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Acronyms and abbreviations list

For reasons of understanding the meaning of an abbreviation or acronym is
displayed in the following list. Due to its meaning is only described in the first
appearance in the text of this manuscript.

A

ANN: Artificial Neural Network.
AWG: Arbitrary Waveform Generator.
AGC: Automatic Gain Control.
ASR: Automatic Speech Recognition.
ACF: Auto-Correlation Function.

C

CAPTCHA: Completely Automated Public Turing Test to tell Computers and Humans Apart.
CW: Continuous Wave.
CNRS: Centre National de la Recherche Scientifique.

D

DDS: Delay Dynamical System.
DDE: Differential Delay Equation.
DPSK: Differential Phase Shift Keying.
DFT: Discrete Fourier Transform.
DCT: Discrete Cosine Transform.
DFB: Distributed Feedback.
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E
ESN: Echo State Networks.
ESP: Echo State Property.
EO: Electro-Optic.

F
FEMTO-ST: Franche-Comté Électronique Mécanique Thermique Optique –
Sciences Technologies.
FNN: Forward Neural Network.
FT: Fourier Transform.
FFT: Fast Fourier Transform.

H
HMM: Hidden Markov Model.

L
LSM: Liquid State Machine.
LCM: Lyon’s Cochlear Model.

M
MZI: Mach-Zehnder Interferometer.
MFCC: Mell-Frequency Cepstral Coefficient.

N
NN: Neural Network.
NDS: Nonlinear Dynamical System.
NTC: Nonlinear Transient Computing.

O
ODE: Ordinary Differential Equation.
OSA: Optical Spectrum Analyzer.
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P
PHOCUS: towards a PHOtonic liquid state machine based on delay-CoUpled Systems.
PDE: Partial Differential Equation.
PM: Phase Modulator.

R
RC: Reservoir Computing.
RNN: Recurrent Neural Network.
RF: Radio-Frequency.

S
SDR: Spoken Digit Recognition.
SNR: Signal-to-Noise Ratio.

T
TDM: Time-Division Multiplexing.

U
UFC: Université de Franche-Comté.
UMR: Unité Mixte de Recherche.

V
VNA: Vector Network Analyzer.

W
WER: Word Error Rate.

X
XOR: Exclusive or.
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Mathematical and physical notations

Here, we present a summary of mathematical and physical notations, in chrono-
logical order of appearance in this manuscript.

Chapiter 1: Artificial neural networks and delay dynamics

fNL: Nonlinear function (referred to as activation function).
WI , WD, WR and WFB: connectivity matrices of reservoir computing (RC).
u(n): input information of RC.
wI

kq: kq element of the connectivity matrix WI .

uq(n): q element of the vector u(n).

wN
kj : kj element of the connectivity matrix WN.

x(n): vector of internal state of RC.
xj(n): j element of the vector x(n) .
y(n): vector of output information of RC.
x(t), y(t) and z(t): dynamical variables.
T(t): water temperature.
xn: discrete dynamical variable.
β: feedback gain of chaotic oscillator (Ikeda model).
φ: offset phase of chaotic oscillator (Ikeda model).
Λ: Lyapunov exponent.
K: Kolmogorov entropy.
σ, ρ and ζ: Parameters of Lorenz attractor.
τD: time delay (Ikeda and Mackey-Glass model) [s].
α: coupling factor (Mackey-Glass model).
b: coefficient of nonlinearity (Mackey-Glass model).
h(t): impulse response.
H(jω): transfer function.
X(jω) and Y(jω): x(t) and y(t) variables in Fourier space.
ω: cut-off pulsation of a filter [rad · s−1].
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τ: time constant of low-pass filter.
θ: time constant of high-pass filter.

Chapter 2: Modeling an EO phase implementation

x(n): internal state of RC.
xk(n): k element of vector x(n) .
u(n): input information of RC.
uq(n): q element of the vector u(n).
K: number of virtual nodes within time delay τD.
WI, WN and WR: connectivity matrices of RC.
wI

kq: kq element of the connectivity matrix WI .

wN
kj : kj element of the connectivity matrix WN .

fNL: Nonlinear function.
wR

mk: mk element of the connectivity matrix WR .
y(n): output information of RC.
ym(n): m element of the vector y(n).
δτ elementary delay between two virtual nodes [s].
τD : time delay [s].
h(t): impulse response.
x(t): dynamical variable.
σ: virtual spatial dimension.
σk: node position.
δ(t): unit pulse.
pδτ: rectangular temporal window.
uI

σ: input signal.
ρ: input gain.
x(t): reservoir state of RC.
σR

k : node positions for the Read-Out compared with Write-in.

δR
τ : Read-Out sampling period.

Mx: response transient matrix corresponding to the dynamical processing per-
formed by the reservoir.
My: target matrix.

WR
opt: optimized matrix (post-processing).

λ: regression parameter.
IK: identity matrix.
φ(t): input phase modulation.
δT: time imbalancing of Mach-Zehnder interferometer (DPSK telecom demod-
ulator).
β: feedback gain.
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Φ0: offset phase.
λ0: laser wavelength.
ω0: angular pulsation.
xσ(n): reservoir response signal.
E0: light intensity.
δT: time imbalancing for the second arm of DPSK.
G: driver gain.
S: conversion efficiency of photodiode.
V(jω): Fourier transform of voltage applied to the PM.
H(jω): filter transfer function.
X(jω): Fourier transform of dimensionless variable.
fNL: nonlinear function.
S(k): discrete Fourier transform.
P(k): periodogram.
ceq: mel cepstral coefficients.

xR
σ : sampled response signal.

Chapter 3: Experimental implementation and results

τ: characteristic response time [s].
δτ: spacing between two virtual nodes [s].
τD: time delay [s].
δT: imbalancing time [s].
Vπ,rf: half-wave voltage.
Jn: Bessel function.
φ: instantaneous RF phase.
E(t): electric field.
Vpp: voltage peak to peak [V].
Vpp: voltage root mean square [V].
ρ: normalized amplitude of input information u(t).
fc: cut-off frequency [Hz].
h(t): impulse response.
K: number of virtual nodes.
τc and τf : delay induced respectively by the cables and the fiber [s].
∆ϕ: phase difference [rad].
ω: frequency [Hz].
k: number of times that a signal phase is shifted by 2π.
a1, a2, b1 and b2: incident and reflected waves in S-parameters.
τG: group delay [s].
σx: standard deviation.
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Cxy: auto-correlation.
E0: light field.
β: feedback gain.
x(t): dynamical variable.
Φ0: offset phase.
NL: number of hidden layers.
xk(n): k element of vector x(n) .
σ: virtual spatial dimension.
σk: node position.
uI

σ(n): q element of the vector u(n).
xσ(n): reservoir response signal.
ǫ: asynchrony in the Read-Out with respect to the Write-In.
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Introduction

Nowadays there are numerous methods for processing information, but most
of them are still based on traditional architectures proposed more than 60 years
ago by Alan Mathison Turing and John von Neumann [1]. Such computers
have efficient and fast performances when executing tasks that consist of sim-
ple mathematical instructions. Nevertheless, for more complex computational
tasks, such as classification of characters, atmospheric circulation, evolution of
galaxies, problems of artificial intelligence systems and images or speech recog-
nition; they are limited because of their conceptual principle of operation. An
example that everyone uses but few people know is a test found on the web that
helps to differentiate humans from computers, barely showing us legible words
as illustrated in Figure 1. This test is known as CAPTCHA (Completely Auto-
mated Public Turing test to tell Computers and Humans Apart) was introduced
in 2000 by a specialized researcher in cryptography and artificial intelligence
named Luis von Anh [2]. But the general idea was proposed in 1952 by Alan
Turing, and that is why it is known as Turing test. It is a test of a machine’s
ability to exhibit intelligent behavior equivalent to, or indistinguishable from,
that of a human [3].

Figure 1: The Google CAPTCHA.

Although this test seems a bit absurd, it is considered as a complex one, but
for humans this is not considered as a big issue due to the fact that our brain
possesses ability of learning and training. These properties enable to change
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Introduction

a complex computational test from the point of view of computer science into
something that looks like easier. This is one reason why the computational ca-
pabilities of the human brain have been and will be a fascinating topic for re-
searchers worldwide and will continue to attract attention in various research
disciplines. Advances in artificial intelligence are indeed increasingly making
machines closer to humans, thus tests like the CAPTCHA are easily overcome
by computer systems. A second example is the deep learning methods, in which
the computational models are composed of hierarchical representations (many
processing layers) as the human brain does for communicating, perceiving, act-
ing, etc. The humans can learn with an efficiency that no machine learning
method can approach. Nonetheless, E. Bengio and Y. LeCun suggest that in
order to learn the kind of complicated functions that can represent high-level
abstractions such as visual and speech recognition, it may need deep architec-
tures [4,5]. It surmises that understanding deep learning will not only enable us
to build more intelligent machines, but will also help us understand human in-
telligence and the mechanisms of human learning. For more than two decades
computer scientists have also been working with parallel processing as the hu-
man brain does. However, not every problem can be parallelized and the fact to
add a greater number of processors does not mean that a computer gets more
processing power, it implies a great complexity in both hardware and software.
There are problems that are inherently sequential and therefore it is difficult to
execute them in parallel. Moreover, we might not only need a parallel archi-
tecture for executing a particular application, but also an adequate language
to express the parallelism of the problem. This point has given rise to various
lines of work and research, and one of these lines has naturally been the use
of artificial neural networks to develop models of computation and processing
based on the principles of biological brains. Throughout history, models of arti-
ficial neurons and recurrent neural networks have been developed in the mid-
twentieth century, models such as i.e. Perceptron (1957), Adeline and Madeline
(1960), Avalanche (1967), Back-propagation (1974), Hopfield (1982), just to name
a few; until today they are used in various fields among which we mention the
following [6]:

• Electrical engineering (signal or image processing, or control systems).

• Computer science (data mining).

• Artificial intelligence (biometrics or computer vision).

• Mathematics (nonlinear modeling).

• Neuroscience (computational neuroscience).

2



Introduction

• Finance (financial modeling and prediction).

• Biology (bioinformatics)

Recently, in the early 2000s two scientists in different fields of research have
developed a new approach of artificial neural network, which is known today
in the literature as ”Reservoir Computing” (RC). The first architecture proposed
was developed in machine learning by H. Jaeger in 2001 [7], and it is known
as Echo State Network (ESN). The other one was developed in cognitive neuro-
science by W. Maass in 2002 [8], and it is known as Liquid State Machine (LSM).
These two methods of RC are based on a new paradigm of brain-inspired con-
cept. Although each of these models have been developed in different fields,
in both cases the authors introduced a novel way of training and using com-
plex network dynamics of neural nodes. Until 2009, these two models have
been experimentally tested as computer algorithms. But today, thanks to the
research work of the European PHOCUS project [9] (towards a PHOtonic liq-
uid state machine based on delay-CoUpled Systems) and its contributors, there
exist physical implementations of the operating principle of RC. These imple-
mentations consist in replacing the dynamical reservoir of neural networks by
delayed feedback dynamics. It is precisely this field of research that has moti-
vated the whole work done during this PhD thesis. Therefore, our goal has been
to learn and to understand the principles of RC, as well as taking in account the
contributions made by the PHOCUS group, in order to make a physical im-
plementation based on optics and optoelectronics, in particular replacing the
dynamical network by an electro-optic phase delay dynamics. Indeed, using
telecommunication components in our experimental implementation of pho-
tonic RC is a strong advantage, because they allow us to achieve bandwidths
much higher than those reported in the literature [10–13]. It improves the infor-
mation processing speed by a factor ∼ 3, leading to process around 1 million
words per second, establishing state-of-the-art in classification speed.

Thesis plan

This PhD thesis is divided into three chapters, encompassing all work done
within the P. M. DUFFIEUX Optics Department of the FEMTO-ST institute.

Chapter one is devoted to the RC presentation, as well as the main domains
which led to our photonic realization. First, we will introduce RC models based
on artificial neural networks and right after, we will present how a nonlinear de-
lay dynamical system can replace the dynamical reservoir of classic networks.
In order to understand these topics, we will introduce their necessary bases,
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which will be used for the experimental implementation of a new ultra-fast pho-
tonic RC demonstrator based on the principles of RC.

In Chapter two, we will propose a brief overview of the most important
principles of a RC system. After that, the theory and modeling of a RC ap-
proach using differential delay equations will be presented. Then, our exper-
imental setup based on nonlinear delay photonic system will be introduced
and each of its components will be described. We will lay greater emphasis
on imbalanced Mach-Zehnder demodulator, because it provides the nonlinear
function of our system. Once described our approach of RC, we will make a
description of RC information processing: pre-processing (masking procedure
and injection of information), internal connectivity (dynamical reservoir) and
post-processing (record of transient response for later processing). At last, we
will introduce and describe the test used with the aim to evaluate and to quan-
tify the computing power and efficiency of the information processing of our
RC demonstrator.

The chapter three is dedicated to the characterization study and to the ex-
perimental implementation of our RC demonstrator, which is based on electro-
optic phase delay dynamics. We will make the experimental characterization of
certain components (laser, phase modulators, etc.), then the time delay of our
RC system will be measured through of cross-correlation function. This time de-
lay is used as dynamical reservoir, thus here the information is addressed over
virtual nodes, the latter creates spatial dimension virtually. Afterwards, the dy-
namical characterization will be made showing the different behaviors such as
fixed point, periodic oscillations and chaos. At the end of this chapter, two tests
based on speech digit recognition (SDR) will be described and detailed. Firstly,
the SDR test will be conducted numerically in order to find the parameter val-
ues giving the best performance in this classification task. Secondly, the same
SDR test will be experimentally performed using the parameters found with
the numerical simulation. Finally, the results obtained both numerically and ex-
perimentally will be compared with those obtained with approaches based on
RC systems, classic approaches (LSM and ESN) and also with Hidden Markov
Models (HMM). Furthermore, as our RC system is built with telecommunica-
tion devices, which improve the bandwidth of the RC system. This photonic
RC setup allows close to 3 times faster information processing speed, therefore
it will be compared with the RC approaches.

The PhD thesis will end with a general conclusion and with the perspectives
for a future work.
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Chapter 1

Artificial neural networks and delay
dynamics

Nowadays digital computers based on the so-called Turing-von Neumann ar-
chitectures [1] are ubiquitous and deeply integrated in our daily lives. Fur-
thermore, they provide many fast and efficient calculation tasks, starting from
complex scientific computing through networking and communication systems
up to any smartphone device’s functionalities and services. The demand for
greater computational power is naturally always increasing. As this demand
develops, more and more problems are identified as too complex and/or time-
consuming, even for the most advanced highly parallelized digital computer
farms. Alternative computational paradigms have already been explored long
time ago, one obvious direction being naturally suggested by operating prin-
ciples of the human brain. However, most of the research dedicated to brain-
inspired computational paradigm has essentially been performed through com-
puter simulations, i.e. the use of the standard digital Turing-von Neumann
computers, which nonetheless are to be replaced.

Among the numerous brain-inspired concepts, RC [14], originally known as
echo state network [7] or liquid state machine [8] (see [15] for a review), has
recently attracted lots of attention through an unexpected hardware physical
implementation [10,11,16] making use of delay dynamical systems (DDS). DDS
are here involved as complex dynamical reservoirs, surprisingly and efficiently
replacing the traditional spatio-temporal neural network architectures. More-
over, DDS provide a technologically tractable solution to test and design a novel
RC system in dedicated hardware. Hence as the present work has been based
on artificial neural networks and DDS, this chapter will be dedicated to a brief
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1.1 Networks

review of the main foundations of these two fields, as well as of their respective
state-of-the-art.

1.1 Networks

Since the first half of the 20th century researchers have started to develop com-
puter models aimed at emulating the behavior of the human brain [17]. Al-
though many models have been proposed, all of them use a network struc-
ture in which the nodes are numerically processed involving the states of other
nodes. One class of these computer models is artificial neural networks (ANNs)
[18], which will be described in the next section.

Figure 1.1: Generic architecture of interacting (arrows indicate coupling di-
rection) dynamical nodes (spheres) forming a network.

The structure used for these computer models is considered as a complex
system that may be decomposed into simple elements in order to be able to
understand it, [One efficient way to solve complex problems is following the
lemma “divide and conquer” (Philip II, 382-336 BC)]. It is also possible to assem-
ble the nodes in order to produce a complex system [19], such as a network.
Usually, a network is characterized by the following components: a set of nodes
and the weighted connections between them as depicted in Fig. 1.1.

The nodes can be seen as computational units. They process input informa-
tion and transmit the result to other connected nodes. This processing might
be easily achieved by summing the inputs, and by nonlinearly transforming the
result of this sum.
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CHAPTER 1 : Artificial neural networks and delay dynamics

The connections can be unidirectional or bidirectional, depending on whether
the information flow is in one direction or both. In addition, the way the nodes
interact with each other through connections leads to a global behavior of the
network, which cannot be observed in single elements. This means that the
abilities of the network supersede the ones of its elements. For these reasons
they are of great interest in different areas such as computer science, machine
learning, cognitive science, mathematics, not only because they can be used as
model for a wide range of physical phenomena, but also because many systems
can be seen as a network [20].

1.1.1 Artificial neural networks

The ANN is a model inspired by biological neural networks, in particular the
brain structure. In this type of network the nodes are seen as “neurons”. A
neural network (NN) can be defined as a set of elements of simple calculation,
usually adaptive, massively interconnected in parallel with a hierarchical orga-
nization that enables to interact with any system in the same way as biological
nervous system does [21]. These ANNs have become very popular because of
the ease of use, their implementation and ability to approximate any mathemat-
ical functions. Besides, ANNs have a strong ability to get results of complicated
and inaccurate data, they can be used to extract patterns and detect frames that
are very difficult to appreciate by humans or other computer techniques.

It is noteworthy that ANNs, owing to the massive parallelism of their struc-
ture, have a number of advantages :

• Adaptive learning. Learning to perform tasks based on training or initial
experience.

• Self-organization. The ANN may create its own organization or repre-
sentation of the information received during the learning phase.

• Fault tolerance. Thanks to the own distributed information or redundant
information coding via, the partial destruction of a network can lead to a
degradation of its structure; however, some network capabilities may be
retained even suffering of extensive damage.

• Operation in parallel. The neural computation can be performed in par-
allel, either via software or through special machines for this benefit.

These characteristics and their easy implementation into existing digital tech-
nology, make it very useful in areas such as biology, finance, industry, envi-
ronment, military, health, etc. [22]. They are working in applications including
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identification of processes [23], fault detection in control systems [24], modeling
of nonlinear dynamics [25], nonlinear control systems [26] and optimization of
processes [27].

In machine learning and cognitive science the ANNs are generally presented
as interconnected systems of inputs/outputs processing neurons, which ex-
change messages between each other via synapses [28]. These neurons are con-
nected into a network having weighted values that can manipulate the data in
the calculation by applying some nonlinear function, commonly referred to as
activation function ( fNL). The activation function converts a neuron’s weighted
input to its output activation (see Figure 1.2). The output activation is not only
the sum of the activation function of the nodes, it also depends on the way neu-
rons are interconnected within the network. Therefore, the resulting output can
be tuned based on experience, making neural nets adaptive to inputs and ca-
pable of training. This process is referred to as learning in the neural-network
community and it allows to modify the weights in the network to obtain the
desired output value for specific inputs [29–31]. There are many methods for
training neural networks, but all of them are based upon adapting the weights
between interconnected neurons.

Figure 1.2: An artificial neuron.

1.1.2 Main types of neural networks

Depending on the research goal or application there are different models of
ANNs in literature. These models of neural networks can be characterized ac-
cording to different criteria, such as their internal topology, the activation func-
tion or the learning method used [32].

The eagerness to simulate the brain (i.e. its structure and its operation) have
led researchers to develop numerous models of ANN [33], among them: Per-
ceptron (1957), Adeline and Madeline (1960), Avalanche (1967), Backpropaga-
tion (1974), Hopfield (1982), Adaptive Resonance Theory (1986), etc. From the
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CHAPTER 1 : Artificial neural networks and delay dynamics

previous models, it can be seen that this idea is more than 40 years old. Never-
theless, its development has been conceived in recent decades owing to the fact
that there exists a technology that allows its efficient application.

Based on the above criteria, the main large families of ANNs are as follow:
fully connected network, self-organizing map, feedforward neural networks
and recurrent neural networks. In spite of that, in the following sections we
only discuss the two latter ones, since this thesis work was based on the oper-
ating principles of these networks.

1.1.2.1 Feedforward neural networks

The scheme of a simple feedforward neural network (FNN) is given in Figure
1.3. As the name implies, the FNN starts with the input vector which is equal in
size to the number of neurons in the first layer of the network, which processes
such vector element by element in parallel. In this type of network, informa-
tion is modified by the multiplicative factors of weights in each neuron and
transmitted forward over the network through the hidden layers, to be finally
processed by the output layer. That is why this kind of network are referred to
as Feedforward [31].

Figure 1.3: Multilayer feedforward neural network. On the left side of the
network are inputs to the first layer of neurons, followed by interconnected
layers of neurons, and finally with outputs from the final layer of neurons.

It is remarkable that this type of architecture is more simple than the others
in terms of implementation and simulation. However its performance is good
for applications where it is not required that the network retains information
from past events to help assess future events, i.e. in spatial data classification or
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robotics tasks. In such networks, there are no interconnections between layers
(recurrent connections) beyond direct connection forwards to propagate infor-
mation, layer per layer as a function of discrete time step [34–36]. Moreover,
there are no feedback paths to act as network memory, meaning these types
of neural networks are not able to process temporal information. These fea-
tures allow the use of learning algorithms such as backpropagation [37,38]. This
method is essentially a gradient descent procedure which searches for the solu-
tion of an error-minimization problem along the steepest descent, of the error
surface with respect to the connection weights [39].

1.1.2.2 Recurrent neural networks

When working with dynamical patterns, that is, patterns of sequences depend-
ing on time, the FNNs are quite limited, due to the fact that their topology does
not allow to link neurons creating loops. In recurrent neural networks (RNNs),
there are feedback paths between elements in the network, thereby, the informa-
tion does not only flow in one direction. One neuron is then connected to the
subsequent neurons in the next layer, to the previous ones in the past layer, and
eventually also to itself, through all variable weights vectors, hence explaining
the name of recurrent networks. A schematic view of this topology is shown
in Figure 1.4, where all nodes are interconnected with each other and also with
previous nodes, through direct connections.

Figure 1.4: The RNN. As in the FNNs, it is made up of three layers of neu-
rons (input, hidden and output). However in this type of networks there exists
feedback paths.

These recurrences introduced between different layers of neurons cause the
information remains circulating inside the network and a form of dynamic mem-

10



CHAPTER 1 : Artificial neural networks and delay dynamics

ory is created. In other words, the networks are able of preserving information
of previous time states due to the fact that the networks are dynamical systems.
Then, the state of neurons does not only depend on the current value of the in-
put, but also on the previous state of the network [40, 41]. This property, when
combined with significant temporal nonlinearities, enables to address complex
tasks such as recognizing sequential patterns, speech recognition or time series
prediction; nevertheless, training is slower and much more complex than the
FNNs. The first training algorithm of this kind of networks appeared in 1987,
when the backpropagation algorithm of the ANNs was adjusted to the RNNs
applied to static patterns (“Recurrent Backpropagation”).

Thereafter, the RNNs have been applied to a large number of tasks from
speech recognition up to the simulation of finite automata. Nonetheless, the
application of RNN addresses a large number of issues. In the case of static
patterns, an RNN works presenting a pattern, after making evolve the network
to stabilize their outputs. But, it is not guaranteed that oscillatory or chaotic be-
haviors are not reached. Although there are studies to establish the conditions
to prevent it from happening, they are limited to certain very specific archi-
tectures, such as Hopfield. In the case of dynamical patterns, it is even more
complex because, if the behavior of a recurrent network is a little-known fact,
it is difficult to stabilize, meaning less is known about their dynamical behav-
ior. But the real difficulty in this kind of network is the learning procedure,
due to the fact that it is necessary to change the network parameters to obtain
a desired dynamical behavior and while to obtain the desired output for spe-
cific inputs. This process has two targets at the same time, and for this reason it
becomes highly nonlinear, more difficult and time-consuming. However, these
drawbacks are overcome with recently introduced concept known as reservoir
computing (RC).

1.2 Reservoir computing

Modern computer systems require methods of information processing more ef-
ficient to perform calculations that are increasingly complex. One of the most
promising approaches to improve this efficiency is known as RC. This approach
relies on using transient states of a nonlinear recurrent system basis, similarly
to making a traditional neural network.
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1.2 Reservoir computing

1.2.1 Introduction

At the beginning of 2000s, a new brain-inspired concept based on family of
ANNs derived from RNNs has been introduced. This approach is known as
RC [14, 42–44] and it was born after two publications in the context of RNNs
and brain-inspired computing [7, 8]. The first one was developed in the ma-
chine learning community, its representation of RC is referred to as echo state
network; the second one was in the field of neuroscience, its representation is
named liquid state machine. Nonetheless, in both cases the authors introduced a
novel way of training and using complex networks of neural nodes. This new
approach of RC has been quickly adopted due to its ease of use and its excellent
performance. Furthermore, state-of-the-art results have been obtained in tasks
that are considered computationally difficult, such as chaotic time series predic-
tion [16, 42], or speech recognition [10–13, 45, 46].

The RC is based on RNN, it consists typically of three layers: (1) an input
layer of the injected information, (2) a reservoir of interconnected neurons with-
out any particular organization, and with adaptive mechanisms, (3) and an out-
put layer or readout function, known as “Read-Out”, upon which learning is
applied. The RC structure is similar to the traditional ANNs, but the learn-
ing phase is significantly different. Here, the learning phase only consists in
adapting the synaptic weights of the Read-Out (matrix WR). This procedure is
depicted in Figure 1.5(b). Contrary to the conventional neural network in which
the learning phase is applied to the entire network formed by the elements of
the connectivity matrices WI, WN and WR (corresponding respectively to the
three layers mentioned above), this procedure is depicted in Figure 1.5(a). Ac-
cordingly, the training of RC does not affect the dynamics of the reservoir, it
simplifies the training and ensures its convergence. This approach makes RC
learning fast and reliable, and it was even surprisingly found to be also com-
putationally efficient on many benchmark tasks, being whether comparable or
even surpassing RNN techniques. This characteristic is the main advantage of
this type of networks.

1.2.2 Reservoir computing methods

1.2.2.1 Echo state networks (ESN)

ESN is one of the two pioneering RC methods [47], its approach is based on
RNN. Thereby, an ESN is a special artificial RNN with the following character-
istics: a large sparsely interconnected dynamical reservoir (order of 50 to 1000
neurons, previous techniques typically use 5 to 30 neurons) [42], the dynamical
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(a) Learning phase for a RNN. (b) Learning phase for a RC.

Figure 1.5: Comparison between the learning phase of a conventional RNN
and a RC.

reservoir can be excited by inputs and/or feedback of the outputs, the con-
nection weights of the reservoir are not changed by the training, only weights
from the reservoir to the output units are adapted (previous techniques tune all
synaptic connections, Figure 1.5(a)). Then, the most important point here is that
training becomes a linear regression task [15].

The key issue to understand how the ESN principle works is the concept of
the so-called echo states property (ESP). Indeed, the network should asymptoti-
cally wash out its initial state when it is driven by external signal [47,48]. Due to
the feedback of RNNs, the reservoir states contain traces of information about
the past history of the inputs. This can be seen as a dynamical short-term mem-
ory, nonetheless according with ESP, it is known as the fading memory effect.
Thus, the powerful information processing of these networks is only developed
during the transient phase of development of echos.

Although, this RC method has obtained excellent performance results on
a large number of complex benchmark task, obtaining an optimal dynamical
regime for a good ESN is still problematic. It is because of the randomness of
dynamical reservoir and because of the fact that it is necessary to find the ap-
propriate global value to scale both the weights from the input to the recurrent
network, and of the internal weights of the network. Besides, to the appropriate
value of global scaling parameters (spectral radius1, input scaling2, output feed-
back scaling3 and connectivity) one has to preserve the fading memory prop-

1The largest eigenvalue of the reservoir connectivity matrix
2The scaling in this case is like a normalization, where the input values are adjusted to fit

within smaller range while the neural network is still able to learn information about the inputs
3It determines the feedback weights strength from the output layer to the reservoir
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erty. Unfortunately at this point, this optimization is performed by numerical
simulations generally through brute-force calculations. For further information
see the following references [49–52].

1.2.2.2 Liquid state machine

In 2002, Maass, Natschläger and Markram proposed regardless of the ESN, a
model of RC called LSM [8]. This model was originally introduced in the do-
main of neuroscience, with the ambition to contribute to the topic of brain sci-
ence. Therefore, LSM is based on a biological approach of the operating princi-
ple of human brain and nervous system in general.

The model of LSM is based on a rigorous mathematical framework (in prac-
tice it usually consists of a recurrent network of biological neurons also known
as spiking neurons4 [53]) and a separate linear readout layer, even if its operat-
ing principle is very similar to the ESN. In LSM, the neural network may serve
as an unbiased analog fading memory (informally referred to as “liquid”) about
current and past inputs. This “liquid state” or state vector is then seen as an
analysis of contributions of all neurons in real time. The state vector can be
transformed into some target output at any time by a readout function. One
advantage of this method is that in the learning phase it is not necessary to take
any temporal aspects into account, due to the fact that the temporal processing
is done in the recurrent network. Moreover, it is possible to implement several
computations in parallel using the same structure, only adjusting the synapses
of these readout neurons to produce the desired target output [54, 55].

1.2.3 Operating principle

The RC approach generally uses a recurrent network as a dynamical reservoir.
Therefore, its structure is quite similar to the RNN [56,57], it is most of the time
composed of three layers and each is characterized by a connectivity matrix
defining the dynamic behavior of the RC, as illustrated in Figure 1.6. This figure
shows graphically how information u(n) (where n corresponds to the discrete
time) is encoded and injected through the input layer in red into a nonlinear
dynamical system (i.e. a network of firing neurons). The encoding process is
performed by the connectivity matrix WI whose elements are denoted wI

kq, and

this matrix also is responsible to adapt the weights of the input information.
Mathematically, the signal injected into the reservoir is represented by the fol-
lowing equation:

4It is a mathematical description of the properties of nerve cells, that is designed to accurately
describe and predict biological process.
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WIu(n) =

[

Q

∑
q=1

wI
kq · uq(n)

]

. (1.1)

Figure 1.6: Network topology of a RC.

The second layer of the RC is the dynamical reservoir, where the input infor-
mation is projected in a space of high dimension, so that the transient motion is
consecutively triggered and it describes a complex motion in the high dimen-
sional phase space of the dynamics of network. The synaptic weights of the
network of K neurons are defined by the network coupling matrix WN , whose
elements wN

kj determine the dynamics of the reservoir. Hence, the updated in-

ner state of the reservoir x(n + 1) is defined without input information, i.e. in
autonomous operation by:

x(n + 1) = WNx(n). (1.2)

At last, the output layer in blue is characterized by the connectivity matrix
WR, in which the linear Read-Out operation is performed on this transient mo-
tion, whereby the expected solution can be computed. This linear Read-Out re-
mains conceptually into the finding of a hyperplane within the dynamic phase
space, which hyperplane locus in the phase space is characteristic of the prob-
lem to be calculated. In order to define the optimal location of the hyperplane
in the phase space for solving the initial question, a learning procedure is used.
As mentioned above in RC section, the learning phase is only performed on
the Read-Out layer, while WI and WN matrices are left fixed. This procedure
consists in extracting the optimized parameters of the characteristic hyperplane
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equation. These parameters are equivalent to the coefficients of a linear com-
bination of phase space coordinates. Moreover, the output signal y(n) can be
written as a function of the inner state of the reservoir x(n) as follows:

y(n) = fNL

[

WR · x(n)
]

. (1.3)

in which the x(n) can be written as a function of the input signal u(n) and the
activation function fNL of each neuron as illustrated in the following equation:

x(n) = fNL

[

WN · x(n − 1) + WI · u(n − 1) + WFB · y(n − 1)
]

, (1.4)

The term WFB · y(n − 1) in Eq. (1.4) is the feedback from the output y(n)
to the input x(n), weighted by the connectivity matrix WFB. This feedback
plays an important role in applications that need to know information from
past events, and it is also used to maximize performance such as time series
prediction test [32].

RC realizes a specific nonlinear transformation of the input signal into a
high-dimensional state space in which the nonlinear problem can be solved lin-
early [57], such as classification [58, 59] and prediction problems [42]. To illus-
trate this process, consider the values in Table 1.1 for an exclusive disjunction
or exclusive-or (XOR) function. It is a logical operation that outputs true only
when both inputs differ. This function is an example that cannot be computed
by the perceptron [60], because it is not linearly separable. This is geometri-
cally depicted in Figure 1.7(a) for the two dimensional cases and it is known
generically as XOR problem. In this problem, the goal is to separate the blue
spheres from the red ones by a linear function. Nevertheless, the geometry of
Boolean XOR depicted in figure 1.7(a) shows that two straight lines are required
for proper class separation.

Input Patterns Output Patterns

00 −→ 0
01 −→ 1
10 −→ 1
11 −→ 0

Table 1.1: XOR function.

There exits two ways in order to solve this problem: the first presents XOR
function as a linear combination of Boolean functions A ⊕ B = (A + B) · AB =
AB + AB. In fact XOR function is readily constructed by taking the logical
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AND5 of the OR6 and NAND7 functions respectively, that are linearly separa-
ble and may result from the network (perceptron) [61]. The second way to solve
the problem is to increase its dimension. The main idea consists in expanding a
2D to a 3D mapping, where the problem becomes linearly separable. This map
is rather straightforward if we consider carefully the function presented in Ta-
ble 1.2. This is a three-dimensional problem in which the first two dimensions
correspond to the XOR function and the third dimension is the AND function.
Figure 1.7(b) illustrates this method, we can also see that adding a third dimen-
sion allows a plane to separate the patterns classified in category 0 from those
in category 1 [61, 62], which otherwise is not possible due to the XOR problem
is not solvable in two dimensions. The nonlinear mapping to high-dimensional
space does not construct the hyperplane itself, but increases the probability that
the problem becomes linearly separable. This feature is one of the properties of
RC, the signal input is nonlinearly mapped within a high-dimensional reservoir
state represented by a large number of nodes [29, 32].

Input Patterns Output Patterns

000 −→ 0
010 −→ 1
100 −→ 1
111 −→ 0

Table 1.2: Adding an extra input makes it possible to solve XOR problem.

1.2.4 Properties of reservoir

All RC models use a dynamic reservoir which plays the role of memory. How-
ever, a properly functioning reservoir must fulfill several criteria among which
the most important are: separation property, approximation property and fad-
ing memory [15].

1.2.4.1 Separation property

Separation property is the capacity of the readout function to differentiate the
neighboring internal states bound to the different input information u(n). Mean-
ing the RC has to show a good separation property to map different input

5AND function returns true (1) if all its arguments evaluate to true; returns false (0) if one or
more arguments evaluate to false.

6OR function returns true if any of the conditions are true. Otherwise, it returns false.
7NAND function returns false if all its arguments evaluate to false; returns true if one or

more arguments evaluate to true.
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(a) The XOR represented in two di-
mensions.

(b) The XOR represented in three
dimensions.

Figure 1.7: The XOR function mapped into three dimensions is linearly sepa-
rable [62].

streams into significantly different trajectories in the space of the internal states
of the network.

1.2.4.2 Approximation property

Approximation property is the capacity of the readout function to transform the
internal states of the reservoir in an output target of learning. In other words, it
is the ability to produce a desired output ytarget from specific x.

1.2.4.3 Fading-memory property

Fading-memory property is the capacity to preserve the memory of the recent
input (short-term memory), but can forget long term ones. In addition, this
property allows systems to return to a relaxed state if no stimulus are present,
it means that the memory effect is connected with the transient activation of
dynamics of the network [49].

1.2.5 Applications

Nowadays, several successful applications of RC are found in a large variety of
fields in the literature. One of these fields is robotics [63–69], where RC systems
have been used to control and model a robot arm. Another field is dynamical
pattern classification [49] and speech recognition [10, 11, 13, 16, 46, 58, 70, 71]. In
the latter task RC systems have done a lot of contributions. Furthermore, RC
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have been used for prediction of chaotic time series [12, 49, 72]. RC techniques
already outperform state-of-the-art approaches, for example in Mackey-Glass
chaotic time series, it is possible to predict with better accuracy than with clas-
sical techniques [42] or in isolated digit recognition [13].

1.3 Dynamical systems

1.3.1 Introduction

Dynamical systems are a ”young” area of mathematics, although its origins date
back to Newton with their studies of the laws of motion and the universal grav-
itation, and much later Jules Henri Poincaré, who proposed a new study of
the differential equations, in which the qualitative prediction is emphasized
instead of the quantitative one [73]. However, it was just about 40 years ago
that dynamical systems were developed as a proper area, thanks to the work
of outstanding mathematicians, physicists and engineers such as: James Yorke,
Edward Lorenz, Leon Chua, Otto Rössler, Yves Pomeau, Stephen Smale, Yakov
Grigorevich Sinai, Aleksandr Mikhailovich Lyapunov, etc.

Actually the dynamical systems are useful to investigate many real life sit-
uations [74], which factual consequence is the contribution to the field from
many areas other than mathematics, such as physics, chemistry, biology and
economics. The term dynamical systems refers to any physical or abstract en-
tity whose configuration at any given time and/or space can be specified by
some set of numbers called system variables, and whose configuration at a later
time or further position is uniquely determined by its present and past config-
uration through a set of rules for the transformation of the system variables. In
other words, a dynamical system is an approach to understand the nonlinear
behavior of complex systems over time using stocks and flows, internal feed-
back loops and time delays [75].

1.3.2 Delayed feedback systems

Complex dynamical systems are typically marked by interactions and feed-
backs of their subsystems. Feedback can often be efficiently described by a
time-delayed self-interaction of the subsystems. The resulting delayed feed-
back systems are a class of dynamical systems, and they are widely used in a
variety of areas, among which we can mention: analysis of the complex behav-
ior of financial time series in economy [76], chaos control, the stabilization of
unstable periodic orbits of a chaotic system, which is achieved either by com-
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bined feedback with the use of a specially designed external oscillator, or by
delayed self-controlling feedback without using any external force [77, 78]. In
optoelectronics, the dynamics of an electro-optical oscillator subject to a delayed
broadband band-pass filtering feedback is modeled by integro-differential de-
layed equations [79–81], in which both high and low cutoff frequencies of the
feedback loop are taken into account. In photonics, particularly in the study
of instabilities of semiconductor lasers due to delayed coupling, complex light
dynamics are intensively studied with numerous and complex motion that de-
pend on key parameters (feedback delay, pump current, laser nonlinearity, etc.).
The latter family of systems may exhibit a variety of dynamical phenomena
that can be modeled using delay differential equations (DDEs) [82]. It has been
shown that using delayed feedback, an unstable system can be stabilized and
effects of external disturbances can be reduced. Furthermore, in the case of a
nonlinear feedback, the systems can show complex behavior like bifurcations,
several types of oscillations, and chaotic solutions [83]. This behavior has been
observed in optical chaos communications [84] or electro-optic (EO) phase os-
cillators [85].

Dynamical systems can be divided into two general classes: those in which
time varies continuously and in which time passes discretely. The dynamical
systems in continuous-time are expressed by equations that specify the time
derivatives of the system variables in terms of their current (and possible past).
These kind of equations may be ordinary differential equations (ODEs), par-
tial differential equations (PDEs) and DDEs. On the other hand, discrete-time
systems are described as difference equations giving new values of the system
variables as functions of the current (and possibly past). The theory of differ-
ential equations with delay is dealt in models where the variation of the state
variable x with time at each instant t depends not only on x(t) but also on
the values of x in previous moments. The general form of a DDE is given by
ẋ = f [x(t), x(t − τ)], where f is any given linear or nonlinear function and τ
is the delay time. For more general equations and their applications, the reader
can refer to the following references [86–89].

Although the general theory of DDE is quite complex, the simplest possi-
ble case (a linear scalar equation with constant coefficients dependent on a sin-
gle parameter of delay) serves to justify the importance of the delay equations.
An example illustrating this situation has been proposed by Kolmanovsky and
Myshkis in [88]. Consider a person who begins to shower and wants the wa-
ter to reach optimum temperature Td by turning a tap. It is assumed that the
temperature change ∆T is proportional to the variation of the angle of rotation
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∆α with coefficient k. We denote by T(t) the water temperature and τ the time
required for the water out of the shower. It can be assumed that the variation
in the rotation tap is proportional to the difference between the temperature of
the water coming out of the shower and the one wanted by the person (Td) with
constant l. This constant depends on the length of tube and temper (or pulse)
of the person. It leads to a delay equation for temperature:

Ṫ = −kα̇(t) = −kl [T(t − τ)− Td] . (1.5)

The change of variable x(t) = T(t)− Td converts the Eq. (1.5) in

ẋ = −ax(t − τ), (1.6)

where a = kl > 0. Note that with this change, the approach to variable Td

becomes an approximation to zero. Eq. (1.6) is a linear DDE and, unlike what
happens with linear ODE ẋ = −ax(t), the behavior of solutions varies with the
parameters a and τ. Note that if τ = 0 the solutions of the equation ẋ = −ax(t)
are of the form x(t) = x(0)e−at and therefore converge exponentially to zero.
Returning to our model, water goes cold first then get to the desired tempera-
ture gradually, warming increasingly. Probably, it is not exactly what happens
in the shower; one indeed might be willing to get more hot water than is desir-
able before getting an acceptable temperature. Consequently, the model τ = 0 is
not very reliable. In the case of positive delay, Eq. (1.6) is not so easy to integrate
and the behavior of solutions is given by the roots of the characteristic equation.
As in the ordinary case, we seek solutions of the form eλt and substitute directly
into the equation for:

λeλt = −aeλ(t−τ) ⇐⇒ λ + ae−λτ = 0.

The roots of this transcendental equation provide the characteristic values
that determine the behavior of solutions. In particular, all the characteristic val-
ues have negative real part if and only if aτ < π/2. We will briefly describe the
three behaviors to increase the values of aτ. If aτ < 1/e (where e = 2.718... is Eu-
ler’s number), the solutions converge exponentially to zero, as in the ordinary
case. It indicates that small delays do not influence the dynamics; correspond-
ing to a very small tube and a quiet person, which is reaching the temperature
gradually. See Figure 1.8(a), where values are taken τ = 1 and a = 0.1. If
1/e < aτ < π/2 solutions converge to zero but oscillating. This behavior is
characteristic of equations with delay, it is impossible for a first order linear
ODE. Here, we are in the case of slightly longer tube and/or a person with
more temper. The desired temperature is achieved but through stages of cold
and heat, and surely this comportment is more familiar. Figure 1.8(b) shows
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one of these solutions for τ = 1 and a = 1.4. If τ ≥ π/2 periodic solutions
appear, and even unbounded solutions. The high values of a and τ cause the
water to pass successively from hot to cold without stabilizing around the de-
sired value. Figure 1.8(c) shows a periodic solution, obtained by taking τ = 1
and a = π/2. The existence of periodic solutions in a first order linear differen-
tial equation is a phenomenon that distinguishes equations with delay from the
ordinary classical ones.

1.3.3 Nonlinear dynamical systems (NDS)

In mathematics, nonlinear systems are those whose behavior is not expressible
as the sum of the behaviors of their parts. More formally, a system is nonlinear
when the equations of motion and development that govern its behavior are
nonlinear. In particular, the behavior of nonlinear systems is not subject to the
principle of superposition, as it is the case in linear systems.

From the point of view and evolution of dynamical systems, the RC can
be regarded as a complex system, in particular as a nonlinear dynamical sys-
tem [10,11,13]. This type of systems operate in a transient regime and it is often
ousted from the study because its behavior is too complex. Nonetheless, this
is precisely the behavior of interest in our approach of RC. Also, the dynamics
of nonlinear systems remain finite dimensional in practice [90], but exhibit the
properties of high dimensionality and short-term memory [29]. These charac-
teristics have made delay systems suitable candidates for a real-world physical
implementation of RC and computational processing. Besides, the three main
properties (approximation, separation and fading memory) of a RC are satisfied
by the dynamical properties of the network.

An important point to consider in the study of the behavior of nonlinear
dynamical systems is the evolution of the system with respect to the initial con-
ditions, because very small differences in initial conditions can lead to very dif-
ferent solutions. In addition, the initial conditions contribute strongly to the
temporal and/or spatial evolution of the dynamical system, as well as its di-
mensionality (which by the way depends directly on the number of initial con-
ditions).

1.3.4 Characterization of nonlinear dynamics

As we discussed in previous sections, the behavior of nonlinear dynamical sys-
tems is determined by its initial conditions and by the setting of its internal
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(c) Solution of equation ẋ = −π/2x(t − 1).

Figure 1.8: Delay effect in equation (1.6).

parameters. Therefore, it could be simple (fixed point, limit cycle, periodic so-
lutions, etc.) or complex (hardly predictable chaotic trajectories). The study of
the behavior of these systems is based on the observation and characterization

23



1.3 Dynamical systems

of their asymptotic solutions. In others words, the study of dynamical system
mainly begins after the transient regime has ended. For this purpose indicators
are used, which depend mainly on the characteristic of the dynamical behavior
of the system that we want to emphasize. The most important indicators are:

• Lyapunov exponents evaluate the rate with which grows the separation
between neighboring trajectories, or differently, it measures the degree of
disorder for the dynamical solution of concern.

• Entropy measures the loss of information motivated by the evolution of
the trajectories.

• The time series or the graphical representation of the evolution of the
orbits provides information about its regularity.

• The frequency spectrum or Fourier transform, which in chaotic systems
has not defined maxima, indicate the presence of characteristic frequen-
cies.

• The phase space of an n-dimensional system is the space where all possi-
ble states of a system are represented.

• Bifurcation diagram indicates qualitative of the dynamical system solu-
tion when a parameter is changed.

In this PhD thesis the dynamical system is studied when it is at rest, where
it works with a fixed point that is globally asymptotically stable. It is a special
case of asymptotic motion.

In the following sections we will explain in a little more details this case and
the indicators used within the current work.

1.3.4.1 Phase space

The phase space is, by definition, a representation where the nature of the non-
linear dynamical system unfolds. The current model is a very common and
graphical way to understand the asymptotic or dynamical behavior (strange at-
tractor, singularity, limit cycle, basin of attraction, etc.) of the solutions of a dif-
ferential equation. The idea to sketch the phase space is to predict the evolution
of the asymptotic behavior (for the time tending to infinity) of the solutions de-
pending on where they are initially found. Drawing enough trajectories might
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enable to know whether the solutions tend to stabilize at some point, if these os-
cillate (periodic solutions), if they become infinitely large, if they diverge or con-
verge, etc. Some examples of famous trajectories represented in their tractable 3-
dimensional phase space, are: the chaotic attractors of Edward Lorenz [91], Otto
Rössler [92] or Leon Chua [93]. Unfortunately, when higher dimensional phase
space are concerned (delay dynamics are infinite dimensional phase space), tra-
jectories become difficult to represent graphically in such a way, even when they
are not chaotic.

1.3.4.2 Bifurcation diagram

A bifurcation is a typical phenomenon in the study of nonlinear dynamical sys-
tems, involving a critical point in the phase space for which a qualitative change
occurs in the neighboring of the system while changing one of its parameter.
This occurs when a structural instability appears, either by changing the num-
ber of solutions, both stationary and periodic, or their stability. The graph rep-
resenting the solutions and their stability as a function of one or more control
parameters is called bifurcation diagram. The stable solutions are usually rep-
resented with a continuous line and the unstable ones with a dashed line.

The bifurcation is an essential concept in NDSs because it represents the crit-
ical parameter values where something as small as a photon of energy or a slight
fluctuation in the external temperature is magnified by iteration to reach such
a size that a branch is created. Then, the system adopts a new direction, either
fragmenting, falling into chaos, or stabilizing at a new behavior through a se-
ries of feedback ripple to couple the new change to its environment and thus to
resist until a new critical disturbance [94].

The region of chaos in a bifurcation diagram has a complicated structure, e.g.
occurring after several so-called period-doubling bifurcations involving limit
cycles trajectories with periods of 2, 4, 8, etc., and then the chaos begins, with-
out regular periods. By further forcing the system, windows with odd periods
appear and then the duplication of pair periods resumes: 6, 12, 24, etc. An ex-
ample of bifurcation diagram is cited in [32], it is based on Ikeda model defined
by the Eq. (1.7), where xn is the discrete dynamical variable [95]. The bifurca-
tion diagram to this equation is shown in Fig. 1.9, it was performed for different
values of β, for an initial condition of x0 = 0.5 and φ = 0.2. Accordingly, it is
possible to observe the evolution of the static distribution of asymptotic values
of xn as a function of β ranging from 0.5 to 2.7.

xn+1 = β · sin2(xn + φ). (1.7)

25



1.3 Dynamical systems

Figure 1.9: Bifurcation diagram of Ikeda discrete time model. The parameters
used for performing this simulation were: x0 = 0.5, variation of β from 0.5 to
2.7 and φ = 0.2.

We can see in Fig. 1.9 that for values of β < 0.9 only a single branch of
amplitude xn is obtained (fixed point). For values close to 1 a two branches
appear, that is to say, a bifurcation of the solution into an oscillation is observed,
which grows in amplitude with β. Then, for values β close to 1.7 each branch is
split into two level of oscillations (it is known as period doubling), resulting in
periodic oscillations (limit cycles) with different numbers of levels. Finally, for
values of β > 1.9 the amplitude of xn is continuously spread over one or more
amplitude intervals, typically indicating that the chaotic regime is achieved.
Moreover, we can see that the use of the bifurcation diagram is a very useful
tool from the qualitative point of view to quickly evidence the chaotic behavior
of a nonlinear dynamical system.

1.3.4.3 Lyapunov exponents

A general indicator of the presence of chaos in a dynamical system is the max-
imum Lyapunov exponent. This value gives a measure of the average rate of
exponential divergence or convergence of nearby trajectories in phase space.
Since close initial conditions correspond to virtually identical initial states, the
exponential divergence of the orbits implies the loss of predictability of the sys-
tem. Any system containing at least one positive Lyapunov exponent is defined
as chaotic, with the magnitude of the exponent reflecting the timescale in which
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the dynamics are unpredictable.

For a more formal definition, let us start by considering the dynamical sys-
tem

ẋ = F(x), (1.8)

where ẋ represents the time derivative of x and whose solution, we assume to be
given by f ′(x). Also, consider two close initial conditions in phase space x0 and
x0 + δx0, where δx0 is a small perturbation of the point x0. After a time t, the so-
lution for these particular initial conditions, is given by f ′(x0) and f ′(x0 + δx0).
If we use the orbit described by the solution with initial condition x0 as refer-
ence, ∆ f ′ = f ′(x0 + δx0)− f ′(x0) the separation between the pair of trajectories
will be a function of time and will indicate, for example if the trajectories di-
verge that the system is unstable. For the particular case of a chaotic orbit, ∆ f ′

function will erratically vary with time, so it is necessary to enter the exponen-
tial average rate of divergence of the pair of trajectories, that is

Λ = lim
t→∞

1

t
ln

∣

∣

∣

∣

∆ f ′

δx0

∣

∣

∣

∣

, (1.9)

where Λ is called Lyapunov exponent and it is assumed δx0 → 0.

In general, a dynamical system in a n-dimensional phase space has a spec-
trum of n Lyapunov exponents, one for each direction of the phase space. In
addition, it can be shown that if F(x) in Eq. (1.8) is smooth, the limit in Eq. (1.9)
exists and is equal to the maximum Lyapunov exponent [96]. It is important to
note that any initial separation x0, contains, in general, any component in the
direction associated with maximum Lyapunov exponent and due to the expo-
nential growth of the latter, the effect of other exponents will be attenuated to
fade over time. In this environment, it is important to note that if the exponent
is negative, the trajectories get closer; if it is zero, the distance between them is
maintained (periodic or quasi-periodic behavior); if it is positive, they are ex-
ponentially separated with time, even faster when the Lyapunov exponent is
higher. It should be stressed, moreover, that if there is more than one positive
exponent, behavior called hyper-chaos would be obtained and, on the contrary,
the very negative ones would result in a rapid collapse in the dimensions of a
strange attractor [97].

1.3.4.4 Kolmogorov entropy

The most comprehensive measure of the chaotic motion of a dynamical system
in phase space is called Kolmogorov entropy, or entropy. Its introduction in-
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volves contemplating the movement of the dynamical system from the point
of view of information theory of Shannon [98, 99]. According to that theory,
the uncertainty we have about the situation in the system in a certain state is
defined as:

< Incert · (n) >= −
n

∑
i=1

(pi · ln pi), (1.10)

where pi is the probability that the system is in state i.

Kolmogorov used these ideas to establish a measure of the intensity of the
chaos of a dynamical system through the loss of information per unit of time
of this one: being a dynamical system whose chaotic evolution is represented
in a phase space of dimension D following a continuous trajectory, x(t), which
is extracted by measuring at equal intervals of time, ς, the following sequence
x0, x1, x2, . . . , xn. We perform a partition of phase space into cells κ, η, ξ, . . . , ν
each of which have a volume εD (ε ≈ 0) and we calculate the probability P(κ, η,
ξ, ..., ν) of the system to follow the trajectory that involves the following occu-
pations of the phase space:

• For t = 0 and x = x(0), the system is in the alpha volume κ.

• For t = ς and x = x(ς), the system is in the alpha volume η.

• For t = 2 · ς and x = x(2 · ς), the system is in the alpha volume ξ.
. . .

• For t = n · ς and x = x(n · ς), the system is in the alpha volume ν.

Kn = − ∑
κ,η,ξ,...,ν

[P(κ, η, ξ, ..., ν) · ln P(κ, η, ξ, ..., ν)]. (1.11)

According to Shannon, the amount should be proportional to the uncer-
tainty to locate the system in a particular neighborhood after n iterations or
after a time n · ς. In general, we can say that the difference −(Kn+1 − Kn) is the
necessary information so that the system is in the cell ν + 1 at time (n + 1) · ς.
This implies that the opposite difference, Kn+1 − Kn represents the loss of infor-
mation about the system between times n · ς and (n + 1) · ς. The Kolmogorov
entropy is defined as the average loss of information in any process:

K = limς→∞limǫ→0limN→∞

{

1

N · ς

N−1

∑
n=0

(Kn+1 − Kn)

}

. (1.12)
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The passage to the limit of ǫ is set to eliminate the influence of the partition
made in the phase space. As information loss, K, in dynamic systems is due
to the existence of positive Lyapunov exponents, there is a strong relationship
between entropy K and these exponents.

1.3.5 Nonlinear dynamics modeled by ODEs

In 1963 a meteorologist and mathematician at Massachusetts Institute of Tech-
nology Edward Lorenz introduced the following ODE as a simplified model of
3 equations to describe convection flow in the atmosphere [91]







ẋ = σ(y − x),
ẏ = x(ρ − z)− y,
ż = xy − ζz.

(1.13)

Edward Lorenz said that evolution of meteorological conditions could be
predicted if the initial conditions of the system were known. Following this
premise, in 1961, he performed numerical simulations and by chance and to ac-
celerate the simulation used the results obtained the previous day. However,
when he put these digits in the computer he only used the first three decimal
places (0.506 instead of 0.506127) and then the simulation was executed. The
results left him perplexed because they diverged with respect to expectations.
This discovery puts in evidence the phenomenon of sensitivity to initial condi-
tions (also known as “butterfly effect”) of his physical system.

In an effort to explain this behavior of his model, he solved Eq. (1.13) with
different initial conditions and represented it in phase space of 3D, being the
dynamical variables of system x(t), y(t) and z(t). He realized that the evolu-
tion of the dynamical variables of his system has a chaotic trajectory, because it
goes closer and closer to a certain subspace known as attractor, but it is never
intercepted by itself. These chaotic trajectories are illustrated in Fig. 1.10, where
can be observed different types of attractors such as fixed points or limit cycles,
from simple ones to more complex sets of structures such as strange attractors.
Furthermore, if we consider all chaotic trajectories, one will notice that there is
a certain order, as they are around two spiral wound into two plans that look
like the wings of a butterfly (Lorenz attractor).

The Lorenz model Eq. (1.13) is described by 3 independent variables, thus
it has 3 degrees of freedom. Nonetheless, the phase space of some systems can
have much higher dimension that presented in Fig. 1.10. Nonetheless, a system
defined by a set of ODE will always be limited to a finite phase space dimen-
sion, even if it has a large number of degrees of freedom. On the other hand,
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Figure 1.10: E. Lorenz attractor.

there exist delayed nonlinear dynamical systems with a single or more dynam-
ical variables with infinite phase space such as: the Ikeda model [100] or the
Mackey-Glass model [101], etc. described by Eqs. (1.7) and (1.14) respectively.

The Mackey-Glass model will be presented in more details in the next sec-
tion.

1.3.6 Delayed nonlinear dynamical system

Delayed nonlinear dynamical systems are often found in different domains of
physics (electrical, mechanical, optical, etc.). These systems have been inves-
tigated because they exhibit complex chaotic behaviors with high attractor di-
mension, although their mathematical description can be as simple as a DDE.
For example, we can cite the Mackey-Glass model described by Eq. (1.14).

ẋ = −x(t) + α

[

x(t − τD)

1 + bxp(x − τD)

]

(1.14)

where α is the coupling factor, b is the coefficient of nonlinearity, τD is the time
delay and x(t) is the dynamical variable delayed by τD which appears in the
nonlinear term.

This model was proposed by Michael Mackey and Leon Glass in 1977 with
the aim of studying complex rhythms observed in the production of blood cells
[101]. Moreover, in order to solve Eq. (1.14) we need to know all values of
x(t) with t ∈ [−τD, 0], and one will notice that this interval is constituted of an
infinity of values. Consequently, the dynamics of this delayed nonlinear system
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is infinite in dimension because an infinite set of independent initial values of
numbers is required to specify an initial condition, similarity to spatio-temporal
dynamical systems [102]. As mentioned, the time delay τD has a direct influence
on the dynamical behavior of Eq. (1.14), so that different dynamical regimes
are observed for different values of parameters. These regimes are shown in
Fig. 1.11, which can be observed at least three different behaviors: fixed point,
multi-periodic and chaotic signal.

Figure 1.11: Mackey-Glass dynamics. Numerical simulation of Eq. (1.14), us-
ing the Runge-Kutta method of fourth order with the following parameters :
α = 0.2, b = 0.1, p = 6.88 and τD = 1, 10, 15, 100.

The Ikeda model is another example of delayed nonlinear dynamical sys-
tem. This model was proposed by the Japanese physicist Kensuke Ikeda in the
70s [100]. It was based on a nonlinear light absorbing medium placed inside a
ring optical cavity. The setup is illustrated in Fig. 1.12. It is comprised of four
mirrors, where two of them are partially reflecting and are used to inject a laser
light beam into the ring cavity (M1), and another one to get an output from the
cavity (M2); the other two are 100% reflecting mirrors (M3 and M4). The length
L of the cavity determines a round-trip time of the light beam through it, which
defines the delay time τD = L/c (where c is the speed of the light in vacuum).
In addition, the nonlinear medium performs a transformation of the input and
delayed light. Thus, the light field to the output is obtained after the interfer-
ence between the input light beam and the one fed back by the cavity after one
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round-trip.

Figure 1.12: Ikeda setup.

The schematic setup of Ikeda model can be described by Eq. (1.15), in which
the input x(t) with nonlinear function is related (having parameters β and φ).
Therefore, we can write a mathematical expression of the form :

x(t) = β · sin2(x(t − τD) + φ) (1.15)

where the nonlinear function is applied to the delayed dynamical variable x(t−
τD). The importance of the role of the nonlinear transformation in the complex-
ity of a chaotic behavior is determined by two main factors: the amplitude of the
magnification factor β for the nonlinear delayed feedback term (usually consid-
ered as the bifurcation parameter), and the number of extrema of the nonlinear
function. Furthermore to these two factors, the delay time is also a key element
in the generation of a high-dimensional chaotic process. A major advantage in
this dynamical system is its easy experimental implementation to Electro-Optic
(EO) systems.

When associating a time delay (round trip in the cavity) by an iteration, Eq.
(1.15) reduces straightforwardly to the Ikeda Map Eq. (1.7). This however ne-
glects an important physical issue that cannot be ignored in a correct modeling
of an experiment, the necessarily continuous amplitude motion in time. This
important physical constrain related to what is called finite response times, or
to limited bandwidth in the frequency domain, for any physical dynamical pro-
cess. This will be addressed in the next section.
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1.3.6.1 Filtering properties

In its broadest definition, a linear filter can be defined as any process that alters
the nature of a signal (specifically its spectrum or frequency). The impulse re-
sponse h(t) is one way to characterize a filter in the time domain, applying an
impulse to the input. The Fourier transform of an impulse response of a filter
corresponds to the transfer function or frequency representation, characterizing
the filter in the frequency domain. This characterization is carried out through
its amplitude spectrum and phase spectrum.

Amplitude : |H(jω)| (1.16)

Phase : ∠H(jω) (1.17)

where ω represents a single Fourier component.

Let us consider an input signal x(t) that we process with a filter to generate
an output signal y(t), as shown in Fig. 1.13. The spectrum of the output signal
Y(jω) is obtained by multiplying the input spectrum X(jω) by the frequency
response of the filter H(jω), in other words:

Y(jω) = X(jω) · H(jω) (1.18)

where X(jω), Y(jω) and H(jω) are the Fourier transforms of x(t), y(t) and h(t),
respectively.

Figure 1.13: Band-pass filter represented as a cascade of dynamic of a high-
pass and low-pass filter, respectively.

Equation (1.18) is equivalent to the convolution operation (∗) between the
signals in the time domain.

33



1.3 Dynamical systems

y(t) = x(t) ∗ h(t) (1.19)

y(t) =
∫ +∞

−∞
x(t − θ) · h(θ)dθ (1.20)

From simple product of Eq. (1.18), we can obtain the transfer function of the
filter as the ratio between the Fourier transform of the input and the Fourier
transform of the output

H(jω) =
Y(jω)

X(jω)
(1.21)

Low-pass filter

The Butterworth approximation H(s) to a low-pass filter with cut-off fre-
quency ω = ωc is

H(s) =
ωn

c
[

s − ωcej( 1
2+

1
2n)π

] [

s − ωcej( 1
2+

3
2n)π

]

· · ·
[

s − ωcej( 1
2+

2n−1
2n )π

] (1.22)

with s = jω.

While this has some complicated form, for the case of n = 1, Eq. (1.22)
amounts to

H(s) =
ωc

s + ωc
(1.23)

Substituting the filter approximation of Eq. (1.23) in Eq. (1.21), it can be
written as

H(jω) =
1

1 + j ω
ωc

(1.24)

For an expression in the time domain, we apply a property of the Fourier
transform defined by:

jω · Y(jω) = FT

[

dy

dt
(t)

]

(1.25)

If we write Eq. (1.24) as follows:

X(jω) ·

(

1

1 + j ω
ωc

)

= Y(jω) (1.26)
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Developing the left term of Eq. (1.26), and using the property of Eq. (1.25).
We can rewrite Eq. (1.18) in temporal domain of the output signal y(t) as a
function of the input x(t). Thus, the output y(t) of the low-pass filter is the
solution of a first order differential equation given by expression:

y(t) + τ
dy

dt
(t) = x(t). (1.27)

where τ is the time constant of the low-pass dynamics, linked to the cutoff
frequency of the filter ωc by the following relationship: τ = 1

ωc
.

In the case of Ikeda setup τ is physically the non-zero response time on the
intensity to phased amplitude conversion in the nonlinear medium (e.g. re-
sponse time of a Ker effect).

High-pass filter

Low-pass filtering is not the only way limiting actually the bandwidth in
a physical system. More subtly, one might also encounter high-pass filtering,
removing some of the low frequencies in the delayed feedback process. The
study of the high-pass filter is similar to the low-pass filter. Therefore, the out-
put signal y(t) is defined by a convolution product between the input x(t) and
the impulse response h(t) as in Eq. (1.20), and in the frequency domain it is de-
scribed by Eq. (1.21). Consequently, the transfer function of the high-pass filter
is defined by:

H(jω) =
j ω

ω1

1 + j ω
ω1

=
1

1 + ω1
jω

. (1.28)

where ω1 is the cutoff frequency of the filter.

Using the property of the Fourier transform as in the case of the low-pass
filter, we can write the high-pass filter as follows:

1

jω
· Y(jω) = FT

[

∫ t

t0

y(s)ds

]

. (1.29)

We can write Eq. (1.28) in the following manner

X(jω) ·

(

1

1 + ω1
jω

)

= Y(jω), (1.30)

Developing the left term of Eq. (1.29), and using the property of Eq. (1.30),
we can rewrite Eq. (1.18) for the case of the high-pass filter in temporal domain,
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in which the output signal y(t) is a function of the input x(t). Therefore, the
high-pass filter is expressed by the following expression:

y(t) +
1

θ

∫ t

t0

y(s)ds = x(t). (1.31)

We obtain a new law of evolution governed by an integral involving a new
constant of time θ, which corresponds to the characteristic response time of the
high-pass filter, linked to the cutoff frequency of the filter ω1 by the following
relationship θ = 1

ω1
.

Band-pass filter

Finally assuming the simplest approximation of a first order high-pass and
low-pass filter described by Eqs. (1.31) and (1.27) respectively, considering that
Ikeda model is replaced by a band-pass filter profile, then, Eq. (1.15) can be
rewritten as simple as a scalar first order differential equation for the variable
x(t), where the dynamical law of evolution governing the band-pass dynamic
is defined by a nonlinear delayed integro-differential equation as follows:

x(t) + τ
dx

dt
(t) +

1

θ

∫ t

t0

y(s)ds = β sin2 [x(t − τD) + φ] . (1.32)

here, the left-hand side is typical of a stable linear second order dynamics, with
a characteristic response time τ and an integral (high-pass filtering effect) re-
sponse time θ; its role is only to limit the feedback oscillation bandwidth. The
presence of delay in Eq. (1.32) causes the band-pass dynamic to have complex
solutions. Hence, to solve this differential equation, it is necessary to know the
initial condition, in other words the value x(t) for t = 0, as well as all initial
conditions on a time interval [−τD, 0], corresponding to an infinite-dimensional
number initial condition x(t) with t ∈ [−τD, 0]. The dimension of a delayed
dynamics is then infinite like those of the spatio-temporal dynamics [102]. Pre-
cisely this dynamic complexity generated by the delay time is the main reason
why they are used in neuromorphic computers, replacing the classic neuron
networks (a spatio-temporal dynamics of infinite dimension can be represented
as a network of interconnected nodes). Hence, in this manuscript the delayed
nonlinear dynamics will be the main basis for the construction of our approach
to RC.
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1.3.6.2 Reservoir computing based on delayed feedback system approach

RC was developed in the field of ANNs and neuroscience. Nevertheless trans-
posing these concepts in a real-world, experimental implementation was not up
till now possible. Since the recent demonstration of its hardware implementa-
tion possibility, nonlinear physics and nonlinear dynamics communities have
started to also address the topic. Using a delayed feedback system the draw-
backs of the experimental implementation of a system with spatio-temporal dy-
namics can be transposed in a system with only temporal dimension in which
the spatial dimension is recreated virtually. Some examples of how RC has been
successfully performed using a complex system are: in 2009 Verstraeten ex-
plained how the role of reservoir can be seen as a complex nonlinear filter that
projects the input signals into a high-dimensional space, where the classification
can be done much more accurately [48]. Also in [10] Appeltant et al., introduced
in 2011 the general principle about how delay dynamical systems can perform
efficient computation. They replaced the entire network of connected nonlin-
ear nodes by one single nonlinear node subjected to delayed feedback. This
dramatically reduces the experimental difficulties of the ANN for computing
purposes and also demonstrates the extensive computational processing power
hidden in even the simplest delay-dynamic system. Another significant demon-
stration of the use of a complex system like reservoir is given in [13] by Marti-
nenghi et al., in 2012. In this case they reported an experimental demonstration
of a hybrid optoelectronic neuromorphic computer based on complex nonlin-
ear wavelength dynamics including multiple delayed feedbacks with randomly
defined weights. This implementation allowed to find that using a multiple-
delay photonic system with a reduced number of nodes exhibits a comparable
computational efficiency (standard benchmark test of spoken digit classifica-
tion [10,11,16,58,70,71]), with the same order as the best results achieved so far
for the same test.

These concepts of the experimental implementation of Martinenghi’s demon-
strator are used and they are part of the central idea of this doctoral thesis. As
described in more detail in the next Chapter, we have taken the general idea of
neuromorphic photonic RC, but we have made several and innovative modifi-
cations. To begin the realization of a photonic RC can technically shift the intrin-
sic millisecond time scales of the brain [12, 46, 103], down to pico or even fem-
tosecond ones available in standard Optical Telecommunications, thus basically
gaining 9 to 12 orders of magnitude in the processing speed. The present work
replaces the dynamical network by an EO phase delay dynamics built with Tele-
com bandwidth devices, and thus providing ultra-fast information processing
while implementing RC concepts with dedicated hardware. The entire process
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is detailed in Chapter 2.

1.4 Overview

In this Chapter, we have shown how the properties of ANNs and the dynamical
system can be used as a dynamical reservoir in the different models of RC de-
veloped along its creation. First, we explained how an ANN can be represented
as an interconnected network of neurons. These neurons have weight values
that can be manipulated applying a nonlinear function referred to as activation
function. Thus, the resulting output can be tuned based on experience or adap-
tive training. This process is known as learning. Then we explained a particular
type of ANN, in which there are feedbacks or recurrences. Thanks to them such
networks can generate a memory effect. Therefore the NN can be seen as a
complex dynamical system projecting the input signals into a high-dimensional
space. The characteristics of this kind of network are used in two methods that
gave birth to the concept of RC. These methods (LSM and ESN) are based on the
structure of RNNs. However, with them, the drawback of the learning phase of
the ANNs is outperform. Here, the learning phase is performed in the readout
layer only leaving the other layers fixed, thus resulting in an always converg-
ing training. Finally, we presented the delay systems and how their features
have made them suitable candidates for a real-word physical implementation.
In this case, the RC is seen as a delayed nonlinear dynamical system that may
be represented by DDE. On the other hand, we showed three examples (Ver-
straeten, Appeltant and Martinenghi RC approaches) in which the dynamical
reservoir of ANNs has been replaced by a complex system, taking major inter-
est in the experimental demonstration of a hybrid optoelectronic neuromorphic
demonstrator based on complex nonlinear wavelength dynamics.
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Chapter 2

Modeling an EO phase
implementation

In this chapter, we present the theory and modeling of our RC approach, start-
ing with a brief review of the principle of RC systems based on RNN. Then
we make a description where the dynamical reservoir of interconnected neu-
rons for the RC has been successfully replaced using a delay dynamical system
(DDS). Also, we explain the masking procedure which consists in adapting the
signal input information before being injected into the reservoir, as well as the
connectivity of the virtual nodes within the delay time τD and the separation
distance δτ between them. Furthermore in the next section, we describe how
the output signal is sampled either following a synchronous or asynchronous
mode.

Subsequently, we present the experimental setup which is based on nonlin-
ear delay photonic system. The photonic system used in this work is based on
EO phase delay dynamics. We will introduce its physical principles, mathe-
matical model and dynamic characterization. Furthermore, in this chapter we
describe two types of tests used in order to evaluate and quantify the efficiency
of information processing of our photonic RC.

Finally, the aim of this chapter is to describe how a complex system with only
temporal dimension like a nonlinear delayed dynamics can emulate the spatio-
temporal dimension of an RNN using a time-division multiplexing (TDM) tech-
nique. We introduce an EO phase approach of RC which is built with telecom
devices. It allows to increase the bandwidth of our system and consequently
faster processing is reached.
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2.1 Modeling of RC based on RNN

2.1 Modeling of RC based on RNN

The RC based on RNN was introduced in Chapter 1, where a NN was used as
dynamical reservoir. Besides, its operating principle, as well as its mathematical
model were presented in section 1.2.3. Nevertheless in this section, the goal is
to showcase the main properties required for reservoir implementation.

The Fig. 2.1 shows the structure of RC. It is generally composed of three
parts: an input layer, a dynamical reservoir and an output layer.

Figure 2.1: RC scheme based on an approach of type RNN. Its structure con-
sists of three layers: an input layer, a reservoir and a output layer.

The dynamical reservoir can be considered as a classical network formed
by K spatially distributed nodes x(n) = [x1(n)...xk(n)...xK(n)]

⊺. The discrete
time dynamics of the network (as time n is increased) involves the coupling of
each node with the other ones according to the network coupling matrix WN

which is randomly set. Additionally to the internal dynamics, the network also
evolves due to the injection of the input information u(n) to be processed. The
information injection is ruled by a input layer connectivity matrix WI, resulting
in a network dynamics reading as:

xk(n) = fNL

[

K

∑
j=1

wN
kj xj(n − 1) +

Q

∑
q=1

wI
kq uq(n)

]

, (2.1)

where the fNL term is the nonlinear transformation due to the activation func-
tion. It represents the nonlinear node sensitivity to the cumulated stimuli com-
ing from both the network internal connectivity and the input information con-
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nectivity. A popular form for fNL is the tanh−function also known as sig-

moid function. The WI =
[

wI
kq

]

term are the input connection weights with

q ∈ [1, . . . , Q] and the WN =
[

wN
kj

]

term are the network internal connections

of the reservoir with j ∈ [1, . . . , K]. According to the principles of RC, the
[

wN
kj

]

elements determine the dynamics of the reservoir and they are not changed in
the learning phase. Therefore, the internal state of the reservoir denoted x(n) in
Eq. (2.1) is a vector whose elements depend both on the input information u(n)
but also of connectivity matrices WI and WN, as well as the previous states of
the network nodes x(n − 1). Then, the Read-Out operation extracting the com-
puted M−dimensional solution consists in a linear combination of each node
state according to the output connectivity matrix WR. Mathematically, we can
express the output signal y(n) in the same way as in Eq. (1.3), by the following
relationship:

ym(n) =
K

∑
k=1

wR
mk xk(n). (2.2)

In Eq. (2.2) the activation function fNL does not appear anymore, because it
is implicit in the nonlinear transformation of the node connections in the net-
work xk(n), where k is the spatial dimension and n is the discrete time.

2.2 RC based on DDE

This section presents the general principles that explain how a dynamical sys-
tem was successfully proposed as an unconventional hardware implementation
of RC. The main idea is to use a nonlinear delay dynamics instead of the stan-
dard spatio-temporal structure consisting in a dynamical network of intercon-
nected nodes (as this was mathematically described in the previous section).
One of the most important arguments on which relies this approach is the fact
that these systems have a high complexity (introduced by the delay) and at
the same time one can have access to it. Moreover, delay dynamical systems
are indeed known as having an infinite dimensional phase space and it can be
modeled by a DDE, as presented in sections 1.3.2 and 1.3.6 with Eqs. (1.5) and
Eq. (1.14) respectively. Consequently, in this approach of RC the NN complex-
ity is replaced by a DDS. It provides a valuable simplification to the study and
an attractive hardware solution, especially when photonic implementations are
concerned, for which high speed optical telecom device can potentially provide
unprecedented processing speed. Unlike the physical realization of a system
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2.2 RC based on DDE

with spatio-temporal dimension, which imposes the development of a technol-
ogy in 3D (as neurons of the human brain), the DDS can be oriented in one
dimension (temporal dimension) following an approach of signal processing.
It enables the experimental implementation by mean of TDM1, as illustrated in
the scheme of Fig. 2.2. For this, the injection of the input information u(n) into
the reservoir is done serially (so-called pre-processing, detailed in section 2.2.1)
and not in parallel as was done in the case of RC based on RNN (see Fig. 2.1).
As information has been temporarily addressed through TDM over the virtual
nodes within the reservoir, the spatial dimension is virtually created within de-
lay interval τD [105]. As a result, the spacing between each successive node δτ
is defined by the relationship τD/K, K being the number of desired nodes.

Figure 2.2: Principles of a RC based on DDE. A single nonlinear element sub-
ject to delayed feedback, where fNL(x) stands for the nonlinear transformation
of the system, and h(t) denotes the impulse response of the system, respectively.

In order to illustrate and justify the use of such systems, let us consider the
simplest scalar model of DDE of the following form:

τ ẋ = −x(t) + fNL[x(t − τD)], (2.3)

where τD is the delay time and τ is the characteristic response time limiting the
fastest time scales allowed in the feedback loop. The common case, τ ≪ τD

has widely demonstrated the emergence of chaotic attractors [106]. The infinite
dimensional character can be straightforwardly explained by the kind of initial
conditions actually required for the unique definition of a given trajectory: it

1TDM is a method of transmitting and receiving independent signals over a common signal
path by means of synchronized switches at each end of the transmission line so that each signal
appears on the line only a fraction of time in an alternating pattern [104].
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consists of a functional2 x(t) with t ∈ [−τD; 0] belonging to an infinite dimen-
sional space, as introduced in section 1.3.6.

The spatio-temporal emulation of a delay dynamics has been indeed known
for more than 2 decades [105]. In that work, they proposed an experimental
system with delay-differential dynamics, consisting in a CO2 laser driven by a
signal proportional to the output laser intensity. In the feedback loop a delay
line (τD, long time scale) and an amplifier (with bias voltage B) are placed be-
tween the modulator and the detector. The case explored was τD ≫ Tc, with
Tc being the correlation time of the laser intensity (short time scale). The results
obtained increasing B show different dynamical behaviors with pulse shapes
similar to those that are characteristics of the laser without delay. Measuring
the time correlation over long times, evidenced the appearance of other fea-
tures. They imply the existence of two different times scales (multiple scale)
in the interplay between the nonlinearity and the delay. It suggests an orga-
nization of the data in two-dimensional “space-time” domain, like in the nu-
merical technique for solving DDEs. Following this procedure, the state of
Eq. (2.3) is determined by all values x in the interval [t − τD, t] and its evolu-
tion consists of a N−dimensional discrete mapping taking samples at intervals
∆t = τD/(N − 1). The N-dimensional mapping is defined by a virtual space
variable s ranging from 1 to N, and by k being a discrete index counting the
delays units. As a result, the space-time representation in s − k domain pro-
vides a visual discrimination among the different types of chaotic behavior. For
example when τD ≫ Tc the points along the s axis decorrelate, and then the
correlation revives after one delay τD, showing a cellular structure of data as in
space-time turbulence, which is much more evident than the one-dimensional
representation.

Recently, this approach was studied by our group to demonstrate the exis-
tence of Chimera states in delay dynamics [107]. The setup used is based on a
modified Ikeda time-delayed equation. It is modeled by a band-pass delay dy-
namics and analyzed in a virtual, spatial representation. This space-time rep-
resentation uses a virtual continuous space variable corresponding to a short
time scale σ of the dynamics, of the order of τ in Eq. (2.3) or Tc in [105], whereas
the long time scale of the order of the delay τD defines a discrete time variable
with n ∈ N and σ ∈ [0; τD]. Thus, the evolution of the functional can be de-
fined by the generic term {xσ(n) = x(t) | t = nτD + σ}, with σ being an index
corresponding to a temporal position within a single delay interval and by n

2A functional is a function that takes functions as its argument; that is, a function whose
domain is a set of functions.
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stands for the time steps. With this formalism, in the framework of RC, it ap-
pears more convenient to use the form of Eq. (1.20) to rewrite the usual DDE
(2.3) into an integral convolution form involving the impulse response h(t), the
latter characterizing the linear differential process ruling the delay dynamics:

x(t) =
∫ t

−∞
h(t − ξ) fNL[x(ξ − τD)]dξ, (2.4)

where h(t) is the linear impulse response of the delay oscillation loop, which
takes the usual form h(t) = (1/τ)e−t/τ for t ≥ 0 (and 0 for t < 0 due to causal-
ity) for the case of Eq. (2.3). One could notice here that (2.4) is indeed more
general than (2.3), since it describes any kind of linear filtering in the delayed
feedback loop, not only the first order kind of concern in Eq. (2.3).

In order to model RC, the temporal dimension can be described as the sum
of short time scale corresponding to the virtual spatial dimension σk, and the
long time discrete nτD. Therefore, the convolution product in Eq. (2.4) can be
described by a more straightforward discrete time map for the functional, thus
highlighting the spatio-temporal analogy:

xk(n) = xk(n − 1) +
∫ σk

σk−τD

h(σk − σ) fNL[xσ(n − 1)]dσ, (2.5)

where the virtual node connections xk(n) = x[t(n, σk)] with t(n, σk) = nτD + σk,
provide a writing of the delay dynamics which precisely points at the multiple
scale features of such dynamics. Hence, the multiple time scale is used in order
to highlight a space-time analogy with the standard discrete time RC model in
Eq. (2.1). We recover the discrete time dynamics as the iteration of the functional
from n − 1 to n, whereas the spatial coupling is governed by the integral term
where the impulse response h(t) of the dynamics plays the role of a coupling
(matrix WR) between the nodes in a continuous virtual space in σ. Therefore,
the state of virtual node xk at a k position and a n time depends both on the
neighboring nodes at the positions σ k − 1, but also its own previous state at
time (n − 1)τD.

Equations (2.3)-(2.5) correspond to a so-called autonomous dynamics. RC is
a computing paradigm which deals with the processing of time dependent in-
formation through transient dynamics, thus it is implicitly a non-autonomous
system. The typical way the information to be processed is mixed within the
delayed feedback loop, is usually to add the encoded input information u(n)
to the dynamics x(t), the added two contributions forming the argument of the
nonlinear transformation fNL[·].
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2.2.1 Data pre-processing

We introduced previously how a DDS can successfully emulate the spatio-temporal
dynamics like an RNN. It provides a conceptual solution for its experimental
implementation as well as similar expansion properties for computational ca-
pabilities. We have also explained that the spatial dimension is virtually created
within the time delay interval τD, for which the input information u(n) needs
a pre-processing in order to adapt the signals before being distributed over the
virtual nodes of the reservoir. In this section, we will detail how input data are
processed.

In our approach the information injection into the virtual space σ of a delay
dynamics is achieved through TDM. It defines the node position k ∈ [1; K] as
time position σk = (k− 1)δτ within time delay. Similarly to the information con-
tribution in Eq. (2.1), a given virtual node xk(n) receives an input information
signal contribution (Write-In) in order to increase variability in the network.
Nonetheless in this case, the input information is weighted by the synaptic
weights corresponding to the elements wI

kq of a new function (so-called mask).

This mask function is defined by (q− 1)δτ ≤ t < qδτ, with q ∈ [1, . . . , Q], which
redefines the connectivity (K × Q) matrix WI (we recall that K is the number of
virtual nodes and Q are the amplitudes of the input). The mask output is then a
piecewise constant function, constant over an interval δτ and periodic with pe-
riod τD. The Q amplitude values of the mask during each interval of length δτ
are randomly chosen and these values weight the serial input information. In
this way, the information contribution is the product of the input u(t) and the
mask function. This masking procedure is depicted in Fig. 2.3, where values

wI
kq =

{

±1

0
and it can be defined mathematically by Eq. (2.6):

∑
q

wI
kq uq(n) δ(t − nτD − σk), (2.6)

where δ(t) = 1 at t = 0 and is equal to zero at any other time. In the particular
case of a photonic delay dynamics as reported in this thesis, the unit pulse δ(t)
is replaced by a physically more realistic rectangular temporal window also
known as an “order zero” sample and hold operation:

pδτ(t) =

{

1 if t ∈ [0; δτ]
0 otherwise.

(2.7)

Substituting the δ(t) by the temporal window of Eq. (2.7) in the information
contribution Eq. (2.6), it can be rewritten as follows :
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uI
σ(n) =

K

∑
k=1

[

Q

∑
q=1

wI
kq uq(n)

]

pδτ(σ − σk), (2.8)

where the input signal uI
σ(n) is a stepwise constant function defined accord-

ing to the TDM principle performing the distribution of each input information
sample u(n) over each of the virtual nodes defined within a time delay interval.
Considering the input signal, the dynamical law for the transient can be identi-
fied with the generic Eq. (2.1) modeling initially the ESN concept. In this way,
DDS allows a formalization of a signal processing much like to this one used in
ESN and thus the dynamical law can be described in relation to the following
equation:

xk(n) = xk(n − 1) +
∫ σk

σk−τD

h(σ − σk)× fNL

[

xσ(n − 1) + ρ · uI
σ(n − 1)

]

dσ.

(2.9)
where ρ is an adjustable parameter (usually referred to as input gain).
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Figure 2.3: Description of pre-processing of input information. The virtual
nodes corresponding to the input information u(n) are in blue (for simplicity
u(n) is considered here as a scalar and consequently WI is a vector and not a
matrix anymore), which have been held up during a time delay τD, then they
are multiplied by the elements of the mask function whit amplitudes ±1, and
0 (dashed lines in black). The role of the mask is to distribute information
throughout τD. Finally, the blue line is the information adapted and ready to
be injected into the RC system.
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2.2.2 Internal connectivity of the reservoir

In the same way as in a traditional NNs, the interconnections of the virtual
nodes within the reservoir are governed by several parameters: the separation
distance between each successive node δτ, the delay time due to the feedback
loop τD, the integral response time θ and the response time τ of the RC sys-
tem set by the profile of the dynamic low-pass or band-pass filter. However,
for a good performance of the system it is necessary to find a balance between
these constants, because it will determine the different types of operation, as
illustrated in Fig. 2.4. The value of this balance was determined empirically
(numerical simulations) by the consortium of the PHOCUS project [108]. They
found that good performance occurs when the RC works under transient con-
ditions, wherein the distance between two successive virtual nodes is small
enough with respect to the response time of the system, thus the time scales
are related δτ ≤ τ ≪ τD.

If τ ≪ δτ, the response of RC system very rapidly reaches its steady state,
as depicted in Fig. 2.4(a). In this case, there is no coupling between the virtual
nodes and each of them is then decorrelated from the rest of the network nodes,
as well as, those of their successive states. This means that, the reservoir state
x(t) is only determined by the instantaneous value of the input u(t) and the
delayed reservoir state x(t − τD). Under this condition the dynamics are not
sufficient for good performance of RC system.

(a) Response of RC very close to steady
state working in asymptotic regime for τ ≪
δτ.

(b) Transient regime of RC for τ > δτ, in
this case the reservoir is a network of vir-
tual nodes strongly interconnected.

Figure 2.4: Internal connectivity of the reservoir. In blue input signal u(t) and
in red response output.

Considering τ > δτ, the response of RC operates in transient regime and
this one never reaches its steady state, as depicted in Fig. 2.4(b). In this case,
the interconnections of the virtual nodes are more complicated, because the dis-
tance between two neighboring nodes is much smaller than the response time
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of the RC system. For this reason, the reservoir state x(t) at time t depends on its
previous state and those of their neighbors. In this transient dynamics the best
performance of RC system is obtained. For example in a test of speech recog-
nition (isolated digits) the best results were found when the system worked in
transient regime. This regime can be mathematically defined by the following
relationship δτ/τ ≃ 0.2 [29,108]. Using the total number of virtual nodes K and
the time constants of the system τ, τD, the relationship δτ/τ can be written as
follows :

τD

K
≃

1

5
τ. (2.10)

This empirical rule will be used throughout this thesis in numerical and ex-
perimental tests.

2.2.3 Post-processing of the output information

Practically the output signal of reservoir x(t) is a linear combination of the states
of the virtual nodes and it depends on one dimension (time) as the input signal
u(t). For this reason, a post-processing of the output signals or temporal traces
is applied, and it is realized in two steps. The first step consists in sampling
and formatting the temporal traces recorded at the output of our reservoir. The
second step consists in applying the learning phase in order to find the good
coefficients of Read-out function.

2.2.3.1 Read-Out

The output signal of the reservoir is sampled following values δτ and τD (cor-
responding to the virtual distance between two successive nodes and the value
of the time delay respectively) and then the Read-Out y(n) can be expressed in
the same way as in Eq. (2.2). If a synchronous sampling (synchronous mode) is
adopted at the Read-Out compared to the Write-in, the sampling rate between
the input signal and the output signal is the same and thus the virtual distance
δτ within in a time delay interval τD is equal in both signals.

ym(n) =
K

∑
k=1

wR
mk xk(n), (2.11)

On the contrary if the asynchronous sampling (asynchronous mode) at the
Read-Out is adopted. Then one can play with the degrees of freedom brought
by a continuous time dynamics, here defining different node positions σR

k for
the Read-Out compared with Write-In:
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ym(n) =
K

∑
k=1

wR
mk x

(

nτD + σR
k

)

, with σR
k ∈ [0; τD[ . (2.12)

This issue makes use of degrees of freedom brought by the continuous flow
of information at the output of the Reservoir dynamics, thus changing the way
this information flow is actually sampled with respect to the Write-In. The
Read-Out sampling period δτR was chosen slightly different from the Write-
In sampling period δτ, δτR = (1 + ε)δτ, which resulted in a radically improved
RC processing efficiency by more than one order of magnitude. This improve-
ment was confirmed numerically and experimentally. This effect of asynchro-
nism will be described in more detail in Chapter 3.

The output signal ym(n) in either synchronous or asynchronous mode Eqs.
(2.12) and (2.11) is put in a 2D format with spatio-temporal dimension, resulting
a matrix Mx. This procedure is shown in Fig. 2.5. A given response matrix
Mx is representative of the dynamical processing performed by the dynamical
reservoir and it consists in the sampling of the transient trajectory triggered by
one input signal. This trajectory is taking place in the infinite dimensional phase
space of the delay dynamics.

Figure 2.5: Procedure for the formatting of the output signal y(n) in order to
put the transient response in a spatio-temporal form (matrix Mx). The vertical
values K are virtual nodes distributed along the time delay τD and horizon-
tally it is a sequence of columns N corresponding to the temporal length of the
information being processed.
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2.2.3.2 Learning procedure

The learning procedure is based on the same learning method proposed by H.
Jaeger and W. Maass [7, 8]. Then, according to the concept of RC, one needs
to obtain or to find the optimal coefficients [ωR

mk] of a hyperplane in this phase
space. The hyperplane is expected to have a characteristic role for the problem
presented to the RC processor. We propose a description of the learning proce-
dure without taking into account any particular problem. The implementation
for a particular case will be detailed later in section 2.4.2.1.

As we have mentioned in chapter 1, the learning process of RC is different
from the traditional one (RNN method), where the conceptual separation of
the dynamical reservoir and Read-Out function does not exist, and train both
the inner reservoir and the coefficients [ωR

mk] in technically the same fashion.
RC methods only train the last layer (Read-Out) and the other layers are fixed
(Write-In and dynamical reservoir). According to it, the learning process as-
sumes that the Read-Out function produces the desired output from the state
expansion x(n). Therefore, the output weight learning of Read-Out matrix WR

can be phrased as solving a system of linear equations

WR × Mx = My, (2.13)

where Mx are all neuron signals x(n) produced by presenting the reservoir with
the input u(n) and My is the so-called target matrix with dimension M × N. It
is also the set of coefficients to learn. The correct answer is then expected to be
easily identified from the content of My.

The learning requires practically the use of a subset from the whole number
of data points in the task. The complementary part of this subset is later used
for the testing of untaught data points. This is basically performed through a
simple ridge regression minimizing the error for all possible WR matrices in
order to obtain the proper target for each data point of the training subset:

WR
opt = argmin‖WR · Mx − My ‖2 +λ‖WR‖2, (2.14)

where λ is the regression parameter to compensate for a necessarily ill-posed
problem. The matrices Mx and My are horizontally concatenated matrices gath-
ering all experimental response matrices of the training subset and all their cor-
responding targets, respectively.

The optimal Read-Out matrix is calculated off-line using the recorded tran-
sient experimental response matrices Mx. This calculation is done by a Matlab
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routine executing the ridge regression through a standard Moore-Penrose ma-
trix inversion, according to the following expression:

WR = My · M
⊺
x(MxM

⊺
x − λIK)

−1, (2.15)

where IK is the K−dimensional unity matrix, and (.)⊺ refers to the matrix trans-
pose.

2.3 Modeling the setup performing a photonic delay-

based Reservoir

In this section, we present the physical implementation of our photonic RC
based on a nonlinear DDS. The idea to use such systems intended for signal or
information processing has been already studied few years ago, even-though
it was for totally different applications such as ultra-high spectral purity mi-
crowave generation [109] or physical layer optical encryption using broadband
chaotic waveforms [110]. In this work, the design of our experimental setup is
built taking as model a version of a optoelectronic circuit. Among the different
setups reported in the literature, our group contributed to several versions of
the so-called optoelectronic chaos oscillator [111]. The latest version was espe-
cially designed in the framework of 10 Gb/s optical chaos communication, and
it succeeded in establishing the state-of-the-art speed and transmission qual-
ity thanks to highly controllable differential phase shift keying (DPSK) optical
communication techniques [112]. Beyond the operational chaos communication
demonstration, this so-called “phase chaos setup” is characterized by tempo-
rally non-local delayed feedback which provided additional virtual space-time
coupling features with novel bifurcation phenomena [84,85]. Consequently, the
phase chaos architecture appeared to us of high potential interest in the frame-
work of photonic RC processing as well.

2.3.1 EO phase delay dynamics

The setup performing RC through the transient motion of an electro-optically
modulated phase of a laser beam, is depicted in Figure 2.6. It is implemented
in a closed-loop configuration based on the Ikeda setup idea. The delayed feed-
back loop is inspired by the standard optoelectronic delayed feedback archi-
tecture [111] which provides the “recurrent” character of the dynamics. This
oscillator makes use of two EO phase modulators (PM) (20 Gbps, EOspace)
which electrical to optical phase conversion efficiency is denoted Vπ (also tech-
nically referred to as half-wave voltage). One can see in Figure 2.6 that the first
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EO PM allows to imprint the initial electrical domain information uI
σ(n) onto

the optical phase of the laser light beam carrier (PureSpectrum -FSL, TeraXion),
whereas the second EO PM combines additively to this input information the
nonlinear delayed self feedback xσ(n). The resulting total light phase modu-
lation is ϕ(t) = xσ(n) + ρ uI

σ(n), where ρ is an amplification factor scaling the
information signal compared to the feedback one. The recurrent dynamics of
the RC concept is provided by the delayed optoelectronic feedback loop. This
loop consists of:

Figure 2.6: EO phase setup involving two integrated optic PM followed by
an imbalanced Mach-Zehnder DPSK demodulator providing a temporally
nonlocal nonlinear phase-to-intensity conversion. The information to be pro-
cessed by this delay photonic Reservoir is provided by a high speed arbitrary
waveform generator. The response signal from the delay dynamics is recorded
by an ultra-fast real time digital oscilloscope at the bottom of the setup, after the
circulator followed by an amplified photodiode and a filter.

• A significant time delay τD issued from the serial combination of optical
fiber pigtails and small electrical links connecting the different electronic,
optoelectronic, and EO devices of the loop.

• A fiber-based passive imbalanced Mach-Zehnder interferometer (MZI),
which actually consists in a conventional DPSK telecom demodulator (2.5
GHz free spectral range, ITF technologies), with a time imbalancing δT ≃
402.68 ps. This demodulator converts nonlinearly the input phase mod-
ulation ϕ(t) into an output intensity modulation, according to the stan-
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dard two-wave intensity interference function (with an offset shift ensur-
ing fNL[0] = 0, and a gain factor β):

fNL[ϕ] = β · {cos2[ϕ(t)− ϕ(t − δT) + Φ0]− cos2 Φ0}, (2.16)

in which the imbalancing δT ≫ τ reveals a strong time non-locality of the
nonlinear transformation contrarily to most other delay dynamics [79,109,
111, 113]. Such a non locality becomes dynamically significant, as soon as
the phase modulation occurs at time scales comparable or faster than δT.
This is obviously the case in our work, as e.g. the input information occurs
at more than 10 GHz sampling frequency, the PMs being 10 Gb/s tele-
com devices. It is worth noticing the role of the offset phase Φ0 = ω0δT,
which is to fix the shape of the nonlinear transformation profile. This ac-
tual shape can be set to linear or quadratic for Φ0 = π/4 or 0, modulo
π/2, respectively. For Φ0 = π/4 and a strong enough phase modulation
span (parameter ρ), the actual shape can even be of cubic type. The param-
eter Φ0 is practically adjusted whether through the central wavelength of
the laser λ0 = 2πc/ω0, or through a fine tuning of the time imbalanc-
ing. Fiber-based DPSK are indeed usually equipped with a heating wire
rolled around one interferometer arm, thus allowing to finely and actively
control the absolute differential phase shift, or DPSK rest point; such an
active control is implemented in our setup, making use of the backward
optical path in the DPSK demodulator, through the backward injection of
the same but unmodulated laser beam through a 10/90 fiber coupler as
shown in Figure 2.6; two optical circulators are used to separate or com-
bine the forward modulated light beam -counter clockwise propagation
in the oscillator loop in- and the backward unmodulated one (see [114] for
details).

The parameter β is a normalized weighting factor for the nonlinear de-
layed feedback, it scales linearly with the different EO and optoelectronic
conversion efficiency, as well as with the electronic gain, and the forward
path optical power κP0. The latter power is practically tuned through a
variable optical attenuator (M420, Eigenlight with attenuation factor κ) in
order to adjust β in the experiment, to the optimal value determined from
numerical simulations. It is important to note that the power can be con-
trolled by tun ing the laser injection current, but varying this current the
wavelength is also changed. This wavelength shift affects the offset phase
of the interplay of waves and hence changes the nonlinear transform.

• Telecom amplified photodiodes (PDs) with sensitivity S are used to con-
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vert the intensity fluctuations at the DPSK demodulator outputs into elec-
tronic signals. In the delayed optoelectronic feedback the signal applied
to the second EO PM is coming from a broadband PD (30 KHz-12.5 GHz,
model DR-125G-A, Miteq) and in the output of oscillator a PD (10 GHz
bandwidth, model DSC-R402 from Discovery Semiconductor, Inc) per-
forms the extraction of the signal xσ(n). The latter signal represents the
reservoir response to the transient triggered by the input information, and
it is recorded by a digital scope for further off-line processing correspond-
ing to learning and testing of the Read-Out layer.

• A low-pass filter is used to “slow-down” the internal delay dynamics time
scale, resulting in a characteristic response time τ or differently speaking it
results in the impulse response h(t) involved in equations (2.4)-(2.9). The
motivation for this filter is to slow down the actually available 10 GHz
bandwidth in the feedback dynamics, which is governed on one side by
empirically determined [10] optimal distance between the virtual nodes
(δτ) of a delay reservoir as described in Eq. (2.10), and on the other side
by the maximum sampling frequency of our AWG (Tektronix 7122C) up
to 24 GS/s. Input sampling rate is deduced from one fifth of the low-pass
filter characteristic time scale (δτ)−1, indeed fulfilled these two technical
requirements.

• A broadband Telecom RF driver with gain G is used for amplification
(SHF100CP, SHF), before applying the nonlinear delayed filtered feedback
to the second EO PM. A similar driver is also used between the AWG and
the first EO PM, to ensure a strong enough modulation span [weight ρ in
equation (2.9)]

The schematic of the feedback loop is shown in Figure 2.7 and a physical
demonstration of the function of certain components (particularly the DPSK)
will be held in the next section.

2.3.2 Modeling EO phase setup

The feedback loop in Figure 2.7 is fed by a semiconductor CW laser injecting a
light wave in the form of E0ejω0t. The optical phase of the injected light is then
modulated by a value ϕ(t) = πv(t)/Vπ according to the voltage v(t) applied to
the electrical RF input of the PM, while the intensity of the output light remains
constant. Then the signal is delayed by a serial combination of the few meters
of fiber pigtails and the electrical connections, resulting in a total delay in the
closed-loop oscillation we denoted as τD. Then, the output light leaving the PM
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is tuned by a variable optical attenuator, the resulting light intensity is linearly
influencing the feedback loop gain β. The phase of the attenuated light is then
nonlinearly converted into intensity one by means of the DPSK demodulator,
which can be detected by an amplified PD. The electrical signal at the PD output
is filtered according to the overall bandwidth of the electronic feedback and
is determined by a low and high cut-off time scales that we denoted θ and τ
(from filter). The electrical signal leaving the filter is then amplified by a linear
amplifier with gain G which drives the input of the PM, thus closing the loop.

2.3.2.1 Derivation of the nonlinear transformation by the DPSK, i.e. the ac-
tivation function

The optical output at the PM (E0ej[ω0t+ϕ(t)]) is split in two optical waves delayed
by τD at one arm and by τD + δT at another. Interference of re-coupled waves
results in the following output electrical field:

E(t) =
1

2
E0ejω0(t−τD)+jϕ(t−τD) +

1

2
E0ejω0(t−τD−δT)+jϕ(t−τD−δT)

=
1

2
E0ejω0(t−τD) ·

[

ejϕ(t−τD) + e−jω0δT+jϕ(t−τD−δT)
]

= E0ejΨ cos

[

ω0δT + ϕ(t − τD)− ϕ(t − τD − δT)

2

]

, (2.17)

Figure 2.7: EO phase delay model.

Ψ = ω0(t − τD − δT) +
[ω0δT + ϕ(t − τD − δT) + ϕ(t − τD)]

2
. (2.18)

Therefore, the light intensity at the output of PD can be described as follows:
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I(t) = ‖E(t)‖2 = P0 cos2

[

ω0δT + ϕ(t − τD − δT) + ϕ(t − τD)

2

]

(2.19)

P0 = ‖E0‖
2

The bandwidth of the system is limited (usually by the response time of the
electronic devices), and it is modeled by two cascaded linear first-order high-
pass (2πθ)−1 and low-pass (2πτ)−1 filter, otherwise by a band-pass filter. If we
consider the voltage at the input and at the output of the filter as follows:

ui(t) = S · I(t) ⇒ Ui(jω) = SI(jω) (2.20)

u0(t) = v(t)/G ⇒ U0(jω) = V(jω)/G (2.21)

where S is the conversion efficiency of PD, G is the gain of the amplifier and
V(jω) = FT[v(t)] is defined as the Fourier transform of the voltage applied to
the PM. Using a simple definition of filter transfer function Eq. (1.21) introduced
in section 1.3.6.1

H(jω) =
U0(jω)

Ui(jω)
, (2.22)

using FT[v(t)] we can rewrite the Eq. (2.22) as:

FT−1

[

V(jω)

H(jω)

]

= SG · I(t) (2.23)

Substituting Eq. (2.20) into Eq. (2.23), taking into account additional losses γ
and also including delay (δT) due to the DPSK into overall feedback delay time
τD, then Eq. (2.23) can be rewritten as:

FT−1

[

V(jω)

H(jω)

]

= γSGP0 cos2

[

ω0δT + ϕ(t − τD − δT) + ϕ(t − τD)

2

]

(2.24)

We consider x(t) = ϕ(t)/2 = v(t) · π/(2Cπ) as the dimensionless variable
describing the system, β = πγSGP0/2 and Φ0 = ω0δT/2 as parameters into
Eq. (2.24), it can be written in the following way:

FT−1

[

X(jω)

H(jω)

]

= β cos2 [x(t − τD)− x(t − τD − δT) + Φ0] (2.25)
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where X(jω) = FT[x(t)]. The right hand side of the equation reflects its nonlin-
ear and delayed nature, which usually is denoted as fNL[x(t − τD), x(t − τD −
δT)]. Whereas in our case, the dynamical model has a dual-delay, thus the func-
tion not only depends on a single delay, but also on the delay value introduced
by the interferometer x(t − τD − δT). We have also introduced a normalized
parameter β defining the feedback gain in the system, that is practically ad-
justed through a variable optical attenuator. Finally, we introduced an offset
interference phase condition Φ0, that can be tuned by changing the wavelength
of the laser or the static shift in the imbalanced fiber interferometer (through an
electrical current flowing in a heating wire). The entire description of the math-
ematical model is further explained in Appendix A.

According to Eq. (2.25), the nonlinear transformation is a function of a single
parameter (Φ0), however the parameter β controls the amplitude of such a non-
linear transformation, while Φ0 controls the operating point of the nonlinear
function horizontally.

ψ = x(t − τD)− x(t − τD − δT) + Φ0 (2.26)

fNL = β cos2(ψ) (2.27)

Figure 2.8 illustrates the static nonlinear transformation function of Eq. (2.27)
with β = 1, and it is possible to observe the offset point (Φ0) corresponding to
the case x(t) ≡ x0. Moreover, the argument of the cos2 function (ψ) is deviated
from the offset point depending on the value of x(t) at two moments delayed
in time [114].

Figure 2.8: The cos2 static nonlinear transformation function, with three dif-
ferent values of offset.
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Returning to the Eq. (2.25), the left hand side is a standard definition of filter
transfer function H(jω). This transfer function can be substituted with a specific
approximation of an actual filter. The simplest description in the frequency
domain for such filtering profile corresponds to a second order band-pass filter.
Nevertheless, it has been notified in [113] that using a simplest approximation
does not allow to detect certain relevant characteristics, as when a high-order
approximation is used. To explain the profile of the band-pass filter, we consider
the dynamics of this filter as a succession in cascade of a high-pass filter and a
low-pass one [79, 85], it is illustrated in Figure 1.13 in section 1.3.6.1. Thus,
assuming the simplest band-pass filter approximation (firts-order low-pass and
high-pass) described by Eqs. (1.27) and (1.31), the dynamics of the system is
defined by a nonlinear delayed integro-differential equation

x(t) + τ
dx

dt
(t) +

1

θ

∫ t

t0

x(s)ds = β cos2 [x(t − τD)− x(t − τD − δT) + Φ0] (2.28)

where τ and θ correspond to high and low cut-off times of the electronics.

2.4 Benchmark test: spoken digit recognition (SDR)

There are many standard tests to evaluate the performance of RC systems. They
are used in neuroscience or learning machine communities. In this work, two
classification tests are used to quantify and to evaluate the computing power
of our RC system and these are based on speech recognition . The objective of
these tests is to classify a series of pronounced digits. The first test is a subset of
a standard database NIST TI-46 corpus [115], made available by Texas Instru-
ment. This database is composed of 500 isolated digits from 0 to 9, each being
pronounced 5 times by 10 different women and sampled at 12.5 KHz.

The second one is distributed speech reconigtion, like AURORA-2. It is
a subset based on a version of original TIDigits LDC1993s10. The original test
contains a corpus from 326 speakers (111 men, 114 women, 50 boys and 51 girls)
each speaking approximately 77 digit sequences and has been divided into test
and training subsets. The digit sequences were made up of the digits: zero, oh,
one, two, three, four, five, six, seven, eight and nine. Furthermore, these digit
sequences spoken by each speaker can be broken down as follows: 22 isolated
digits (2 productions of each of 11 digits), 11 sequences of 2-digits, 3-digits, 4-
digits, 5-digits and 7-digits [116]. On the other hand, the AURORA-2 test is
composed of two training modes clean and multi-condition. The advantage of
training on clean is only the modeling of speech without distortion by any type
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of noise. However, these models contain no information about possible distor-
tion. This aspect can be considered as an advantage of multi-condition training
where distorted speech signals are taken as training data. For the first mode,
8440 utterances are selected from the training part of the TIDigits containing
the recordings of 55 male and 55 female adults. These signals are filtered with
the G.712 characteristic3. The same 8440 utterances are taken for the second
mode too. They are equally split into 20 subsets with 422 utterances, each sub-
set contains a few utterances of all training speakers. The 20 subsets represent 4
different noise scenarios at 5 different SNRs. The noises are subway, babble, car
and exhibition. The SNRs are 20 dB, 15dB, 10dB, 5dB, 0, -5dB and the clean con-
dition. Three tests of data exist, the first one test set A contains 4004 utterances
from 52 male and 52 female speakers. This set is split into 4 subsets with 1001
utterances and all speakers are present in each subset. One noise signal is added
at SNRs 20 dB, 15dB, 10dB, 5dB, 0dB, -5dB and the clean case without noise is
taken as seventh condition. Moreover, speech and noise are filtered with the
G.712 characteristic. Therefore test set A consists of 4 subsets with 7 conditions
of the 1001 utterances each one (4 × 7 × 1001 = 28028 utterances). The second
test called set B is created in exactly the same way, but using 4 different noises
(restaurant, street, airport and train-station). Third test called set C contains 2
of the 4 subsets, but the speech and noise are filtered with MIRS characteristic,
thus 2 × 7 × 1001 = 14014 utterances [117, 118].

In the speech recognition tests, it is common to use a pre-treatment of the
information (mathematical models of human auditory systems). These mod-
els can significantly improve the sound signal processing and system perfor-
mances. In addition, ear models can contribute to the understanding of experi-
mental hearing data. This kind of representation subdues the dynamic charac-
teristics and the nonlinearity of the signal. They are based on mechanics and
neural phenomenology of the inner ear (cochlea) [119]. There are many differ-
ent auditory models and they are being continually upgraded. The principal
models are:

• Flanagan’s Model

• Lyon’s Cochlear Model (LCM)

• Meddis’ Inner Hair Cell

3It deals with the transmission performance characteristics of pulse-code modulation chan-
nels of digital transmission equipment. Requirements to be met between 4-wire and 2-wire
analogue ports are given as well as requirements for analogue-to-digital and digital-to-analogue
connections.
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• Auditory Image Model

• Mel-Frequency Cepstral Coefficients (MFC)

• Patterson’s Ear Model

LCM and MFCC are the two models used for the speech recognition in this
work, hence they will be briefly detailed below.

2.4.1 Ear model

Before addressing the LCM and the MFCC, it is useful to give a simple descrip-
tion of the hearing process. The human ear can be divided in three different
parts. The first is the outer ear, which consists of the pinna, or auricle, and the
ear canal (external auditory meatus). After we have the middle ear, which in-
cludes the tympanum and mastoid cavities. The tympanic cavity is composed
of three auditory ossicles (malleus, incus and stapes) and the last part is the in-
ner ear, which contains the sensory organs for hearing and balance (the cochlea
and the auditory nerve). Each of the parts of the ear has embryological origins,
roles and different physiology, as depicted in Fig. 2.9.

Figure 2.9: Illustration of the human ear. Anatomically it is divided in: the
outer ear that acts as screening and channeling sound stimuli, the middle ear
which leads and amplifies the vibrations of the tympanic membrane and the
inner ear where vibration is collected and the mechanical signal is then trans-
formed into an electrical signal by stimulating hair cells. This stimulation per-
formed via the auditory nerve and through the central nervous system reaches
the cerebral cortex, where auditory perception becomes conscious and the brain
then interprets these electrical signals as sound [120].
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2.4.1.1 LCM

The model of analog electronic cochlea used in our thesis’s work was developed
by Richard F. Lyon [121] and it is based on the knowledge of biological func-
tioning of the cochlea. This model describes the propagation of the 1D sound
waveform (pressure variations over time) in the inner ear and the conversion
of the acoustical energy into neural representation. This process is performed
by a cascade of selective filters and the action of the active outer hair cells is
modeled by a set of Automatic Gain Controls (AGC) which simulated the dy-
namic compression of the intensity range on the basiliar membrane, as depicted
in Figure 2.10. Also this figure shows how the sampled acoustic waveform is
converted into a 2D frequency-time representation so-called “cochleagram”. This
representation corresponds to the time evolution all along the pronunciation of
the Fourier spectral power distribution for Q = 86 frequency channels.

Figure 2.10: Illustration of the LCM. The acoustic waveform is decomposed in
86 frequency channels before being represented as cochleagram matrix Mu.

To perform this model, we use a toolbox of Matlab called auditory model
developed by Malcolm Slaney. This implementation is freely accessible in the
following link: “https://engineering.purdue.edu/ malcolm/interval/1998-010/”.

Considering the isolated spoken digit recognition: TI-46 test described in
section 2.4, the cochleagram is then a (Q × N) matrix whose dimensions are
Q = 86 frequency channels (rows) and the number of time-samples (columns),
corresponding to the input information signal u(n) = [u1(n)...uq(n)...uQ(n)]

⊺.
The successive columns of the matrix Mu is thus indexed by the discrete time
n. Furthermore, in this test the number of columns N can vary from 32 to 132
depending on the duration of pronunciation for each digit. The resulting matrix
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Mu is the input information, but before being injected in the dynamical reser-
voir, a pre-processing is applied. This is detailed in section 2.4.2.

2.4.1.2 MFCC implementation

MFCCs are the coefficients for the representation of speech based on human
auditory perception. These arise from the need in the area of automatic audio
recognition of extracting characteristics of components of an audio signal which
are suitable for identification of relevant content, as well as ignore all those who
have little valuable information such as background noise, volume, pitch, etc.,
and they added nothing to the recognition process.

MFCCs were introduced by Davis and Mermelstein in the 80s [122] and have
been state-of-the-art ever since (in automatic speech recognition). They are a
feature widely used in automatic speech and speaker recognition or environ-
mental sound events, and because of their simplicity and efficiency they have
become standard in such domains [123,124]. These are commonly calculated as
follows:

1. The acoustic signal is divided into short frames of 20-40 ms with frame
step usually of 10 ms, which allows some overlap between themselves.

2. For each frame a periodogram estimate of the power spectrum is calcu-
lated in order to adapt the frequency resolution to the properties of the
human ear. It is computed applying a discrete Fourier transform (DFT)
to every single frame for the discrete-time signal s(n) with length N, de-
scribed by:

S(k) =
N−1

∑
n=1

w(n)s(n)e(−j2πkn/N) 1 ≤ k ≤ K (2.29)

where K is the length of the DFT and w(n) is a time-window (e.g. Ham-
ming window). Consequently, the periodogram-based power spectral es-
timate for speech frame S(k) is given by:

P(k) =
1

N
| S(k) |2 (2.30)

3. The next step is to apply the Mel4 filterbank to the periodogram power
spectral, segmenting into a number of critical bands. Then they are summed

4The Mel scale proposed by Stevens, Volkmann and Newmann in 1937, is a scale of pitches
judged by listeners to be equal in distance one from another. It relates perceived frequency, or
pitch to its actual measured frequency.
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to get an idea of how much energy exists in various frequency regions, it
is performed by a set of 20-40 overlapping triangular filters.

4. Once the filterbank energies are obtained, their logarithm is considered. It
allows to use cepstral mean subtraction.

5. The final step is to compute the discrete cosine transform (DCT) of the
log filterbank energies. The resulting features is a raw MFCC vector, in
which the highest cepstral coefficients are omitted because they represent
fast changes in the filterbank energies and it turns that these fast changes
actually degrade automatic speech recognition performance (ASR). For
ASR only the lower 12-13 of all coefficients are kept. Mathematically it
can be described by:

ceq = [ceq(1, t), ceq(2, t)...ceq(12, t)]⊺ (2.31)

where t represents the frame index.

Finally the MFCC vector only describes the power spectral envelope of a sin-
gle frame, but this can be modified by adding the deltas ∆ and delta-deltas ∆∆

(time derivatives), also known as velocity and acceleration coefficients. These
coefficients describe the dynamic information, calculating the trajectories of the
MFCC over time. Considering the AURORA-2 test, the MFCC feature vector
consists of 13 static MFCCs, 13 ∆ coefficients and 13 ∆∆ coefficients, and these
can be represented as matrix Mu in the same way as was done with LCM. Figure
2.11 shows the MFCCs.

Figure 2.11: Representation of the MFCCs. The acoustic waveform is decom-
posed in 39 coefficients (static, velocity and acceleration).

To perform this model, we use the distributed speech recognition front-end
algorithm based on the mel-cepstral feature extraction technique. The specifica-
tion covers the computation of feature vectors from speech waveform sampled
at different rates (8 kHz, 11 kHz and 16 kHz) [125].
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2.4.2 RC processing

For RC processing the cochleagram or MFCCS matrix Mu must follow the pre-
processing described in section 2.2.1 (masking procedure). It is intended to
ensure a kind of relevant expansion over all nodes of the dynamical system,
of many possible Fourier or Ceptrums components, at every time of the du-
ration of pronunciation. For this a connectivity matrix WI is used to spread
each of these input samples u(n) onto each of virtual nodes (position σk) de-
fined within one layer of the delay dynamics. The scalar input waveform signal
uI

σ(n) appears as the queued columns of the matrix product Min = WI × Mu,
as illustrated in Figure 2.12.

(a) Pre-proccesing for TI46 test.

(b) Pre-proccesing for AURORA-2 test.

Figure 2.12: Illustration of the masking procedure. The sparse and random
K × Q connectivity matrix WI performs a spreading of the input information
represented as a Q× N cochleagram or MFCCs matrix Mu. The resulting K × N
matrix Min defines a scalar temporal waveform uI

σ(n) obtained after queuing
horizontally the N columns, each of them being formed by the K amplitudes
addressing the virtual nodes in one layer.

According to the matrix multiplication and consistently with Eq. (2.8), the
single-layer signal uI

σk
(n) | k ∈ [1; K] can be interpreted as a set of K linear com-

binations of the Q different Fourier frequency components or Cepstrums coef-
ficients (depending on the test) occurring at time n, each node k of the network
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receiving a different linear combination whose coefficients are defined by the
non zero elements in the rows of the connectivity matrix WI = [wI

kq].

In order to inject physically the input matrix Min into the dynamical reser-
voir, it has to be converted into a scalar signal u(t) depending of the time. To
do this, we have used the reverse process to this one performed in the post-
processing of information (described by Figure 2.5). Here, the N columns of the
matrix Min are unfolded and then they are put in a horizontal sequence, thus
forming the temporal signal u(t) that is injected into the reservoir, as depicted
in Figure 2.13.

Figure 2.13: Procedure to obtain a scalar signal u(t) from (K × N) input matrix
Min. The vertical values K are virtual nodes distributed along the time delay τD

and horizontally it is a sequence of columns N corresponding to the length of
the spoken digit.

2.4.2.1 Learning and testing

The signal u(t) after being dynamically treated by the reservoir follows a post-
process in order to measure the performance of our RC system. The post-
process consists of a phase of learning and testing, and the results obtained
are a measure of word error rate (WER) which can be interpreted as a reference
of the computation power of our RC.

This is developed as follows. First the encoded digital input signal uI
σ(n) |

n ∈ [1; N] corresponding to the spoken digit (matrix Min unfolded), is stored in
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an arbitrary waveform generator (AWG) allowing to “‘play” each scalar input
signal as a voltage driving the signal input of our photonic RC. The playing rate
is set at 17.6 GS/s, so that each sample duration matches the virtual node spac-
ing calculated from the photonic RC response time τ, δτ = τ/5. The response of
this drive, at the output of the DPSK demodulator, is detected by a broadband
photodiode (DSC R402), which output voltage is recorded by a real time ultra-
fast digital scope (Lecroy WaveMaster 845Zi-A, 30 GHz analogue bandwidth,
80 GS/s) with an over-sampling e.g. averaging, or selection of interpolated
samples according to the already mentioned asynchronous Read-Out sampling
in Eq. (2.12). Each sampled response signal xR

σ (n) | n ∈ [1; N] is then condi-
tioned in the form of a matrix (K × N) Mx (see Figure 2.5), thus in a similar form
compared to the previously introduced input signal matrix Min.

TI-46 test

Considering the 500 spoken digits of TI-46 test, the learning phase intro-
duced in section 2.2.3.2 is applied to a subset of digits in order to calculate the
Read-Out matrix WR and then the testing is applied to the subset of un-taugh
digits. For the particular case of a classification problem as for the spoken digit
recognition task, we expect to learn M = 10 such set of coefficients, i.e. one for
each of the 10 possible modalities (the 10 digits from zero to nine). The M × K
Read-Out matrix can be constructed solving Eq. (2.13), in which the transient
response matrix Mx is a spatio-temporal representation of the amplitude of vir-
tual nodes of reservoir and the target matrix My corresponds to the desired
response as represented in Figure 2.14.

Figure 2.14: Illustration of the expected optimized Read-Out processing, by
the product between the (M × K) matrix WR and the transient response (K × N)
matrix Mx, thus resulting in an easy-to-interpret target (M × N) matrix My.
The latter matrix is aimed at designating the right answer for the digit to be
identified (here, the digit “1”).
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Hence, the aim in the leaning phase is to learn the coefficients [wR
mk] of a

hyperplane in this phase space. This hyperplane is expected to have a charac-
teristic role for the problem presented to the RC processor. Once the Read-Out
matrix is calculated, an optimization of this one is performed through a linear
regression described by Eq. (2.14) in order to obtain the proper target for each
digit of the training subset, resulting in a matrix WR

opt. The regression parameter
λ empirically gives good results for values around of 0.001.

An improvement of this test consists of using the principle of cross-validation.
We practically chose randomly 475 digits for the training subset, the 25 remain-
ing being left for testing. This partitioning is essentially guided by the imple-
mentations of the same test, consequently allowing for a more confident perfor-
mance evaluation for the RC processing efficiency. Cross-validation was per-
formed through the repetition of 20 learning procedure, according to the choice
of 20 non-intersecting subsets of 25 testing digits, and their corresponding train-
ing subsets, as illustrated in Figure 2.15.

Figure 2.15: Schematic principle of cross-validation. The cross validations are
used to increase the precision with which we calculate the power of our RC
systems [32].

Cross-validation allowed to obtain an average computational performance
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measure in which each of the 500 digits had been used once for testing. The
testing phase consists of evaluating the result of the RC processing on each of
the testing digits by calculating M̃y = WR

opt Mx, which is expected to resemble
the target matrix My. One naturally does not obtain a perfect right line with
ones, and wrong lines with zeros, but integrating (summing) the elements of
each line of M̃y over n leads to a score for each modality, as shown in Figure
2.16.

Figure 2.16: Example of an imperfect “reservoir-computed” target answer
while testing the optimal Read-Out WR

opt on an untrained digit of response
Mx. The digit “2” however clearly appears as the most obvious answer for this
untrained tested digit.

The RC processing is then simply determined by the modality showing the
best score; this procedure is depicted in Fig. 2.17, which can be compared with
the correct answer in order to count the number of errors.

Figure 2.17: Illustration of the decision procedure for the computed answer.
The temporal amplitudes of the actual target are summed over time for each
line (or modality), i.e. for each of the 10 possible digits. The right modality is
then declared as the one with the highest sum.
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A word error rate is finally obtained after 20 times repetition of learning and
testing (cross-validation), thus giving a WER over the 500 digits of the original
database.

AURORA-2 test

Now considering the AURORA-2 test for the case where isolated digits are
to be classified, the learning and testing are performed in the same way as TI-
46 test. The MFCCs corresponding to the spoken digits are processed forming
a matrix Min (see Figure 2.12(b)) that is injected into the dynamical reservoir.
Right after, in the output of reservoir, this signal is recorded and is then con-
ditioned forming the transient response matrix Mx. As mentioned above the
learning phase is applied to a subset of digits in order to calculate the elements
of Read-Out matrix WR and the testing is applied to the left subset of un-taught
digits. Here we expect to learn M = 11 of different modalities, corresponding
to the 10 possibles digits (zero to nine) and to the word (oh). Then, The M × K
Read-Out matrix can be constructed solving Eq. (2.13) as was performed for
the TI-46 test (see Figure 2.18). Once the Read-Out matrix is computed, it is
optimized by a linear regression Eq. (2.14).

Figure 2.18: Illustration of the expected optimized Read-Out processing for
the AURORA-2 test. This illustration is to be compared with Figure 2.14 (TI-46
test). The latter matrix is aimed at designating the right answer for the digit to
be identified (here, the digit “5”).

As in TI-46 test the cross-validation is used in order to have more confident
evaluation. For training we use a set belonging to the folder called clean1 (multi-
condition mode), with a total of 1001 sequences of digits, among which 289 are
isolated digits. We use 265 digits for the training subset chosen randomly and
24 digits for the testing subset (see Figure 2.15). The testing is then performed
following the same protocol used in the other test of classification (TI-46). It
consists in evaluating the result obtained by RC processing on the testing digits
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by calculating M̃y = WR
opt Mx, as illustrated in Figure 2.19. The RC processing is

thus determined by the modality showing the best score, as illustrated in Figure
2.20. Finally, the WER is determined as the ratio of the sum of errors on the total
number of spoken digits in the test.

Figure 2.19: Example of an imperfect “reservoir-computed” target answer
while testing the optimal Read-Out WR

opt for the AURORA-2 test (to be com-
pared to Fig. 2.16 for the TI-46 test). The answer appears here to be the digit
“5”.

Figure 2.20: Decision procedure for the computed answer with the AURORA-
2 test (to be compared to Fig. 2.17 for the TI-46 test). The outcome of the test is
the digit “5”.

2.5 Overview

In this chapter, we described the main principles of RC system based on RNN.
Then, we did a description of how a nonlinear DDS can be used to reproduce the
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functionality of a reservoir. Replacing the standard RC approach with spatio-
temporal structure of interconnected nodes involves an adaptation of the sig-
nals to be processed. This is performed by the steps of pre-processing and post-
processing of information: the spatial dimension of NN is virtually recreated in
the delay (τD), which implies the use of a mask procedure and TDM technique
in order to address each virtual node. We presented the schematic setup of DDS
based on an EO phase delay dynamic approach, which is built with telecom
bandwidth devices. The use of telecom devices provide ultra-fast information
processing capability and at the same time allows for a hardware implementa-
tion.

We introduced the asynchronous mode at the Read-Out. It enables the pos-
sibility to play with an additional degree of freedom. The use of asynchronous
sampling allows us to define different node positions σR

k for the Read-Out com-
pared to Write-in. This issue makes use of degrees of freedom brought by the
continuous flow of information at the output of the reservoir dynamics, chang-
ing the way of information flow, which is usually sampled with respect to the
Write-in (synchronous mode).

Finally after having described the injection of information (Write-In) and
reading of transient signals reservoir (Read-Out), we introduced two standard
test of speech recognition, which allow us to quantify the computing power of
our photonic RC. These tests of classification will be implemented experimen-
tally in Chapter 3.
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Chapter 3

Experimental implementation and
results

The experimental implementation and evaluation of the performances of our
RC system through the standard tests of classification correspond to the most
important part of the work realized during this PhD thesis. Therefore, this chap-
ter is devoted to the experimental study using our photonic RC system.

This chapter characterizes experimentally the photonic RC system presented
in Chapter 2 section 2.3. The first part details the experimental setup, which
consists in an time-delayed EO oscillator with a feedback loop. Since the de-
lay line serves as reservoir, it has been measured by different methods. On the
other hand, the EO phase delay dynamics is characterized temporally and dy-
namically. Afterwards, we make a quick comparison between numerical and
experimental time traces.

The last part of this chapter is dedicated to the quantitative evaluation of
the performances of our RC system. For this purpose, we used two standard
tests of speech recognition, that have been introduced in Chapter 2 section 2.4.
Right after, a comparison between the experimental and numerical results using
synchronous and asynchronous sampling is performed. Furthermore in this
work, we report on the possibility to introduce for single delay reservoir the
analogue of so-called hidden layers in standard RNN.
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3.1 EO time-delayed oscillator

3.1 EO time-delayed oscillator

The EO phase delay dynamics has been used for the realization of a RC system
(see Figure 2.6). At the beginning of this work the EO oscillator was mainly
linked to the work on optical chaos telecommunications [112], as well as to the
study of chaotic regimes [84,85]. Because of the existing setup, we have changed
and adapted some components of the original setup (EO oscillator). Neverthe-
less, these modifications change the behavior of the oscillator, requiring the re-
lated characterization (measurement of delay and dynamics characterization).

3.1.1 Experimental implementation

The Figure 3.5 shows the physical realization of the photonic RC system. The
operating principle and its structure is detailed in Chapter 2 section 2.3. As it
may be difficult to identify each device from the following picture, it is possible
to refer to the schematic setup shown in Figure 2.6.

Figure 3.1: Picture of the photonic RC setup based on an EO phase delay
dynamics.

In this experimental implementation, the time scales (response time τ, node
spacing δτ, time delay τD and imbalancing time δT) as well as the feedback
gain β and the offset phase Φ0 are of paramount importance. These parameters
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play a crucial role to calculate the number of virtual nodes K, the reservoir size,
the internal connectivity but also the dynamical behavior of the RC system. Be-
sides, they can be adjusted to optimize the performance of RC processor. The
following sections will detail the optimization of all these parameters.

3.1.2 Open loop measurements

A way to characterize the RC system is to work in open-loop configuration, as
shown in Figure 3.2. This method consists in disconnecting the feedback output
of the line delay. It allows us to characterize each element without the feedback
influence.

Figure 3.2: RC system in open-loop configuration.

3.1.2.1 Characterization of the laser source

The source used is a DFB semiconductor laser module with a very high stability
and frequency accuracy (Teraxion, PureSpectrum™-FSL Frequency Stabilized
Laser). The module integrates a semiconductor DFB laser, a low noise laser
driver, a temperature controller and frequency control electronics in a compact
package for use with the original manufacture instrumentation.

We have characterized the optical power as a function of the current at a
temperature of 25°C. It was achieved by using an optical fiber detector (New-
port, 918D-IS/818-IS Series, S/N 2710, 400-1650 nm) and a dual channel 3.3(b)
the power-current graph for current values from 1 to 400 mA, from which the
threshold current can be determined close to 40 mA.
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Figure 3.3: Experimental characterization of Teraxion Pure Spectrum source.

For all experiments, the injection current of our laser is set at 140 mA to work
with an optical power ∼ 19.36 mW. This optical power was calculated through
measurements of power loss and is enough in order to observe all different
dynamical regimes.

3.1.2.2 Phase Modulator (PM)

Two EO PM (EOspace Lithium Niobate LiNbO3 phase modulator) are used in
the RC setup and their roles have been mathematically described in Chapter 2
section 2.3. Here we determine experimentally the value of half-wave voltage
Vπ,rf. First of all, the optical spectrum in the C-band is measured with a high-
resolution optical spectrum analyzer (OSA, APEX model APE2040A). The am-
plitude of optical phase modulation peaks are then given by the Jacobi-Anger
identity:

eiδ cos φ
+∞

∑
−∞

= in Jn(δ)e
inφ, (3.1)

where δ = πU0/Vπ is the optical phase amplitude, U0 being the amplitude of
voltage applied to the RF electrodes and Vπ the characteristic voltage of the PM
that induces an optical phase shift of π. The phase φ = Ωt is the instantaneous
RF phase of the sinusoidal electrical modulation applied to the electrodes and
Jn is the Bessel function of the first kind of order n.

The complex amplitude of the electric field of the optical output at the PM is
written as:
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E(t) = E0ei[ω0t+ϕ(t)], (3.2)

where the factor of instantaneous optical phase is due to the voltage applied
to the electrodes is ϕ(t) = π(U0/Vπ) cos Ωt = δ cos φ, which can be identified
with the left argument of Eq. (3.1). The right arguments in the same equation
allows us to find the harmonics components owing to phase modulation: for a
lag of nΩ from ω0 a peak amplitude Jn(δ) will be in the optical spectrum.

The experimental approach of cancellation of the central component J0(δ)
allows us to determine the sensitivity of phase modulation as illustrated in Fig-
ure 3.4 for each of the PMs. From the results obtained previously we have then
determined the Vπ,rf for the two PM with respect to different frequency mod-
ulation. This characterization was achieved by using an OSA with 10 MHz
resolution, an RF synthesizer (HP 83751A) and a driver SHF 100CP. The latter
component is used in order to cancel the central optical peak (i.e. Vπ = 4 V,
the RF amplitude modulation on the phase modulator should be 3 V or 6 Vpp,
in other words 2.12 Vrms or 19.5 dBm, this amplitude is quite large and can-
not be reached by our synthesizer). Figure 3.5 shows the Vπ,rf values for each
modulator with respect to the frequency.
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Figure 3.4: Experimental cancellation of the central component J0(δ) for each
PM.

This characterization allows us to get a physical relationship between the
normalized amplitude parameter ρ with the input information u(t) in Eq. (2.9).
Then, the amplitude ρ = 1 corresponds to ρ = Vπ,rf.
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Figure 3.5: Determination of the half-wave voltage Vπ,rf values .

3.1.3 Time scales in photonic RC

The first timescale to calculate is the characteristic response time τ of the filter,
which is used in RC setup in order to slow-down the bandwidth in the feedback
dynamics (see Figure 2.6). This is a low-pass filter (Picosecond Pulse Labs) hav-
ing a cutoff frequency fc = 560 MHz and a similar attenuation and group delay
response to those of Bessel-Thomson filter. Its characteristic response time τ can
be calculated as follows τ = 1/( fc · 2π) = 284.2 ps. In substituting this previ-
ous value in Eq. (2.10) the node spacing can be also obtained as δτ = 56.84 ps.
The node distance δτ within a layer, according to the discrete time dynamics
described in Eq.(2.5), can be viewed as directly related to the local span of the
impulse response h(t) defined by the linear filter, and thus it is ruled by the
characteristic time scale τ of this filter. This makes the connection between node
separation and filter bandwidth, as already mentioned through an empirically
determined optimal node distance of ca. τ/5. One could however notice here,
similarly to what was introduced in [13] with a multiple delayed feedback, that
the non-local character of the nonlinear transformation adds another contribu-
tion to the virtual network connectivity with a coupling distance related to δT.

Once δτ calculated the other value necessary in order to calculate the num-
ber of virtual nodes K in the reservoir is the time delay τD brought by the series
of optical and electrical connections in the feedback loop.
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3.1.3.1 Time delay measurements

We know that the time delay τD has one of the main role in our RC processor
(the spatial dimension will be virtually created inside it). Hence we propose to
use an experimental methods to measure it.

Time delay τD value from cross-correlation function

The cross-correlation of two signals x(t) and y(t) is defined as:

Cxy =

+∞
∫

−∞

x(t)y(t − τ)dt. (3.3)

Eq. (3.3) reflects the similarity between x(t) and y(t) shifted in time by τ.
When the signals are the same (y ≡ x), Cxx(τ) is known as the auto-correlation
function (ACF), which allows to detect patterns and repeated profiles between
a signal with itself delayed in time.

The cross-correlation theorem (Wiener-Khinchin) defines the relation between
the cross-correlation and the FT as follows :

FT[Cxy] = FT[x(t)]∗ · FT[y(t)] = X∗(jω) · Y(jω), (3.4)

where * denotes complex conjugation.

In case of y(t) is obtained from x(t) by shifting in time and deforming, Cxy

shows a peak at the corresponding position, which allows to extract the time
lag. This is exclusively adequate to the evolution ruled by a DDE, as the sig-
nal is practically defined by a transformation applied to its own delayed signal
(except the filtering effect). Figure 3.6 illustrates the ACF applied to a temporal
trace in chaotic regime of our photonic RC, this ACF shows a peak linked to the
time delay τD and a second one linked to the time imbalancing owing to the
DPSK demodulator @τD + δT.

Finally, in Figure 3.6, it can be observed that the separation between two
harmonics corresponds to the time delay value τD = 63.35 ns, and performing
a zoom on the peak of the harmonic the time imbalancing of DPSK can be also
obtained δT =∼ 0.402 ns. One way to evaluate the accuracy of this measure-
ment is zooming on the maximum point of a peak and then using these values
around it. This value is ∼ 12 ps, so that the time delay measured with the ACF
is τD = 63.35± 0.01 ns.
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3.1 EO time-delayed oscillator

Figure 3.6: ACF applied to a chaotic trace of our RC system.

Then with the methods used we have obtained three slightly different values
of time delay. But, for the future application we will use the τD value obtained
by the ACF, because this has been measured directly in one of the chaotic trace
recorded at the output of our RC photonic.

The time constants and the typical values of the parameters present in our
photonic RC are presented in Table 3.1.

Variable Meaning Value Information

τ response time 284.2ps low-pass filter fc = 560 MHz
θ low frequency cutoff 5.3 ms RF driver limit fl f ≃ 30 KHz

τD time delay 63.35 ns
δτ spacing node 56.8 ps
δT DPSK imbalance 0.4 ns
β normalized gain 0 - 5

Φ0 DPSK rest point π/4 maximum slope

Table 3.1: Typical parameters values.

80



CHAPTER 3 : Experimental implementation and results

3.2 Dynamical characterization

In this section the autonomous dynamical properties of the RC system is in-
vestigated while tuning the parameters (particularly, the feedback loop gain β
and offset phase Φ0). The parameter β can be tuned by changing the in-loop
attenuator settings (see Figure 3.5), with a maximum accessible value defined
by saturation of RF driver (26 dBm). The offset interference phase Φ0 = ω0δT,
as already mentioned in section 2.3, can be tuned through the central wave-
length of the laser or by applying a heating around one interferometer arm in
the DPSK control. Usually, any Φ0 operating point can be set to observe the
dynamics of the system. However, in order to observe it at the lowest values of
β, the operating point should be set π/4 corresponding to the maximum slope
of the DPSK nonlinear function (see Figure 2.8).

3.2.1 Dynamical regimes observed experimentally

Figure 3.7 shows the time series for a low value of the feedback gain β ≃ 0.5.
This time trace has been obtained from an electrical output proportional to the
optical phase shift and the normalized variable x(t). It was recorded with an
80 GS Lecroy WaveMaster 845Zi. When the feedback gain is increased gradually
from zero, fast oscillations are first observed. A bifurcation point is reached at
β ≃ 0.5 and right after this Hopf bifurcation, the oscillations are weakly stable.
The first Hopf bifurcation serves as a reference for the experimental calibration
of the bifurcation parameter β obtained from the optical power in the RC system
feedback loop.
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Figure 3.7: Experimental time trace for β ≃ 0.5. (b) is a zoom of (a).
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Applying the fast Fourier transform (FFT) to the time traces recorded at a
125 ns sampling length, the regular oscillation frequency f1 = 1.15 GHz (T1 =
869 ps) can be identified in the RF spectrum, as illustrated in Figure 3.8.
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Figure 3.8: Experimental RF spectrum from time trace (β & 0.5).

The dynamical behavior is then related to the DPSK demodulator time im-
balancing, and is approximately equal to 2δT = 0.805 ns. At this point the large
delay τD does not influence the dynamical behavior, suggesting that only δT
plays a role for the Hopf bifurcation. From the RF spectrum it is also possible
to notice that the spacing between the noisy peak modes are originated by the
large time delay 1/τD = 15.79 ns. Their noisy character exhibits amplitude
fluctuations in time from the FFT, while the deterministic character of domi-
nant peak leads to a much more stable amplitude peak. From values of β ≃ 0.6
to 0.9 the noisy character disappears and the shape of the oscillations becomes
square waves with the same fundamental frequency [85]. In Ikeda-like sys-
tems, the first oscillations typically appear at β = 1. In our case, this threshold
is reduced by a factor of 2, because instead of a single delayed combination pa-
rameter x(t − τD) of the nonlinear transformation there is a difference between
x(t − τD) and x(t − τD − δT). Hence, if the solution x(t) changes its sign when
going from t to t + δT, the amplitude of a difference x(t − τD)− x(t − τD − δT)
can be twice as high as in case of a single delayed term x(t − T), thus resulting
in a lower threshold for β. A change of sign each δT period results practically
in oscillations with period of 2δT, which are indeed observed [114].

From further values of β a secondary bifurcation is obtained at β = 1.14 and
other oscillations appear: fast oscillations modulated by a slowly varying enve-
lope square, as shown in time traces in Figure 3.9. The period of the envelope is
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close to T2 ≃ 122.99 ns, which is close to 2τD = 126.7 ns, whereas the fast oscil-
lations within the envelope still exhibit the faster period T1. Therefore, both the
large time delay τD and small delay δT play a role for the secondary bifurcation.
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Figure 3.9: Crenelated oscillations with period related to large scale time by
2τD modulating faster oscillations with period close to 2δT. (b) is a zoom of
(a).

Applying the FFT to this time trace, the period of the slow-time envelope is
observed, with sideband peaks in the RF spectrum at ±(2τD)

−1 = 7.89 MHz, as
illustrated in Figure 3.10.
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Figure 3.10: Experimental RF spectrum measured right after the secondary
bifurcation β > 1.14.

These sideband peaks are consistent with the frequencies of the envelope
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and the carrier signals in the amplitude modulation observed in the time series
of Figure 3.9.

For much larger values of β, the time series exhibit chaotic oscillations and
its RF spectrum is very flat as illustrated in Figures 3.11 and 3.12. This dynami-
cal regime can be used in optical chaos telecommunication applications [112].
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Figure 3.11: Chaotic dynamics. In this case no characteristic time scale is di-
rectly observable in the time traces. (b) is a zoom of (a).
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Figure 3.12: RF spectrum very flat without any characteristic frequency.

We can summarize from the results previously obtained, that the dynamical
behavior of our RC system depends on a large time delay τD and a relatively
small delay δT. These delays are responsible for a cascade of period-doubling
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bifurcations to multiperiodic regimes that depend on two basic periods only, T1

and T2.

3.2.1.1 Bifurcations

From the dynamical model described by Eq (2.28), we have β ∝ κ | E0 |2 which
is adjusted through a variable optical attenuator with factor (κ). To facilitate the
mathematical treatment, we fix the offset of phase Φ0 = ±π/4. Eq. (2.28) then
simplifies as:

x(t) + τ
dx

dt
(t) +

1

θ

∫ t

t0

x(s)ds = ±
β

2
sin2 [x(t − τD)− x(t − τD − δT)] , (3.5)

where the plus and minus signs correspond to Φ0 = π/4 and Φ0 = −π/4. With
these values and increasing β from zero, the first Hopf bifurcation is reached at
its lowest value. We note that the term ω0T only appears by a factor multiplying
β. The minimum value of | β | for a Hopf bifurcation occurs if | sin(ω0τ) |= 1,
meaning Φ0 = ±π/4 [85]. In order to demonstrate the latter, we introduce a

new variable u ≡
∫ t

0 x(ξ)dξ, which leads Eq. (3.5) to two coupled first-order
DDEs:

{

τ dx
dt = −x − 1

θ u −
β
2 sin[2(xτD − xτD+δT)]

du
dt = x,

(3.6)

where xτD = (t − τD) and xτD+δT = x(t − τD − δT).

Figure 3.13 shows the numerical simulation of Eq. (3.6) performed with Mat-
lab. In the bifurcation diagram from Figure 3.13, three regimes can be observed:
steady state, periodic oscillation and chaos. Each of them is used for different
applications, i.e. in steady state regime the nonlinear transient computer is per-
formed [11–13], in periodic oscillations a high spectral purity micro-wave can be
generated [84, 85] and chaos can be used for optical communications [110–112].
In the present work we will set in steady state with not too small feedback
strength β, allowing nonlinearity mixing however not needed too close from
the instability threshold. In addition, one can note that the β values to reach the
bifurcations are matched with those obtained experimentally.

For the eigenvalues a mathematical analysis is performed in Appendix B.
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Figure 3.13: Numerical bifurcation diagram, showing the β values for which
the Hopf bifurcation is reached, as well as the secondary bifurcation.

3.3 Performances of RC system

The nonlinear dynamical properties of time-delayed ultra-fast photonic oscilla-
tor need to be studied as a RC processor. In order to compare this RC efficiency
with respect to those performed by computer simulations and to the studies
previously reported [10–13, 16, 126], we decided to realize two types of classifi-
cation tests. Both tests are about the SDR, the first is called TI-46 and the second
one is the AURORA-2, which have been introduced in Chapter 2.

3.3.1 Classification tests: NIST TI-46 and AURORA-2

The operating principle of these tests including the model used by the pro-
nounced digits (LCM and MFCCs), the masking procedure, the process to phys-
ically inject the signal into the dynamical reservoir and the learning and the
testing steps have been described in Chapter 2 section section 2.4. The SDR task
for both tests has been implemented in our RC system, following an identical
experimental development. Although experimentation is performed with the
same setup, the total number of virtual nodes, the reservoir size, the internal
connectivity and settings of the system need to be adapted. For this reason, we
propose a global view of each test for experimental implementation and right
after, we present and discuss the results that are numerically and experimen-
tally obtained.
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3.3.1.1 Experimental implementation of TI-46 test

This test can be developed into 4 steps:

1. u(t) signal injection corresponding to the input information to be pro-
cessed in the reservoir.

2. Dynamical processing of information performed with EO oscillator within
the feedback loop RC.

3. Recording the output signal x(t) within the reservoir via a digital scope.

4. The experimental traces recorded follow a learning phase aimed at cal-
culating the Read-Out matrix WR, which is then used for the testing on
untrained data.

The first step consists of building 1D input signal u(t), also called Write-In
as described in section 2.2.1. Before, the input signal is pre-processed follow-
ing the LCM (see section 2.4.1.1), as well as the masking procedure. During
this pre-processing, the input information u(t) is saved in (.txt) format, which
is then programmed into the internal memory of an AWG. In order to get all the
500 digits processed in the physical experiment, a sequence of digits are actually
gathered in 10 to 20 digits typically (depending on the internal memory of the
AWG used to generate u(t)), leading to 20 to 50 sequences (in our case we have
33 sequences of 15 digits and 1 of 5 digits). The digits are randomly permuted to
avoid any bias potentially introduced through the originally ordered arrange-
ment. Moreover, time delays of zeros are added at the end of each digit in order
to have the same length for each digit and to avoid any influence of one digit
onto the next. In this step there are two parameters to adjust, the amplitude of
u(t), which is adjusted by the amplification coefficient ρ of AWG and the sam-
pling rate (S/s) so that information is distributed correctly on each virtual node
within of the time delay τD.

Injection data using “hidden layers”.

In the following, we report on the possibility to introduce for delay reser-
voir, a similar conceptwith respect to the analogue of the so-called hidden layers
in standard RNN. Unlike, the delay-based RC demonstrations proposed up to
now, it was always assumed that each input sample u(n) is spread through the
input layer over the full time delay duration τD. Here, hidden layers can be em-
ulated through a NL:1 ratio between the number NL of input samples spanned
over one time delay. In standard methods, a single layer i used correspond-
ing to 1:1 spanning for each input sample over all the K nodes of a time delay.
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Considering the case where both the separation between virtual nodes δτ and
the numbers of nodes are fixed, it is then necessary to redefine or to increase
the time delay by a factor NL, thus leading to the temporal parameter scaling
Eq. (3.7), ruling the node spacing, the number of internal layers, the number of
emulated nodes and the time delay.

τD = NLKδτ. (3.7)

Compared to the single layer always adopted so far and for which the former
theoretical description was detailed in Chapter 2, one needs to slightly redefine
some of the equations of the RC processing model:

• The number of virtual nodes (per layer) is still defined as K, which im-
poses the number of columns of the input connectivity matrix WI .

• The recurrence time scale defined by the time delay τD is now covering
NL successive reservoir vectors {xk(n), xk(n + 1), . . . , xk(n + NL − 1) | k =
1 . . . K}, instead of a single reservoir vector {xk(n) | k = 1 . . . K}. The reser-
voir vector with K nodes corresponds then to the following definition:

xk(n) = x(t) with t = n(τD/NL) + σk (3.8)

where the node position σk = (k − 1)τD/(NLK) ∈ [0; τD/NL].

It implies that the discrete time dynamics previously derived in (2.9) will
develop as a result of the delayed feedback loop between input samples u(n)
and u(n − NL) instead of u(n) and u(n − 1). Consequently, the delay-Reservoir
dynamics has to be re-written as

xk(n) = xk(n− NL)+
∫ σk

σk−τD

h(σ − σk)× fNL

[

xσ(n − NL) + ρ · uI
σ(n − NL)

]

dσ.

(3.9)
Motivated by a qualitative analysis of performances compared to the ex-

isting literature, we tried to adjust the number of hidden layers within the
time delay, so that our experiment also involves a number of nodes per layer
close to the 400 ones most often used in the literature [10–12]. The time delay
τD = 63.35 ns resulting in a total number of nodes of τD/δτ = 5τD/τ ≃ 1114,
we chose L = 3 hidden layers, this implies that three successive input samples
uI

σ(n) indexed from n to n+ 2 are needed to fill the delay line, instead of a single
one as practiced in previous experiments. Each of these samples for a given n is
also spanned over τD/3 according to the input connectivity, leading to a TDM
of the input information over K = 371 virtual nodes, according to Eq. (2.8). The
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node separation is here imposed by the AWG sampling rate set to 17.6 GHz,
defining theoretically the node spacing δτ = 56.8 ps. Here, there actually exists
a difference between the stepwise constant input as described in Eq. (2.8) and
the physical light phase modulation. Indeed, the AWG has a 24 GS/s maximum
sampling rate, but it also has a limited analogue bandwidth of 9 GHz. Thus it
prevents from generating a stepwise constant amplitude, since the harmonics,
and even the fundamental, are necessary filtered out by the AWG analogue
bandwidth. The actual phase modulation ρuI

σ is thus a smooth waveform of
time. Nevertheless, there is no theoretical requirement for the stepwise con-
stant profile for the input signal, the motivation being here essentially to keep
the dynamics in permanent transient regime all along the duration of the input
information. The latter condition is indeed also fulfilled even with a smooth in-
put waveform, as long as its frequency content is fast enough compared to the
characteristic time scale of the delay dynamics.

In a second step, the photonic delay dynamics provides an output signal or
nonlinear transient response x(t), which is ruled by the non-autonomous DDE
(2.28). At this point two parameters are adjusted (β and Φ0) before each experi-
ment. β that represents the weight in the feedback delay loop, and its setting has
to fulfill stability conditions of the dynamics in autonomous regime (referred as
to spectral radius in RNN). Φ0 is an offset phase setting the average rest point
along the nonlinear function when no information is present.

In the third step, each transient response {xσR
k
(n) | n ∈ [1; N]} of the dy-

namics to each of the 500 encoded input digital signal {uI
σ(n) | n ∈ [1; N]} is

recorded by a real time ultra-fast digital scope with an over-sampling (80 GS/s)
allowing for further post-processing.

The post-processing is the last step, in which the learning and testing phase
described in section 2.4.2.1 are applied in order to quantify the results of SDR
test. Once the answers of both learning and testing sets are known, the count-
ing, the identification and the analysis of errors occurring under different pro-
cessing conditions (ρ, β, Φ, and NL) are easy to make. Figure 3.14 shows SDR
test step by step.

3.3.1.2 RC: numerical simulation performances

The previously described physical parameters are directly accessible in the ex-
periment so that they are adjusted to obtain the minimum WER. In this context,
intensive numerical simulations of Eq. (2.28) have been performed in order to
identify the optimal parameter conditions for best RC performances. The WER
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Figure 3.14: Processing steps for the SDR task.

obtained allows us to set the values of Φ0, β and ρ. The other parameters τ,
τD, δτ and NL are set by the operating principle in transient regime of the RC
processor.

The weight ρ for the input signal injected into the first EO PM allows for
a more or less wide scan of the nonlinear function profile, thus controlling the
actual nonlinear expansion of the information into the delay dynamics phase
space. A value close to unity confirmed that a large amplitude injected infor-
mation is in favor of optimal performances. This unit peak-to-peak amplitude
is to be compared to the delay feedback signal peak-to-peak amplitude, xσ(n),
which is of the order of |2β sin(2Φ0)| ≪ 1 (for Φ0 ≃ π/4). Excessive values
of ρ are detrimental to RC processing because they can trigger transient self-
oscillations if β is above the minimum Hopf threshold (at β = 0.5 if Φ = ±π/4).
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Figure 3.15 shows the numerical simulations for SDR task. The WER has
been calculated with a fixed value of ρ = 1 corresponding to Vπ, rf (see section
3.1.2.2) and for different values of β, scanning the offset phase value Φ0 ∈ [0; π].
For finding the best value of β the previously procedure was performed, ρ
remains equal to 1, but Φ0 takes different values, while the feedback gain is
scanned β ∈ [0.01; 1.4] as represented in Figure 3.15(b).
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(a) WER vs. Φ0 parameter.
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(b) WER vs. β parameter.

Figure 3.15: Numerical simulations of SDR task (TI-46 test) in order to find
the best values (a) for the offset phase and (b) for the feedback gain under
synchronous conditions.

In Figure 3.15(a), it can be observed that the optimal performance for this
classification task is found for nearly quadratic nonlinearity, i.e. for an offset
phase Φ0 close to 0 modulo π/2. It is worth noticing that operations close to a
minimum or a maximum lead to comparable performance optimizations com-
pared to the linear operating point (π/4 modulo π/2), with a WER improve-
ment factor of the order of 10. We also notice that the minimum WER is not due
to a purely parabolic operating condition, but always slightly shifted from the
minimum or the maximum, e.g. π/10 or 2π/5 (see Figure 3.15(a) for β = 0.7)
instead of 0 and π/2. This indicates that a linear contribution might be needed
for an optimal processing of this classification task. Figure 3.15(b) shows an op-
timal value for the feedback gain slightly below from the instability threshold
for the fixed point, as described by |2β sin(2Φ0)| < 1 in our setup. The optimal
values of β ≃ 0.55 and β ≃ 0.8 were obtained for the optimal nearly quadratic
offset phase Φ0 ≃ 2π/5 and for slightly shifted of maximum operating point
Φ0 ≃ π/10, respectively.

As mentioned before, the hidden layers are set by the operating principle in

91



3.3 Performances of RC system

transient regime, being NL = 3 in our case. This concept of hidden layers for
delay-based reservoir was also found to be of practical interest for the improve-
ment of RC processing efficiency. Its motivation was initially inspired by the
long time delays compared to the fast response times of photonic telecom de-
vices, essentially due to the too long fiber pigtails in these devices (63 ns≫284 ps).
It leads to an initial scaling of the delay dynamics with more than 1000 virtual
nodes. Introducing three hidden layers enabled us to process information with
a comparable number of nodes (around 400) with respect to some of the already
existing literature. Simulating the processing with an arbitrary number of hid-
den layers indicated that the concept indeed improved the performances com-
pared to the single layer topologies reported up to now. Additional numerical
simulations performed a scanning of the hidden layers length NL ∈ [1, . . . , 17]
with ρ = 1, β = 0.6 and Φ0 = 2π/5 (see Figure 3.16), even showed us that
an optimal scaling can be obtained for around 3 to 5 hidden layers. This might
be related to some internal correlation of human speech, which could be more
efficiently revealed by the use of hidden layers. Nevertheless in experimental
practice, we continue to use the value of NL = 3 due to limitations of the inter-
nal memory capacity imposed by AWG.
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Figure 3.16: Numerical simulation of hidden layers with values fixed ρ = 1
β = 0.6 and Φ0 = 2π/5.

3.3.1.3 Numerical and experimental results

The numerical simulations performed in the previous section allow us to set the
experimental parameters and also to find qualitative criteria that are fully con-
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sistent with previously obtained results [10–12]. The experimental parameters
used for SDR TI-46 are presented in Table 3.2.

Parameter Meaning Value

β normalized gain 0.1-1.5
ρ information amplitude 1

Φ0 offset phase 2π/5
δτ spacing node 56.8 ps

(δτ)−1 sampling rate (AWG) 17.6 GS/s
NL hidden layers 3
K number of nodes 371
fs sampling frequency (Lecroy scope) 80 GS/s

Table 3.2: Experimental parameters values.

One important point to highlight is that the sampling frequency fs was only
used in experiments. The temporal traces are recorded by a real-time scope at a
fs = 80 GS/s, thus allowing to choose among 5 samples in the Read-Out pro-
cessing. The experimental results of WER obtained with the parameter values
of Table 3.2 are presented in Figure 3.17 and also the results numerically ob-
tained under the same conditions are presented.
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Figure 3.17: WER vs. β parameter, under synchronous conditions δτ = δτR.
Red line is numerical and blue line is experimental.
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In Figure 3.17 it can be noted that the experimental WER is degraded com-
pared to numerical results, however it remained at a very good level with a
best operating point slightly above 1%. On the other hand, it is important to
say that numerical simulations are performed in ideal case. They do not take
into account the noise added by the devices, the cables, neither the bandwidths
imposed for the instrumentation. Therefore, we can conclude that the experi-
mental result can be compared with this one obtained numerically.

3.3.1.4 Results: synchronous and asynchronous mode

Up to this point all simulations and experiments have been performed in syn-
chronous conditions between Write-in and Read-Out according to Eq. (2.11).
In order to enrich the dynamics, we proposed a similar desynchronization,
but not equal, to the one described in [16, 45]. In Massar, et al., paper, the in-
put information is desynchronized with respect to the total delay of the feed-
back loop, dividing the reservoir into different independent subsystems. In our
case we have worked with the reservoir in synchronous mode and in transient
regime (τ > δτ) as [10, 11, 13]. Nevertheless, we have desynchronized the re-
sponse record of the virtual nodes amplitudes (matrix Mx) with respect to the
node separation (δτ) forced at the input information Write-In. This effect of
an asynchronous Read-Out (sampling of the transient response) with respect to
the Write-In (frequency imposed by the AWG) has been finely explored, both
numerically and experimentally. In Figure 3.18 a simulation of this desynchro-
nization can be observed and the asynchrony is quantified as ε = δτR/δτ − 1.

We discovered a significant RC processing enhancement by a factor of more
than 10, for a very small relative ε deviation between δτ and δτR, of the order
of 10−4. Such an improvement was moreover obtained for whether positive or
negative relative asynchrony, the exact synchrony leading actually to a deteri-
oration of the RC classification performance when considering the large asyn-
chrony (|ε| > 5 × 10−4) asymptotes as shown in Fig. 3.18. The origin of this
phenomenon is yet unexplained, and was not discovered earlier, as far as we
know. Due to the extremely small time scale shifts of concern, this phenomenon
is necessarily related to fast response times, and thus to the continuous time
information mixing through the impulse response h(t). We anticipate that effi-
cient information extraction from the input signal actually requires asynchrony,
possibly related to globally non-uniform sampling issues.

An illustration of this approach is shown in Fig. 3.19. Note that these results
have been obtained with same parameters used in Fig. 3.17, the only differ-
ence is that in this case the asynchronous Read-Out is applied (ε = ±10−4),
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Figure 3.18: Numerical simulation of WER as function of the relative Read-
Out vs. Write-In asynchrony ε.

improving both the numerical and experimental results. Numerically WER
ranging from 0.02 ± 0.02% down to 0% and experimentally WER ranging from
1.3± 0.2% down to only 0.042± 0.03%, thereby implying that the asynchronous
Read-Out enable us to achieve performance comparable to state-of-the-art sys-
tems. This results validates the computational efficiency of our ultra-fast pho-
tonic RC setup.

Quantitatively, excellent RC classification performances have been obtained
both numerically and experimentally with WER close to 0%, thus confirming
previous results from other photonic setups [10–13,16,45,46,58,126,127]. For the
results obtained with our RC system, it is worth emphasizing the high speed of
our setup presents a state-of-the-art improvement by a factor ∼ 3, which is the
most important contribution of this PhD work. We introduced a novel RC setup
based on an EO phase delay dynamics setup. The ultra-fast RC setup is built
with telecom components, which allows a relatively faster information process-
ing, reaching state-of-the-art classification speed: for an average duration of 60
samples for one spoken digit, the analogue processing can be performed within
1.3 µs, thus resulting in a processing speed of the order of 1 million words per
second. In the following section both WER and information processing speed
will be compared with the approaches of RC.
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Figure 3.19: WER as function of the relative Read-Out vs. Write-In asyn-
chrony quantified as ε = ±10−4. Experimental and numerical results.

3.3.1.5 Comparison with state-of-the-art methods

Finally, the WER results obtained experimentally with our RC processor are
compared with those obtained with approaches based on RC, with those ob-
tained by classic approaches (LSM and ESN), and also with Hidden Markov Mod-
els (HMM). This comparison is described in table 3.3:

3.3.2 Development of AURORA-2 test

This test is broken down into the same number of steps used in TI-46 test. The
only differences are the contribution of Write-In and the Read-Out function.
In the Write-In the input information u(t) follows a pre-processing based on
MFCCs described in section 2.4.1.2 and in Read-Out there are 11 modalities to
learn. The following steps (i.e. masking procedure, data injection, training and
testing) are performed in the same way than in the previous test.

3.3.2.1 Numerical performance obtained

In order to evaluate the efficiency of our RC processor, we performed numerical
simulations using only a part of this test (see Chapter 2 section 2.4). The part
used corresponds to the folder called clean1 (multi-condition mode), with a total
of 1001 sequences of digits, among which 289 are isolated digits. We have ran-
domly chosen 265 digits for the training subset, and 24 digits remaining were
left for testing. The setting of the parameters has been based on the best op-
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Approach WER (%) Information
Processing
speed (S/s)

Photonic RC 0.042± 0.03 This PhD thesis 17.6 G
Photonic NTC 0.06± 0.02 [13, 126] 628.3 K & 10 M

Silicon RC close to 0 [46]
Parallel photonic

information processing
0.014 [12] 5 G

All-optical RC 0.3 [45] 200 M
Optoelectronic

implementation of RC
0.04 ± 0.017 [11] 19.1 M

RC using delay systems 0.2 [10] 40 K
Optoelectronic RC 0.4 [16] 23.5 M

RC-based in techniques
SDR

0.2 [58]

Information processing
using transient dynamics

0.14 [127] 5 G

LSM 4.3 [59]
ESN 1.3 [128]

HMM 0.55 [129]

Table 3.3: Comparison of WER obtained with different approaches.

erating point found for the TI-46 test, being ρ = 1, β = 0.7, Φ0 = 2π/5, the
number of virtual nodes and the hidden layers are the same. With these setting
the WER found was around 5 ± 1%, suggesting that perhaps the parameters
obtained giving the best efficiency for the previous SDR task (TI-46 test) are not
suitable to generate the same performances. For this reason, numerical simula-
tions were performed and they are represented in Figure 3.20.

From the results of Figure 3.20, we confirmed that the value of the param-
eters found in the TI-46 test are similar to those giving the best results for the
AURORA-2 test. Nonetheless, the WER obtained in this simulation is at least
degraded by a factor 10 with respect to those obtained numerically in TI-46 test.
We then performed other simulations to investigate the influence of the reser-
voir size (number of nodes) as proposed in [117]. This simulation shows that
the WER decreases with the reservoir size, but it starts to saturate as soon as the
number of trainable parameters reaches 1000 as shown in Figure 3.21.

Increasing the number of virtual nodes, the WER decreases down close to
1%, motivating to perform once again the previous simulation with the same
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(a) WER vs. Φ0 parameter.
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(b) WER vs. β parameter.

Figure 3.20: Numerical simulations of AURORA-2 test in order to find the
best values (a) for the offset phase and (b) for the feedback gain under syn-
chronous conditions. This is performed using a folder called clean1, which is
only a part of the test.
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Figure 3.21: WER as function of reservoir size. Red line shows the WER with-
out hidden layers, and blue line is using NL = 3.

parameters except for the size of the reservoir (K = 1000). We used three hid-
den layers, so that we have indeed 1000 × 3 = 3000 effective nodes. With this
protocol we have obtained a WER 1.21± 0.5%, which allowed us to find qualita-
tive criteria that are fully consistent with previously obtained results [117, 118].
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Another test was conducted with all sequences of digits (1001) of clean1 from
multi-condition mode. These sequences have been treated with Matlab in order
to obtain isolated digits, so that the number of digits isolated for this test is 3257.
The learning set has been completed using the same process, but the digits used
correspond to the training for clean1 condition in the test AURORA-2. This sub-
set consists in 422 digit sequences, which were trimmed with Matlab in order
to obtain a total of 1397 isolated digits. The learning phase was then conducted
with the same parameters used in the previous test, with a set of 1397 digits for
the learning phase, and 3257 digits for testing. Under these conditions, we have
obtained a WER around 6%.

At last, a final test was conducted with all isolated digits of test for the clean
mode. This mode has 8440 digit sequences among which 2412 are isolated dig-
its. The parameters of this test are exactly the same as those used in the previ-
ous cases, except the set of digits for the training and testing. For the training
phase we used 75% of all digits, being 1809 digits and the remaining 25% has
been used for the testing phase, being 603 digits. With these settings, the WER
obtained is 0.69 ± 0.21. The latter value is even better than the one obtained
in [117] with RC techniques, and it is also comparable to those obtained with
HMM [118].

We were unable to test this experimentally, but good correspondence be-
tween theory and experiment were found in TI-46 task, leading us to conclusion
that our system can also reach a good processing efficiency in the experiment.

3.3.2.2 Comparison with state-of-the-art methods

Finally, the WER results obtained numerically are compared with with these
obtained with approaches based on RC and with HMM. This comparison is
described in table 3.4.

Approach WER (%) Information Number of nodes

Photonic RC 0.69 ± 0.21 This PhD thesis 1000
RC 1.21 [117] 4000

HMM 0.65 [118]

Table 3.4: Comparison of WER obtained with different approaches.

99



3.4 Overview

3.4 Overview

In this chapter, we reported on the experimental implementation of an ultra-fast
photonic RC processor. A complete characterization of each element has been
proposed. We measured the time delay by ACF method. Then a dynamical
study was performed, finding at least three different types of regimes (steady
state, oscillations and chaos). For low values of feedback gain β & 0.5 fast oscil-
lations are observed and a bifurcation point is reached at β = 0.5. Applying the
FTT to the time traces other dynamics are revealed, these dynamics are related
to the time imbalancing δT and the time delay τD. Increasing β ≃ 0.6 to 0.9
crenelated oscillations are obtained, corresponding to oscillations that are mod-
ulated by a slow envelope with a period close to 2τD (the fast oscillations inside
remaining with a period close to 2δT). Computing the FFT the slow-time enve-
lope is observed, being determined by the sideband peaks. Further increasing
β, a secondary bifurcation is reached at β = 1.14 and for values much larger
than the chaotic oscillations appear. The bifurcations have been confirmed nu-
merically in Matlab, leading to a good correspondence.

One part of this chapter was dedicated to the validation and to the quan-
tification of the performances of our ultra-fast photonic RC, using two types of
classification tests based on SDR. Before, reporting their results, we introduced
the possibility to use a hidden layers concept instead of using a single as layer
proposed up to now. Then, the SDR tests were numerically performed with the
purpose to find the best operating point for the RC information processing. The
found parameters giving the best results are ρ = 1, β = 0.7 and Φ0 = 2π/5
and Φ0 = π/10, the number of nodes and the hidden layers are fixed by the
experimental setup (K = 371 and NL = 3). Nevertheless, the numerical sim-
ulation of the hidden layers showed that using around 3 to 5 such layers the
efficiency of RC processing can be improved. With these setting, we found nu-
merically a WER=0.02± 0.02% and experimentally 1.3± 0.2%, showing that the
experimental WER is degraded compared with numerical WER, but it is worth
to mention that numerical simulations are made in the ideal case. Furthermore,
in order to enrich the dynamics, we proposed an asynchronous sampling for
the the Read-Out, consisting in desynchronizing recording rhyme of the tran-
sient response signals with respect to the virtual node separation imposed by
the Write-in. This asynchrony enhances the RC processing by a factor of more
than 10, lowering the experimental WER down to only 0.042 ± 0.03%, thereby
implying that the asynchronous Read-Out enable us to achieve performances
comparable to state-of-the-art systems. Therefore, in this PhD thesis we pro-
posed two novel techniques with which the efficiency of our RC processor is
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improved (hidden layers and asynchronous Read-Out), but the main contribu-
tion in this work is the realization of a photonic RC using telecommunication
devices. The experimental implementation of ultra-fast RC is based on an EO
phase delay dynamics, enabling the possibility to achieve bandwidths much
higher than those reported in previous RC systems [10–13]. Indeed, the new
RC setup allowed us to achieve a record of information processing speed at
17 GS/s, improving the classification speed by a factor of ∼ 3. Formulated in
another way, this RC system can process around of 1 million of words per sec-
ond, establishing the state-of-the-art in classification speed.

At last, the AURORA-2 test was conducted in the same way as TI-46 test,
except for the number of virtual nodes (1000 nodes) and the number of spo-
ken digits to classify. The test was performed with all isolated digits of the
AURORA-2 test, being 2412 digits. With these settings, we found numerically
a WER=0.69±0.21. However we were unable to test this experimentally. A
globally good correspondence between theory and experiment as found in TI-
46 task, allows leads us to speculate that our system can also obtain a good
efficiency even for experimental information processing.

101



3.4 Overview

102



Conclusions and perspectives

Conclusions

This PhD thesis focused on the study and implementation of RC as an unit for
information processing. Our approach of photonic RC enabled us to achieve
a faster processing by a factor of 3, establishing state-of-the-art classification
speed. The analogue processing speed was evaluated close to 1 million words
per second.

At the beginning of this work, the study of RC was based on a new brain-
inspired concept using an RNN in the field of neuroscience and in machine
learning. The new approach was promptly adopted due to its performances in
complex tasks such as time series prediction or speech recognition. However,
in order to realize an experimental implementation the dynamical reservoir of
interconnected neurons is replaced by an DDS. The idea is to use a DDS instead
of standard spatio-temporal structure of RNN. It simplifies the design, provid-
ing an innovative hardware solution, as well as similar expansion properties for
computational capabilities. The RC system consists typically in three layers: an
input layer where the information is injected, a second layer corresponding to
a dynamical reservoir of virtual nodes interconnected randomly with synaptic
weights, and an output layer, known as the Read-Out function that is responsi-
ble for extracting information from the reservoir. Also in this layer the learning
phase is applied. In the RC system the main advantage is the fact that the train-
ing does not change the dynamics of the reservoir, hence the learning phase is
faster, reliable and easier than classical methods.

The proposed RC system is based on an EO phase delay dynamics (DDS),
which was developed for applications in the areas of optical chaos telecommu-
nications. The dynamical properties of DDS, e.g. the nonlinear function, the
fading memory and the infinite dimensional phase space are the arguments on
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which relies our RC approach. Nevertheless, in this system the spatial dimen-
sion does not exist physically, but it is virtually created within the temporal
dimension, implying that the information is serially injected following a tech-
nique of signal processing known as TDM. As a result, the input information
needs a pre-processing, which consists in the adaptation of the signal before
being addressed onto each virtual node in the dynamical reservoir. In the pre-
processing, the input information is weighted by the synaptic points in accor-
dance to the elements of a mask function. The mask output is then a piecewise
constant function, constant over an interval covering the separation between
two successive nodes δτ and periodic with a period corresponding to the time
delay τD.

The internal connectivity of the reservoir is ruled by several parameters: the
time delay, the response time and the most important of them is the separation
between two successive virtual nodes. Within the PHOCUS project, it was de-
termined empirically that the good performances of RC are obtained when it
operates in transient regime. In this PhD thesis, we confirmed numerically that
the good efficiency of RC system occurs when it works under transient con-
ditions, meaning that the separation between two successive virtual nodes is
small enough with respect to the characteristic response time of the system.

A corresponding mathematical model of the EO oscillator was proposed.
It was particularly centered in the DPSK component because it is the one that
provides the nonlinear function. Afterwards, a dynamical characterization was
performed showing at least three different behaviors (steady state, period os-
cillation and chaos). On the other hand, we introduced the possibility to use
hidden layers instead of assuming always that each input sample is spread
through a single input layer as it has been proposed up to now. In order to
evaluate and to quantify the efficiency of our ultra-fast RC system, two stan-
dard tests based on SDR are used. The goals of these tests are to classify a series
of spoken digits, one of them is named TI-46 and the other one is AURORA-
2. The WER obtained for the TI-46 test in synchronous mode is 1.3%, but if
asynchronous sampling in Read-Out is adopted (the transient response signals
are desynchronized with respect to the virtual node separation imposed by the
Write-In) the WER is then improved by a factor of more than 10. Therefore,
this asynchrony highlights the efficiency of information processing and enables
us to achieve performances comparable to state-of-the-art systems, experimen-
tally and numerically: we found a WER of 0.042±0.03% and 0.02±0.02% re-
spectively. These results were obtained with the following parameter settings:
3 hidden layers, 371 virtual nodes and the best operating point for the RC infor-
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mation processing (β = 0.7, φ = 2π/5 and ρ = 1). At last, the AURORA-2 test
was conducted with the same settings used in TI-46 test, however consisting of a
more important set of digits to be tested 2412 digits. In this test, the WER result
was too degraded with respect to this one obtained in TI-46 test. The solution
proposed in order to improve the efficiency for RC information processing was
to explore the performances of the system by changing the reservoir size. It was
performed numerically from 371 virtual nodes to 1500 nodes and it was noticed
that a reservoir with around 1000 virtual nodes gives a good efficiency with the
AURORA-2 test. Accordingly, a reservoir of 1000 virtual nodes allowed to find
numerically a WER=0.69±0.21%, which is even better than the one obtained
in [117] with RC techniques, and it is also comparable to those obtained with
HMM [118].

Perspectives

In this PhD thesis we introduced an ultra-fast photonic RC based on EO phase
delay dynamics. The new RC setup allowed us to process 1 million words per
second, the possibility to use hidden layers, as well as an asynchronous sam-
pling mode in the Read-Out. These characteristics enabled our RC approach
to establish the state-of-the-art in classification speed and also to obtain a WER
comparable and even better to those found in the literature. Although good re-
sults have been obtained, many are perspectives for the photonic RC system.

• The topology of the proposed RC approach does not allow to process
digit-sequences. Then a modified architecture might be interesting for fu-
ture study. Furthermore, this modification enables us to process all dig-
its in AURORA-2 test and also to validate the results obtained numer-
ically. On the other hand, in the current topology the testing phase is
performed offline, however using integrated circuit such as FPGA (Field-
Programmable Gate Array) board would enable a hardware solution for
full experimental implementation and at the same time would be possible
to use multi-delay instead of a single delay.

• Another important point would be to use the MFCC model in the TI-46
test and while in AURORA-2 test the Lyon model will be adopted. It
would provide a measurable point of comparison, which makes it eas-
ier to know which model is more efficient.

• The results obtained with the photonic RC suggest to continue in this line,
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using the dynamics based on Chimera states for information processing.

• The tests performed in this work were based on SDR or classification task,
and might be interesting to introduce other tests based on prediction of
time series.

• We introduced the hidden layers as a solution in order to use a number
of virtual nodes similar to this one generally used in RC approaches. It
means that the information within each hidden layer is exactly the same
and in Read-Out function only one layer is used in order to extract the
transient response. That is why, a study that allows to explore the pos-
sibility to learn each layer individually as carried out in deep learning
methods would be very suitable.
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Appendices

Appendix A: Mathematical model of EO phase delay

Equation (2.17) in chapter two shows the model for the interference between
the two arms of the interferometer DPSK.

E(t) =
1

2
E0ejω0(t−τD)+jϕ(t−τD) +

1

2
E0ejω0(t−τD−δT)+jϕ(t−τD−δT)

=
1

2
E0ejω0(t−τD)+jϕ(t−τD) +

1

2
E0ejω0(t−τD)−jω0δT+jϕ(t−τD−δT)

=
1

2
E0ejω0(t−τD) ·

[

ejϕ(t−τD) + e−jω0δT+jϕ(t−τD−δT)
]

,

(10)

If we multiply the Eq. 10 by ejω0δT obtain

E(t) =
1

2
E0ejω0(t−τD)ejω0δT ·

[

ejϕ(t−τD)ejω0δT + ejω0δTe−jω0δT+jϕ(t−τD−δT)
]

=
1

2
E0ejω0(t−τD−δT) ·

[

ejω0δT+jϕ(t−τD) + ejϕ(t−τD−δT)
]

, (11)

Now the equation (11) is multiplied by e[−jω0δT−jϕ(t−τD)−jϕ(t−τD−δT)]/2

e[−jω0δT−jϕ(t−τD)−jϕ(t−τD−δT)]/2
= 1,
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E(t) =
1
2 E0ejω0(t−τD)

e[−jω0δT−jϕ(t−τD)−jϕ(t−τD−δT)]/2

[

ejω0δT−jω0δT/2+jϕ(t−τD)−jϕ(t−τD)/2·

· e−jϕ(t−τD−δT) + ejϕ(t−τD−δT)−jω0δT)/2−jϕ(t−τD)/2−jϕ(t−τD−δT)/2

]

,

=
1

2
E0e

j
[

ω0(t−τD−δT+
ω0δT+ϕ(t−τD)+ϕ(t−τD−δT)

2 )
]

[

ejω0δT/2+jϕ(t−τD)/2−jϕ(t−τD−δT)/2 +

+ e−jω0δT/2−jϕ(t−τD)/2−jϕ(t−τD−δT)/2+jϕ(t−τD−δT)

]

, (12)

(13)

If we consider Ψ = ω0(t − τD − δT) + [ω0δT+ϕ(t−τD−δT)+ϕ(t−τD)]
2 , then the

equation (13) can be written as:

E(t) =
E0ejΨ

2

[

ejω0δT+ϕ(t−τD−δT)+ϕ(t−τD)

2
+

e−jω0δT+ϕ(t−τD−δT)+ϕ(t−τD)

2

]

, (14)

Finally using the following trigonometric identity ejθ + e−jθ = 2 cos θ, the
equation (14) is written as follows

E(t) = E0ejΨ cos

[

jω0δT + ϕ(t − τD − δT) + ϕ(t − τD)

2

]

. (15)

Thus, the intensity of light at the output of PD can be described as follows:

I(t) = ‖E(t)‖2 = P0 cos2

[

ω0δT + ϕ(t − τD − δT) + ϕ(t − τD)

2

]

. (16)

P0 = ‖E0‖
2

120



Appendix B: Dual-delay dynamical model

Appendix B: Dual-delay dynamical model

To facilitate the mathematical treatment of the Eq. (2.28), we fix the offset of

phase Φ0 = π/2 and introduce a new variable u ≡
∫ t

0 x(ξ)dξ. It leads to two
coupled first-order DDEs:

{

τ dx
dt = −x − 1

θ u − β
2 sin[2(xτD − xτD+δT)]

du
dt = x,

(17)

where xτD = (t − τD), xτD+δT = x(t − τD − δT) and β ∝ κ | E0 |2 is adjusted
through a variable optical attenuator with factor (κ).

Firstly we determine the Hopf bifurcation of the basic state (x, u) = (0, 0), it
allows to find pulsating instabilities if they exist. Then, from (17) we formulate
the linearized equations, for x → 0, we have to

τ
d2(dx)

(dt)2
= −

dx

dt
−

1

θ

du

dt
− β(xτD − xτD+δT),

du

dt
= x, (18)

resulting

τ
d2(dx)

(dt)2
+

dx

dt
+

1

θ

du

dt
+ β(xτD − xτD+δT) = 0. (19)

We look a periodic solution of form x = a exp(iσs), where a is a constant and
s = t/δT is time normalized to the small delay. Then Eq. (19) can be rewrite

−τa
σ2

δT2
eiσt/δT +

aiσ

δT
eiσt/δT −

1

θ
aeiσt/δT + β

[

iσ

δT
eiσxτD

/δT − a
iσ

δT
eiσxτD+δT/δT

]

= 0,

−
τσ2

δT2
+

iσ

δT
+

1

θ
+ β

iσ

δT
e−iστD/δT(1−e−iσ) = 0. (20)

Proposing new variables as follows:

ε1 ≡
δT

θ
, ε2 ≡

τ

δT
, and ζ ≡

τD

δT
. (21)

Substituting the variables of Eq. (21) in Eq. (20), the characteristic equation
can be described by:
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ANNEX B: Dual-delay dynamical model

(1 + iε2σ)iσ + ε1 + iσβ[e−iσζ − e−iσ(ζ+1)] = 0. (22)

If σ satisfies the characteristic equation, leading a nontrivial solution. For
this we use the values of experimental parameters θ, τ, T and δT to determine
ε1 ≃ 7.5 × 10−8, ε2 ≃ 706 × 10−3, and ζ ± 157.58. The small values of ε1 and ε2

suggest the elimination of the terms multiplying in Eq. (22).

iσ + iσβ
[

e−iσζ − e−iσ(ζ+1)
]

= 0

β
[

e−iσ(ζ+1/2−1/2) − e−iσ(ζ+1/2+1/2)
]

= −1

β
[

e−iσ(ζ+1/2)eiσ/2 − e−iσ(ζ+1/2)e−iσ/2
]

= −1

βe−iσ(ζ+1/2)
[

eiσ/2 − e−iσ/2
]

= −1

2iβ

(

eiσ/2e−iσ/2

2i

)

= −eiσ(ζ+1/2)

−2iβ sin
(σ

2

)

= eiσ(ζ+1/2) (23)

Applying the formula of Euler to Eq. (23)

−2iβ sin
(σ

2

)

= cos

[

σ

(

ζ +
1

2

)]

+ i sin

[

σ

(

ζ +
1

2

)]

. (24)

Separating the real part and the imaginary part of Eq. (24), we obtain two
conditions for β and ρ

cos

[

σ

(

ζ +
1

2

)]

= 0 (25)

sin

[

σ

(

ζ +
1

2

)]

= −2β sin
(σ

2

)

(26)

We concentrate only in the case ρ > 0 (the eigenvalue is greater than zero)
for analysis of stability of fixed point of Eq. (25), which is satisfied if

σp =
π

2ζ + 1
+

2pπ

2ζ + 1
=

1

ζ + 1/2

(

π + 2pπ

2

)

, (27)

replacing ζ ≡ τD/δT in Eq. (27)

σp =
π

2τD
δ + 1

+
2pπ

2τD
δT + 1

. (28)
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We found that Eq. (28) determines the p-discrete frequencies, for τD period
in units of δT. Integrating this equation in imaginary part described by Eq. (26),
we obtain the feedback gain β as

sin

(

π + 2pπ

2

)

= −β sin

[(

π

2ζ + 1
+

2pπ

2ζ + 1

)

1

2

]

(−1)p = (−1)2βp sin
(σp

2

)

(−1)p+1 = 2βp sin
(σp

2

)

βp =
(−1)p+1

2βp sin
(

σp

2

) , (29)

if p is a even number, then p = 2n, and we obtain from Eq. (26) that sin(σ/2) <
0; and if p = 2n + 1 is a odd number, it leads to sin(σ/2) > 0, so

βp =
(−1)p+1

2βp sin
(

σp

2

) > 0. (30)
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application à la sécurisation de la couche physique des transmissions optiques
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Résumé :

Aujourd’hui, la plupart des ordinateurs sont encore basés sur des concepts développés il y a plus de 60 ans par Alan Turing et John von Neumann. Cependant, ces ordinateurs

numériques ont déjà commencé à atteindre certaines limites physiques via la technologie de la microélectronique au silicium (dissipation, vitesse, limites d’intégration, consommation

d’énergie). Des approches alternatives, plus puissantes, plus efficaces et moins consommatrices d’énergie, constituent depuis plusieurs années un enjeu scientifique majeur. Beaucoup

de ces approches s’inspirent naturellement du cerveau humain, dont les principes opérationnels sont encore loin d’être compris. Au début des années 2000, la communauté

scientifique s’est aperçue qu’une modification du réseau neuronal récurrent (RNN), plus simple et maintenant appelée Reservoir Computing (RC), est parfois plus efficace pour

certaines fonctionnalités, et est un nouveau paradigme de calcul qui s’inspire du cerveau. Sa structure est assez semblable aux concepts classiques de RNN, présentant généralement

trois parties: une couche d’entrée pour injecter l’information dans un système dynamique non-linéaire (Write-In), une seconde couche où l’information d’entrée est projetée dans

un espace de grande dimension (appelé réservoir dynamique) et une couche de sortie à partir de laquelle les informations traitées sont extraites par une fonction dite de lecture-

sortie. Dans l’approche RC, la procédure d’apprentissage est effectuée uniquement dans la couche de sortie, tandis que la couche d’entrée et la couche réservoir sont fixées de

manière aléatoire, ce qui constitue l’originalité principale du RC par rapport aux méthodes RNN. Cette fonctionnalité permet d’obtenir plus d’efficacité, de rapidité, de convergence

d’apprentissage, et permet une mise en œuvre expérimentale. Cette thèse de doctorat a pour objectifs d’implémenter pour la première fois le RC photoniques en utilisant des dispositifs

de télécommunication. Notre mise en œuvre expérimentale est basée sur un système dynamique non linéaire à retard, qui repose sur un oscillateur électro-optique (EO) avec une

modulation de phase différentielle. Cet oscillateur EO a été largement étudié dans le contexte de la cryptographie optique du chaos. La dynamique présentée par de tels systèmes

est en effet exploitée pour développer des comportements complexes dans un espace de phase à dimension infinie, et des analogies avec la dynamique spatio-temporelle (tels que

les réseaux neuronaux) sont également trouvés dans la littérature. De telles particularités des systèmes à retard ont conforté l’idée de remplacer le RNN traditionnel (généralement

difficile à concevoir technologiquement) par une architecture à retard d’EO non linéaire. Afin d’évaluer la puissance de calcul de notre approche RC, nous avons mis en œuvre deux

tests de reconnaissance de chiffres parlés (tests de classification) à partir d’une base de données standard en intelligence artificielle (TI-46 et AURORA-2), et nous avons obtenu des

performances très proches de l’état de l’art tout en établissant un nouvel état de l’art en ce qui concerne la vitesse de classification. Notre approche RC photonique nous a en effet

permis de traiter environ 1 million de mots par seconde, améliorant la vitesse de traitement de l’information d’un facteur supérieur à ∼3.

Mots-clés : Reservoir computing, Réseau neuronal récurrent, Dynamique non linéaire à retard, Oscillateur electro-optique

Abstract:

Nowadays most of computers are still based on concepts developed more than 60 years ago by Alan Turing and John von Neumann. However, these digital computers have already

begun to reach certain physical limits of their implementation via silicon microelectronics technology (dissipation, speed, integration limits, energy consumption). Alternative approaches,

more powerful, more efficient and with less consume of energy, have constituted a major scientific issue for several years. Many of these approaches naturally attempt to get inspiration

for the human brain, whose operating principles are still far from being understood. In this line of research, a surprising variation of recurrent neural network (RNN), simpler, and

also even sometimes more efficient for features or processing cases, has appeared in the early 2000s, now known as Reservoir Computing (RC), which is currently emerging new

brain-inspired computational paradigm. Its structure is quite similar to the classical RNN computing concepts, exhibiting generally three parts: an input layer to inject the information

into a nonlinear dynamical system (Write-In), a second layer where the input information is projected in a space of high dimension called dynamical reservoir and an output layer from

which the processed information is extracted through a so-called Read-Out function. In RC approach the learning procedure is performed in the output layer only, while the input and

reservoir layer are randomly fixed, being the main originality of RC compared to the RNN methods. This feature allows to get more efficiency, rapidity and a learning convergence,

as well as to provide an experimental implementation solution. This PhD thesis is dedicated to one of the first photonic RC implementation using telecommunication devices. Our

experimental implementation is based on a nonlinear delayed dynamical system, which relies on an electro-optic (EO) oscillator with a differential phase modulation. This EO oscillator

was extensively studied in the context of the optical chaos cryptography. Dynamics exhibited by such systems are indeed known to develop complex behaviors in an infinite dimensional

phase space, and analogies with space-time dynamics (as neural network ones are a kind of) are also found in the literature. Such peculiarities of delay systems supported the idea

of replacing the traditional RNN (usually difficult to design technologically) by a nonlinear EO delay architecture. In order to evaluate the computational power of our RC approach,

we implement two spoken digit recognition tests (classification tests) taken from a standard databases in artificial intelligence TI-46 and AURORA- 2, obtaining results very close

to state-of-the-art performances and establishing state-of-the-art in classification speed. Our photonic RC approach allowed us to process around of 1 million of words per second,

improving the information processing speed by a factor ∼3.
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