t), SXX is the power spectral density, and
the superscript `*' stands for complex conjugate. In practice, the expectation is replaced
with the average on a suitable number of measured values.
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2.3.2 Photonic delay line for phase noise measurement

Figure 2.7: A basic scheme of photonic delay line channel [52].

Figure 2.7 shows the optical-�ber microwave delay unit [52]. We use a 2 km (10
µs) �ber. As well as for OEO (see the Section 2.1), the �ber spool is enclosed in a
cylinder thermally insulated from the environment and temperature stabilized at room
temperature. The advantage of the temperature control vs. a passive time constant, i.e.,
large metal mass and thermal insulator, is still questionable. For short-term �uctuations
(100 ms or less), the passive stabilization would certainly be preferable because it does
not su�er from the noise inherent in the control. On the other hand, we need to keep the
delay and the phase relationships stable for the duration of the correlation measurements,
which can last up to one day.

As in the OEO, the light source is the EM4 laser, temperature controlled and powered
with a low-noise current source. We choose an EOM JDSU Z5 having low half-wave
voltage (VπRF ' 3.9 V). The available EOM has a low-frequency photodetector with an
output port, which is used to stabilize the bias point as will be shown in Section 2.4.2.
The photodetector is the InGaAs p-i-n diode DSC40S. The microwave signal is ampli�ed
by a low phase noise ampli�er AML.

2.3.3 Cross-correlation method

The measured noise PSD includes the device under test (DUT) noise and the instrument
background. Improved sensitivity is obtained using a cross-spectrum method, in which
two equal instruments measure simultaneously the same DUT. A short description is given
here. The mathematical details and the in-depth analysis of the experimental method are
given in [53].

Let a(t) and b(t) be the background noise of the two instruments, and c(t) the common
noise. By de�nition, a(t), b(t) and c(t) are statistically independent. The two outputs are

x(t) = c(t) + a(t) (2.15)

y(t) = c(t) + b(t). (2.16)



30 2. Fiber delay lines for oscillators and phase noise measurement

We denote the Fourier transform with the uppercase of the time-domain function, thus
a(t)↔ A(jf), etc. The cross-spectrum averaged on m measurements is

Syx(f) = 〈Y X∗〉m
= 〈[C + A]× [C +B]∗〉m
= 〈CC∗〉m + 〈CB∗〉m + 〈AC∗〉m + 〈AB∗〉m
= Sc(f) +O(

√
1/m) . (2.17)

Owing to statistical independence, the cross terms decrease as
√

1/m.

The measurement and the assessment of the instrument background go as follows.

1. With no DUT noise, and maintaining the hypothesis of statistical independence of
the two channels, it holds that c = 0. The statistical limit of the measurement is

Syx(f) ≈
√

1

m
Sa(f)Sb(f) (stat. limit). (2.18)

Accordingly, a 5 dB improvement on the single channel noise costs a factor of 10 in
averaging, thus in measurement time.

2. Breaking the hypothesis of the statistical independence of the two channels, we in-
terpret c(t) as the correlated noise of the instrument, due to environment, crosstalk,
etc. . . Thus, still at zero DUT noise, we get the hardware limit of the instrument
sensitivity

Syx(f) = Sc′′(f) (hardware limit). (2.19)

3. Now we introduce the DUT noise. If (i) m is large enough for the statistical limit to
be negligible, and (ii) the background is negligible as compared to the DUT noise,
the cross spectrum gives the DUT noise

Syx(f) = Sc(f) ' Sc′(f) (DUT meas.). (2.20)

This is the regular use of the instrument.

2.3.4 Dual-channel phase noise measurement bench

Figure 2.8 shows the scheme of the instrument [54]. The instrument consists of two equal
and fully independent channels that measure the oscillator phase noise by comparing its
phase to a delayed copy. The single channel noise is removed using the cross-spectrum
method [Eq. (2.20)] before calculating the oscillator phase noise Sϕ(f) with Eq. (2.10).

Looking at one channel, we observe that the microwave signal is split into two branches
before the EOM, so that the long branch consists of a modulator, an optical �ber (delay
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Figure 2.8: Scheme of the dual-channel instrument for phase noise measurement [54, 52].

τ), a photodetector and a microwave ampli�er, while the short branch is a pure microwave
path of negligible length. This di�ers from the single channel instrument ([49], Fig. 7), in
which the signal was split at the output of the EOM. The absence of the photodetector
and the microwave ampli�er in the short branch, yields lower noise, and in turn faster
convergence of the correlation algorithm. Additionally, lower laser power is needed. A
further, yet minor, reason is that the noise of a Wilkinson microwave power splitter,
shared by the two channels, is negligible for our purposes [55, 47]; conversely, we have no
�rst-hand knowledge in the case of an optical power splitter. The price to pay for the
fully-microwave short branch is that we don't have an optical input, so we are not able
to measure the noise of microwave-modulated light beams.

The two RF ampli�ers increase DUT signal to the saturation level of the mixers at one
port, and maximum modulation index for EOM. They also serve as limiting ampli�ers to
reduce possible contribution of amplitude noise in the total measured noise because it can
have e�ect on indications of the same order � if not greater � than the phase noise [56] in
some spectral windows. The noticeable signal compression appears at the power splitter
input signal level of about +4 dBm. So the DUT power should be at least +4 dBm. The
balance of power between the mixer and EOM is achieved by introducing attenuators.
The power at the second port of each mixer is adjusted by varying the optical power. In
practice, the appropriate RF power level at mixers ports is achieved at the laser power of
about 35 mW.

The mixers are used as phase detectors, with both inputs saturated. In this way, the
amplitude �uctuations have little e�ect on the output signal. The low-pass �lters are used
to eliminate the high frequency components of the mixer output signal. The baseband
ampli�ers are the low �icker-noise DC ampli�ers described in Ref. [57].
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To de�ne proper input power levels, we have done a series of measurements of the
mixer response as a phase detector at di�erent input power according the scheme shown
in Fig. 2.9. One synthesizer is frequency shifted by 159 kHz, that is, 1 Mrad/s and we
could observe triangular curves on the screen of oscilloscope of di�erent slope depending
on mixer input power. The mixer input power was veri�ed with a RF power meter. The

Figure 2.9: The measurement scheme of the phase-voltage conversion factor in a mixer,
at di�erent power levels.

results are shown in Fig. 2.10 as a 3D diagram and for power levels of interest in Fig. 2.11
as a 2D diagram.
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Figure 2.10: The phase-voltage conversion factor of the mixer at di�erent power levels.

As one can see, the 3D diagram of the phase-voltage conversion factor of the mixer
Marki M4-0226LC is symmetric regarding the power at input ports. The sensitivity
of the phase-voltage conversion factor to input power �uctuation decreases at higher
powers. According to the data sheet, the saturation is reached in the range of input
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Figure 2.11: The phase-voltage conversion factor of the mixer at di�erent power levels.

power +7 . . . + 13 dBm. Maximum power ratings without damage for this mixer is +23
dBm at +25 °C and is derated linearly to +20 dBm at +100 °C. So we have enough
large margin of input power to operate in saturation mode for both input ports. We have
chosen the input power +12 dBm to ensure the saturation, because the input power can
slowly �uctuate during measurement cycle. Increasing the input power also increases the
conversion factor and decreases the phase noise measurement bench background noise.

Adjustment of the measurement bench consists in adjusting the phase shift between
the mixer input signals with the phase shifters to obtain the quadrature condition, which
manifests as zero mean voltage at the outputs of the measurement bench.

In principle, the background noise can be measured using an oscillator of lower phase
noise. At present time, this could only be possible with a cryogenic oscillator or with
other exotic sources. Otherwise the background noise can be found using a special setup
excluding the oscillator phase noise from indications. Actually the photonic delay-line
channel of the measurement bench is the same as in the OEO. Therefore we will discuss its
phase noise and the background noise in the next chapter (Section 3.1) while determining
the phase noise sources in OEO.

2.4 Auxiliary components of the measurement bench

The measurement at low Fourier frequencies or at high frequency resolution narrow takes
proportionally long time. Using the cross-correlation method, the measurement time
increases by a factor 10 for every 5 dB noise rejection. For this reason we have to stabi-
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lize the entire system against the temperature �uctuation and other �uctuations of the
environment.

2.4.1 Mixer quadrature control loop

When the LO and the RF ports of a mixer are saturated by sinusoidal signals of the same
frequency ω0, the IF signal contains their product and higher order frequency terms. Their
product is

cos(ω0t+ ϕ) cos(ω0t− θRF) =
1

2
cos(2ω0t+ ϕ− θRF) +

1

2
cos(ϕ+ θRF) . (2.21)

When θRF is equal to π/2 + 2πn (n ∈ N), and when the term 2ω0 and higher frequency
terms are eliminated by low pass �ltering, we have only the term − sin(ϕ)/2, which is
equal to −ϕ/2 for ϕ� 1. Denoting the phase to voltage conversion factor of mixer as ρϕ
[V/rad], we get the mixer output voltage

V = ±ρϕϕ, (2.22)

where the sign is opposite to the sign of π/2 in the quadrature condition θRF = ∓π/2+2πn.

Therefore to use a mixer as a phase detector, the signals at RF and LO inputs should
be in quadrature and the inputs should be saturated. The mixer mean output voltage
equals to 0 V at this condition. It can be easily veri�ed by a DC voltmeter. During
long measurements, the channel delay changes, as well as the oscillator average frequency.
These changes produce signi�cant deviation from the quadrature condition and make
long measurements impossible. A measurement session of one hour requires several hours
warming up. Moreover shields were needed to break air �ow turbulence. That is why a
control loop keeping the quadrature condition is necessary. Let's consider the principle
and the scheme of the control loop that we use in experiments.

The optical length of the photonic delay line is the physical length of the �ber divided
by its refractive index. The latter depends on the light wavelength through dispersion
of the silica �ber. Since the wavelength can be tuned through laser crystal temperature,
it is possible to control the phase of the microwave at the output of the delay line,
φ = ω n(λ)L/c, and thus the relative quadrature condition through laser diode (LD)
temperature controller.

The control can be implemented as shown in Fig. 2.12. The block �I� represents an
integrator, �PID� is the PID controller of LD temperature, �TEC� is the thermoelectric
cooler (a Peltier element), �Th� is the thermistor, �LD PD A� is the optical delay line,
photodiode, and ampli�er, �PS A� is the phase shifter and ampli�er, �F A� is the low
pass �lter and the baseband ampli�er. Some of the blocks are nonlinear but they can be
linearized for the purpose of considering the system stability.
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Figure 2.12: Control loop block diagram.

The LD we use has a thermistor and a thermoelectric cooler element inside. The
thermistor resistance is related to the laser crystal temperature as follows [58]

T (R) =
BvalT0

T0 ln
(
R
R0

)
+Bval

[K], (2.23)

where R0 is the thermistor nominal resistance at temperature T0, T0 is the nominal tem-
perature (typ. 298.15 K = 25 °C), Bval is the energy constant. The values of R0 and Bval

are given in LD datasheets. For the EM4 (EM253) laser: R0 = 10 kΩ, Bval = 3892.

The inverse dependence is

R(T ) = R0e
Bval(T0−T )

T T0 . (2.24)

It can be linearized for the operational temperatures region (+20 . . .+ 35 °C) as

R(T ) = R0

(
1 +

Bval(T0 − T )

T 2
0

)
. (2.25)

To consider the possibility of linearizing the TEC operation, a simple model [59] that
predicts TEC thermal load temperature (T1) as a function of load heat production, TEC
data-sheet numbers, heatsink parameters, TEC drive current, and ambient temperature
can be used.

T1 = (−Π ITEC + I2
TECRp/2 +Q1)/(C1 + Cp) + (Q1 + I2

TECRp)/(Ch + T3) (2.26)

where Π = (Qmax + I2
maxRp/2)/Imax is the Peltier constant, Qmax is the maximum heat

transfer, Rp = Vmax/Imax is the TEC resistance, ITEC is the TEC drive current, Q1 is the
heat produced by thermal load (Watts), C1 is the conductivity (Watts/°C) of thermal
load to ambient, Cp = Qmax/∆Tmax is the TEC thermal conductivity, Ch is the heatsink
thermal conductivity to ambient, T3 is the ambient temperature.
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We don't have most of the data for the TEC of the EM4 laser but we can say that this
function can be linearized in a small interval of temperatures near the operation point.

The thermistor resistance serves as an input signal for the temperature controller
TED200C that controls LD temperature through the TEC element. A desired value of
the thermistor resistance is de�ned by a knob (Vset in the block scheme) on the front panel
of the controller. The controller has also an analog temperature control input �TUNE IN�,
with input range of −10 . . .+ 10 V and conversion coe�cient 2 kΩ/V ± 5%. This voltage
adds to the internal voltage de�ned by the knob and the thermistor resistance setting is
proportional to the sum voltage. The temperature controller TED200C is a proportional-
integral-derivative controller (PID controller) with the transfer function and the time
constant depending on adjustment. Usually it is adjusted so that the actual temperature
reaches the set temperature in short time with at most one overshoot. It can be described
by the following transfer function [19]

HPID(s) = Gp

(
1 +

1

sτi
+ sτd

)
, (2.27)

where Gp is the proportional gain, τi is the integral time, τd is the derivative time. The
heat transfer from TEC to TE can be represented by a model of a rod of length ` and
thermal di�usivity α at the condition of absence of radial heat transfer. The input is the
temperature at one end of the rod, the output is the temperature at another end. In this
case the transfer function [19] is

HTEC-TE(s) =
1

cosh
(√

sτr
) , (2.28)

where τr = `2/α. The thermistor measures the temperature of LD. Therefore the LD
temperature can be considered equal to the one of thermistor.

The optical length of the �ber is the physical length divided by the refractive index,
which depends on optical frequency. This dependence can be calculated with the dis-
persion constant, which can be found in the data sheet of the speci�c �ber at a given
wavelength. Such dispersion constant for optical �ber SMF-28e that we used in our ex-
periments is Dλ = 18 ps/(km · nm) at 1550 nm. Therefore the delay is produced by an
optical delay line of length L, at the wavelength λ is

τDL =
Ln(λ)

c
≈ Ln(λ0)

c
+ LDλ∆λ . (2.29)

In our case the delay is about 10 µs, which is negligible to the response time of the control.

Using the considered approximations and data, we can estimate the static gain of the
open loop excluding the integrator. It can be expressed in the following way

Gstat = CVRCRTCTλLDλω0ρmGm , (2.30)
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where CVR = 2 kΩ/V is the voltage to thermistor resistance conversion factor, CRT

[K/Ω] is the thermistor resistance to temperature conversion factor, CTλ [nm/K] is the
temperature to wavelength conversion factor, and Gm = 100 is the ampli�er gain.

Equation (2.23) can be approximated for small deviations of R at 25 °C as

T (R) = 320.8− 0.0023R . (2.31)

We have the value of CTλ for the JDSU CQF935 laser (about 0.1 nm/K) but not for
the EM4 laser. Both of them are DFB lasers, they have similar construction and almost
the same wavelength. Therefore we will use this value to estimate the possible value of
Gstat. ρm is about 0.445 V/rad at the LO and RF signal power of 12 dBm. Taking into
account these values, we have Gstat = 46.3.

The operating temperature range 27 ± 7 °C gives ±7CTλLDλω0 = ±1.58 rad. In
practice, during phase noise measurements, the deviation from the quadrature condition
is signi�cantly lower. Therefore, this way gives the possibility to control the quadrature
condition during the measurement. Since the quadrature control keeps the quadrature
condition and at the same time the temperature variations are very slow, these variations
can be considered small and the response of the system part from EOM to the output
ampli�er for wavelength deviations can be linearized and the transfer function can be
represented by the product Hλ = LDλω0ρmGm.

Since we linearized the control loop components for small signals, we can write the
transfer function of open loop without the integrator as

HOL(s) =
HPID(s)HTEC-TE(s)

1 +HPID(s)HTEC-TE(s)
Hλ . (2.32)

To determine the real open-loop parameters, we measured the stationary behavior of
the open loop as the output voltage vs. input voltage. This is shown in Fig. 2.13 together
with the thermistor resistance. The output voltage is well approximated by

Vout(VI) = −133V 3
I + 56V 2

I + 8.33VI. (2.33)

The dependencies of Vout and RTE in the �gure are similar. Therefore we can suppose
that the nonlinearity is mainly produced by TEC and TE. This function gives the mean
Gstat = 14 for the range shown. The di�erence between the measured and estimated Gstat

can be explained by the di�erence in CTλ. This means that the wavelength of EM4 laser
is more stable with regard to temperature.1

Then we measured the step response g(τ) by feeding the square wave voltage (100
mVpp) at the �TUNE IN� input (see Fig. 2.14). By matching simulated step response to

1Indeed EM4 is a recent DFB laser, with most probably improved features compared to the JDSU
CQF935, an older device.
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Figure 2.13: Vout and the thermistor resistance vs. VI. The red solid line is the output
voltage Vout(VI) approximation. The green dashed line is the measured output voltage.
The blue solid line is the thermistor resistance.

the measured one, we found parameters for Eq. (2.32). The parameters are: Gp = 3.0,
τi = 0.45 s, τd = 0.15 s, and τr = 1.5 s. The simulated step response is presented in
Fig. 2.15. We have a good correspondence to the measured step response. Therefore we
can use these parameters for estimating the system stability.

Now we consider the integral control2 (the I control). The I control was chosen because
it gives the zero steady-state error and because the controlled parameter (V0) has always
to be zero. Temperature instability typically produces very slow deviations that can be
considered almost a steady-state. The proportional and derivative actions are redundant
in this case. To eliminate any in�uence of the control loop on measurements with fre-
quency bandwidth more than 0.1 Hz, we have chosen the time constant of the integrator
τI = 100 s.

Now we can consider the loop stability. The quadrature open-loop transfer function is

HQOL(s) = HOL(s)
1

sτI
. (2.34)

The Nyquist plot of HQOL(s) is shown in Fig. 2.16. The critical point −1 is on the left
of the Nyquist curve when it is traversed for increasing ω. Therefore the closed loop is
stable. The stability margin is 0.97, the phase margin is 89°, and the gain margin is 160.

Now we will consider the in�uence of quadrature control loop on the measurement

2see Appendix A for technical details on the electronic circuit.
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Figure 2.14: Measured step response.

indications. The transfer function for the phase of DUT is

HϕRF(s) =
ρmGm

1 +HQOL(s)
. (2.35)

The normalized transfer function HϕRF(s) is shown in Fig. 2.17. The value of this
function is 0 dB for f ≥ 0.1 Hz but there is a 0.25 dB bump at 0.34 Hz. So the control
has very little e�ect on the phase-noise beyond 0.1 Hz. The bump is supposedly caused by
the laser temperature control and therefore it can vary depending on the PID controller
tuning.

2.4.2 MZ operating point control loop

The LiNbO3 MZ modulator is highly sensitive to temperature. The microwave power
a�ects the crystal temperature via the Joule e�ect in the termination. At the scale
of several hours, the ambient temperature also changes signi�cantly. So, the MZ half-
transparent bias point is subject to permanent change. This creates systematic errors.
To stabilize the operating point and eliminate this error, we have designed an Integrator
controller that controls the bias so as to keep the MZ modulator semi-transparent in
average.



40 2. Fiber delay lines for oscillators and phase noise measurement

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3
0

0.2

0.4

0.6

0.8

1

Time (s)

g

Figure 2.15: Simulated step response.

The JDSU Z5 modulators used in the phase noise measurement bench have internal
photodiodes for bias and power control. Since we deal with slow temperature variations
as in the case of the quadrature controller, and since we also want the zero steady-state
error, we use an I controller. The block diagram of the controller is shown in Fig. 2.18.
The LD and the JDSU Z5 modulator are a part of the phase noise measurement bench.
The DUT is not connected to the modulator directly as one can see in Fig. 2.8, but we
have simpli�ed this part in Fig. 2.18, only to recall that the input measurement signal
is connected to this port. The modulator is a non-linear device but its operation point
is expected to be kept around the linear part. The modulator can thus be considered as
linear from the RF input to the optical output and from the bias input to the Vout output
(for the small deviations), and we can use the transfer functions to describe it. Since the
BW of the monitor photodiode is of 100 kHz, the microwave signal at 10 GHz can not
in�uence the control loop. Therefore we can consider the control and the signal paths as
independent. The modulator equation relating is

Vout(t) =
PoptρRPD

2

[
1 + sin

(
π
VB(t)

VπB
+ φ(t)

)]
, (2.36)

where φ(t) is the MZ modulator o�set phase. Here we make φ(t) depending on time to
show that it changes in time (primarily due to the temperature changes). This dependence
makes the operating point control loop necessary.
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Figure 2.16: The Nyquist plot of HQOL(s).

This relation can be linearized for small deviations of VB about the half-transparency
point. The derivative of (2.36) is

δVout(t)

δVB(t)
=
PoptρRPD

2

π

VπB
cos

(
π
VB(t)

VπB
+ φ(t)

)
. (2.37)

Since for small deviations the cosine term is equal to 1, the deviations ratio and the small
deviation transfer function become

H∆VB =
∆Vout
∆VB

=
PoptρRPD

2

π

VπB
. (2.38)

In practice, the optical power Popt is about 30 mW. According to the data sheet, the pho-
todiode responsivity ρ = 25 mA/W and VπB = 2.5 V. The current-to-voltage conversion
resistor was chosen RPD = 1 kΩ, so that H∆VB = 0.47 in our case. After linearization the
transfer function of the control loop is

H(s) =
∆Vout
∆V0

=

H∆VB

sτI

1 +
H∆VB

sτI

. (2.39)

The integrator time constant was chosen τI = 0.1 s basing on characteristics of available
capacitors and resistors because the stability margin is large. The Nyquist plot for the
open loop is a line on the negative part of imaginary axis going to zero when ω → ∞.
So the critical point −1 is on the left of the line and the system is stable. The stability
margin is 1, the phase margin is 90°, and the gain margin is ∞.

2.5 Conclusion

The application of optical �ber as a delay line in OEO and a phase noise measurement
bench is considered. The stochastic nonlinear delay di�erential equation for delay line
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Figure 2.17: The normalized transfer function HϕRF(s).

oscillators is modi�ed to describe the OEO dynamics. The methods for measuring very
low phase noise of oscillators and devices are described. Auxiliary devices improving
stability of the phase noise measurement are introduced.

In the next chapter, we will consider phase noise properties of some OEO architectures
using the introduced analysis and measurement methods.
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Figure 2.18: The block scheme of MZ EOM operating point control loop.
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Chapter 3

OEO phase noise

As it was mentioned in Section 1.4, in the quest for lower phase noise, we can reduce the
noise sources and reduce the system sensitivity. We start with the phase noise sources,
estimating their contribution to the total phase noise in OEO, and then we consider the
possibility to reduce them.

3.1 Phase noise contributions of OEO components

In order to identify the OEO components that most contribute to the phase noise, we
measured them connected in cascade which partially reproduces the open loop of the
oscillator. We used the measurement principle explained in Section 2.3.1.

Figure 3.1: The background phase noise measurement [60].

First of all, we measured the background noise of the measurement system (Fig. 3.1),
that is, without the OEO components in the branches. Then we added a low phase noise
ampli�er to each branch (Fig. 3.2) and we progressively added the other components
(Figs. 3.3-3.5).

The results of phase noise measurement are presented on (Fig. 3.6).
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Figure 3.2: The phase noise of ampli�ers measurement [60].

Figure 3.3: The phase noise of ampli�ers with photodiodes measurement [60].

In the �rst two cases, we can see the �icker noise. The ampli�ers have almost the
same phase noise the mixer, but the total phase noise level increases. The peaks at 50 Hz
and multiples are caused by the power supplies. Additional phase noise bursts and bumps
appear when the optical components are added. The bursts around 40 kHz are ascribed
to optical re�ections. As one can see, the most signi�cant phase noise increase appears
when the delay line is included in the system. We believe that this phase noise is caused
by the interaction of lasers frequency noise and dispersion of the delay line. If we could
suppress this e�ect, the phase noise would decrease by about 10 dB. This statement must
be veri�ed by measuring the laser frequency noise. Then it will be possible to estimate
its contribution to the total phase noise.

Figure 3.4: The phase noise of ampli�ers with photodiodes and MZ EOM measurement
[60].
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Figure 3.5: The phase noise of ampli�ers with photodiodes, MZ EOM and delay lines
measurement [60].
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Figure 3.6: Comparison of the phase noise levels of OEO components. The black line
(�Mixer�) is the background phase noise of the measurement system (Fig. 3.1). The blue
line (�Amp�) is the phase noise of the system with the low phase noise ampli�er (Fig. 3.2).
The red line (�Amp + PD�) is the phase noise of the system with the PIN photodiodes
added to each branch (Fig. 3.3). The green line (�Amp + PD + Laser�) is the phase
noise of the system with the lasers (EM4) and MZ modulators included in the branches
(Fig. 3.4). The brown line (�Amp + PD + 2km + Laser�) is the phase noise of the system
with a delay line of 2 km included in each branch.

These results can be also used to estimate the background noise of the measurement
bench. As mentioned above, the OEO loop partially reproduces the phase noise measure-
ment bench. Therefore the curve �Amp + PD + LD + 2 km� in Fig. 3.6 can be used for
this purpose. This is the background noise at one measurement. To see the background
noise at di�erent numbers of measurements when applying the cross-correlation method,
we apply Eq. (2.18). The result is shown in Fig. 3.7. If we could suppress the e�ect of
the interaction of laser frequency noise and dispersion of the delay line or reduce the laser
frequency noise, the background noise could be reduced by about 10 dB.
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Figure 3.7: The background noise of the measurement bench at di�erent numbers of
measurements when applying the cross-correlation.

3.2 The frequency noise of DFB lasers

The scheme (see Fig. 3.8) with an asymmetric Mach-Zehnder interferometer as a frequency
detector was used to measure the laser frequency noise.

Figure 3.8: Frequency noise measurement bench [61].

Power spectral density was chosen as output of the FFT analyzer, and a correct cali-
bration of noise could be achieved with an adequate conversion coe�cient. The latter can
be obtained from the analysis of the optical power transfer function of the interferometer

K(ν) =
1

2
+

cos(2πντD)

2
, (3.1)

where τD is the di�erential delay of the asymmetric MZ interferometer and ν is the optical
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frequency. Thus,
δK(ν)

δν
= −πτD sin(2πντD). (3.2)

For a given laser wavelength, the interferometer unbalancing τD can be �ne-tuned by
adjusting the temperature or the laser wavelength, so that the laser-frequency detector
operates as a linear detector (sin(2πντD) ' ±1). In this case the transfer function can be
represented as

K(ν) ≈ K0 + δν ·
(
∂K(ν)

∂ν

)
ν0

. (3.3)

So the conversion factor for the frequency noise is

Cν =
δν

δV
=

1
∂K(ν)
∂ν

PoptρRPDG
=

1

πPoptτDρRPDG
, (3.4)

where RPD = 50 Ω in this case. The mean voltage at the output of the ampli�er is

VDC =
PoptρRPDG

2
. (3.5)

Therefore the conversion factor is simpli�ed as follows

Cν =
1

2πτDVDC
, (3.6)

where τD = 402.68 ps.

Before measurement, we adjust the laser frequency so that the mean voltages of the
branches are equal. This moves the operating point of the interferometer to the middle
of linear part of the transfer function.

Thus, we have measured the frequency noise of EM4 laser and CQF935 laser. The
results are presented in Fig. 3.9(a) and 3.10(a). The frequency noise levels at 10 Hz and
100 kHz are also shown in Fig. 3.9(b) and 3.10(b) to simplify seeing the dependence
when varying the laser CW power.

As one can see, the EM4 laser has higher frequency noise than CQF935: about 10
dBMHz2/Hz of di�erence in average at 10 Hz and about 8 dBMHz2/Hz of di�erence in
average at 100 kHz. The dependence of frequency noise on laser power for EM4 di�ers
from the one for CQF935. The frequency noise of the EM4 increases vs. laser power and
frequency noise of the CQF935 decreases vs. laser power. This di�erence can be caused
both by di�erence of LD structures and by supply source characteristics (current noise).
The EM4 is fed by LDC210C that typically has less than 5 µA as rms of the current noise
in the range from 10 Hz to 10 MHz. The CQF935 is fed by LDC202C that typically has
less than 1.5 µA as rms of the current noise in the range from 10 Hz to 10 MHz.
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Figure 3.9: EM4 frequency noise [61].
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Figure 3.10: CQF935 frequency noise [61].

3.3 The RIN of DFB lasers

To see the contribution of DFB laser to the phase noise of OEO we should measure its
relative intensity noise (RIN). The following measurement scheme (Fig. 3.11) was used to
measure RIN.

In such a way we could measure RIN in spectral range up to 100 kHz. We used the
cross-correlation method to eliminate the phase noise of photodiodes and ampli�ers [62].
The results are presented on �gures 3.12(a) and 3.12(b).

The EM4 laser is more powerful (up to 50 mW, 450 mA) than the CQF935 laser (up to
20 mW, 100 mA) but it has slightly higher RIN. The dependence of RIN on laser current
is similar for both lasers.
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Figure 3.11: RIN measurement bench [61].
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Figure 3.12: Low frequency RIN [61].

3.4 Mathematical model for the OEO phase noise

Knowing the noise of the di�erent OEO components, we can estimate the total OEO
phase noise, the contribution of each component to the total phase noise, and the poten-
tial levels of phase noise using mathematical model based on the stochastic nonlinear delay
di�erential equation (1.18). In Section 1.3 we introduced two main noise contributions in
this system: the additive noise and the multiplicative noise. In the OEO con�guration,
we have the multiplicative noise ηm(t) � 1 as we will see afterwards. In Section 2.2, we
modi�ed the stochastic nonlinear delay di�erential equation to include the EOM modu-
lation characteristic. Here, we will use the equation with the noise terms and deduce the
OEO phase noise spectrum expression.

To avoid the integral term of Eq. (2.5) which is complicated to manage analytically,
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it is mathematically convenient to use the intermediate integral variable

y(t) =

∫ t

t0

x(s) ds =
1

2
B(t) ejω0t +

1

2
B∗(t) e−jω0t , (3.7)

which is also nearly sinusoidal with a zero mean value. Using Eqs. (1.16), (1.17), and (2.5),
it can be shown that the slowly-varying amplitude B(t) obeys the stochastic equation

{B̈ + (∆ω + 2jω0)Ḃ + jω0 ∆ω B}ejω0t + c.c.

= −2∆ωγ [1 + ηm(t)]

[
1

2
ejω0(t−τd)ejψτd + c.c.

]
×J1[2|Ḃτd + jω0Bτd |] + 2∆ω

[
1

2
ζa(t)e

jω0t + c.c.

]
,

(3.8)

where c.c. stands for the complex conjugate of the preceding term. As a consequence of
a slowly varying envelope, we can assume |B̈| � ∆ω|Ḃ| and |Ḃ| � ω0|B|; the relationship
x(t) = u̇(t) therefore gives A ' iω0B, so that we can �nally derive from Eq. (3.8) the
following stochastic equation for the slowly varying envelope A(t)

Ȧ = −µeiϑA+ 2γµeiϑ [1 + ηm(t)] Jc1[2|Aτd |]Aτd
+µeiϑζa(t) , (3.9)

where Jc1(x) = J1(x)/x is the �rst order Bessel cardinal function of the �rst kind. The
phase condition has been set to e−jω0τd = −1, so that the dynamics of interest is restricted
to the case γ ≥ 0. The key parameters of this equation are

µ =
∆ω/2√

1 + (1/2Q)2
and ϑ = arctan

[
1

2Q

]
, (3.10)

where Q = ω0/∆ω = 200 is the quality factor of the RF �lter. Since Q � 1, we may
simply consider that µ ' ∆ω/2 and ϑ ' 1/2Q. The complex factor µeiϑ is a kind of ��lter
e�ect�, which can be simply equated to the half-bandwidth ∆ω/2 when the Q-factor of
the �lter is su�ciently high.

When γ > 1, the stationary noise free amplitude A0 = |A0| of the microwave obeys
the nonlinear algebraic equation Jc1[2|A0|] = 1/(2γ). Linearizing Eq. (3.9) around this
solution yields the following equation [63]

Ȧ = −µeiϑA+ µeiϑ[1 + ηm(t)]Aτd + µeiϑζa(t) . (3.11)

Using the Itô rules of stochastic calculus [63], we derive the following time-domain
equation for the phase dynamics

ψ̇ = −µ(ψ − ψτd) +
µ

2Q
ηm(t) +

µ

|A0|
ξa,ψ(t) , (3.12)
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where ξa,ψ(t) is a real Gaussian white noise of correlation 〈ξa,ψ(t)ξa,ψ(t′)〉 = 2Daδ(t − t′)
(same variance as ξa(t)). We can add ςψ(t) to take into account contribution of laser
frequency noise, ampli�er phase noise, etc.

ψ̇ = µ

(
ψτd − ψ + ςψ(t) +

ηm(t)

2Q
+
ξa,ψ(t)

|A0|

)
, (3.13)

We can use Eq. (3.13) to obtain the Fourier spectrum Ψ(ω) of the phase ψ(t). The
resulting power density spectrum is as follows [63]

|Ψ(ω)|2 =

∣∣∣∣∣µ
η̃m(ω)

2Q
+
√

2Da

|A0| + ςψ(ω)

iω + µ [1− e−iωτd ]

∣∣∣∣∣
2

. (3.14)

This equation should be modi�ed to take into account statistical independence of the
noise processes. The autocorrelation function of sum of random processes x1(t), ..., xn(t)
can be expressed as

R(τ) =
n∑
i=1

E {xi(t)xi(t+ τ)}+ 2
∑
i<j

E {xi(t)xj(t+ τ)} . (3.15)

In case of statistical independence of the processes, the second sum equals zero. Therefore
supposing the statistical independence of the phase noise processes and taking into account
the Wiener-Khinchin theorem, we can rewrite Eq. (3.14) in the following way

|Ψ(ω)|2 = µ2

∣∣∣ η̃m(ω)
2Q

∣∣∣2 +
∣∣∣√2Da

|A0|

∣∣∣2 + |ςψ(ω)|2

|iω + µ [1− e−iωτd ]|2
. (3.16)

To consider applicability of the Bode integral principle to this model, we deduce the
sensitivity functions for the multiplicative noise

εm(s) =

µ
2Q

s+ µ [1− e−jsτd ]
, (3.17)

and for the additive noise and the phase noise of components

εa(s) =
µ

s+ µ [1− e−jsτd ]
. (3.18)

We can not apply the Bode integral principle to these sensitivity functions because
lims→∞ ln |εm(s)| 6= 0 and lims→∞ ln |εm(s)| 6= 0. But they can be used to characterize the
system sensitivity with respect to the noises.
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The di�usion constant Da can be calculated using the characteristics of OEO compo-
nents. The output power of the ampli�er caused by RIN, thermal noise, and shot noise
can be expressed as

Po =
[
NRINI

2
PDReq + FkT0 + 2qIPDReq

] G∆F

2
(3.19)

where G is the ampli�er gain, F is the noise �gure of ampli�er (6 dB at 298 K), T0 = 290
K is the reference temperature, k is the Boltzmann constant, q is the electron charge, IPD
is the photodiode current, and Req is the equivalent load impedance of the photodiode.

Da can be determined [63] as

Da =
PoπR

4V 2
πRF∆F

, (3.20)

where R is the output impedance (in our case, R = 50 Ω) .

Equation (3.11) also allows to estimate the AM noise of OEO. For this purpose, we
linearize it in the following way

Ȧ = −µeiϑA+ µeiϑAτd + µeiϑηm(t) |A0|+ µeiϑζa(t) . (3.21)

Then we apply Fourier transform and express the power density spectrum of AM noise.

|Ã(ω)|2 =
µ2 |ηm(ω)A0|2 + 4µ2Da

|jωe−jϑ + µ(1− e−jωτd)|2
. (3.22)

It should be noted that this power density spectrum is derived without taking into account
the gain compression, which signi�cantly reduces AM noise. But it can be used to discuss
the possible in�uence of AM noise on phase noise measurement at some operation modes
of OEO.

3.5 Contribution to the phase noise of OEO

Using the equations introduced in the previous section, we can estimate di�erent phase
noise contributions to the total phase noise of OEO.

The low phase noise AML ampli�ers, which we use in experiments, can be characterized
by the power law coe�cient b−1 = −128 dBrad2/Hz. It is extrapolated from phase
noise values in the device data sheet. The typical �icker coe�cient of a InGaAs p-i-n
photodetector is of 10−12 rad2/Hz (−120 dBrad2/Hz) [64, 65, 66]. The passive components
have supposedly lower magnitudes of the phase noise.

The low frequency RIN of lasers can be represented by multiplicative noise ηm(ω)
in Eq. (3.14) since the MZ modulator produces multiplication of optical and microwave
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signals. In the most cases, the quality factor Q of the RF �lter is high. In our case
Q = 200 and the measured RIN is divided by 2Q = 400 (−52 dB) when we calculate the
phase noise spectral density according to Eq. (3.16). If we apply this to the above shown
RIN levels, we can see that the low frequency RIN can be neglected regarding the phase
noise, but not regarding the AM noise since it does not comprise a 1/2Q factor for this
noise contribution. The EM4 laser RIN for microwave frequencies (10 GHz in our case)
is about −159 dB/Hz and the CQF935 laser RIN is about −165 dB/Hz according to the
laser data sheets.

To calculate the phase noise caused by the laser frequency noise over L = 4 km of
optical �ber SMF-28e, we used the following conversion factor

Cψ =
ω0DλLλ

2
0

c n
, (3.23)

where c is the speed of light in vacuum, n is the optical �ber refraction index (1.46).

Equation (3.14) is used to estimate the OEO phase noise PSD, taking into account
the laser RIN at 10 GHz, its low frequency RIN, its optical frequency noise, the thermal
white noise, and the photodiode shot noise.

We will consider the phase noise of two variants of the classical OEO architecture
shown in Figs. 3.13 and 3.14. The �rst variant can be used with the CQF935 laser and
with the EM4 laser at the low power mode

Figure 3.13: An OEO with one low phase noise ampli�er (G = 22 dB).

The comparison of all mentioned phase noise contributions is shown on �gures 3.15(a)
- 3.17(b). The �LD RIN� curve is the microwave frequency LD RIN, �Amp white� is
the thermal white noise including the ampli�er, �PD shot� is the photodiode shot noise.
These 3 terms are included in Eq. (3.19). The �LD low freq RIN� curve is the LD low
frequency RIN. The �Amp �icker� curve is the �icker phase noise of one ampli�er. The
�PD �icker� curve is the �icker phase noise of photodiode. The �LD freq noise� curve is
the laser frequency noise in interaction with the �ber dispersion.
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Figure 3.14: An OEO with two low phase noise ampli�ers (G = 44 dB).
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Figure 3.15: The phase noise of OEO with EM4 laser at laser power 33 mW. Two low
phase noise microwave ampli�ers (G = 44 dB) are used.

We see good correspondence of prediction and experiment in the �gures. The model
also conforms well to the Leeson e�ect [67] since we can observe the conversion of the
components phase noise to the OEO phase noise by the factor (1 + (ν0/(2Q))2/f 2).

The case, which is shown in Fig. 3.16(a) looks most promising regarding the potential
of decreasing the OEO phase noise. Let's consider this variant in detail. As we can see,
most of the phase noise is generated by the laser-frequency noise and delay line dispersion
interaction. The possible solution is to use dispersion shifted optical �ber with zero
dispersion at the laser wavelength in order to eliminate this phase noise component. It
should considerably decrease the phase noise level in case of using the EM4 laser and one
ampli�er architecture. We can possibly achieve almost −160 dBrad2/Hz at the frequency
of about 25 kHz and −72 dBrad2/Hz at the frequency of about 10 Hz (Fig. 3.16(a)).
Further decrease of phase noise in the region lower 200 Hz seems possible using a velocity
matched distributed photodetector (VMDP) and using a feedforward ampli�er that would
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Figure 3.16: The phase noise of OEO with EM4 laser at laser power 70 mW. One low
phase noise microwave ampli�er (G = 22 dB) is used.
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Figure 3.17: The phase noise of OEO with CQF935 laser at laser power 23 mW. Two low
phase noise microwave ampli�ers (G = 44 dB) are used.

provide lower phase noise. These issues will be discussed in the next chapter. In the
higher frequencies region, the next limiting factor is the high frequency RIN of laser.
After reducing the high-frequency RIN, we expect that the next dominant factor will be
the shot noise. Thus the next limiting level is, most probably, the level created by white
noise. Since it is inversely proportional to the oscillation amplitude (see Eq. (3.16)), it
can be decreased by increasing the oscillation power. This factor also allows to decrease
AM noise as we will see further. But this possibility is very limited.

The experimental curve in Fig. 3.17(b) shows the best result obtained in our exper-
iments: −66 dBrad2/Hz at 10 Hz, −143 dBrad2/Hz at 10 kHz, −149 dBrad2/Hz at 25
kHz. As it follows from the analysis of the di�erent phase noise contributions, this result
is achieved mainly due to the low frequency noise of the JDSU CQF935 laser. Further
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decrease of the phase noise in the given con�guration is di�cult because other noise com-
ponents (ampli�er noise �gure, photodiode shot noise, laser high frequency RIN) have
almost the same level in the range 1 - 100 kHz and they should be decreased simultane-
ously.
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Figure 3.18: The phase noise of OEO with EM4 laser at di�erent laser power. Two low
phase noise microwave ampli�ers (G = 44 dB) are used.

10
1

10
2

10
3

10
4

10
5

−160

−140

−120

−100

−80

−60

−40

Frequency (Hz)

S
ψ (

dB
ra

d2 /H
z)

57 mW
63 mW
70 mW
76 mW

(a) Measured

10
1

10
2

10
3

10
4

10
5

−160

−140

−120

−100

−80

−60

−40

Frequency (Hz)

S
ψ (

dB
ra

d2 /H
z)

52 mW
63 mW
70 mW
76 mW

(b) Calculated

Figure 3.19: The phase noise of OEO with EM4 laser at di�erent laser power. One low
phase noise microwave ampli�er (G = 22 dB) is used.

The OEO phase noises at di�erent laser powers are shown in Figs. 3.18(a) � 3.20.
As we can see, we have good correspondence of prediction and experiment in all cases
except the cases of low power levels of the CQF935 laser (Fig. 3.20(a), 7 mW and 12
mW). In latter ones, random-walk of frequency noise appears in the region of 100 Hz �
10 kHz. This noise is usually attributed to environmental instabilities (mechanical shock,
vibration, temperature, or other environmental e�ects). In this experiment, it manifests
at low oscillation power only. Another possible reason of this phenomenon is the AM
noise in�uence on the phase noise measurement and it will be considered in the Section
3.7.
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Figure 3.20: The phase noise of OEO with CQF935 laser at di�erent laser power. Two
low phase noise microwave ampli�ers (G = 44 dB) are used.

3.6 The spurious peaks

The OEO phase noise model allows also to estimate level and linewidth of the spurious
peaks. Comparing theoretical and experimental values is an interesting test for the dis-
cussion of our approach through nonlinear stochastic delay equation. According to [63],
the spurious peaks height relatively to the phase noise �oor can be estimated by

∆|Ψn|2dB = 10 log

[
∆F τd
n

]4

= 10 log

[
ν0 τd
Qn

]4

(3.24)

and the spurious peaks width by

∆fn =
2

π

n2

(∆F )2τd3
. (3.25)

For ν0 = 10 GHz and τd = 20 µs, ∆|Ψn|2dB = 212 dB − 40 logQ− 40 log n. For ∆F = 50
MHz and n = 1 it gives ∆|Ψ1|2dB = 120 dB and ∆f1 = 32 mHz.

We have measured the �rst spurious peak and the noise �oor with the same parameters
in order to verify the model. The results are presented in Figs. 3.21(a) and 3.21(b).

Since the spurious peak is very narrow, the measurement was repeated with di�erent
frequency span and resolution1. The peak represented in high resolution (1.6 mHz) has
distorted shape. It was probably caused by some instability during the measurement
process. We will consider the higher narrower peak since it is closer to the Lorentzian
shape. The noise �oor is −143 dBrad2/Hz and the peak level is −25.5 dBrad2/Hz. So the
peak height is 117.5 dB, which is close to the predicted one (120 dB). The peak width is
about 40 mHz, which is also close to the predicted one (32 mHz).

1Generally, this is called �bandwidth� or �resolution bandwidth� (RBW) on the front panel of analyzers.
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Figure 3.21: The �rst spurious peak and the noise �oor measured. fp = 50594.3544 Hz

Therefore we can use the OEO phase noise model for estimating the spurious peaks
properties as well, and the very concordance between experiment and theory is a very
positive argument supporting the adopted model.

Using Eq. (1.42), we can estimate the spurious peak time jitter contribution by

σ =
1

2πν0

√
|Ψn|2∆fn =

√
1

4π2ν2
0

|Ψ�oor|2∆|Ψn|2∆fn. (3.26)

And using Eqs. (3.24) and (3.25) for ∆|Ψn|2 and ∆fn respectfully we have

σ = |Ψ�oor|

√
1

4π2ν2
0

(
∆F τd
n

)4(
2

π

n2

(∆F )2τd3

)
=

1

nQ
|Ψ�oor|

√
τd

2π3
. (3.27)

We have estimated the �rst spurious peak time jitter contribution for |Ψ�oor|2 = −150
dBrad2/Hz at di�erent Q. The result is shown in Fig. 3.22. The increase of Q is very
e�ective up to about 1000 and then its e�ciency signi�cantly decreases.

3.7 The in�uence of AM noise on measurement indica-

tions

As it was mentioned in the end of Section 3.5, there are signi�cant discrepancies between
experimental and theoretical results in Fig. 3.20. At the power of 7 mW and 12.5 mW,
the phase noise is higher than predicted. Additionally, the presence of a 40 dB/decade
slope makes one think that there are other noise phenomena not accounted for in the
model. During some measurements, we observed a di�erence of about 12 dB between the
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Figure 3.22: The time jitter vs Q at noise �oor −150 dBrad2/Hz.

two channels of the FFT analyzer. Of course, we expect equal indications of the channels
because of symmetry. This suggests that the spurious indications are caused by AM noise.
To verify this, we measured the phase noise spectrum of a 10 GHz signal with 4% AM
by a square wave of 20 Hz. A square wave produces several spectrum peaks (harmonics).
This allows to obtain AM sensitivity dependence on frequency by comparing their levels
with theoretical. The signal was fed to the input of the measurement bench from Anritsu
68347C synthesizer at three di�erent power levels: 4 dBm, 6 dBm, 8 dBm. Notice that
the gain compression of input ampli�ers starts at 4 dBm and saturation is observed at 6
dBm. The results are presented in Figs. 3.23(a) � 3.23(c).

The phase noise spectrum of the synthesizer is shown in Fig. 3.23. Comparing the two
channels, we see that the phase noise levels are almost equal, but the peaks due to AM
are di�erent. We can see also the parts where the phase noise level is lower than the noise
�oor of single channels, i.e. where cross-correlation shows up (the green line lower than
blue and red ones). The peaks of the square wave spectrum are observed at 20 Hz, 60
Hz, 100 Hz, 140 Hz, and 180 Hz. The di�erence between the peaks indicated by di�erent
channels is about 12 dBrad2/Hz. This can be explained by di�erent degree of asymmetry
of the double balanced mixers that produces the AM noise sensitivity. It should be noted
that the AM sensitivity decreases vs. frequency, because the peaks decrease with a higher
rate than the ones of the square wave spectrum and it will be shown afterwards.

For small signals, the channels can be considered linear. Therefore the transfer function
of channels regarding AM can be estimated. For this purpose, we calculate frequency
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Figure 3.23: The phase noise spectrum of the 10 GHz signal at di�erent power with AM
by square wave of 20 Hz and 10 mV.

components of a sine wave modulated by a square wave.

s(t) = A0

[
1 +

4M

π

∞∑
oddn=1

1

n
sin(nω1t)

]
sin(ω0t)

= A0 sin(ω0t) +
2A0M

π

∞∑
oddn=1

1

n
[cos((ω0 − nω1)t)− cos((ω0 + nω1)t)] , (3.28)

where A0 is the carrier amplitude, M is the modulation index. The average power is

s2(t) =
A2

0

2
+

4A2
0M

2

π2

∞∑
oddn=1

1

n2
. (3.29)

Then using the measured peaks Sϕmeas(ωn) corresponding to the square wave harmonics
and the average power components corresponding to them, we determine values of the
transfer function of the measurement system for AM at the harmonics frequencies in the
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following way

|HAM(ω)|2 =
(PSD)outBW

(PS)in
. (3.30)

where (PSD)out is the output PSD, BW is the bandwidth of analyzer digital �lter per
spectrum line, and (PS)in is the input power spectrum.

In the logarithmic resolution mode, bandwidth depends on frequency as BW(f) =
f(101/N − 1), where N = 80 is the number of lines per decade. Therefore

|HAM(ωn)|2 =
π Sϕmeas(ωn)ωn(101/N − 1)

8π A2
0M

2
. (3.31)

This experimental transfer function for AM at di�erent levels of carrier power is shown
in Fig. 3.24. The unit is dBrad/V because it relates AM signal in dBV2/Hz to the
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Figure 3.24: The transfer function of the measurement system for AM at di�erent levels
of carrier power.

indications in dBrad2/Hz. The slope is about −23 dB/decade. It should be noted that the
delay line contribution (see Eq. (2.11)) is included, giving an additional −20 dB/decade
slope. This increases the transfer function at low frequencies. We can see also that the
gain compression decreases H(ω) at increase of the carrier power.

In order to estimate the OEO AM noise indications, we calculate the OEO AM noise
PSD with Eq. (3.22) taking into account that x(t) = πV (t)/2Vπ for CQF935 laser at
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Figure 3.25: The OEO AM noise PSD.

7 mW and apply the transfer function of the measurement system for AM at 4 dBm.
They are shown in Fig. 3.25. It doesn't correspond exactly to the curve for 7 mW for
low frequencies in Fig. 3.20 but it shows that AM noise can appear in the phase noise
measurement results. Perhaps some other AM noise emerged during the measurements.
And it can require additional study. But it is evident that we can use the di�erence
between channel indications as an indicator of AM noise presence in measurement data.
It is also evident that oscillator should be run at the microwave power when there is highly
expressed amplitude limiting factor due to either the ampli�er saturation, either the MZ
EOM operation mode, or some other e�ect. When OEO runs at the 7 mW power of the
CQF laser, there is small gain compression in the OEO ampli�er or in the MZ EOM that
limits oscillation amplitude but it is not enough to signi�cantly decrease AM noise.

3.8 Conclusion

The most signi�cant OEO internal phase-noise sources are considered together with their
in�uence on the output noise. The measured phase noise of some OEO components are dis-
cussed. The methods for the measurement of the laser frequency-noise and low-frequency
RIN are introduced, and the measurement results are discussed. The contribution of
di�erent components to the total OEO phase noise is estimated using our mathematical
model based on the stochastic nonlinear delay di�erential equation. The laser frequency
noise combined with the �ber dispersion is found as a major source of phase noise in the
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OEO. The model is compared to the measured phase noise. In most cases, we found good
agreement between model and experiment. The model also conforms well to the Leeson
e�ect [67]. The best result of OEO phase noise obtained in our experiments is: −66
dBrad2/Hz at 10 Hz, −143 dBrad2/Hz at 10 kHz, −149 dBrad2/Hz at 25 kHz. It is not
far from the best oscillators of the same type (for example, OEWaves: −77 dBrad2/Hz
at 10 Hz, −154 dBrad2/Hz at 10 kHz).

The in�uence of AM noise on the phase noise measurement is shortly discussed since
it can a�ect measurement results at some conditions.

In the next chapter, we will consider some architectures and methods improving the
OEO phase noise performance, based on results shown here.
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Chapter 4

Modi�ed OEO architectures for

reducing the phase noise

In the previous chapter, we have considered the phase noise contribution of the OEO com-
ponents. After optimizing the components, noise reduction techniques can be employed
to further reduce the noise. Among them are the feedforward ampli�er (FFA), the Pound
discriminator [68], the high-Q discriminator cavity (external or internal) [69]. The latter
can be further improved by the carrier suppression technique [70]. The techniques of using
high-Q cavity discriminator (including Pound discriminator) is not suitable to the OEO
because it works only at one frequency, or at a set of frequencies, while the main appeal of
the OEO is its tunability in small steps equal to the modes of the delay. The feedforward
ampli�er �ts well the delay line OEO architecture. Another method proposed by Yao and
Maleki [71], uses multiple loops to reduce the spurious peaks.

In this chapter, we will analyse the following noise-reduction techniques, some of which
are new in the domain of optoelectronic oscillators:

� The regenerative ampli�er;

� The multiloop architecture;

� The architecture with a feedforward ampli�er and a velocity matched distributed
photodetector (VMDP).

The �rst two architectures modify the sensitivity of OEO to noise. The third one has the
purpose of reducing the �icker noise of ampli�er and photodiode.
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4.1 The architecture with a regenerative ampli�er

The peaks of spurious modes in the phase noise power spectral density produced by the
delay line give a major contribution to the OEO phase noise. This can be illustrated
using the time jitter, which can be calculated using Eq. (1.42) and the OEO phase noise
model. Let's take the curve 23 mW in Fig. 3.20(b). The range 10 Hz � 49 kHz produces
the time jitter σ = 27.35 fs and the range 49 kHz � 51 kHz produces σ = 100.7 fs. Thus
decreasing the spurs could signi�cantly improve the phase stability.

According to Eq. (3.24) increasing Q by a factor of 10 reduces the spurious peaks by
40 dB. But the major problem with high-Q �lters is that the �lter introduces thermal
�uctuations. Another problem is that the commercial �lters are made for telecommunica-
tions, for they have �at response in the bandwidth, while a sharp response is preferable in
our case. Finally, the �lter must be tunable, so that the OEO frequency can be switched.

A possible way to implement a tunable high Q-factor �lter is the regenerative ampli�er
(RA). In optics, the regenerative ampli�er is an optical ampli�er with a resonator in
which a light pulse can do multiple round trips before being coupled out. There are some
variations of such ampli�er. One of the realizations of such ampli�er is described by T.C.
Teyo et al. in [72]. It consists of the erbium-doped �ber ampli�er (EDFA) with optical
feedback. In a similar way, if we implement a positive feedback for a microwave ampli�er,
with an attenuation preventing from sustained oscillation, we get a kind of microwave
regenerative ampli�er. An architecture with such an ampli�er is shown in Fig. 4.1.

Figure 4.1: An OEO with the regenerative ampli�er.

The whole OEO setup can also be viewed as a parallel multiloop architecture, but
with one loop (the purely electronic one) of gain just below unity. It can be analyzed
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using either the multiloop model, or an RA model together with the one loop model.
Since the noise properties of microwave and optical loops di�er, it is better to study the
RA properties and the whole architecture properties separately.

The transfer function of the RA can be written as a transfer function of an ampli�er
with a positive feedback

HRA(jω) =
Gβf(iω)

1−Gκβf(iω)eiωτRA
, (4.1)

where κ represents all the losses in the RA loop, βf(iω) is the RF �lter transfer function,
τRA is the delay time in the RA loop. The parameter κ impacts on the gain and on the
equivalent Q-factor of the RA loop. The closer γ = Gκ to 1, the higher gain and narrower
the bandwidth. The gain at ω0 can be written as

GRA =
G

1−Gκ
. (4.2)

The normalized gain is

H(jω)

GRA
=

(1−Gκ) βf(iω)

1−Gκβf(iω)eiωτRA
=

(1− γ) βf(iω)

1− γβf(iω)eiωτRA
. (4.3)

Equating the square of normalized gain modulus to 0.5, we get the equation relating γ
and ∆ω. ∣∣∣∣ (1− γ) βf(iω)

1− γβf(iω)eiωτRA

∣∣∣∣2 =
1

2
. (4.4)

We use the following relations to resolve this equation for γ

βf(iω) = ρ(ω)ejϑ(ω), (4.5)

ρ(ω) =
1√

1 + χ2Q2
,

ϑ(ω) = − arctan(Qχ),

χ =
ω

ω0

− ω0

ω
.

In the vicinity of the oscillation frequency where
∣∣∣ω−ω0

ω0

∣∣∣ � 1
2Q

we can approximate for
positive frequencies

χ ' 2
ω − ω0

ω0

, (4.6)

ϑ(ω) ' −Qχ.

The dissonance χ is inversely proportional to the equivalent Q of RA, χ ' 1
QRA

for
Eq. (4.4). From Eq. (4.4), we get

2(1− γ)2

1 + χ2Q2
=
∣∣∣1− γe−iχ(Q+ 1

2
ω0τRA)

∣∣∣2 . (4.7)
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Solving this equation for γ, we get

γ1 =
(1 + χ2Q2) cos(θ)− 2

χ2Q2 − 1
−

−
√

1 + χ2Q2
√

(1− χ2Q2) sin(θ)2 + 2 cos(θ)2 − 4 cos(θ) + 2

χ2Q2 − 1
, (4.8)

γ2 =
(1 + χ2Q2) cos(θ)− 2

χ2Q2 − 1
+

+

√
1 + χ2Q2

√
(1− χ2Q2) sin(θ)2 + 2 cos(θ)2 − 4 cos(θ) + 2

χ2Q2 − 1
, (4.9)

with

θ = χ

(
Q+

1

2
τRA ω0

)
.

Solution (4.8) gives γ > 1, which corresponds to an unstable loop resonator. Solution
(4.9) gives γ < 1 and is suitable for RA. So Eq. (4.9) can be used to �nd γ at given ∆ω.
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Figure 4.2: Phase noise of an OEO with the regenerative ampli�er compared with the
�standard� OEO. Output power is +12 dBm for (a), and +17.8 dBm for (b).

In the experiment (see Fig. 4.1), we tuned κ for a bandwidth 2 MHz (QRA = 5000).
The electrical length of the loop was about 2.9 m. The group delay time was 28.8 ns,
which corresponds to a FSR 34.4 MHz. This is su�cient to suppress the other modes by
the RF �lter. Applying Eq. (4.9) and then Eq. (4.2) gives γ = 0.8 and GRA = 36.5 dB.
The LD power was 23 mW. Figure 4.2 compares the OEO phase noise obtained with the
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Figure 4.3: The spurious peak in high frequency resolution, for an OEO with RA.

RA and the phase noise obtained with two ampli�ers (see Fig. 3.14). The second ampli�er
is not necessary in the case of the RA because the regeneration mechanism enhances the
gain. The estimation details are discussed afterwards.

The spurious peak measured with high frequency resolution is shown in Fig. 4.3. The
peak height is 77 dB and width is 6 Hz. As we can see, the spurious peak of OEO with
RA is signi�cantly lower. It gives 9.8 fs of time jitter instead of 100.7 fs in the range
49 kHz � 51 kHz. Equations (3.24) and (3.25) give 20 Hz width and 64 dB height of
the �rst peak at Q = 5000. The di�erence in the peak characteristics can be explained
by non-coincidence of the RA central frequency and the oscillation mode frequency and
approaching of the near side pole to the imaginary axis as it was shown in Section 1.2.
The estimated time jitter using the theoretical parameters is 4 fs in the range 49 kHz �
51 kHz. The time jitter has been successfully improved by nearby a factor of 10.

Further we will consider the noise properties of RA. The regenerative ampli�er has
the property of increasing the �icker phase noise since the delay time in its loop is much
less than the coherence time of �icker noise. Let's consider its �icker noise properties.
Since we need to consider the frequency range up to the �icker corner frequency, which is
about 10 kHz and much less than the FSR of the RA and the RF �lter bandwidth, their
frequency dependent properties can be neglected. Flicker phase noise can be represented
by a constant θ and RA can be represented by the block scheme in Fig. 4.4.
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Figure 4.4: The regenerative ampli�er block scheme.

Its transfer function is

H(jω) =
Geiθ

1−Gκeiθ
. (4.10)

Since θ � 1, it can be shown that the argument of the transfer function is

argH(jω) =
θ

1−Gκ
=

θ

1− γ
. (4.11)

Therefore the �icker noise is increased by factor 5 or by 14 dB at γ = 0.8

Regarding the thermal noise, RA open loop can be represented by the ampli�er and
the feedback and according to the Friis formula we have [21]

FRAOL = F +
κ2 − 1

G2
. (4.12)

These modi�cations to the earlier described calculation procedure give the phase noise
estimation curve in Fig. 4.2. We can see the very good correspondence of measured and
calculated data.

So, the use of RA allows to signi�cantly reduce the spurious peaks and the time jitter
by creating a high Q ampli�er-�lter. Drawbacks are 1) the necessity of strict control and
stabilization of the loop gain since the bandwidth and stability of the RA depend on the
gain, 2) the introduced thermal sensitivity of RF cable in the regenerative ampli�er loop,
which is higher than the one of the optical �ber, 3) the higher �icker noise than the one
of a cascaded ampli�er of similar technology and gain.

4.2 The multiloop OE architecture

Multiple loops implemented with �ber delay lines of di�erent length can be set to obtain
large microwave FSR. Hence the spurs can be �easily� suppressed by an RF �lter of
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moderate Q. This method is already known [10, 73]. The drawbacks of the multiple-
loop method are the increased attenuation and the decreased signal-noise ratio because
splitters and combiners are introduced. A method for multiple loops optimization was
developed by Banky et al. [74]. Particularly, it allows to withdraw the poles, nearest to
the fundamental one, to an equal distance from the imaginary axis.

Figure 4.5: An OEO with two delay lines.

Suppressing the spurious peaks in this way, the average phase noise can increase. That
can entail increasing the time jitter. We will use a dual loop architecture as shown in
Fig. 4.5, and we will consider the time jitter as a function of the second loop length and
of the amplitude balance between the loops.

Figure 4.6: The normalized integral values for the white noise power law, dB.
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Figure 4.7: The normalized integral values for the �icker noise power law, dB.

Using the same ideas already used to derive Eq. (3.16), we obtain (see Appendix C)
the following expression for the phase PSD in the dual loop architecture

|Ψ(ω)|2 = µ2

∣∣∣ η̃m(ω)
2Q

∣∣∣2 +
∣∣∣√2Da

|A0|

∣∣∣2 + |ςψ(ω)|2

|iω + µ [1− a1e−iωτd1 − a2e−iωτd2 ]|2
, (4.13)

where τd1 and τd2 are the delays created by the two loops, a1 and a2 are the optical
intensity distribution coe�cients in the two loops (a1 + a2 = 1), which a�ect the signal
amplitudes in the electrical domain.

The sensitivity function for additive noise is

ε2L(ω) =
µ

iω + µ [1− a1e−iωτd1 − a2e−iωτd2 ]
. (4.14)

Since we seek for a reduction of the time jitter as a stability characteristics, we can
use a modi�cation of the time jitter integral (1.42) as the target function. Following
the discussion in Section 1.4, the phase noise PSD, which is used in the integral, can
be represented as a product of the components noise PSD and a square modulus of the
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Figure 4.8: The normalized integral values for the white noise power law, dB.

sensitivity function. Using Eq. (1.39), the time jitter integral can be rewritten as

σ =
1

2πν0

√∫ fmax

fmin

Sφ(f)|ε2L(f)|2df =
1

2πν0

√√√√∫ fmax

fmin

0∑
n≤0

bnfn|ε2L(f)|2df

=
1

2πν0

√√√√ 0∑
n≤0

bn

∫ fmax

fmin

fn|ε2L(f)|2df . (4.15)

Thus, to �nd the optimal combination of parameters, it is su�cient 1) to calculate a mesh
of integral values for di�erent loop lengths and amplitude balance between the loops and
for di�erent power-law terms, 2) to multiply the values by corresponding bn, 3) to sum
the values corresponding to di�erent power terms, and 4) to �nd the minimum.

We have done the mesh of integral values for 0.01 ≤ a1 ≤ 0.09, 10m ≤ L ≤ 3990 m
for white noise (fmin = 10 Hz, fmax = 25 MHz) and �icker noise (fmin = 10 Hz, fmax = 20
kHz) since they are predominant in OEOs. These meshes are presented in Fig. 4.6 and 4.7.
The mesh values are normalized to the minimum values of each mesh and presented in dB.
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Figure 4.9: The normalized integral values for the sum of white noise and �icker noise
power laws, dB.

The data of Fig. 4.6 are also shown in Fig. 4.8. The black line shows the approximate
positions of local minima.

The sum of the meshes at b0 = −140 dBrad2/Hz and b1 = −120 dBrad2/Hz is shown
in Fig. 4.9. It has a global minimum at a2 = 0.5, L = 3899 m. The phase noise diagram
for this global minimum is shown in Fig. 4.11. The black line shows the approximate
positions of local minima in the vertical direction (vs. a2). The diagram cut going by this
line representing time jitter is shown in Fig. 4.10. As we can see, there are many local
minima. The di�erence between the �rst minimum and the global minimum is about 3 fs.
They have di�erent widths and one could notice that wider minima are better, because
they give less sensitivity to the length inaccuracies.

Further increasing number of loops can further decrease the level of some residual
spurious peaks. Yet we don't expect a signi�cant reduction of the total time jitter. The
third loop adds two degrees of freedom increasing optimization complexity.
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Figure 4.10: The cut by the approximate line of local minima.
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Figure 4.11: The calculated phase noise for the case of OEO with CQF935 laser at laser
power 23 mW and two low phase noise microwave ampli�ers (G = 44 dB). Frequency
range is 10 Hz � 25 MHz. Two loops: a1 = a2 = 0.5, 4000 m and 3899 m.

4.3 Comparison of OEO architectures using the Allan

variance

We will compare three architectures of the OEO with the Allan variance for short-term
frequency stability. These architectures are: 1) the single loop OEO (RF �lter Q = 200),
2) the OEO with regenerative ampli�er (RF �lter equivalent Q = 5000), 3) the dual-loop
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OEO (RF �lter Q = 200). Phase noise PSD calculated using Eq. (3.16) for (1) and (2)
and Eq. (4.13) for (3) is presented in Fig. 4.12.

We use Eq. (1.40) to estimate the Allan variances for these cases. The results are
presented in Fig. 4.13.
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(a) The single loop architecture. RF �lter Q =
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(b) The architecture using the RA. Equivalent
RF �lter Q = 5000. The �rst spurious peak is
peak −85 dBrad2/Hz.
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(c) The dual-loop architecture. Two loops: a1 =
a2 = 0.5, 4000 m and 3899 m. RF �lter Q = 200.
The �rst spurious peak is −94 dBrad2/Hz.

Figure 4.12: OEO phase noise PSD.

Examining Fig. 4.13, we can see that the 1/f 3 phase noise produces constant σ2
y(τ) =

5.5 · 10−24, which shows up for τ > 300 ms. On the left-hand side, the slopes are of
10−2/decade. They show up at di�erent τ . This di�erence can be ascribed to di�erent
distribution of spectral energy due to the di�erentQ-factors and the in�uence of additional
loop. This diagram illustrates well the enhancement of OEO short-term stability due to
using the techniques suppressing the spurious peaks.
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Figure 4.13: The Allan variance for the three variants: 1) the single loop OEO (RF �lter
Q = 200), 2) the OEO with the RA (RF �lter equivalent Q = 5000), 3) the dual-loop
OEO (RF �lter Q = 200).

4.4 The architecture with a feedforward ampli�er and

a VMDP

As it was earlier indicated, the �icker phase noise of the photodiode (−120 dBrad2/Hz)
is higher than the one of the AML ampli�er. Therefore, it can limit the achievable phase
noise. To reduce the photodiode �icker phase noise, the same solution, which is used to
reduce the ampli�ers �icker, can be applied. According to Ref. [21], the �icker coe�cient
of the parallel ampli�er is

b−1 =
1

m
[b−1]branch . (4.16)

Thus, the �icker phase noise of photodiodes can be reduced by parallel connection of
them. Such architecture is already realized in the form of the velocity matched distributed
photodetector [75, 76, 77]. These photodetectors combine very high bandwidth (hundreds
of gigahertz) and very high photocurrents (tens of milliamperes). Parallel connection of
10 photodiodes was already considered in articles. Therefore 10 dB reduction of �icker
phase noise is already achievable. Taking into account the high rates of optoelectronic
technology advance, integration of higher number of photodiodes seems possible. Another
issue is the possible inverse dependence of the �icker noise on the junction volume. It was
discussed in Ref. [21] in relation to ampli�ers. A photodiode in VMDP has much smaller
surface, and therefore smaller junction volume than a single fast photodiode. Additional
study is therefore necessary � under the last hypothesis of this paragraph, we can expect
that it can have higher �icker noise.
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According to the same principle, we can expect that the multiloop architecture reduces
the �icker noise due to the parallel connection of photodiodes.

The ampli�er �icker noise can signi�cantly limit the oscillator spectral purity. There-
fore we use the AML microwave ampli�ers with low �icker noise. To our knowledge,
AML is the only one company that produces low �icker phase noise ampli�ers. Reference
[21] explains why the low �icker is achieved by parallel connection of several ampli�ers.
When the number of ampli�ers is doubled, the phase noise decreases by 2.5 dB and power
consumption is doubled. The missing 0.5 dB is ascribed to the asymmetry in the power
splitters and combiners. So any further reducing the noise requires a large number of am-
pli�ers. Such ampli�ers have higher noise �gure than a single simple ampli�er. Therefore,
the use of an alternate way is actual. A feedforward ampli�er (FFA) [78] is an alternative
that potentially can give lower phase noise levels in the part of ampli�er without such
di�culties. It is shown on Fig. 4.14 [21].

Figure 4.14: Feedforward ampli�er [21].

Originally, the FFA con�guration was conceived to reduce the harmonic distortion
in ampli�ers. More recently, this technique found application in the power ampli�er for
CDMA telecommunications, which require high linearity. Di�erent aspects of FFA are
discussed in [21, 69, 78, 79, 80, 81].

Examining Fig. 4.14, we can see that the interferometer CP4 produces an error signal
by subtracting an ampli�ed signal from its original after a corresponding scaling. Then
the interferometer CP2 sums the ampli�ed error signal and the ampli�ed signal. In this
way, the principal part of the signal distortion of FFA depends on the error ampli�er that
can be of small power and therefore made highly linear. The analysis of FFA suggests
that the feedforward technique also reduces the 1/f noise. This should happen because
the �icker of the power ampli�er is detected and corrected for by the error ampli�er. The
latter cannot �icker around the carrier frequency ν0 because the carrier power is close to
zero at its input.

According to [69], the phase noise performance of the feedforward ampli�er is governed
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by the input power to the system, the phase noise characteristics of the ampli�ers and
the achievable carrier noise cancellation in the two interferometers (CP4, CP2):

SFFA
ϕ =

Spa
ϕ

NS
+

kFeaT0`τm
Pin(1− η2

3)(1− η2
4)

+
Sea
ϕ(1 Hz)

CS

1Hz

fo

, (4.17)

where Spa
ϕ is the phase noise of the power ampli�er, Sea

ϕ(1 Hz) is the �icker phase noise of
the error ampli�er at 1 Hz, NS is the noise suppression factor (in CP2), Fea is the error
ampli�er noise �gure, `τm is the loss in the delay element τm, Pin is the input power, η3

and η4 are the voltage coupling coe�cients at the couplers CP3 and CP4, fo is the o�set
frequency, and CS is the carrier suppression factor (in CP4) de�ned as

CS =
Power available at one combiner input− combiner loss

Power input to error ampli�er

≈ Pin
P ea
in

(1− η2
3)(1− η2

4)

`τm
, (4.18)

where P ea
in is the input power of error ampli�er.

Assuming that Fea = 2 dB, `τm = 0.75 dB, Pin = 1 mW, η3 = η4 = −10 dB, and
NS = CS =∞, we have SFFA

ϕ = −170 dBrad2/Hz.

The carrier suppression factor can also be expressed in terms of amplitude mismatch
ε and phase error ϕ [69]

CS = −10 log(1 + (1 + ε)2 − 2(1 + ε) cosϕ) , dB . (4.19)

For example, for about 30 dB carrier suppression, it is necessary to provide ε = 0.03 and
ϕ = 1 °simultaneously. NS can be expressed in an identical manner.

In telecommunications, the carrier suppression at the error ampli�er input must be
ensured in the large bandwidth required by the CDMA systems. Therefore, the phase and
amplitude balance condition requires the true group-delay matching at the error ampli�er
input. Of course, this is a di�cult design task. Conversely, in the case of the oscillator
we need to suppress the �icker only in a narrow bandwidth. Hence the delay-matching
condition is replaced with the phase-matching condition, which is signi�cantly easier to
achieve. In practice, a variable phase shifter is su�cient.

In most oscillators the amplitude limitation is ensured by the ampli�er. Unfortunately,
the FFA cannot work saturated because the error ampli�er saturates. This di�culty can
be avoided in the case of OEO because the MZ modulator can be used to limit the
oscillator power, letting the FFA in fully linear operation.
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4.5 Conclusion

In this chapter, the use of a regenerative ampli�er, a dual optoelectronic loop, velocity
matched distributed photodiodes, and a feedforward ampli�er for improving the OEO
phase noise performance is discussed. Experimental data of applying the regenerative
ampli�er in the OEO are presented. The considered methods give a high potential for
further reducing the OEO phase noise.

. . .
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Conclusions

In this work, we have introduced the OEO model based on the stochastic nonlinear delay
di�erential equation. This equation includes the resonator terms, EOM modulation func-
tion, time delay, and noise components. Such model allows studying all essential processes
occurring in OEO. Linearizing this equation around the fundamental frequency, we found
the expression for phase noise and amplitude noise of OEO.

We introduced the most signi�cant sources of noise in this model: the thermal noise,
shot noise, laser RIN, combined e�ect of laser frequency noise and the �ber dispersion,
and the �icker noise of the ampli�er and the photodiode �icker. The thermal noise, shot
noise, and laser high frequency RIN set the white noise in the loop. We measured the
laser low frequency RIN and the laser frequency noise using the cross-correlation method
that reduces the noise contribution of photodetectors.

We calculated phase noise levels of these components as well as total phase noise levels
for three OEO con�gurations based on the classical architecture. We also measured the
OEO phase noise for these con�gurations. A good agreement between experiment and
theory was obtained, which validates the model. The model also conforms well to the
Leeson e�ect [67]. The best result obtained in our experiments is: −66 dBrad2/Hz at 10
Hz, −143 dBrad2/Hz at 10 kHz, −149 dBrad2/Hz at 25 kHz.

We arranged the components according to their noise magnitudes. In all cases, in the
�icker noise frequency range (from 10 Hz to about 2 kHz), the highest contribution was
the phase noise produced by the delay �uctuation, which is caused by the laser frequency
noise combined with the �ber dispersion. Concerning the white phase noise and phase
noise �oor, the situation depends on microwave ampli�er gain that increases the white
noise contribution. Therefore it is preferable to decrease microwave ampli�er gain or
completely exclude the microwave ampli�er from the loop. This conclusion coincides with
conclusions of other authors but we note that this solution allows to decrease the white
noise contribution also but not only to eliminate the ampli�er noise.

The arrangement by phase noise contribution shows the priority of solutions for de-
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creasing the total phase noise level of OEO. The �rst proposed solution is the use a �ber
with zero dispersion at the laser wavelength. This can provide about −72 dBrad2/Hz at
10 Hz and −153 dBrad2/Hz at 10 kHz in the con�guration with one ampli�er (22 dB).
Then the photodiode �icker phase noise and LD RIN should be decreased. Remaining
contributions are ampli�er �icker phase noise and the photodiode shot noise. Every next
noise level becomes more and more di�cult to decrease.

As a method to decrease the OEO noise spurs, we considered the regenerative ampli�er.
It is a positive feedback ampli�er with a loop gain close to, but less than 1. It is often used
in optical applications for strong ampli�cation of optical pulses, usually with ultrashort
pulse durations in the picosecond or femtosecond domain [82]. In microwave applications,
it allows to get a narrow pass band without using a high Q �lter. Drawbacks of such a
method are 1) the necessity of strict control and stabilization of the loop gain since the
bandwidth and stability of this ampli�er depend on the gain, 2) the introduced thermal
sensitivity of RF cable in the regenerative ampli�er loop, which is higher than the one
of the optical �ber, 3) that the �icker noise introduced by the regenerative ampli�er is
higher than the one of a cascaded ampli�er of similar technology and gain.

Other methods include the use of a feedforward ampli�er, and/or a velocity matched
distributed photodetector. They allow to reduce the phase noise of ampli�er and pho-
todetector.

Measurement of OEO phase noise requires a measurement bench having very low noise
�oor. We used the method of comparing a signal with its delayed copy by a phase detector
in the form of saturated microwave mixer. The 2 km �ber spool served as a delay line.
The cross-correlation method was used to decrease the noise �oor further.

Since the measurement bench adjustment can deviate from the required one mainly
because of temperature �uctuations, we developed two I controllers: one for stabilizing
the quadrature condition at the mixer input and one for stabilizing the operating point
of MZ EOM. They facilitate long time measurement cycles and decrease the possibility
of measurement errors.

We considered the application of the Bode integral principle to the phase noise char-
acteristic of an oscillator. We found it applicable to the oscillator phase noise model
according to the phase noise transfer function, but it is not applicable to the model based
on the stochastic nonlinear delay di�erential equation. The sensitivity function princi-
ple, which is part of the Bode integral principle, is still useful in resolving optimization
problems.

We have calculated the time jitter of a dual optical loop architecture vs. the length of
second loop and the relative optical intensity in it. The diagram showed many possible
combinations of these two parameters that give low time jitter. The global minimum is
obtained at almost equal length of the loops, but other minima do not di�er signi�cantly
in the phase noise performances, and they can be obtained at much less length of the
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second loop.

Perspectives

The OEO phase noise study has shown the large potential of a classical OEO architecture
for obtaining low phase noise oscillator. It con�rms the idea that the simpler things the
better. We have achieved the phase noise level close to the best reported levels. Using the
conclusions and the proposed solutions, the phase noise of OEO can be reduced further.

While the technology advances, the �ber spools get more compact. This increases
the possibility to make OEO more compact since the demand of compact solutions gets
stricter. For example, the General Photonics o�ers �ber spools of 3.5 inch in diameter
[83].

Signi�cant performance improvement and size reduction can be achieved using WGM
optical resonators that have dimensions from several millimeters to several hundreds mi-
crometers, have very high Q factor, and large FSR [84, 85]. Their drawback is the di�-
culties of light coupling, which is very sensitive to vibration. But most likely they will be
resolved soon.
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Appendix A

The quadrature control loop circuit

Basing on the determined parameters, we implemented the I controller for every measure-
ment channel. Since for the purpose of quadrature condition V0 = 0 V, the summator
before the I controller (see Fig. 2.12) is not necessary and the inverting circuit can be
placed after the integrator. The integrator is shown on �gure A.1. The integrator is
implemented with an operational ampli�er U1A and capacitive negative feedback C1, C2.
The second operational ampli�er U1B with resistive negative feedback (G = −1) is used
as an inverting ampli�er. Both of the ampli�ers are included in IC TL082A. Since the
characteristics of the RF mixer has positive or negative slope (see Eq. 2.22), it is neces-
sary to use or not use the inverting ampli�er depending on which slope is used during the
measurement.

For the determined in Section 2.4.1 characteristics, CI = C1C2/(C1 + C2) = 500 µF,
R1 = τI/CI = 200 kΩ. The capacitance CI = 500 µF is made of two electrolytic capacitors
of 1000 µF each connected in series with di�erent polarity direction. In such a way, they
form a non-polarized capacitor of capacitance equal to the half of nominal. Non-polarized
capacitors of such capacitance are expensive and rare. And this solution allows to avoid
this di�culty. Jumper J1 serves to reset the capacitors before closing the loop. Jumper
J2 serves for changing output signal polarity. The resistor R5 with diodes D1 � D4 limit
the output signal to prevent going out of the range of LD operational temperatures. The
supply voltage is +15 V and −15 V.

The steps of measurement procedure using the quadrature control loop are

1. To close the �Reset� jumper and the �+� or �-� jumper on the I controller board;

2. To prepare the measurement bench and DUT for measurement cycle;

3. To adjust with the phase shifter the quadrature condition in the inputs of the mixer
to have 0 V mean voltage in the output of the measurement bench using a voltmeter;
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Figure A.1: The I controller circuit scheme.

4. To open the �Reset� jumper on the I controller board;

5. To observe the Vout in the output of measurement bench;

6. To change the position of �+� or �-� jumper to the opposite if the absolute value of
Vout increases;

Then the measurement can be done. At the end of measurement session, before switching
o� or disconnecting the oscillator under test, it is necessary to close the �Reset� jumper
to prevent running the laser temperature to the operation temperature bound.
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Appendix B

MZ operating point control loop circuit

The I controller for MZ modulator circuit scheme is shown in Fig. B.1. Two channels
are shown there. The integrators are built with operational ampli�ers U2A, U2B, negative
capacitive feedback C1, C6, and resistors R5, R9. The resistors R3, R8 and potentiome-
ters P1, P2 serve to create reference voltages for integrators and consequently de�ne the
operation point of MZ modulators. The resistors R6, R10 are the current-voltage conver-
sion resistors for the photodiodes integrated in modulators. The IC U1 is the source of
stable reference voltage. The jumpers J2, J7 and the resistors R2, R7 serve to reset the
integrators capacitors. The jumpers J3, J4, J8, J10 serve to change the polarity of transfer
function since operation point can be on positive or negative slope of MZ modulator. The
supply voltage is +10 V and −10 V.

The controller adjustment procedure for one channel is the following:

1. To connect a voltmeter to contacts J6;

2. To close the contacts 1-2 of jumpers J3 and J4;

3. To close the reset jumper J2;

4. To adjust the potentiometer P1 to ground;

5. To open the reset jumper J2;

6. To vary the potentiometer P1 and �nd the maximum voltage value Vmax; if during
varying the potentiometer, the voltage uncontrollably goes to some value and stays
there it necessary to come back to the step (2), close contacts 2-3 instead 1-2 of
jumpers J3 and J4, and repeat further steps;

7. To adjust the potentiometer P1 so as to have Vmax/2.
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Figure B.1: The I controller for MZ modulator circuit scheme.

Once the adjustment procedure is done, the controller can function without adjustment
if the input optical power stays unchanged. It is necessary to turn on the controller when
there is the input optical power otherwise the output voltage can be �xed at some non-
optimal value.
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Appendix C

The phase noise PSD for a dual loop

architecture

The dynamics of two loop OEO microwave oscillation can be described as follows

x+ τ
dx
dt

+
1

θ

∫ t

t0

x(s)ds = β cos2[a1x(t− τd1) + a2x(t− τd2) + φ], (C.1)

where τd1 and τd2 are the delays created by two loops, a1 and a2 are the amplitude
coe�cients of signals in the two loops (a1 + a2 = 1).

Since we are interested by single-mode microwave oscillations, the solution of Eq. (C.1)
can be expressed under the form

x(t) = A(t) cos(ω0t+ ψ(t)) (C.2)

and we can assume that

ω0τd1 = 2πn and ω0τd2 = 2πm, (C.3)

where n and m natural numbers. Therefore

a1x(t− τd1) + a2x(t− τd2) = A(t) cos(ω0t+ ψ(t− τd1) + β) (C.4)

β = arctan

(
a2 sin(∆ψ)

a1 + a2 cos(∆ψ)

)
∆ψ = ψ(t− τd2)− ψ(t− τd1).

Since ∆ψ � 1 we can rewrite (C.4) as

a1x(t− τd1) + a2x(t− τd2) = A(t) cos(ω0t+ ψ(t− τd1) + a2∆ψ) . (C.5)

Then Eq. (3.13) can be modi�ed as

ψ̇ = µ

(
ψτd1

+ a2∆ψ − ψ + ςψ(t) +
ηm(t)

2Q
+
ξa,ψ(t)

|A0|

)
. (C.6)
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Then we have

|Ψ(ω)|2 = µ2

∣∣∣ η̃m(ω)
2Q

∣∣∣2 +
∣∣∣√2Da

|A0|

∣∣∣2 + |ςψ(ω)|2

|iω + µ [1− e−iωτd1 − a2 (e−iωτd2 − e−iωτd1)]|2
(C.7)

and �nally taking into account that a2 = 1− a1

|Ψ(ω)|2 = µ2

∣∣∣ η̃m(ω)
2Q

∣∣∣2 +
∣∣∣√2Da

|A0|

∣∣∣2 + |ςψ(ω)|2

|iω + µ [1− a1e−iωτd1 − a2e−iωτd2 ]|2
. (C.8)
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