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sur des architectures hétérogènes et volatiles
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Introduction

Le domaine de l’analyse numérique est antérieur à l’invention des ordinateurs

modernes par de nombreux siècles. Beaucoup de grands mathématiciens étaient

préoccupés par l’analyse numérique. Cela est évident d’après la nomination de cer-

tainesméthodes numériques importantes comme laméthode de Newton, l’élimination

de Gauss, ou la méthode d’Euler. Dans le dernier siècle, le calcul numérique a été

et est encore largement utilisé dans tous les domaines de la génie et des sciences

physiques. A cet époque, les sciences de la vie et même les arts ont également adopté

des éléments de calcul scientifiques. Par exemple, la résolution de grands problèmes

linéaires est essentielle à la psychologie quantitative et le calcul de la solution aux

équations différentielles stochastiques et chaı̂nes de Markov sont essentielles pour

simuler les cellules vivantes pour la médecine et la biologie. En outre, le calcul

numérique a chaque jour un impact direct sur nos vies. En effet, grâce au calcul

numérique, nous sommes en mesure de prédire la météo, concevoir des voitures plus

sûres, calculer efficacement la trajectoire que doit être prise par un satellite, de calculer

la dose de rayons X nécessaires pour traiter les patients souffrant de cancer, etc. Nous

dépendons en grande partie sur le calcul numérique pour améliorer notre mode de vie.

Le calcul scientifique simule souvent des phénomènes réels tels que le changement

climatique ou la fusion nucléaire qui génèrent des grands et complexes problèmes

numériques. Pour que les simulations soient utiles, elles doivent être exécutées pen-

dant des périodes de temps finies et relativement courtes. Les grands problèmes

numériques exigent de grandes puissance de calcul pour être résolus. Ainsi, leurs so-

lutions ne peuvent pas être calculées à la main et nous devons utiliser les ordinateurs.

De même, si le problème est trop gros pour être résolu sur un seul ordinateur, car il n’a

pas suffisamment de puissance de calcul, ni assez d’espace mémoire, nous utilisons les

architectures distribuées comme les supercalculateurs, les grappes locales, les grilles,

etc. Ces architectures distribuées sont composées de plusieurs unités de calcul et

ils combinent la puissance de calcul de tous leurs unités de calcul pour résoudre un

problème donné. Pour utiliser une telle architecture distribuée, le problème numérique

de grande taille doit être décomposé en plusieurs petites tâches et une méthode de

résolution parallèle doit être utilisé pour résoudre chaque tâche sur une unité de

calcul. La parallélisation d’une application n’est pas un problème trivial, surtout si
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les tâches qui en résultent dépendent les unes des autres et si les nœuds de calcul

n’ont pas un espace de mémoire partagé. Voici les problèmes que les programmateurs

doivent aborder durant la parallélisation et l’exécution d’une application sur une

architecture distribuée :

• Gérer les communications entre les nœuds de calcul : dans certaines applica-

tions scientifiques, les sous-problèmes résolus sur des nœuds de calcul distincts,

dépendent de certaines composantes situées dans d’autres sous-problèmes.

Quand on veut programmer des méthodes parallèles capables de résoudre de

telles applications scientifiques, les communications entre les nœuds voisins

doivent être gérées avec soin afin de ne pas diminuer les performances globales

de l’application (en particulier si on utilise des environnements à grande latence

où les communications sont très pénalisantes). Pour ces raisons, les algorithmes

à gros grains sont préférés aux algorithmes à grains fins lors de l’utilisation des

architectures à grande latence parce qu’ils n’ont pas besoin d’échanger beaucoup

de données entre les nœuds de calcul.

• L’hétérogénéité des nœuds, des réseaux et des tâches : les nœuds formant une

architecture distribuée sont généralement hétérogènes, en particulier lors de

l’utilisation les architectures de grappes distribuées ou les architectures de calcul

global. Chaque nœud a des spécifications différentes. Ainsi, le développeur

d’une application parallèle doit prendre en considération les capacités de chaque

nœud et doit distribuer une charge appropriée à chacun afin de ne pas perdre une

partie de la puissance de calcul et afin d’avoir des performances optimales. Pour

ces mêmes raisons, les développeurs doivent prendre en compte l’hétérogénéité

des réseaux (bande passante et latence) qui inter-connectent les unités de calcul

durant la conception d’une application parallèle. En outre, les tâches ne sont pas

toujours similaires et elles pourraient exiger différents montants de puissance

de calcul. La solution optimale doit attribuer chaque tâche de calcul à l’unité de

calcul appropriée liée au réseau approprié.

• Les synchronisations entre les nœuds de calcul : Lors de l’échange de données

ou du calcul d’une fonction de réduction ou de la détection de la convergence

globale (si la méthode est itérative), les nœuds de calcul généralement se syn-

chronisent localement ou globalement. Cela conduit à une perte de puissance

de calcul au cours de ces synchronisations. En outre, comme les nœuds et les

réseaux dans les architectures distribuées sont hétérogènes, les nœuds de calcul

performants doivent attendre que les nœuds moins performants finissent leurs

tâches avant de pouvoir communiquer avec eux. Ce qui résulte à des périodes

d’inactivité pour les unités de calcul plus performantes.
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• Le calcul des fonctions de réduction : Certaines méthodes numériques exigent

le calcul de fonctions de réduction. Ces fonctions sont généralement calculées

en utilisant des données provenant de tous les nœuds de calcul. La plupart des

mécanismes pour le calcul des fonctions de réduction mènent à la synchronisa-

tion de tous les nœuds de calcul ou la centralisation de l’opération sur un seul

nœud ce qui réduit la performance de l’application parallèle.

• La détection de la convergence globale : Ce problème concerne uniquement les

méthodes itératives qui exécutent le même bloc d’instructions jusqu’à ce que leur

résidu est inférieur à la précision demandée (ǫ). Plusieursmécanismes ont été mis

en œuvre pour détecter la convergence globale des méthodes itératives et par-

allèles. Cependant, la plupart d’entre eux sont centralisées et nécessitent la syn-

chronisation de tous les nœuds ce qui réduit les performances des applications

parallèles, surtout si elles sont exécutées sur des unités de calcul hétérogènes .

• La volatilité des unités de calcul : Les nœuds de calcul dans les architectures dis-

tribuées ne sont pas très stables, en particulier dans l’architecture de calcul volon-

taire où les nœuds de calcul sont généralement des machines publics, inutilisées

qui peuvent être déconnecté à tout moment. Pour être capable d’exécuter des

applications parallèles sur de tels environnements volatils, le développeur doit

concevoir un mécanisme de détection des pannes et un mécanisme de restau-

ration. Le mécanisme de détection des pannes est nécessaire pour détecter les

nœuds de calcul déconnectés afin de les remplacer. Le mécanisme de restoration

permet au nouveau nœud de calcul, qui a remplacé le nœud en panne, de pour-

suivre l’exécution de la tâche sans devoir recommencer dès le début. Ainsi, le

système devient tolérant aux pannes. Il existe plusieurs systèmes pour assurer

cette propriété, mais la plupart d’entre eux ont besoin de synchroniser tous les

nœuds de calcul ou ont besoin d’un serveur de stockage stable pour sauvegarder

régulièrement l’état et les données des nœuds de calcul. Ces méthodes ajoutent

généralement une surcharge considérable sur les nœuds de calcul ce qui peut

réduire les performances globales des applications parallèles.

• Les centralisations : Comme les architectures distribuées sont volatiles, la

centralisation de n’importe quel mécanisme sur n’importe quel nœud est très

dangereuse parce qu’elle crée des points faibles dans la plate-forme qui ne sont

pas tolérants aux pannes. En outre, la centralisation limite l’extensibilité des

applications parallèles. En effet, en utilisant un grand nombre de nœuds de

calcul, les nœud centralisateurs seront surchargés et vont se planter. Donc,

tous les mécanismes centralisés, tels que la détection de la convergence glob-

ale, la détection des pannes et la restauration des nœuds en panne, doivent

être décentralisés afin d’avoir une application extensible et stable qui peut être

exécuté en parallèle dans des environnements distribués avec des nœuds volatils.
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Dans ce document, nous nous abordons tous ces problèmes en proposant la

plate-forme JACEP2P-V2 et des méthodes itérative et parallèles basée sur le modèle

d’itérations asynchrones. Le modèle d’itérations asynchrones est bien adapté aux

architectures hétérogènes et volatiles: il élimine les synchronisations entre les nœuds

de calcul et tolère la perte des messages de données.

JACEP2P-V2

Notre contribution principale dans ce document est la plate-forme JACEP2P-V2 (

Java Asynchronous Computing Environment for P2P architectures Version 2), qui est

une plate-forme décentralisée et tolérante aux pannes. Elle est dédiée à l’exécution

des applications itératives parallèles basées sur le modèle d’itérations asynchrones

sur des architectures hétérogènes et volatiles. Il offre toutes les fonctionnalités

nécessaires pour pouvoir exécuter ce type d’algorithmes (comme le multi-threading,

l’échange asynchrone des messages de données et un mécanisme décentralisé pour la

détection de la convergence globale. En outre, l’utilisation de cette plate-forme avec le

modèle d’itérations asynchrones nous permet de résoudre les problèmes mentionnés

ci-dessus, comme éliminer les synchronisations et centralisations et résister aux

pannes. Plusieurs expérimentations ont été menées sur des architectures distribuées

et volatiles afin de confirmer l’efficacité de cette approche et d’évaluer sa robustesse,

ses performances et son extensibilité.

La comparaison de plusieurs méthodes de résolution de problèmes à

valeurs initiales

Nos recherches ont également porté sur la conception de méthodes itératives et

parallèles pour la résolution des problèmes à valeurs initiales, bien adaptées aux ar-

chitectures hétérogènes, distribuées et avec grande latence dans les communications.

Étant donné que les communications dans de telles architectures sont très pénalisantes,

il faut utiliser les méthodes à gros grains. Dans notre travail, nous avons étudié de

nombreuses méthodes parallèles itératives à gros grains (par exemple la méthode

de relaxation d’onde, le méthode de Multisplitting, etc) qui sont compatibles avec le

modèle d’itérations asynchrones. Ces méthodes ont été comparées tout en résolvant

de grands problèmes numériques sur des architectures hétérogènes et volatiles en

utilisant la plate-forme JACEP2P-V2.

Le reste de ce document est divisé en deux parties : le contexte scientifique et les

contributions. Chaque partie est aussi composée de deux chapitres.

• Dans le premier chapitre, nous présentons brièvement les méthodes directes et

itératives. Puis, nous présentons les architectures distribuées utilisées couram-



INTRODUCTION 9

ment dans le calcul numérique et les différents environnements mis en œuvre

pour gérer ces architectures. Nous terminerons ce chapitre par la présentation de

certains mécanismes de détection de pannes et de récupération après panne.

• Dans le deuxième chapitre, nous présentons le modèle d’itérations asynchrones

et nous montrons ses avantages dans un environnement hétérogène et volatil.

Puis, nous présentons deux plates-formes dédiées à la conception et l’exécution

de méthodes parallèles et itératives programmées selon ce modèle. Les limites

de ces plates-formes sont expliquées.

• Dans le troisième chapitre, nous présentons notre plate-forme JACEP2P-V2. C’est

une évolution de la plate-forme JACEP2P avec de nombreuses améliorations. Ce

chapitre est consacré à la présentation de l’architecture de la plate-forme et de ses

différentes caractéristiques.

• Les expérimentations sont toutes regroupées dans le dernier chapitre. Elles sont

divisées en deux séries. La première série d’expériences évalue la performance,

la robustesse et l’extensibilité de JACEP2P-V2. La deuxième série d’expériences

compare différentes méthodes parallèles et itératives pour la résolution de

problèmes à valeurs initiales. La plupart des expérimentations sont effectuées

sur des environnements volatils et hétérogènes.

On termine ce document avec une conclusion et quelques perspectives.
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Introduction

The field of numerical analysis predates the invention of modern computers by many

centuries. Many great mathematicians of the past were preoccupied by numerical

analysis, as is obvious from the names of important numerical methods like Newton’s

method, Gaussian elimination, or Euler’s method. In the last century, numerical

computing was and is still heavily used in all fields of engineering and physical sci-

ences. Now, the life sciences and even the arts have also adopted elements of scientific

computations. For example, solving large linear problems is essential to quantitative

psychology and finding the solution to stochastic differential equations and Markov

chains are essential in simulating living cells for medicine and biology. Moreover, nu-

merical computing impacts our lives each day. Indeed, thanks to numerical computing

we are able to predict weather, conceive safer cars, compute efficiently the trajectory

that must be taken by a satellite, compute the dose of X-Ray required to treat a patient

suffering from cancer, etc. We heavily depend on numerical computing to improve

our lives.

Scientific computing often simulates real-world changing conditions such as cli-

mate change, nuclear fusion, which generate large and complex numerical problems.

In order for the simulations to be useful, they must be executed in finite and relatively

short periods of time. Large numerical problems require large amounts of computing

power to be solved. Thus, their solutions cannot be computed by hand and we have

to use computers. Furthermore, if the problem is too large to be solved on a single

computer because it does not have sufficient computing power nor enough memory

space, we use distributed architectures like supercomputers, local clusters, grids, etc.

These distributed architectures are composed of many computing units and they com-

bine the computing power of all their computing units to solve a given problem. To

use such distributed architectures, the large numerical problem must be decomposed

into small tasks and a parallel resolution method must be used to solve each task

on a different computing unit. Parallelizing an application is not a trivial problem,

especially if the resulting tasks depend on each others and if the computing nodes do

not have a shared memory space. Here are the most common issues that developers

face while parallelizing and executing an application on a distributed architecture:
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• Managing the communications between all the computing nodes: in some sci-

entific applications, the subproblems, being solved on each node, depend on the

values of some components located in other subproblems. When implementing

parallel methods that solve such scientific applications, the communication be-

tween computing neighbors must be managed carefully in order not to decrease

the overall performances (especially in high latency environments where com-

munications are highly penalizing). In this way, coarse grained algorithms are

preferred over fine grained algorithms when using high latency architectures be-

cause they do not require exchanging a lot of data between the computing nodes

(comparing to the volume of computations).

• Heterogeneous computing nodes, networks and tasks: the nodes that form a

distributed architecture are usually heterogeneous, especially when using dis-

tributed clusters or global computing architectures. Each node has a specific

computing power and memory space. Thus, the developer of a parallel applica-

tion must take into consideration the capacities of each node and must distribute

the appropriate load to each one in order not to lose significant computing power

and to have optimal performances. In the same way, developers have to take into

account the heterogeneity of the networks (bandwidth and latency) interconnect-

ing the computing units while conceiving the parallel application. Moreover, the

tasks are not always similar and they could require different amounts of com-

puting power. The optimal solution must assign each task on the appropriate

computing unit connected to the appropriate network.

• Synchronizations between nodes: when exchanging data or computing a reduc-

tion function or detecting the global convergence (if the method is iterative), the

computing nodes usually synchronize locally or globally with each other. This

leads to a loss of computing power during these synchronizations. Moreover,

since the nodes and the networks in distributed architectures are heterogeneous,

the fast computing nodes must wait for the slow ones to finish their tasks before

being able to communicate with them. This also results in larger idle times for

computing units.

• Computing reduction functions: some numerical methods require computing

some reduction functions. These functions are usually computed using data from

all the nodes. Most of the schemes that compute these functions lead to synchro-

nizing all the nodes or centralizing the operation on one node which reduces the

performance of parallel applications.

• Detecting the global convergence: this problem is only related to iterative meth-

ods which execute the same bloc of instructions until the “residual vector” is

lower than a requested precision (ǫ). Many schemes have been implemented to

detect the global convergence of parallel iterative methods. However, most of
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them are centralized and require synchronizing all the nodes which reduces the

performance of parallel applications, especially if they are being executed on het-

erogeneous computing units.

• Volatility of the computing nodes: the computing nodes in distributed architec-

tures are not very stable, especially in volunteer computing architectures where

the computing nodes are generally public unused machines that can be discon-

nected at any time. To be able to execute parallel applications on such volatile

environments, the developer must conceive a crash detection mechanism and a

restoring mechanism. The crash detection mechanism is required to detect dead

computing nodes in order to replace them. The restoring mechanism allows the

new computing node that replaced the dead one to continue its task without

restarting the task from the beginning. Thus, the system becomes fault tolerant.

There are many schemes to ensure this property, but most of them require syn-

chronizing all the computing nodes or need a safe storing area to store the status

and data of computing nodes at regular time intervals. These methods usually

add a considerable overhead on computing nodes and reduce the overall perfor-

mance of parallel applications.

• Centralization: since distributed architectures are volatile, centralizing any

mechanism on any node is very dangerous because it creates weak points in the

platformwhich are not fault tolerant. Moreover, centralizing limits the scalability

of the parallel application. Indeed, as the number of computing nodes increases,

the centralizing node will eventually be overloaded andwill crash. So all the cen-

tralized mechanisms, such as detection of global convergence, detection of dead

nodes and restoring dead nodes, must be decentralized in order to have a safe

scalable parallel application that runs well in volatile distributed environments.

In this document, we tackle all these issues by proposing the JACEP2P-V2 platform

and some parallel iterative methods based on the asynchronous iteration model. The

asynchronous iteration model is well adapted for heterogeneous volatile architectures:

it eliminates synchronizations between the computing nodes and tolerates the loss of

data messages.

JACEP2P-V2

Our main contribution in this document is JACEP2P-V2 (Java Asynchronous Com-

puting Environment for P2P architectures Version 2) which is a decentralized fault

tolerant platform dedicated to executing parallel iterative applications based on the

asynchronous iteration model over volatile heterogeneous architectures. It provides all

the functionalities necessary for running this type of algorithms like multi-threading,

asynchronous message exchange and a decentralized global convergence detection.
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Moreover, this platform combined with the asynchronous iteration model tackle many

of the issues cited above, like eliminating synchronizations and centralizations and re-

sisting to crashes. Many experiments have been conducted over distributed volatile

architectures to prove the efficiency of this approach and to test its robustness, perfor-

mances and scalability.

Comparative study between various resolution methods

Our researches were also focused on designing parallel iterative methods to solve

linear and nonlinear systems that are well adapted to heterogeneous high latency

distributed architectures. Since the communications in such architectures are very

penalizing, only coarse grained methods must be used. In our work, we have studied

many parallel iterative coarse grained methods (for example the Waveform Relaxation

method, the Multisplitting method, etc.) which are compatible with the asynchronous

iteration model. These methods were compared while solving large numerical prob-

lems over distributed heterogeneous volatile architectures using the JACEP2P-V2

platform.

The rest of this document is divided into two parts: scientific context and contribu-

tions. Each part is also composed of two chapters.

• In the first chapter, we briefly present the direct and the iterative methods. Then,

we present the distributed architectures commonly used in numerical computing

and the different environments implemented to manage these architectures. We

end this chapter with the presentation of some mechanisms for fault detection

and recovery.

• In the second chapter, we present the asynchronous iteration model andwe show

its benefits in a heterogeneous volatile environment. Then we present two plat-

forms that are dedicated to designing and executing parallel iterative methods

implemented according to this model. The limits of these platforms are dis-

cussed.

• In the third chapter, we present our platform JACEP2P-V2. It is an evolution of

the JACEP2P platform with many improvements. This chapter is dedicated to

presenting the architecture of the platform and its various features.

• The experimentations are all grouped in the last chapter. They are divided into

two sets. The first set of experiments tests the performance, robustness and scal-

ability of JACEP2P-V2. The second set of experiments compare various parallel

iterative resolution methods while solving large numerical problems. Most of the

experiments are executed over heterogeneous volatile environments.
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We end this document with some conclusions and perspectives.
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Scientific context





Chapter 1

Numerical computing on distributed

architectures

1.1 Introduction

Humans are the only specie on earth capable of solving problems that require reflec-

tion and where the solution cannot be found by only using instincts. This intellectual

capacity varies between individuals and can be developed if the individual receives a

proper training which is usually done through education. The performance of this gift

depends on the state of the individual: for example, it could be reduced or increased,

if the individual is tired, sleepy or under a lot of pressure. Although, these intellectual

capacities can be improved, they are definitely limited because the human brain can

assimilate a relatively small amount of information at a small time period and it has

a relatively small memory. Moreover, if a human being knows the method to solve

a class of problems, it is almost impossible that he/she gives all the time the correct

solution for problems belonging to this class because there is a high probability that

he/she will make a common mistake when executing the resolution method. For all

these reasons, humans have tried to create some sort of computing unit that is capable,

once given the resolution method, of solving large and complex problems quickly and

giving the correct solution without being affected by the surrounding environment.

One of the first created computing units was the calculator. It only executed small

mathematical operations but it already computed the solution of a mathematical prob-

lem a lot faster than a regular human being and it gave perfectly reliable solutions. As

the problems get bigger, scientists developed faster computing units to solve them.

The first computing unit was a mechanical calculator built by Wilhelm Schickard in

1623. It was called the ”Calculating Clock” because it used techniques such as cogs

and gears that were at first developed for clocks. In the late 1940s, the first electronic

computer was produced and it used vacuum tubes in the logic circuits whichwere later

replaced by transistors in the 1950s. By the year 1958, the integrate circuit was discov-
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ered by Jack Kilby. It allowed the integration of large numbers of tiny transistors on a

small chip which reduced the cost and increased the performance of computers. This

invention revolutionized the world of electronics. In accordance to Moore’s law, the

number of transistors placed on an integrated circuit has increased exponentially and

in 2006 it was possible to fit about 1 million transistors permm2. In parallel to this huge

evolution in the hardware capacities of computers, the resolution methods executed on

these machines had to evolve in order to fully benefit from the increasing power of the

computing units.

The aim of this chapter is to present an exhaustive state of the art on distributed

numerical computing. In the second section, we present the various classes of numer-

ical methods that are used to solve numerical problems. If the numerical problems are

too large and cannot be solved on one computing unit, they must be parallelized and

executed on parallel architectures. The various types of parallel architectures are de-

scribed in section 3 where their advantages and drawbacks are also detailed. In section

4, we present many environments that allow users to easily execute parallel methods

over the parallel architectures. These environments are classified according to which

type of parallel architectures they are adapted. The fifth section presents the different

mechanisms used to make the previously described environments fault tolerant which

is very essential for architectures composed of volatile computing units. Finally, we

end this chapter with a discussion about which type of parallel architecture suits well

our research objectives.

1.2 Numerical methods

It has been said that almost all problems can be represented by some mathematical

equations with relations between the different components that form the system. Many

of these mathematical representations can be transformed into numerical problems

and solved by numerical resolution methods. Numerical methods can be used to solve

for example: systems of equations, eigenvalue problems, singular problems, differen-

tial equations... These methods can be divided into two classes: direct and iterative

methods.

• Direct methods give the exact solution of a problem after executing a finite num-

ber of operations. We can cite for instance: the LU or the Cholesky method. Algo-

rithm 1.1 presents the general steps for solving a linear system Ax = b (where A

is a n by nmatrix and b and x are two vectors of dimension n) using the Cholesky

direct method. It is composed of a finite number of operations and it returns the

exact solution for the problem.

• Iterative methods compute many times the same block of operations until ob-

taining a good approximation of the solution. We then say that the method has
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Algorithm 1.1 The Cholesky direct method

Require: Matrix An,n and vector b

{Solve the linear system Ax = b using the Cholesky direct method}
if A is symmetric and positive definite then

for k=1 step 1 until k=n-1 do {Compute the Cholesky decomposition A = LLT where L is

a lower triangular matrix}
lkk ←

√
akk

for s=k+1 step 1 until s=n do

lsk ← ask/lkk
end for

for j=k+1 step 1 until j=n do

for i=j step 1 until i=n do

aij ← aij − likljk
end for

end for

end for

lnn ←
√
ann

y← LTx

Compute vector y by solving the system Ly = b using forward and back substitutions

Compute vector x by solving the system LTx = y using forward and back substitutions

end if

{Give the exact solution vector x after a finite number of operations}

converged to the solution of the problem. As an example, we can cite the Jacobi

or the Conjugate Gradient method. Algorithm 1.2 presents the general steps for

solving a linear system Ax = b using the Jacobi iterative method. It executes

until convergence the same bloc of instructions using the vector solution (xk−1)
computed at the previous iteration. At each iteration, it detects if the computed

vector (xk) has converged to the solution of the problem. At convergence the

iterative process is terminated.

Algorithm 1.2 The Jacobi iterative method

Require: Matrix A, vector b, initial guess vector x0 and the threshold ǫ

{Solve the linear system Ax = b using the Jacobi iterative method}
for k = 1 step 1 until convergence do

for i = 1 step 1 until i = n do {Compute vector xk}
x

(k)
i ← 1

aii
(bi −∑j 6=i aijx

(k−1)
j )

end for

Detect convergence

end for

{Give an approximation to the solution vector x after convergence}
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To detect the local convergence of an iterative process, the residual R is computed

at the end of each iteration. If the value of the residual is less than the required

threshold (ǫ) then the iterative process has converged to the solution of the prob-

lem and the demanded precision has beenmet. There are many ways to compute

the residual value. It depends directly on the distance measuring method used

and on the components involved in this computation. A common scheme is to

measure the distance between the solution vectors of two successive iterations

using the Euclidean metric. In this approach, the residual value is computed as

follows: R =
√

Σn
i=1|xk+1

i − xki |2 where xki denotes the value of the component i

of the solution vector x at iteration k. The system converges when R is smaller

than the requested threshold ǫ. To increase the precision of the results given by

an iterative method, the developer must choose a smaller threshold.

Some problems can only be solved by iterative methods and when the problems

are large, iterative methods are generally preferred over direct ones, especially if

they give good approximations after small numbers of iterations.

Both classes of numerical methods presented in this section are called sequential

methods because they are executed by a single computing unit. All the instructions

are executed sequentially by the processor, the one after the other. These methods

are easy to implement but they can benefit from the capacities of just one computing

unit. Large problems cannot be solved by these methods on a single computing unit

due to its limited computing power and memory. Therefore, many computing units

must be used in parallel in order to solve large problems. Amethod that solves a given

problem onmany computing units is called a parallel method and the computing units,

being used, form a parallel architecture. The different existing parallel architectures are

presented in the next section.

1.3 Parallel architectures

Although desktop computers have become very powerful, many large complex nu-

merical problems cannot be solved using only one computing unit, especially if those

have resulted from the simulation of big natural phenomena like climate change. To

solve these huge problems, a larger sources of computing power must be used. This

could be ensured by a supercomputer or some sort of distributed architecture that

combines the power of many small computing units.

• Supercomputers are known to have huge processing capacities. The first super-

computers were simply very fast scalar processors which reached about ten times

the speed of the fastest machines available at that time. In the 1970s, supercom-

puters were transformed into vector processors and in the 1980s a supercomputer
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could be composed by four to sixteen vector processors working in parallel. In

the beginnings of the 21st century, attention turned from vector processors to

massive parallel processing systems with thousands of server-class microproces-

sors, such as the PowerPC, Opteron, or Xeon, all forming a single computing

unit. The currently fastest supercomputer is the IBM Roadrunner [62], located at

the Los Alamos national laboratory. It is composed of 6912 Opteron processors

and 12960 PowerXCell processors. It is designed for a peak performance of 1.7

petaflops and it cost around 133 millions of US dollars. Supercomputers are very

expensive and unaffordable by small research centers. This inconvenient pushed

scientists into the development of new parallel architectures that use available

low cost computing units.

• Local clusters are composed of regular computers that are located in a relatively

small area. The computing units are usually homogeneous: they have similar

specifications and similar configurations. All the nodes are interconnected via a

local network with low latency and large bandwidth. Local clusters have lim-

ited computing power due to the limited number of regular computers that form

them.

• Distributed clusters are composed of many interconnected local clusters that

are geographically distant. These clusters are usually heterogeneous: two nodes

from distinct clusters may have different specifications and different config-

urations. This distributed architecture is presented in Figure 1.1 where three

heterogeneous clusters are interconnected via a wide area network to form a

distributed clusters architecture. Although this architecture has huge computing

resources, it suffers from high latency communications between two computing

nodes from two distant clusters. Furthermore, when executing a lengthy appli-

cation on many computing nodes, some volatility problems might occurred. So

the platform executing parallel applications on such architectures must be fault

tolerant.

Grid’5000 [44] is a good example of this type of distributed architectures. This

french national grid is dedicated for research experiments in large-scale parallel

and distributed systems. It is currently composed of about 6320 heterogeneous

cores (Nowadays, most of the processors are multicores. They combine two or

more independent cores into a single package composed of a single integrated

circuit, called a die. For example, a dual-core processor contains two cores, and

a quad-core processor contains four cores) that are located in 9 sites in France:

Bordeaux, Toulouse, Grenoble, Sophia Antipolis, Lyon, Lille, Rennes, Nancy and

Orsay. The location of these sites in France is illustrated in Figure 1.2. Most of

those sites have a Gigabit Ethernet Network for local machines. Links between

the different sites range from 2.5 Gbps up to 10Gbps. Many softwares have been
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developed in order to control and use the nodes forming this distributed architec-

ture, for example OAR [59] which is a resource manager (or batch scheduler) for

large distributed architectures. It allows users to submit or reserve nodes either

in an interactive or a batch mode.

Primergy

Primergy

Primergy

Primergy

Primergy

Primergy

WAN

Site 1

Site 2

Site 3

Switch

Switch

Switch

Figure 1.1: Distributed clusters architecture

Figure 1.2: The location of Grid5000’s sites in France
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• Global/volunteer computing architectures are mainly composed of public un-

used computing units connected to the Internet. Figure 1.3 illustrates the hetero-

geneous components forming this architecture and their interconnection through

the Internet. Nowadays, a small part of the computing power of the computing

units is used. They spend a lot of idle times waiting for new instructions to exe-

cute. During these periods of inactivity, a lot of operations can be computed. If

individuals donate the computing power of their computing units when they are

inactive, it is possible to execute large distributed applications using unlimited

free computing units from all around the world. This concept is called “cycle

stealing”. Although it seems the perfect solution for the lack of computing re-

sources, many problems have to be considered when using this architecture. The

computing units in this architecture are very heterogeneous: a computing unit

could be a PDA with a small processor (around 400Mhz) and limited memory or

it could be a server workstation equipped with many powerful multicores pro-

cessors and a huge memory. Since, they are public computing units, they can

disconnect from this architecture at any moment, in particular when executing a

task. For this reason, the global/volunteer computing architecture is considered

as a highly volatile environment and some sort of fault tolerance policy must

be adopted when it is used. Moreover, since the nodes forming this architec-

ture communicate through the Internet, problems of security and reliability are

raised. Finally, this distributed architecture suffers from the high latency of the

communications via the Internet.

Internet

Laptop
computerSmartphone

Server

Desktop computer

Figure 1.3: The global computing architecture

As described above, all the parallel architectures are composed of many comput-

ing units that are all connected together by some type of network. The complexity

of the hardware forming these parallel architectures must be hidden from the users

who would like to smoothly use the large number of resources as if they were execut-

ing an application over one computing unit. Therefore, many middlewares have been

developed in order to fulfill this objective. They all present high-level APIs (Applica-
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tion Programming Interface) that allow users to program and execute parallel appli-

cations over the distributed architectures without any direct intervention on the used

resources. In the next section, we present some of these environments.

1.4 Environments

Many environments have been developed in order to use the computing power of the

distributed architectures that were presented in the previous section. The conception of

these environments are directly dependent on the architecture they run on. Therefore,

in this section the environments are classified into three categories and according to

the kind of distributed architecture they are designed for.

1.4.1 Middlewares for supercomputers and local clusters

Since supercomputers and local clusters are usually composed of homogeneous com-

puting units interconnected via a fast network, the same middlewares can be used for

manipulating both architectures. Many middlewares have been developed to control

and run applications over these architectures. Here are the most common interfaces:

• PVM [40] for Parallel Virtual Machine, is a software package that allows het-

erogeneous computers interconnected via a network to be used as a single large

parallel computing unit. Thus, it can solve large computational problems more

cost effectively by using the aggregate computing power and memory of many

computers. The PVM system is composed of two parts: the first part is a daemon

that is executed on all the computers participating in the system. These daemons

make up the virtual machine. The second part of the system is a library of

PVM interface routines. It contains primitives that are needed for cooperation

between the tasks of an application. This library contains user-callable routines

for message passing, spawning processes, coordinating tasks, and modifying the

virtual machine. An application is decomposed into tasks which are executed

on the daemons. If the tasks are interdependent, they can synchronize with

each others or exchange data. The communications are based on the UDP and

TCP protocols which are known for their portability. The PVM system currently

supports C, C++ and Fortran languages for programming parallel applications.

PVM is a simple environment but it lacks a fault tolerance policy which makes

it vulnerable for crashes. Moreover, it does not support asynchronous non-

blocking sending which is required in some parallel models to reduce synchro-

nizations in high latency architectures.

• MPI [58] for Message Passing Interface, is a specification for an application pro-

gramming interface (API) used to program parallel computers and based on
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the message passing concept. The MPI library functions include, but are not

limited to, send/receive operations, combining partial results of computations

(gathering and reduction operations), synchronizing nodes (barrier operation) as

well as obtaining network-related information such as the number of processes

in the computing session. This specification has been implemented in many

programming languages like C, Fortran and Java (for example, LAM/MPI [21],

MPICH [46] and MPJ Express [18]). Nowadays, it is used to execute parallel ap-

plications over local and distributed clusters (if the same implementation of MPI

exists on all the computing units). This specification does not include a fault toler-

ance policy. If a node crashes while executing a parallel application with MPI, the

whole application is terminated. For this reason, researchers at the LRI laboratory

(Paris XI) has developed MPICH-V [20] which is a fault tolerant implementation

of MPI based on MPICH.

• OpenMP [30] for Open Multi-Processing, is an API for executing C, C++ or

Fortran parallel applications on distributed architectures. It consists of a set of

compiler directives, library routines, and environment variables that influence

run-time behavior. OpenMP is an implementation of the multithreading concept,

a method of parallelization whereby the master thread forks a specified number

of slave threads. The application is then divided among the slave threads. Every

thread is allocated to a computing unit and they execute their tasks in parallel.

The section of code that is meant to run in parallel is marked accordingly, with

a preprocessor directive that will trigger the creation of the slave threads before

the section is executed. Every slave thread executes the parallelized section of

code independently. Once they finish their tasks, the slave threads join back into

the master thread which continues the application. The runtime environment

allocates slave threads to processors depending on usage, machine load and

other factors. The number of threads to execute parallelized code parts can be

assigned by the runtime environment based on environment variables or in the

application’s code using dedicated functions.

This API facilitates parallelizing a serial application. It only requires the addition

of preprocessor directives before the part of codes that need to be parallelized.

However, it does not provide communications’ primitives and thus it executes

applications with dependent tasks only on parallel architectures with shared

memory. For architectures with distributed memories, only independent code

parts can be parallelized. On the other hand a new version of OpenMP, called

cluster OpenMP, have been developed. It enables users to execute OpenMP’s

applications with dependencies between nodes in the parallelized sections over

local cluster architecture. It simulates a shared memory between the different

computing nodes in order to facilitate the development of parallel applications

by the user. In practice, this API uses a message passing model but it is com-
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pletely transparent to the user. For more information concerning this API, the

reader can refer to [57]. Finally, both APIs do not offer any fault tolerance policy

to resist to failures. Therefore, they are not adapted for volatile environments.

1.4.2 Middlewares for distributed clusters

Since distributed clusters are composed of heterogeneous distant clusters, the middle-

wares developed for running parallel applications on them must be capable to adjust

to the heterogeneity of the computing units and to the high latency communications.

Moreover, some fault tolerance policies must be implemented in these environments to

resist to the volatility of computing units. Here are some examples of these platforms:

• Globus [37]: it is an open source Toolkit for grids. It allows people to securely

share computing power, databases and other tools online. This project was de-

veloped in collaboration between the university of Chicago and the Informa-

tion Sciences institute of South California and funded by DARPA. Its first ver-

sion was created in 1997 and now the fourth version is available. The Globus

toolkit includes software services and libraries for resource monitoring, discov-

ery, andmanagement, plus security, fault detection, communication and fileman-

agement. It is packaged as a set of components that can be used either indepen-

dently or together to develop parallel applications. Since resources such as data

archives, computers, and networks are usually heterogeneous and thus incom-

patible, Globus allows transparent access to these resources which are referred

to as virtual organizations, and removes obstacles that prevent seamless collab-

oration between them. The last version of Globus offers new tools and libraries

for developing client-server applications according to the WSRF (Web Services

Resource Framework) conventions. Due to its general functionalities and the

various services it offers, this multipurpose toolkit is complicated to be used for

specific computing tasks.

• Legion [27]: Legion is an object-based, meta-systems software project at the Uni-

versity of Virginia. It can manage huge amounts of distributed resources which

are represented as a single worldwide virtual computer in order to hide the com-

plexity of hardware and software systems to users. They can access from a single

machine to all kinds of data and physical resources, such as digital libraries, phys-

ical simulations, cameras, linear accelerators, and video streams. Groups of users

can construct shared virtual work spaces, to collaborate research and exchange

information. This abstraction springs from Legion’s transparent scheduling, data

management, fault tolerance, site autonomy, and a wide range of security op-

tions.

All the hardware and software resources in Legion are represented by Legion

objects, which are active processes that respond to member function invocations
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from other objects in the system. Every Legion object is defined and managed

by its class object: class objects create new instances, schedule them for execu-

tion, activate and deactivate them, and provide information about their current

location to client objects that wish to communicate with them. Legion contains

default implementations of several useful types of classes but users can define

and build their own class objects, especially if they do not meet the users’ perfor-

mance, security, or functionality requirements. Moreover, since Legion supports

interoperability between objects written in multiple languages, users can run ap-

plications written in multiple languages. Finally, Legion is an open system that

encourages third party development of new or updated applications, run-time

library implementations, and core components. There is also a commercial prod-

uct based on Legion, called AVAKI [45]. Since Legion is not dedicated to high

performance computing, it implements only general multi-purpose functional-

ities and it concentrates on hiding the complexity of software and hardware to

users, it is not very efficient in solving large numerical problems.

• ProActive [9]: ProActive is an Open Source Java library for parallel, distributed,

and multi-threaded computing. With a reduced set of simple primitives, ProAc-

tive provides a comprehensive toolkit that simplifies the programming of parallel

applications that are executed over distributed architectures like clusters, Inter-

net grids and peer-to-peer intranets. It also provides a graphical environment

for remote monitoring and steering of distributed and grid applications. This

environment allows visualizing graphically the hosts, Java virtual machines, and

active objects, including the topology and the volume of communications. ProAc-

tive includes many more services that makes parallel programming an easy task:

timers chart views, high-level frameworks and C/MPI code integration. Fur-

thermore, a lot of features like fault tolerance and load balancing can be added to

the applications. Therefore, ProActive is extensible, making the toolkit open for

adaptations and optimizations.

Although this environment provides direct communications between nodes us-

ing the RMI technology (Remote Method Invocation), when two nodes commu-

nicate, they must be synchronized (even if the concept of future objects exists). In

consequence, the asynchronous iteration model (see next chapter) cannot be used

on this platform. Furthermore, to resist to nodes failures, ProActive uses a global

checkpointing mechanism, that requires synchronizing all the nodes, or message

logging. The two methods are centralized and are not well suited for large scale

volatile environments.

• Padico [31]: Padico is a software environment, designed for high performance

parallel and distributed computing. It targets applications based on the concept

of parallel CORBA [1] objects. The main feature of this environment is that it pro-

vides the user with fast CORBA, MPI and Java RMI implementations (available
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at the same time) over high performance networks such as Myrinet, Infiniband

or Quadrics QsNet. PadicoTM, for Padico’s Task Manager, offers a framework

that allows different communication middlewares to efficiently cohabit within

the same process. This framework has a modular design and is composed of

core modules like thread management and network multiplexing, and service

modules like middlewares and runtimes. The main benefit of this platform is

that it eliminates conflict between different middlewares using the same high

speed network. Although this platform adds a new layer between the parallel

distributed applications and the network resources, experiments show that the

additional overhead is insignificant. On the other hand, this platform is not fault

tolerant and thus it is not well adapted for volatile environments. Moreover, in

our work we did not study the use of two middlewares at the same time. But it

would be very interesting to be able to couple two codes that use two different

middlewares without having to modify them.

1.4.3 Middlewares for global/volunteer computing

The global/volunteer computing architecture is composed of public computing units

distributed all around the world. It uses the cycle stealing concept to benefit from

public machines that are connected to Internet and that do not use all their computing

powers at the time being. Any middleware developed for such architecture have to

mainly tackle the following issues: the high volatility and heterogeneity of the com-

puting units and the high latency of communications. Here are some examples of

existing platforms for this type of architectures:

• Seti@home [7]: it stands for “Search for Extra Terrestrial Intelligence”. It is an

american project that aims at discovering if there is some life forms in outer-

space. It analyzes radio telescope data using Internet-connected computers. It

has a client/server architecture: the server divides the signal captured by the ra-

dio telescope into small portions then sends them to the clients via Internet. The

clients analyze these small portions and return the result to the server. Each por-

tion is analyzed by many clients in order to verify the authenticity of the results

and overcome a client failure. The server compares the results and detects if two

clients have computed different results for the same task. In this case, it suspects

that the results have been modified by a malicious client. Therefore, it executes

the same task over some new clients. The amazing success this platform have

achieved, helped the creation of similar platforms like Folding@home [54] (sim-

ulating the folding of proteins to discover their functionalities and the effect of

misfoldings on the human body) and Genome@home [54] (designing new genes

to generate new protein sequences that do not exist naturally in order to under-

stand how natural genomes have evolved and how natural genes and proteins

work). Condor [56] and Boinc [6] (Berkeley Open Infrastructure for Network
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Computing) can be seen as a generalization of Seti@home. They are indepen-

dent of the problems they are solving. They also offer some fault tolerance poli-

cies and can now compute tasks faster by using the clients’ GPUs in addition to

CPUs. However, in all these platforms, the clients cannot communicate with each

other. So these platforms cannot execute a parallel computing application with

dependencies between tasks.

• XtremWeb [35]: it is a french project developed at the LRI laboratory. XtremWeb

provides general services for global computing. Resources participating in this

environment can have two modes:

– In user mode, a complete environment is dedicated to designing and pro-

gramming parallel applications. Then, the final application can be submit-

ted to the system for execution.

– In volunteer mode, the computing resource is used by the system for exe-

cuting submitted applications when it is not used by its owner.

XtremWeb is composed of three entities: clients, workers and coordinators. Most

of the time they interact as follows: the client submits its job to the coordinator

and the coordinator send the resulting tasks to the workers who execute them.

Clients and workers never communicate directly. All the communications pass

by the coordinator. Therefore, the coordinator has a very important role in the

architecture of XtremWeb and it has many duties:

– It handles the clients’ requests and distributes the tasks to free workers.

– It monitors the execution of tasks over workers.

– It detects the eventual crashes of workers and restarts the corresponding

tasks on other free workers.

– It retrieves and saves the tasks’ results when workers finish them. Then it

forward them to the client.

The coordinator can be duplicated on many resources and the duties previously

described can be equally distributed on the coordinators in order to reduce the

load of the coordinator and the bottlenecks.

All the communications use the RPC (Remote Procedure Call) concept. In par-

ticular, they use the RMI Java and the XML-RPC implementations. Moreover,

the communications in XtremWeb can bypass security measures and firewalls,

in particular when transferring the application’s code to a new computing unit.

However, the workers are not able to communicate with each others and thus

computing applications with dependencies between tasks is impossible.
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• XtremWeb-CH [4] It is an improved version of the XtremWeb environment. This

new version is more adapted to peer-to-peer architectures. It can execute parallel

and distributed applications with dependencies between tasks. Indeed the par-

allel application is decomposed into modules that can communicate with each

others by exchanging files: for example a module may require the output of an-

other module before beginning the execution of its task. Therefore, the mod-

ules can communicate indirectly in the XWCH-sMs platform (sMs: slave-master-

slave) where the output of one module is sent to the master and then the master

transfers it to the module waiting for that output. Or directly in the XWCH-p2p

platform where the module signals to the master that it has finished its task, then

the signal is passed to the worker waiting for the output of that task and finally it

requests the output file from the first worker. The data flow graph of the parallel

distributed application is represented in an XML file which should be created by

the client before launching its application. This file explicitly describes the input

and output file of each module, and their interdependence. This platform is not

well suited for parallel iterative algorithms because interdependent tasks cannot

be executed in parallel as it is required in such algorithms. To overcome this

problem the developer must create a module for each iteration in each task and

a module for computing the global residual value (convergence-detection) at the

end of each iteration. After executing an iteration for all the tasks by the comput-

ing modules, the convergence-detection module must compute the global resid-

ual value using the output of all the computingmodules. If the the global residual

value is higher than the requested precision, the convergence-detection module

must dynamically generate new modules that will execute the next iteration for

all the tasks using the output of the previous ones. This implementation model

is not trivial. Moreover, since there is no recovery mechanism implemented in

XWCH, it is not well adapted for highly volatile environment. A dead task must

be computed all over again at each crash.

• JXTA [43]: it is an open-source project introduced by Sun Microsystems Inc. It

is composed of a set of peer-to-peer protocols which are defined as a set of XML

messages that allow any device (cell phone to PDA, PC to server) connected to a

network to exchange messages and to collaborate independently of the underly-

ing network topology. JXTA peers create a virtual network where any peer can

directly interact with other peers and resources.

JXTA is composed of the following primary components:

– Peers are any networked device that implements one or more of the JXTA

protocol.

– Peer group is a collection of peers that have agreed upon a common set of

services.
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– Network services are offered by peers and group of peers.

– Modules are an abstraction used to represent any piece of code used to im-

plement a behavior in the JXTA world.

– Pipes are used by peers to exchange messages. Pipes are an asynchronous

and unidirectional non reliable message transfer mechanism.

– Advertisements can represent any resource. They are XML documents that

describe and publish the existence of peer resources.

These components use the following basic protocols to interact:

– Peer Discovery Protocol (PDP) is used by peers to advertise their own re-

sources and discover resources from other peers.

– Peer Information Protocol (PIP) provides a set of messages to obtain peer

status information (uptime, state, etc.).

– Peer Resolver Protocol (PRP) enables peers to send generic query requests

to other peers . PDP and PIP listed above are built using the PRP.

– Pipe Binding Protocol is used by peers to establish communication channel

or pipe between one or more peers.

– Endpoint Routing Protocol defines a set of request/query messages that are

used to find routing information.

– Rendezvous Protocol is a mechanism by which peers can subscribe or be a

subscriber to a propagation service. It is used by the PRP and PBP in order

to propagate messages.

Using these protocols developers are able to create any kind of peer-to-peer ap-

plication based on the Java technology (e.g. file sharing, messenger, distributed

computing...). JXTA has a strong supportive community and a lot of interesting

peer-to-peer protocols have been implemented using this technology. However,

JXTA is a low level platform, so much of the task management and the support

for different computing models is left to the developer of the application to im-

plement. As a consequence, JXTA is rather too complicated to be used and offers

a lot of general functionalities that are not well adapted for executing complex

computing applications.

• P2P-MPI [42] for Peer-to-Peer Message Passing Interface, is a middleware frame-

work that runs parallel applications over peer-to-peer architectures. P2P-MPI is

developed in Java and thus it can be used across all platforms. This message

passing library is similar to MPJ-Express. However, it is fault tolerant: it imple-

ments a transparent process replication mechanism that allows nodes to resist to

an eventual crash. Each group of replicas is composed of one master and many
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slaves. When a master crashes, its slaves detect this failure and elect a new mas-

ter from the slaves to replace the dead one. The “Binary Round Robbin Gossip”

style is used for detecting failures and the computing units communicate through

Java’s TCP sockets. P2P-MPI consists of four processes:

– The File Transfer Service (FT) is in charge of transferring the executable code

and inputs from the submitter (the node requesting the execution of the par-

allel program) to the computing nodes when they need it.

– The Message Passing Daemon (MPD) is executed on each computing unit

participating in the P2P-MPI environment. It allows peers to communicate

with each others.

– The Fault Detection Service (FD) monitors the resources executing an appli-

cation and detects failures.

– The Reservation Service (RS) reserves the required resources to compute a

given parallel application.

Since when receiving a data message from a neighbor, the master have to broad-

cast it onto its slaves, we fear that the network will be overloadedwith redundant

messages, especially if the nodes are communicating via a high latency network.

Moreover, since the number of replica are defined when launching the applica-

tion and a dead replica cannot be replaced, we feel that this restriction in number

of crashes makes P2P-MPI not well adapted for highly volatile environments.

Even if some of these middlewares are not meant to be used over parallel archi-

tectures with volatile nodes, they must all have some type of fault tolerance policy.

Indeed, it is very probable that some type of crash occurs while executing a lengthy

parallel application over many computing nodes. In this case, the middleware, super-

vising the execution of this parallel application, must be able to overcome this failure

and to continue the execution of the application. In the next section, we present the

most common fault tolerance policies while discussing their advantages and draw-

backs.

1.5 Fault Tolerance

Many distributed architectures are composed of volatile computing units. To be able

to execute large and lengthy applications over these architectures, a fault tolerance

policy must be implemented in those parallel applications. These policies are usually

composed of a fault detection mechanism and a restoring mechanism.
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1.5.1 Fault detection mechanisms

Fault detection is an essential mechanism for fault tolerance. Its aim is to detect if a

computing unit participating in the execution of the application has crashed. An ef-

ficient fault detection mechanism must quickly discover the dead nodes, in order to

trigger as fast as possible the restoring mechanism and to reduce the effect of this crash

on the performance of the application. Moreover, it must not overload the network

interconnecting the computing nodes with status messages. Finally, it must not signif-

icantly reduce or affect the performance of the computing process.

This mechanism have been implemented in many ways. Here are some examples:

• Standard fault detection mechanism: it uses the Push or the Pull model [36]. In

the Push model, each computing unit that is executing the parallel application,

have to regularly send heartbeat messages to a dedicated server. This servermon-

itors the state of the computing nodes. If it does not receive a heartbeat message

from a computing unit for a defined period of time, it suspects that this comput-

ing node is dead and triggers the restoring mechanism. If the architecture used

suffers from high latency in communications between nodes, the heartbeat mes-

sages will be delayed which increases the probability of detecting a false crash by

the server. On the other hand, in the Pull model, the server regularly sends live-

ness requests to the computing nodes. The computing nodes answer back and

confirm that they are alive. If a computing node does not answer to the server’s

request after a predefined time period, the latter considers it as dead and triggers

the restoring mechanism. The Pull model requires double the number of mes-

sages used by the Push model because each heartbeat message must be answered

back but it is more precise than the Push model in detecting crashes. Therefore

a third model, resulting from the combination of the two previous models, have

been created. It is called the Dual model and has the advantages of both previous

models. The Dual model consists of two phases: in the first one, the Push model

is applied. When the server suspects that a computing node is dead because it

has not been sending heartbeat messages for a while, it triggers the second phase

where the pull model is used. Indeed, the server sends a liveness requests to the

suspected computing node. If it does not respond, the server considers it as dead

and triggers the restoring mechanism. On the other hand, if it responds to the re-

quest then the Push model is applied again. Figure 1.4 illustrates the Dual model

where a computing node sends every T1 time period a heartbeat message to the

server. If after 2 ∗ T1 time period the server does not receive a heartbeat message,

it sends a liveness request to the suspected dead node. If after 2 ∗ T1 time period

it does not receive an answer, it activates the restoring mechanism.

This centralized mechanism is not scalable because the server could be over-

loaded with heartbeat messages sent from numerous computing nodes. More-

over, this mechanism creates a new critical point which is the server itself. In-
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Figure 1.4: The Dual fault detection model

deed, if the server crashes the whole fault tolerance policy becomes invalid. Fur-

thermore, if many nodes are participating in executing a parallel application, the

server has to monitor the state of all these computing units. Thus a large amount

of time is required to test the state of all the nodes which increases the detection

time of a dead node and reduces the performances of this mechanism. Therefore,

this basic mechanism is not well suited for large scale applications. To tackle

the drawbacks of this mechanism, some variants have been proposed where the

server is duplicated many times and each replica monitors a subgroup of the

computing units and the rest of the replicas. Figure 1.5 illustrates the centralized

heartbeating model with multiple servers. The servers are represented by rectan-

gles and the computing nodes by circles. The computing nodes are divided into

two groups. Each one is monitored by a server. For this reason, each server re-

ceives heartbeat messages (represented by arrows) from its group of nodes. Fur-

thermore, we can notice that the servers also exchange heartbeat messages. This

allows the servers to detect if one of them has crashed. In this case a restoring

mechanism for servers must be implemented to handle the crash of servers.

ServerServer nodes
Computing 

Heartbeat
messages

Figure 1.5: The centralized heartbeating model with multiple servers

• Gossip protocol [61]: using this protocol, each node maintains a table that con-

tains for each known member its address and an integer which is the heartbeat

counter. Every Tgossip, each computing node increments its heartbeat counter and

sends its table to a randomly selected node. Upon receiving such gossip message,

a node merges the table in the message with its own and adopts the maximum

heartbeat counter for each member. If a node A detects that since Tcleanup the
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heartbeat counter of node B has not increased, then node A suspects that B is

dead. Afterward a consensus phase is required to be sure that B is dead. This

protocol is completely decentralized and so it is fully scalable and well suited

for large scale volatile architecture. In practice, random gossip evens the com-

munication load amongst the network links but has the disadvantage of being

non-deterministic. It is possible that a node receives no gossip message for a pe-

riod long enough to cause a false failure detection. To minimize this risk, the

system’s developer can increase Tcleanup at the cost of a longer detection time. In

order to make gossip messages traffic more uniform, at every round, each node

sends its table to a neighbor while using the “Round Robin” strategy. The rank

of the destination is computed as follows:

d = (r + s) mod n, 0 ≤ s < n, 1 ≤ r < n

where r is the current round, s the source’s rank and n the number of nodes in

the architecture. This protocol guarantees that all nodes will receive the updated

heartbeat for every node within a bounded period of time. Thus, it is possible

to deduce the minimum Tcleanup required to reduce the probability of false fail-

ure detections. Another variant of this protocol uses the Binary Round-Robin

strategy. It aims to minimize the bandwidth used for gossiping by eliminating

redundant gossip messages. This elimination alleviates the network’s load and

accelerates the propagation of updates for nodes’ heartbeat counters at the cost

of increasing the risk of false failure detections. For more information on this or

other variants of this protocol (like the double Binary Round-Robin gossip pro-

tocol) the reader can refer to [41].

1.5.2 Restoring mechanisms

Once a failure is detected, it is capital to trigger some sort of reaction to overcome this

crash. These reactions are known as the restoring mechanism. However, to be able

to resist to a failure, the system cannot jut react after the occurrence of a crash. It has

to be well prepared for this problem. Thus it has to regularly execute some sort of

scheme that makes the system fault tolerant. The actions undertaken after a crash are

directly dependent of these schemes. Therefore, we consider that these schemes form

an essential part of the restoring mechanism. In the listing below we present the most

common restoring mechanisms and we show their advantages and drawbacks.

• Checkpointing [60]: this is the most common scheme. It regularly saves for each

node the essential data required to continue the application after a crash. This

procedure is executed on precise checkpoints which are usually specified by the

application’s developer. Nowadays a good fault tolerant platform automatically
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detects the checkpoints without any intervention from the user, we say it pro-

vides transparent fault tolerance services. Checkpointing can be divided into

two groups:

1. Coordinated checkpointing [26]: when using this method, at each check-

point, all the computing nodes in the system must be synchronized with

a barrier call and a snapshot of all the system is taken and saved. If a node

crashes, all the other nodes, participating in the execution of the application,

are blocked until the dead node is replaced. Once the replacement node re-

trieves the last backup to continue the task, all the nodes must also rollback

to the last checkpoint and continue their tasks from that checkpoint.

2. Uncoordinated checkpointing: using this method, after a checkpoint, each

node saves its data without any synchronization with the others. This allows

the nodes to have backups at various times. When a node crashes and is

replaced by a new one, the rest of the nodes, participating in the execution of

the application, do not have to rollback to the last checkpoint and continue

their tasks from that checkpoint.

Most of the fault tolerant platforms that use the checkpointing concept save their

backups on a server. This requires to have at least one reliable station. This

centralization may cause a bottleneck and limit the scalability of the system. To

reduce the effect of this problem, stations with high computing capacities and

large bandwidth are used as backup servers. This method is not well adapted

to distributed clusters and peer-to-peer environments where all the nodes are

volatile and have very limited capacities. In such environments, it is preferred

to use the distributed redundant checkpointing method where the backups are

saved on the computing nodes: each node saves its backups on its neighbors,

so the number of backups per node is equal to the number of backup neighbors

(which is specified by the user). This method does not make the platform fully

tolerant to all types of crashes. Indeed, if a node and all its saving neighbors die at

the same time, the backups for this node are lost and the platform cannot replace

the dead node which will terminate the application. To make the platform more

resistant to crashes, the user can increase the number of backup nodes, but this

could reduce the performances of the platform. On the other hand, this scheme

is very scalable because it is completely decentralized.

Finally, the backups saved either on a server or on computing nodes can be stored

in the memory or in files (XML files, binaries ...) on hard disks. If the size of the

backups is too big, it is preferable to store them in files to prevent overloading

the memory. However, this method slows down the platform because it has to

access the hard disk every time a node demands a backup from its neighbors.

• Process Replication [34]: using this scheme, each computing process is executed
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on many nodes. A master is chosen to represent each computing process and the

others are considered as slaves. All the replications of a computing process exe-

cute the same process at the same time, but only the master communicates with

the other masters. After receiving a message, it broadcasts it to its slaves which

enables them to continue their tasks. If a master crashes, it is replaced by a slave

that continue the task and becomes the new master for this computing process.

The dead node cannot be replaced by a new one because there is no backup to

retrieve. So after many crashes a computing process may be terminated if all its

replications are dead. To increase the robustness of this scheme the number of

replicas per computing process must be increased. On the other hand, this re-

duces the performance of the masters because they have to broadcast to a larger

number of slaves each message received. Moreover, this scheme is not very prac-

tical because if an application requires m computing processes, the platform has

to reserve n ∗m computing units (where n is the number of replicas per comput-

ing process). This method has been implemented in the P2P-MPI platform.

• Message logging [5]: using this scheme, each node saves the data that it receives

into a log. When a node crashes, it is replaced by a new one which retrieves the

log and executes from the beginning all the operations using the data saved in

the log. This method saves the logs on a reliable server and requires to restart

the computing process of the dead node from the beginning. If the application

is large, the log may become full. For this reason, most of the time, message

logging is used in conjunction with the uncoordinated checkpointing method:

each node saves in a local log the messages it sent to its neighbors. When the

log becomes too big, the node’s data are saved on a reliable server. If a node

crashes, the replacement node has to retrieve the backup from the backup server

and the logs from its neighbors, then it executes all the operations that happened

after the backup using the data stored on the logs. If a neighbor’s log does not

contain the required data, the neighbor must retrieve its backup and rollback [33]

to that state then it has to execute again all the operations executed after the

backup. So, one crash may cause a domino effect and oblige many nodes to

retrieve their old backups and rollback to that state. This method guarantees

that the system will tolerate all the crashes that affect the computing nodes but it

takes a lot of time to replace a dead node. This method is not adapted to volatile

environments because it requires a reliable backup server which is impossible to

guarantee in such environments. Since, it saves its backups or logs on a single

server, this centralization limits the scalability of this scheme. This scheme has

been implemented in the MPICH-V2 platform.
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1.6 Conclusion

In this chapter we have presented in general the purpose of simulating numerically

natural problems which can be solved by direct or iterative methods. However,

large and complex problems cannot be solved by a sequential numerical method

executed on a single computing unit. Supercomputers or distributed architectures are

required to solve these large problems. Due to the expensive price of supercomputers,

many researchers are using distributed architectures which can be classified into

three categories: local clusters, distributed clusters and global/volunteer computing

architectures. Many middlewares have been developed in order to allow users to

easily execute parallel applications over distributed architectures. These middlewares

hide the hardware complexity of the distributed architectures and create a virtual

machine that is more easy to use. Some middlewares adapted for each category of

parallel architectures have been briefly presented in the fourth section of this chapter.

The main issues encountered when using parallel architectures are the heterogeneity

of the computing units, the high latency of interconnecting networks and the most

important one, the volatility of the computing nodes. To tackle the problem of nodes’

volatility, a fault tolerance policy must be implemented into the middleware managing

the resources. These policies are usually composed of a fault detection mechanism

and a restoring mechanism. We have presented some schemes for implementing these

two mechanisms and emphasized their advantages and disadvantages.

In our research, we are interested in solving large and complex numerical problems

which require huge amounts of computing power. Therefore, we prefer to use the

distributed clusters and the global computing architectures. These parallel architec-

tures are not crash free which imposes implementing a fault tolerant policy in the

middleware that is managing the resources. It must provide a highly scalable fault

detection mechanism because we compute large applications using a lot of computing

units. Thus, the implementation of this mechanismmust be decentralized and it has to

detect failures as fast as possible (independently of the number of computing nodes)

and without overloading the network with heartbeat messages. It is also crucial

that while using this mechanism the probability of false failure detection is as low

as possible. Finally, it is preferred that it does not impose many constraints for its

implementation (like to be able to communicate with all the nodes or it requires some

information on the topology of the architecture because this mechanism could be used

on peer-to-peer architectures where such informations are not available). The fault

tolerance policy must also provide a restoring mechanism which is highly scalable.

Thus, it has to be decentralized and must not reduce significantly the performances of

the system. Therefore, it has to be a light process that is executed on each computing

unit in parallel with the computing process and that does not consume a lot of com-

puting power nor a large bandwidth. Finally, the restoring mechanism must recover
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the system from a failure as fast as possible without affecting other computing nodes.

In the next chapter, we present the different models for parallelizing sequential

iterative numerical methods. In particular, we introduce the asynchronous iteration

model. Then we describe two environments for executing asynchronous parallel itera-

tive programs andwe explain the various issues that these platforms have to overcome.
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Chapter 2

The Asynchronous Iteration Model

2.1 Description

Large and complex problems cannot be solved by sequential resolution methods that

use just one computing unit, because it usually does not have sufficient computing

power nor enough memory. Therefore, developers decompose the large problems into

smaller ones and most of the time, they try to parallelize the resolution methods in

order to solve the small problems in parallel on many computing units. This concept

is called “SPMD” for Single Process on Multiple Data. As mentioned in the previous

chapter, distributed architectures, composed of many computing units, can be divided

to three classes depending on their resources’ interconnection and localization. They

all offer huge amounts of computing powers that can be harnessed to quickly solve

large and complex problems. In our work, we are interested in the parallelization of

iterative methods because they are very popular and the resulting parallel iterative

methods are more efficient than direct ones.

Let F be a linear or nonlinear mapping from E to E, whose domain of definition is

D(F),

F : D(F) ⊂ E→ E.

Consider a sequential iterative algorithm associated to F, i.e. a sequential algorithm

defined by

Xk+1 = F(Xk) Given an arbitrary X0 ∈ D(F)

and where X = (X1,X2, ...,Xn) is the vector of unknowns. If the sets of Xk generated

in algorithm 2.1 converge and F is a continuous function then X∗ = F(X∗) is verified
and x∗ is a fixed point of F.

To parallelize this iterative algorithm and solve this problem onm computing units,

the components of vector X must be decomposed into m groups, Xk = (Xk
1 , ...,X

k
m).

Each group of components is solved on one computing unit as follows:

Xk+1
i = Fi(X

k
1, ...,X

k
m) where i = 1, ...,m (2.1)
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Algorithm 2.1 the iterative sequential algorithmic model

Given an arbitrary X0

for k = 1 step 1 until convergence do

Xk+1 = F(Xk)

end for

Xk
i is the group of components evaluated on the ith computing unit at iteration k. The

algorithmic model will be modified as presented in algorithm 2.2.

Algorithm 2.2 the parallel iterative algorithmic model

Given an arbitrary (X0
1 , ...,X

0
m)

for k = 1 step 1 until convergence do

for i = 1, ...,m do

Xk+1
i = F(Xk

i )

end for

end for

According to Fi some group of components may be dependent of each others.

Thus, they must exchange data at each iteration. According to the type of commu-

nications, synchronous or asynchronous, used to exchange data, three models for

parallelizing iterative sequential algorithms can be identified: the SISC, SIAC and

AIAC models [11].

In the rest of this chapter we present these three models for parallelizing iterative

sequential algorithms and we discuss their advantages and drawbacks. In particular,

we explain the benefits of AIAC algorithms in heterogeneous and volatile environ-

ments. In the second and third sections, we present JACE and JACEP2P-V1 which

are two environments dedicated for executing AIAC algorithms. Their architectures

and characteristics are explained and their weaknesses are also pointed out in order to

expose the problematic. We end this chapter with a brief summary and a conclusion.

2.2 The SISC model

SISC stands for Synchronous Iterations and Synchronous Communications. It is the

standard model for parallelizing iterative sequential algorithms with dependencies be-

tween tasks. Once the components of a problem are divided between the computing

nodes, as illustrated in Figure 2.1, each computing unit executes an iteration (repre-

sented by a dark rectangle) and synchronously sends its dependency values (repre-

sented by arrows) to the nodes that require them. Afterward, it waits the reception of

all the data messages that the other computing units sent to it and then executes the

next iteration while using the newly acquired data in its computation.
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 Time

Computing unit 2

Computing unit 1

Figure 2.1: The Synchronous Iteration and Synchronous Communication model

These synchronizations may generate large periods of idle times (represented by

white spaces in Figure 2.1) between two successive iterations. Indeed, if a fast com-

puting unit quickly executes an iteration, it must wait for the other slow ones to finish

their iterations to be able to synchronously send its dependency data to them. It then

waits again the reception of data messages from its neighbors. This procedure wastes

huge amounts of computing power. The length of idle periods is increased when the

computing nodes are very heterogeneous, in particular when the load, given to each

computing node, is not adapted to its computing capacities. Moreover, if a data mes-

sage, intended for a computing unit, is lost due to a network’s congestion or failure, the

computing node will keep on waiting for ever for this message and the whole appli-

cation will be blocked. In the same way, if a computing node crashes, all its neighbors

will be blocked while waiting for data messages from the dead node. Therefore, this

parallel iterative model do not seem to be well adapted for volatile environments if no

checkpointing mechanism, which could be very penalizing, is implemented.

2.3 The SIAC model

SIAC stands for Synchronous Iterations and Asynchronous Communications. It is sim-

ilar to the SISCmodel but here the data messages are exchanged asynchronously. As il-

lustrated in Figure 2.2, after computing an iteration, a computing node asynchronously

sends its dependency values to its neighbors, without synchronizing with them and

without waiting for them to finish their iterations. Moreover, it does not wait for

its neighbors to receive the data messages that it has sent to them but it waits that

it receives data messages from all it neighbors. In this way the communications are

partially overlapped by the computing process and therefore the idle times between

iterations are reduced but not entirely eliminated. Indeed, fast computing nodes still

have to wait for slow ones to send their data messages.

As the SISC model, the SIAC is not well suited for volatile environments because it

does not tolerates the loss of data messages nor the failure of a computing unit. In case

a node crashes, all the computing nodes are blocked until some restoring mechanism
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 Time

Computing unit 1

Computing unit 2

Figure 2.2: The Synchronous Iteration and Asynchronous Communication model

is executed. On the other hand, since the communications are asynchronous, the effect

of the high latency of the network on the application’s performance are reduced.

2.4 The AIAC model

AIAC stands for Asynchronous Iterations and Asynchronous Communications and

it is also called the asynchronous iteration model [11, 10]. This model is illustrated

in Figure 2.3 where it is clear that there is no idle time at all between iterations (no

white spaces between the dark rectangles). In fact, in this model and at the end of

every iteration, computing processes asynchronously send their data messages to their

neighbors and do not wait for the reception of the new data messages that are sent by

their neighbors. They compute the next iteration using just the last received data from

their neighbors.

Time

Computing unit 1

Computing unit 2

Figure 2.3: The Asynchronous Iteration and Asynchronous Communication model

2.4.1 Algorithmic model

In the asynchronous iteration model, vector X which contains all the components,

is partitioned between m computing nodes in the same way as for the synchronous

model. However, the main difference between the two models is that the m block-

components are not updated at each iteration in the asynchronous iteration model
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because the communications and the iterations are asynchronous.

The asynchronous model is based on the following ideas:

• the m block-components may be updated in a random order on the m computing

nodes and it is possible that some block-components may not be updated for a

while. Nevertheless, no block-component is permanently idle.

• at time t, each node checks if one of its dependencies’ components have been

updated. If this is the case it updates its own block-components using the last

received information from its dependencies. Otherwise, it does nothing at time t.

A computing node can then continue to execute its task without waiting for its

neighbor results. As a consequence, nodes may compute different iterations at the

same time t.

In the classical model of those algorithms, we denote by J(t) the set of peers up-

dated at time t, also called the strategy of the algorithm, and by X
sij(t)

j the state of the

group j available for the group i at time t. sij(t) is the state of the data from group j

available on group i at time t. It is defined by sij(t) = t− rij(t) ≤ t, where rij(t) denotes

the delay of the group j with respect to the group i at time t.

The classical hypotheses, assumed over the sij(t) in order to ensure that the process

actually iterates and then evolves, are the following ones:

Definition Consider the Xk vector decomposed into m block-components and the

strategy J = {J(t)}t∈N , the sequence of non-empty subsets of them block-components.

For i ∈ {1, ...,m}, let Si = {si1(t), ..., sim(t)}t∈N be a sequence of N
m, such that

(h1) There exists a positive integer B, used to bound the delays, such as ∀i, j ∈
{1, ...,m} and ∀t ∈ N, we have: t − B < sij(t) ≤ t. As sij(t) = t − rij(t) like

defined above, we can also deduce the following expression concerning the

delays: 0 ≤ rij(t) < B.

(h2) On average no block-component may be neglected by the updating rule. This

condition is called “fair sampling condition” and is equivalent to:

∀i ∈ {1, ...,m} , Card ({t ∈ N, i ∈ J(t)}) = ∞.

Then, the asynchronous dynamic of the m-nodes network associated to the

given transition function F and activation set J and with initial configuration

X0 =
(

X0
1 , ...,X

0
m

)

is described by Algorithm 2.3 in page 38.

We precise that in this model, t does not necessary correspond to real time, it could

simply be an artificial variable used to index the events of interest (e.g., the times at

which some variables are updated). We can also remark that a synchronous iterative

algorithm is a particular case of asynchronous iterative algorithms in which:
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Algorithm 2.3 The asynchronous iteration model

Given an initial state X0 = (X0
1 , ...,X

0
m)

for each time t = 0, 1, ... do
for each block-component i = 1, ...,m do
if i ∈ J(t) then

Xt+1
i = Fi(X

si1(t)
1 , ...,X

sim(t)
m )

else
Xt+1
i = Xt

i
end if

end for
end for

• r
j
i(t) = 1 for all the neighbors, whatever the value of t,

• t represents the k variable of the synchronous algorithm given in equation (2.1).

Hypothesis (h1) indicates that the delays are always bounded during the execution

and cannot become infinite as t increases. In a practical case, this means that a node

should always be able to communicate its results to the other nodes. In order to ensure

this hypothesis, the environment handling the parallel asynchronous iterative appli-

cation must automatically delete from the set of computing nodes each machine that

cannot reach other nodes for a predefined period of time.

Concerning hypothesis (h2), it indicates that all components are eventually up-

dated after a finite period of time. This hypothesis must also be ensured by the

platform executing the parallel asynchronous iterative application.

The global convergence of the parallel asynchronous iterative method depends on

the scientific problem considered and is ensured if certain conditions are satisfied

with respect to the data of the problem. For example, some scientific applications

are described by systems of differential equations which leads, after discretization

using a finite difference scheme, to linear systems that can be solved with a asyn-

chronous method. For more information concerning the convergence conditions of

asynchronous iterative algorithms, interested readers can can refer to, for example

[65, 19, 38, 39] and the references therein.

In the parallel asynchronous iterative methods, the nodes do not use the Euclidean

metric to compute the residual because it requires updated components at each itera-

tion. Usually, the residual is evaluated using the following formula:

R = maxi(|Xk+1
i − Xk

i |)

where Xk
i denotes the value of the component i of array X at iteration k. This norm is

also called the max norm.
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2.4.2 Advantages

The AIAC model is not easy to implement but it offers many benefits:

• No idle time. Since at the end of each iteration, the computing unit does not wait

the reception of the data messages from their neighbors, there is no idle times be-

tween two successive iterations and the communications are totally overlapped

by the computing process.

• No synchronization. Since data messages are asynchronously exchanged be-

tween neighbors and the computing units do not have to wait for the reception

of data messages, the synchronizations between the computing neighbors are

totally eliminated. Therefore, iterations are asynchronous and fast computing

nodes can execute different iterations from the slow ones at any given moment:

for example, in Figure 2.3, the first computing unit executes the seventh iteration

and begins the eight while the second computing unit is still computing the sixth

iteration. This property makes parallel asynchronous iterative applications much

less sensitive to the heterogeneity of communication and computing resources

than conventional synchronous parallel iterative algorithms are.

• Tolerance of data message loss. The loss of data messages is totally tolerated in

the AIACmodel because each computing process does not wait for the reception

of new data messages. It uses the last received data to compute the next iteration

and it is not blocked if a message is lost or delayed. In the same way, if a comput-

ing node crashes the neighbors are not affected by this crash. They continue their

iterations using the last received data from that dead neighbor. To better illus-

trate this advantage, in figure 2.4, we present the execution of a parallel iterative

synchronous algorithm over a volatile environment. The parallel application is

composed of three tasks that are interdependent. To resist to the volatility of

the computing nodes, we consider that at the the end of each iteration a global

checkpoint is executed and the whole backup image is saved in a safe storage

server. Therefore, at the end of an iteration all the nodes are synchronized which

results in idle times between iterations as shown in figure 2.4. Moreover, in fig-

ure 2.4, processor P1 disconnects while executing the third iteration which blocks

the rest of the computing nodes. The application will stay blocked until proces-

sor P1 is replaced by a new one which also results in large idle times. Once the

dead node is replaced, all the nodes must retrieve the last backup (in this case,

it is the backup saved at the end of the second iteration) and continue the tasks

from this checkpoint.

On the other hand, figure 2.5 presents the execution of the asynchronous imple-

mentation of the same parallel iterative algorithm illustrated in figure 2.4 and it is

also executed on a volatile environment. Since the asynchronous iteration model
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Figure 2.4: The execution of a parallel iterative synchronous algorithm over a volatile
environment

is used the uncoordinated checkpointing mechanism is used at the end of each

iteration. Therefore, there is no synchronizations between the computing nodes,

thus the idle times between successive iterations are eliminated. Furthermore,

when a computing node is disconnected while executing a task, for example in

figure 2.5 while executing the third iteration of the second task T1, the rest of the

nodes continue their tasks and are not affected by this failure. When the dead

node is replaced by a new one, only the new node retrieves the last backup and

continue its task from this last checkpoint. This comparison shows the huge use-

fulness of the asynchronous iteration model over volatile environment.

For all these reasons, the AIAC model is well suited for volatile distributed architec-

tures that are composed of heterogeneous computing nodes which are interconnected

via a high latency network.

2.4.2.1 Disadvantages

Although the AIAC model might seem the perfect solution to tackle the issues of

volatile and heterogeneous architectures, this model also has its own weaknesses and

disadvantages:

• Compatibility. This model cannot be applied on all types of iterative methods

(like GMRES, Gradient Conjugate [3]...) because they will not converge if they

are implemented according to the asynchronous iteration model. Indeed, some

iterative methods require receiving the data messages from their neighbors at

each iteration in order to ensure the convergence of the iterative algorithm in a
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Figure 2.5: The execution of a parallel iterative algorithm based on the asynchronous
iteration model over a volatile environment

finite number of iterations. Otherwise, they iterate forever without converging

and they could even crash.

• Execution time. As shown in [11], when using the asynchronous iteration model,

parallel iterative algorithms usually require more iterations than in synchronous

models to converge to the solution of the problem. This increase in the number

of iterations may lengthen the total execution time of the parallel application, in

particular if it is executed over a parallel architecture interconnected via a fast

network like a local cluster where the synchronizations are not very penalizing.

• Convergence detection. Since in the AIAC model, the tasks do not receive at

each iteration the data messages from their neighbors, the standard mechanisms

for detecting the global convergence of synchronous parallel iterative algorithms

cannot be used for the asynchronous ones. In fact a computing process can exe-

cute many iterations without receiving any data messages from its neighbors. In

the absence of new data messages, the values of the computing node’s compo-

nents may not vary between successive iterations which could lead it to detect

a false local convergence (its local residual is less than the required threshold).

This fake convergence is contradicted at the reception of the first datamessage be-

cause the local subsystem will locally diverges after computing the next iteration.

Therefore, special mechanisms are required for detecting the global convergence

of a parallel iterative algorithm implemented according to the asynchronous iter-

ation model.

In our work, we are interested in solving large linear/non linear systems over dis-

tributed clusters and global computing architectures. These numerical problems can
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be solved by iterative methods that are compatible with the AIACmodel. Moreover, it

has been proven in [10] that parallel iterative algorithms that are implemented accord-

ing to the AIAC model, solve a given problem faster than the synchronous methods

over distributed volatile architectures that are composed of heterogeneous computing

nodes which are interconnected via a high latency network. For the convergence issue,

we will present, in the next chapter, a decentralized algorithm that detects efficiently

the global convergence of parallel iterative asynchronous algorithms. Due to the sig-

nificant advantages that the AIAC parallelization model presents, we have decided to

adopt it in our work.

2.5 JACE

The environments described in the previous Chapter do not provide the functional-

ities required for executing AIAC algorithms over distributed architectures. There-

fore, our colleagues in the AND (“Algorithmique Numérique Distribué”) team, Kamel

Mazouzi and Stéphane Domas, have developed a platform, called JACE [16] for Java

Asynchronous Computation Environment, which is optimized for developing and ex-

ecuting parallel asynchronous iterative algorithms. JACE is completely developed in

Java which ensures its portability over most of the existing operating systems. This

platform is not just another message passing interface. It provides many mechanisms

that are essential for executing AIAC algorithms. In particular, it separates the comput-

ing process from the communications. Indeed, this platform is multithreaded which

allows it to allocate some threads that are dedicated for computing purposes and other

ones for communicating with neighbors. This dissociation allows the computing units

to asynchronously exchange their data messages with their neighbors and eliminates

idle times during communications. Thus, the communications are fully overlapped by

the computing process. On the other hand, JACE also allows executing synchronous

iterative algorithms.

In the next subsections, we present the architecture of JACE, the centralized global

convergence detection mechanism and its asynchronous communication mechanism.

2.5.1 JACE’s architecture

JACE is composed of three entities:

• The spawner: when a user wants to execute a parallel application over a dis-

tributed architecture using JACE, it launches a spawner with the appropriate

parameters (the number of required computing units, the location of the Java

parallel application and the list of computing units). The spawner then sends

the corresponding task to every computing unit using an hypercube propagation

scheme. Afterward, the tasks are then executed over the computing units.
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• The daemon: it runs on each computing node participating in the execution

of the parallel application. The daemon executes the task that it received from

the spawner and allows the computing units to communicate with each others

via one of the following three communications protocols: Sockets, RMI or NIO.

Therefore, each daemon has the identifiers of all the computing units partici-

pating in the execution of the application. Figure 2.6 illustrates the architecture

of the daemon in JACE. It is mainly composed of two layers, the application and

the communication layers. The first one handles the tasks, developed by the user,

and the second one manages the exchange of data messages using the different

communications protocols.

Application Layer

Tasks Manager

Grid Infrastructure

Messages Manager

TCP/Socket NIO

Communication

Layer R
M

I 
Se

rv
ic

e

User’s Task

Figure 2.6: JACE daemon architecture

• The computing task: a parallel application that is implemented with the JACE’s

API (similar to the MPI’s API) is composed of many computing tasks. The tasks

cooperate and exchange data messages in order to solve a given problem. Each

task is a light process, a thread, which allows the separation of the computing

and the communication processes. Moreover, this property allows the execution

of many tasks on the same computing resources.

2.5.2 Centralized Global convergence detection

The detection of the global convergence of parallel iterative algorithms have been stud-

ied for a long time. Many papers have been published in this domain. In particular

we can cite [19, 63, 12]. In this subsection, we present the centralized global conver-

gence detectionmechanism implemented in JACE. This mechanism is divided into two
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phases: the detection of the local convergence then the detection of the global conver-

gence. Each daemon checks at the end of an iteration if its iterative computing process

has converged locally. As described in the previous chapter, this is detected by evaluat-

ing the local residual value and comparing it to the threshold defined by the user. If the

local residual is smaller than the required precision, the daemon considers that its task

has locally converged and send a convergence message to the computing unit responsi-

ble of the convergence detection. Besides computing its task, this node has to detect the

global convergence of the parallel application that is executed over JACE. Therefore, it

checks regularly if all the daemons participating in executing the application have sent

to it a convergence message. If this is the case, it declares that the system has converged

globally. This mechanism is used for detecting the convergence of synchronous iter-

ative parallel applications and is not adapted for AIAC algorithms because if a node

does not receive a data message from its neighbors for period of time which is typi-

cal while executing AIAC algorithms, it could detects a false local convergence which

could lead to the detection of a false global convergence. To reduce the probability of

a false global convergence detection, when a node detects the local convergence of its

task, it executes a predefined number of iterations to make sure that its residual is still

under the threshold before sending a convergence message to the node responsible of

detecting the global convergence of the system. This scheme increases the execution

time of the application. Finally, this centralized global convergence detection mecha-

nism could overload the daemon responsible of the detection and drastically slows its

computing process. Therefore, in the next chapter, we present a decentralized global

convergence detection algorithm that is developed by our colleagues in the laboratory,

Jacques Bahi, Raphael Couturier and Sylvain Contassot. This algorithm is well suited

for AIAC applications and is very scalable due to its distributed nature.

2.5.3 Asynchronous communication mechanism

As mentioned before, daemons in JACE can exchange data by passing messages. The

reception and the emission of messages can be done in a synchronous or asynchronous

manner. The asynchronous communication mechanism in JACE is composed of many

entities:

• Message: it is the data structure that is composed of the following fields:

– Destination: it contains the identifier of the computing unit to which this

message has to be sent.

– Source: it contains the identifier of the computing unit that have send this

message.

– Tag: it is composed of the iteration and the step numbers of the task during

which this message was created on the sender.
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– Data: it contains the data that must be transfered from the source to the

destination.

The message is serialized before being sent to its destination.

• Send queue: it stores the messages before their asynchronous transfer to their

destinations.

• Reception buffer: it stores the received messages before they are consumed by

the computing process.

• Sender thread: it is the communicating process. It asynchronously sends the

messages from the Send queue of the source to the Reception buffer of the desti-

nation.

All these entities are necessary to asynchronously exchange data messages between

daemons in JACE. After computing an iteration, the daemon puts in the Send queue

the messages that it intended to send to its neighbors. If the queue already contains a

message that has the same destination and step number but a lower iteration number

than the new message that is being added, the old message in the queue is replaced

by the new one as illustrated in Figure 2.7. In the asynchronous iteration model, only

the most recent data messages are sent to the neighbors. After adding a message to

the queue, the Sender thread is notified and thus awoken. It retrieves the messages

from the queue and sends them one after the other to their corresponding receivers.

When a neighbor receives a data message, it stores it in the Reception buffer. Again

if this buffer contains an older message that has the same source and step number

but a lower iteration number, the old message is replaced by the new one in the

buffer. Usually in an iterative parallel algorithm, after sending its data messages to

the neighbors, the computing node has to wait to receive the data messages from its

neighbors. This means all the computing nodes are synchronized. However, in JACE

and in the asynchronous iteration model the computing nodes are not synchronized.

Instead of waiting for the dependency messages of their neighbors, they get the new

messages from the recipient buffer. If a certain data message has not been received yet

and does not exist in the recipient buffer, they use the most recent data message they

already have. As a consequence, the computing nodes do not execute each iteration

using fresh data dependencies from their neighbors. But they are not blocked nor do

they suffer from idle times when waiting to receive a data message from a dead or

slow neighbor.

JACE is a very powerful platform for executing parallel iterative asynchronous al-

gorithms over crash free distributed architectures. However, in reality, there are no

crash free architectures and the probability for a failure to occur is proportional to the

number of nodes required to compute the application and the time it takes to solve
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Figure 2.7: Old messages are replaced by new similar messages in the Send queue

the given problem. Therefore, JACE requires some fault tolerance policy because it

is vulnerable to failures and the whole application could be terminated if a daemon

crashes during the computation. In the next section, we present another platform,

called JACEP2P, which implements some fault tolerance policies.

2.6 JACEP2P

JACEP2P [15] stands for Java Asynchronous Computation Environment for Peer-

to-Peer architectures (Version 1) and it is an evolution of the JACE environment. It

has also been developed by our colleagues at the AND team, Philippe Vuillemin

and Raphael Couturier, and it is fully implemented in Java for platform independence

purposes. As for JACE, JACEP2P executes parallel iterative asynchronous applications

with dependencies between computing nodes. Thus any group of nodes executing

a given parallel application can communicate asynchronously with each others. The

main objective for creating this environment was to harness the unlimited free com-

puting power of the public unused computing units that are interconnected via the

Internet and to execute AIAC algorithms over this distributed and volatile architec-

ture. Therefore, it was essential for this platform to implement a fault tolerance policy

in order to resist to the eventual disconnection of public computing units from the

distributed architecture when being used by their respective owners. On the other

hand, this platform is not only dedicated for peer-to-peer architectures, it can be also

used to safely execute AIAC algorithms over most of the distributed architectures like

local clusters and distributed clusters.

In the next subsections, the architecture of JACEP2P is presented, its fault tolerance

policy is detailed and all its advantages and drawbacks are demonstrated.
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2.6.1 JACEP2P’s architecture

Figure 2.8, presents the architecture of JACEP2P and the different components that

form the platform. There are three kinds of entities in JACEP2P and each one has a

defined role:

• The first entity is called the “super-node” (represented by a big circle in Figure

2.8). They are the access portals to the platform for the computing units that

wish to participate in the computations and for the users who want to execute

their parallel applications. Each super-node stores in its “register” the identi-

fiers (IP address) of all the computing nodes that are connected to it and are not

executing an application. The super-node regularly receives heartbeat messages

(represented by doted lines in Figure 2.8) from the computing nodes connected to

it. If the super-node does not receive a heartbeat message from a computing node

included in its register for a given period of time, it declares that this computing

node is dead and deletes its identifier from the register.

• The second entity is the “spawner” (represented by a square in Figure 2.8). When

a user wants to execute a parallel application, it launches a spawner with the

required parameters: the number of computing nodes N necessary to execute

the application, the location of the application’s files (e.g. their location on a

Web server) and the eventual parameters for the application. The spawner then

contacts a super-node to reserve N computing nodes. If the super-node does

not have the sufficient amount of daemons, it contacts an other super-node and

reserves the demanded daemons (the reserved daemons are removed from the

super-node’s register), then returns to the spawner a register containing the iden-

tifiers of the reserved daemons. When the spawner receives the register, it cre-

ates a task for each computing node and starts the execution of the tasks on the

respective computing nodes. The spawner also sends its register to all the com-

puting nodes in order for them to be able to communicate with each other. More-

over, the spawner is responsible for detecting the disconnection of a computing

node that was executing a part of the application. Indeed, when the computing

nodes are reserved by the spawner, they change the destination of their heart-

beat messages from the super-node to the spawner. If the spawner detects that

a computing node have not sent to it a heartbeat message for a while, it declares

that this computing node is dead. Then, it contacts the super-node and reserves

a new computing node in order to replace the dead one. The spawner initial-

izes the new daemon, which retrieves the last backup of the dead node (see next

paragraph) and continues the computing task from that checkpoint. Finally, the

spawner is also responsible for detecting the global convergence of the parallel

iterative application. As in JACE, this process is centralized but here it is exe-

cuted over the spawner because it is considered safe and crash free and all the
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Figure 2.8: JACEP2P’s architecture and different components.

daemons are volatile. This mechanism is executed exactly as the one described in

JACE and suffers from the same drawbacks. Moreover, the assumption that the

spawner is crash free is not real and it is always safer to integrate a fault tolerance

mechanism for the spawner.

• The third entity is the “daemon” or the computing node (represented in Figure

2.8 by a hashed small circle if it is free and by a white small circle if it is execut-

ing an application). Once launched, it connects to a super-node and waits for a

task to execute. During the execution of the parallel application, the daemons

can communicate with each others and they regularly save their state on their

neighbors. After the end of a task, the daemons reconnect to the super-node.

2.6.2 Checkpointing and restoring mechanisms

To resist to computing nodes’ crashes, JACEP2P uses an uncoordinated transparent

distributed checkpointing mechanism where each node regularly saves its data on its

backup neighbors. Since JACEP2P executes parallel asynchronous iterative applica-

tions, the computing nodes do not have to synchronize with each others when saving

their status. The frequency of the backups can be predefined by the user. When a node

wishes to save its data, it creates a backup object, selects a backup neighbor using the

“Round-Robbin” strategy and sends the backup to it. Figure 2.9 illustrates the “Round-

Robbin” strategy in the checkpointing mechanism: at iteration i, it saves its data on the

first neighbor (represented by a circle in Figure 2.9). After n iterations, it sends its new

backup on the next neighbor and so on.

If the spawner detects that a daemon, executing a task, is not sending heartbeat

messages to it, it considers that the daemon is dead and triggers the restoring mech-

anism. The spawner then contacts the super-node and reserves a new daemon to re-

place the dead one. The new daemon retrieves from the dead node’s neighbors its last

backup and continue its task from that last checkpoint. During the restoring mecha-

nism, the rest of the daemons that are executing the same application, continue their
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Figure 2.9: A daemon saving its data each n iterations on a neighbor using the “Round-
Robbin”strategy in JACEP2P.

computations and they are not affected by the disconnection of the dead daemon (see

section 2.4.2).

2.6.3 JACEP2P’s limitations

In [15], the experiments results proved that the first version of JACEP2P performs well

and presents a relatively small overhead. Nevertheless, this version had some impor-

tant limits:

• JACEP2P is not fully fault tolerant. Indeed, in this version, the spawners crashes

are not tolerated . Moreover, while executing the global convergence process, the

platform does not resist well if a daemon goes down.

• As mentioned above, JACEP2P has a centralized failure detection mechanism. If

the application is being executed by a large number of daemons, the spawner

will be overloaded with heartbeat messages. This will delays the detection of a

dead daemon and could even lead to a false crash detection. Moreover, if many

daemons die successively and there is only one spawner to handle the dead dae-

mons, then the spawner will take a lot of time to replace them. This may reduce

the performances of the platform.

• JACEP2P has a centralized global convergence detection mechanismwhich is not

well adapted for executing asynchronous parallel iterative algorithms on volatile

architectures. The daemons executing such applications does not receive depen-

dencies messages from their neighbors at each iteration. This may lead to a false

local convergence and thus resulting to false global convergence detection. Fur-

thermore, the spawner could be overloaded by convergence messages, if many

daemons converges locally at the same time.
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• JACEP2P has many centralized mechanisms like launching the application, de-

tecting the global convergence and detecting the dead nodes. These centraliza-

tions limit the scalability of JACEP2P and create newweak points in the platform.

• In JACEP2P, each daemon receives the whole register which contains the iden-

tifiers of all the daemons executing the application. If a daemon crashes and is

replaced by a new one, the spawner has to notify the modifications to all the dae-

mons in order to update their registers. This could overload the spawner and

increase the congestion of messages in the network.

2.7 Conclusion

In this chapter, we have presented three common models for parallelizing iterative

methods: SISC, SIAC and AIAC. The advantages and the drawbacks of each one were

explicitly demonstrated. The AIAC seems to be the most suitable model for heteroge-

neous volatile distributed architectures. It separates the computing process from the

communications and eliminates the synchronizations between the computing units.

It allows the computing process to overlap the communications in order to eliminate

idle times. Afterward, we have presented two environments, JACE and JACEP2P, that

are dedicated to designing and executing AIAC algorithms and explained their archi-

tecture and characteristics. They are both developed in Java and implements all the

functionalities necessary for executing AIAC algorithms like asynchronous message

passing and multithreaded environment. However, the main difference between the

two platforms is that JACE is not fault tolerant and cannot execute parallel applica-

tions over volatile architectures while JACEP2P is fault tolerant during the computing

process (under some hypothesis).

Both architectures have their limitations and weaknesses. A lot of improvements are

required in order to have a reliable platform for executing AIAC algorithms over het-

erogeneous volatile distributed architectures. To overcome all these problems, we have

implemented a new version of JACEP2P which is more optimized and scalable than

this old version and offers many new features that makes it a much more reliable and

robust platform. This new version is detailed in the next chapter.
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Chapter 3

JACEP2P-V2

3.1 Overview

JACEP2P-V2 is a major evolution of JACEP2P. This new version tackles almost all

the issues, described in the previous chapter and that undermined the performance,

stability and scalability of JACEP2P. JACEP2P-V2 contains all the functionalities that

are required to execute parallel iterative applications implemented according to the

asynchronous iteration model, like asynchronous messaging and multi-threading.

JACEP2P-V2 also offers many new innovative mechanisms that makes it a very

interesting and efficient platform for designing and executing parallel iterative asyn-

chronous applications over distributed volatile heterogeneous architectures such as

distributed clusters and global/volunteer computing architectures. JACEP2P-V2 main

characteristics are:

• It is platform independent because it is implemented with the JAVA program-

ming language which makes it usable in heterogeneous environments.

• It is completely fault tolerant and weak points free. Thus, it is usable in volatile

environments.

• It is completely decentralized in order to be as much as possible scalable.

• It executes parallel iterative asynchronous applications with dependencies be-

tween the computing nodes.

• It uses the message passing model to asynchronously exchange data between the

computing nodes.

JACEP2P-V2 presents many more features which are explained in details in the third

section. However before detailing any mechanism implemented in JACEP2P-V2, we

present in the second section the architecture of JACEP2P-V2 in order to describe its

components and their general behavior.
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Figure 3.1: JACEP2P-V2’s architecture and its different components.

3.2 Architecture

JACEP2P-V2 is composed of the same components as JACEP2P: the spawner, the

super-node and the daemon. However, their functionalities and topology have been

modified in the new version. Figure 3.1 shows the architecture of JACEP2P-V2 where

we notice that there are two spawners handling the execution of a single application

and each group of entities (spawners, daemons and super-nodes) forms a circular

network. The functionalities of each component are defined as follows:

• Super-nodes. They now form a circular network and store in an equally dis-

tributed manner the identifiers of all the computing nodes that are connected to

the platform and that are not executing any application. Figure 3.2 illustrates the

architecture of a super-node. Each super-node is composed of:

– a register which contains the identifiers of the daemons connected to the

super-node.

– a status table which contains the number of computing nodes connected to

each super-node.

– five threads: the RMI service for communicating, the heartbeat thread for

signaling its status to the next super-node, the token thread (see next para-

graph) and two scan threads for fault tolerance issues (see next section).

All the super-nodes share a “token” that is passed successively from a super-node

to the next one. Once a super-node has the token, the token thread is notified.

The token thread executes the algorithm 3.1 where it computes the average load

of the super-nodes (avg) using the status table. If the load of the local super-node

is higher than avg, the extra load is distributed on the super-nodes with loads

lower than avg. Then the status tables of all super-nodes is updated and the local

super-node passes the Token to the next super-node in the circular network.
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Algorithm 3.1 Token thread

1: {n = number of computing nodes connected to the super-node}
2: {avg = the average number of computing nodes connected to a super-node}
3: if has Token then

4: Compute avg using the status table
5: if avg < n then

6: Send the identifiers of n− avg nodes to the super-nodes that have the number of com-
puting nodes connected to them less than avg.

7: Update the status tables of all the super-nodes.
8: end if

9: Send the Token to the next super-node
10: else

11: Wait for Token
12: end if

and the number of daemons 
Contains the list of super−nodes

connected to each one

connected to this super−node
Contains the identifiers of the daemons

Token thread

Super−nodes scan thread

Daemons scan thread

RMI service

Heartbeat thread

Handles the communications

Distributes the overload

Status 
table

Register

of super−nodes

Ensures the
fault tolerance

Detects the disconnection of daemons

Figure 3.2: The super-node’s architecture in JACEP2P-V2.

Figure 3.3 illustrates three super-nodes, represented by circles and forming a cir-

cular topology. The first super-node has the token, so it computes the avg which

is equal to 26+34+0
3 = 20. The first super-node has six nodes more than the avg.

Therefore, it sends the identifiers of the six extra nodes to super-node 3 which has

fewer computing nodes connected to it than the average. The six extra nodes will

start heartbeating super-node 3 and their ids will be removed from the register

of super-node 1. Then, super-node 1 informs the rest of the super-nodes of this

transfer. This distribution reduces the overload of the super-nodes.

• Spawners. Figure 3.4 illustrates the new architecture of the spawner. It is com-

posed of an RMI service to handle the communications, the heartbeat and the

spawner scan threads for fault tolerance issues (see next section), a spawners ta-

ble containing the identifiers of the spawners, a register as the super-node and a

task manager to assign the tasks to the reserved daemons. When a user wants

to execute a parallel application that requires N computing nodes, he or she

launches a spawner. The spawner contacts a super-node to reserve the N com-

puting nodes plus some extra nodes in order to transform them into spawners

for fault tolerance issues. When the spawner receives the register from the super-
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Figure 3.3: The distribution of the overload between the super-nodes in JACEP2P-V2.

of the spawners

Ensures the
fault tolerance

connected to this spawner
Contains the identifiers of the daemonsRegister

table
Spawners

Spawner scan thread

Heartbeat thread

Handles the communications
Contains the list of spawners

RMI service

Task manager
Handles the tasks assigned 
to the daemons

Figure 3.4: The spawner’s architecture in JACEP2P-V2.

node, it transforms the extra daemons into spawners and stores the identifiers of

the rest of the daemons in its own register. Once the extra nodes are transformed

into spawners, they form a circular network and they receive the register con-

taining the identifiers of all the computing nodes. Then each spawner becomes

responsible for a subgroup of computing nodes. It then starts the tasks on these

computing nodes and sends a specified register to them. So each computing node

receives a specified register that only contains the identifiers of the daemons it in-

teracts with and that depends on the application being executed. These specified

registers reduce the number of messages sent by the spawners to update the reg-

ister of the daemons after the crash of a daemon because just a small number of

daemons is usually affected by a crash.

• Daemons. As in JACEP2P, the daemon executes the tasks that it receives from the

spawner. Figure 3.5 illustrates the architecture of the daemon. It mainly includes:

– The task thread which executes the task.

– The sender thread which asynchronously sends via the RMI service the data

messages stored in the message queue, to their respective destinations,

– The message buffer which receives the data messages from the neighbors

and stores them in order to be consumed by the task thread.
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– the backups threads which save the data on the neighbors.

More information on each component are given in the next section. When exe-

cuting an application, the daemons also form a circular network. This topology

is only used for the failure detection mechanism and each daemon can directly

communicate with other daemons if it has their identifiers in its register.

of the daemons

Ensures the
fault tolerance

to be consumed by the task thread
Stores the messages received from neighbors

RMI service

Sender thread

Convergence
data

Spawner scan thread

Heartbeat thread

Task thread

connected to this spawner
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Figure 3.5: The daemon’s architecture in JACEP2P-V2.

3.3 Characteristics and functionalities

After describing the architecture of JACEP2P-V2 and the role of each component, in

this section we present in details the different new functionalities and characteristics

implemented in JACEP2P-V2.

3.3.1 A Completely fault tolerant platform

In the section describing JACEP2P, we mentioned that the platform only tolerates the

disconnection of daemons during the computing phase and that failures are prohibited

for daemons during the convergence detection phase. The crashes are also never tol-

erated for spawners. However, since the user have no control over the disconnection

of the computing nodes and there are no stable nodes in a volatile environment, the

assumptions described above can never be met. Therefore, we have introduced into

JACEP2P-V2 some new mechanisms that make all three entities that form the core of

JACEP2P-V2, fault tolerant. In particular, we have implemented in the three entities a

decentralized crash detection mechanism. It enables the neighbors of a node to detect

if it is dead or alive and is based on the Dual model explained in Section 1.5.1. Each

group of entities forms a circular network. This organization is required to apply the

decentralized crash detection mechanism. As shown in the architectures’ figures in the

previous section, each entity has a “heartbeat thread” that signals regularly to the next

node in the circular network that the sender is still alive and another thread, the “scan
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thread” , that tests at each iteration if the previous node in the circular network has

recently sent a heartbeat message. Figure 3.6, illustrates three nodes forming a circular

topology and executing the mechanism described above. However, in Figure 3.6, node

1 crashes and thus it stops sending heartbeat messages to node 2. So, the scan thread

in node 2 detects after a given period of time that it is not receiving heartbeat mes-

sages from the previous one and suspects that the previous node is probably dead. It

then tries to contact the dead node. If it does not answer, node 2 triggers the restoring

mechanism to handle this disconnection. The restoring mechanism directly depends

on the type of the dead node (daemon, spawner or super-node). Indeed, each entity

has a restoring mechanism which is also dependent on the saving mechanism used for

each type of entity.

Heartbeat thread

Scan thread

Node 3

Heartbeat thread

Scan thread

Node 1

Heartbeat thread

Scan thread

Node 2

Heartbeat messages

Node 1 is dead messages from Node 1

Detects that Node 1
is dead

No more heatbeat

Heartbeat messages

Figure 3.6: The fault detection mechanism.

• For the daemons, we use the distributed backup mechanism described in Sec-

tion 2.6.2 and we have implemented two types of backup in JACEP2P-V2. The

first backup, called the data backup, contains all the information concerning the

state of a node (convergence data) and its computing process (solution vector).

This backup is saved each N iterations (N is given by the user and usually de-

pends of the length of an iteration) on a different neighbor using the “Round-

Robin” strategy. On the other hand, the second backup, called the status backup,

only contains the status data. This backup has a smaller size and it is saved

when the status of a daemon has changed, especially when it concerns the global

convergence detection mechanism. This backup is saved on all the backup neigh-

bors simultaneously. Once a daemon detects that the previous daemon is dead,

the daemon signals it to the spawner responsible for it. The spawner contacts a

super-node and acquires a new daemon. The new daemon replaces the dead one
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and retrieves the last status backup and the last data backup from the neighbors

of the dead node. Once it has the backups, it continues the task from that last

checkpoint. During all this operation, all the other daemons continue their tasks

normally and they are not affected by the disconnection of their neighbor.

• For the spawners, we use the replication mechanism. The spawner is duplicated

into many spawners which also form a circular network. All the spawners have

all the information concerning all the daemons and each one only manages a sub-

group of daemons. If a spawner dies, the next spawner in the circular network

detects it (using the same scheme described before). Then, that spawner contacts

a super-node, reserves a new daemon and transforms it into a spawner. Once

it becomes a spawner, it receives the register containing the identifiers of all the

daemons executing the application, it identifies its subgroup of daemons, it in-

forms them that it is the new spawner responsible of them and it is reintegrated

into the circular spawner network.

• For the super-nodes, there is no backup mechanism. They do not contain very

valuable information. When a dead super-node is detected by the next super-

node in the circular network, it is removed from the circular super-node network

and all the daemons that were connected to it will reconnect to another super-

node.

3.3.2 Completely decentralized

JACEP2P-V2 is completely decentralized. In fact, all the tasks are divided between

the entities of the same type. For example, a daemon can be connected to any super-

node and the group of super-nodes shares equally the control of the free daemons that

are connected to the super-node network. The spawners are also decentralized: once

a spawner is launched to execute an application, it quickly duplicates itself into sev-

eral spawners (depending on the number of daemons required to execute the parallel

application) by transforming some daemons into spawners. Each spawner becomes

responsible for starting the application on a subgroup of daemons and handling the

needs of that subgroup. For the computing nodes, each one executes a part of the ap-

plication and the sum of their work gives the solution of the global problem. Moreover,

they save their data on their neighbors. This decentralized backup mechanism reduces

bottlenecks and does not overload the backup nodes. Furthermore, all the three types

of entities, implements a decentralized fault detection mechanism and a decentralized

global convergence detection mechanism, presented in the next subsection. This distri-

bution of tasks, allows JACEP2P-V2 to solve very large problems and thus to become

very scalable with theoretically no limiting conditions.
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3.3.3 Multi-threaded

JACEP2P-V2 is multi-threaded which enables it to take advantage of multi-cores com-

puting units which became very common. Indeed, in JACEP2P-V2, the computing

process is never blocked by the exchange of data messages between daemons and each

functionality in JACEP2P-V2 (communicating, detecting crashes, saving and comput-

ing) has its own thread. There are the sender thread for exchanging data messages,

the heartbeat thread and the scan thread for detecting a node’s disconnection or failure

and a new thread is created each time a daemon needs to save its data on a backup

neighbor. For the the computing process, the solver is usually chosen by the user and

depends on the numerical problem he is trying to solve. There are a lot of numerical

solvers that are multi-thread and that take benefits of the multi-cores processors. For

example, in our experiments we used MTJ [2] (Matrix Toolkits for Java) which offers

a very wide range of high-performance data structures and algorithms for numerical

computing. MTJ is natively multi-threaded.

3.3.4 The decentralized global convergence detection algorithm

Since the centralized mechanism for detecting the global convergence of parallel asyn-

chronous iterative algorithms is not efficient nor scalable, we have implemented the

decentralized global convergence detection algorithm [12, 11], designed by Bahi et al.,

into JACEP2P-V2. However, this algorithm is not well adapted for volatile environ-

ment. Therefore, we have modified this algorithm in order to make it fault tolerant. In

the next paragraph, we present a general description of the algorithm (that we called

DCD) and afterwards we list the modifications we made to let it be fault tolerant.

3.3.4.1 Description

Before beginning the global convergence detection mechanism, each daemon has

to detect if its subsystem has converged locally: after each iteration, each dae-

mon compares its “local residual vector” which is computed using the max norm

(R = maxi(|Xk+1
i − Xk

i |) where Xk
i denotes the value of the component i of array X at

iteration k), to the precision requested by the user (ǫ). If the residue is smaller than ǫ

we say that the system has converged locally. However, the residue does not always

decrease uniformly, especially for asynchronous iterative parallel algorithms because

a computing node does not receive fresh dependencies from all neighbors at each

iteration. So, the residue may oscillates around the threshold which can lead to a false

detection of the global convergence. To limit early false local convergence detection,

we use the pseudo-period concept. It is the smallest number of iterations where a node

receives at least one dependency message from each of its neighbors and executes an

iteration using these new data. We say that a node has converged locally if its residue

stays under the threshold (ǫ) during one or many pseudo-periods. The pseudo-period
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concept is illustrated in Figure 3.7 where a node (Node 1) locally converges and then

applies the pseudo-period concept. It waits two iterations to receive fresh dependency

messages from its two neighbors and then executes a third iteration using these de-

pendencies to be sure that its subsystem is still converged.

Data message

End of the pseudo−period

Local convergence and the beginning of the pseudo−period

First data message received from this sender after the beginning of the pseudo−period

Node 2

Node 1

Node 0

Figure 3.7: The pseudo-period concept.

The global convergence detection algorithm is composed of two phases, the global

convergence detection phase and the verification phase. The first phase is based on

the “Leader Election” algorithm [8, 32] which chooses dynamically a node to execute a

specified task (here, it is the detection of the global convergence). In order to apply this

algorithm, we transform the computing graph into a non cyclic graph. Then, when

a computing node converges locally, it checks how many of its neighbors have not

converged yet (this number is noted as s):

• If s > 1, the node continues its iterative process.

• If s = 1, it means that the node is a leaf in the tree or that all its neighbors but one

have converged (that implies that its neighbors sub-trees have also converged).

In this case, the node sends a convergence message to its neighbor that did not

converge yet. When the neighbor receives this message, it decrements by one its

s.

• If s = 0, it means that all the neighbors of the node (and all their sub-trees) have

converged. Therefore, it is the last node to converge locally and it is elected as

Leader in order to detect the global convergence of the system.
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Figure 3.8 illustrates the global convergence detection phase. The computing graph

have been transformed into a non cyclic graph and besides each computing node (rep-

resented by a circle) appears the number of its neighbors that did not converge yet.

As the daemons compute their iterations, the system evolves and some subsystems

converges locally (represented with filled circles). Each time a subsystem converges

locally, the Leader election algorithm described above is applied. Finally, the succes-

sive applications of this algorithm lead to the election of a Leader as shown in the last

sub-figure in the Figure 3.8. After electing a Leader, the verification phase begins. Fig-
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Figure 3.8: The global convergence detection phase of the DCD algorithm.

ure 3.9 illustrates the different steps of this phase. There are four steps to perform in

order to be sure that all the nodes are still in a local convergence state:

1. The Leader broadcasts a verification message to all its neighbors which also trans-

mit the message to all their neighbors. In this way, the verification message is

propagated to all the computing nodes and signals the beginning of the verifica-

tion phase. This step is illustrated in the first sub-figure of Figure 3.9.

2. After receiving the verification message, each node begins a new pseudo-period

in which it waits for new data (computed after the leader has been chosen) from

all its neighbors. Then, it computes an iteration using these new dependencies. If,

since sending the convergence message until the end of the pseudo-period, the

residue does not ever cross over the threshold, the response to the verification

phase is positive, otherwise it is negative. This phase allows the system to verify

if the state of the nodes has evolved.
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3. If a node computes a negative response, it sends it directly to the neighbor that

sent him the verification message which propagates it to the Leader. On the other

hand, if the response is positive, the node has to wait until its neighbors send him

positive responses. Then it propagates the response to the Leader.

4. If the Leader receives or computes a negative response, it broadcasts directly a

negative verdict message to all its neighbors which also propagates the verdict

to all the nodes. When a node receives a negative verdict, it starts the whole

global convergence mechanism all over again. This step is illustrated in the

two sub-figures on the left hand of Figure 3.9. On the other hand, if the Leader

develops and receives from all its neighbors positive responses, it broadcasts a

positive verdict to all the computing nodes. This positive verdict means that the

system has converged globally. When a node receives a positive verdict, it ends

its iterative process. This step is illustrated in the two sub-figures on the right

hand of Figure 3.9.

3.3.4.2 Critical procedure and backups

To be able to transform the DCD algorithm into a fault tolerant algorithm, we have de-

fined a critical procedure as follows:“each sequence of instructions that affects two neigh-

bors and blocks one of them if that node crashes before saving its state”. Thus, in the DCD

algorithm, if a node n1 locally converges and all its neighbors but one (n2) have also

converged, n1 has to send a convergence message to n2. This message signals to n2

that n1 has converged. n2 decrements by one the number of its neighbors that did not

converge yet and returns an acknowledge message (see subsection 3.3.4.3) to n1 which

means that n2 has well received the convergence message. Once n1 receives the ac-

knowledge message, it waits for the verification phase and stops sending convergence

messages. Such a sequence of instructions is a critical procedure because it affects two

neighbors (n1 and n2), modifies their states and if one of the two nodes dies during

this procedure, the algorithm will be blocked indefinitely. In fact, if n2 dies or discon-

nects from the platform, the spawner detects that this node has not been sending any

heartbeat message for a while, so it considers that it is dead. Then, the spawner tries

to replace this dead node: it contacts a super-node and requests an available node.

The reserved node n3 replaces n2 and to be able to continue the task, retrieves the last

backup. If n2 died after returning the acknowledge message to n1, all the modifica-

tions, made after receiving the convergence message, are lost and n3 have retrieved an

old backup with a false number of neighbors that have not converged yet. n3 will wait

indefinitely for a convergence message from n1. To solve this problem, n2 must save

its data before sending the acknowledge message to n1.

On the other hand, if n1 receives the acknowledge message and dies just before

saving, the daemon replacing the dead node will retrieve an old backup. Thereafter, it
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Figure 3.9: The verification phase.

detects again the local convergence of its task and sends a new convergence message

to n2. The recipient notices that it has already received this message, so it ignores it but

returns an acknowledge message to n1 so it can execute the next phase.

Identifying a critical procedure while detecting the global convergence is very

difficult. The easiest approach is to save data after the execution of each instruction

concerning the global convergence detection. This solution is not practical given its

execution cost. Thus, it is necessary to determine the critical sequences of instructions

and to minimize their numbers (see Section 3.3.4.4, for more information on the differ-

ent critical procedures in the DCD algorithm).

Since the DCD algorithms requires saving the convergence data after a critical pro-

cedure, we have created a new backup to save the convergence data that contains all
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the values necessary to detect the global convergence and maintains the system’s co-

herence. Distinguishing between the computing and the convergence backups reduces

the bad influence of checkpointing on the computing process. Actually, the size of the

convergence backup is very small compared to the size of the computing backup. So

the convergence data can be saved more frequently than the computing data without

having a great impact on the performance of the computing process.

3.3.4.3 Acknowledge messages

JACEP2P-V2 tolerates the loss of data messages when it executes parallel asyn-

chronous iterative algorithms. However, as described in the previous paragraph,

JACEP2P-V2 has to ensure the right reception of the convergence messages by the

receivers in order to ensure a coherent system. Indeed, The DCD algorithm is com-

posed of many phases and if a crash prevents a daemon from receiving a message that

informs it that it has to pass to the next phase, the daemon and its sub-trees nodes

will be stuck in this phase while the others will pass onto the next one. Therefore,

we have to make sure that all the notifications concerning the global convergence

detection are well received by their recipients. To accomplish that, we propose two

solutions. First, the recipient treats the message and saves the results of that treatment

on its neighbors. Then it returns the acknowledge message to the sender. Second, the

recipient just saves the information sent in the message and returns the acknowledge

message to the sender then handles the saved information afterward. Each approach

has its advantages and drawbacks:

• When using the first solution, while the recipient treats the convergence message

and saves the results on its neighbors, the sender remains blocked. However the

recipient has to save just once after processing the message’s data.

• When using the second solution, the recipient saves the message’s data and

quickly returns the acknowledge message to the sender. However, after process-

ing the message’s data, it saves the results again on its neighbors.

To be able to choose between those two methods, we must evaluate the execution

time cost for these two solutions. Unfortunately, it is very hard to achieve this test be-

cause it depends on many parameters like the network’s latency, the processing speed

of nodes and the number of components solved on each node. In practice we can use

the first method for messages that do not require a large time to be processed (like local

convergence messages) and the second method for the broadcasting messages because

they could block the sender for a long time (while the message is propagated to all the

sub-trees nodes).
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3.3.4.4 Overview of the fault tolerant algorithm

In the implementation of the DCD algorithm into JACEP2P-V2, we organized the com-

puting nodes into an hypercube topology to reduce the broadcast time of the conver-

gence messages. If n is the number of computing nodes, the maximum number of

nodes that a message has to cross is equal to x with x equal to the smallest integer that

verifies n < 2x+1. In our implementation of the DCD algorithm, each node discovers

its convergence neighbors by executing Algorithm 3.2.

Algorithm 3.2 Discovering convergence neighbors for an hypercube tree

1: {n = number o f computing nodes}
2: {id = rank o f the current computing node}
3: d← 0
4: while 2d < n do

5: if id < 2d and id + 2d < n then

6: id + 2d is a convergence neighbor
7: end if

8: if id < 2d+1 and id > 2d then
9: id− 2d is a convergence neighbor

10: end if

11: end while

As described before, the decentralized convergence detection algorithm is decom-

posed into many phases. In this paragraph, we will show how each phase has been

modified in order to make the whole algorithm fault tolerant.

• Before local convergence: each node computes its iterative task and at the end of

an iteration it asynchronously exchanges dependencies vectors with its neighbors

then evaluates its residue in order to detect the local convergence. Throughout

this phase only computation data are saved on neighbors because in the asyn-

chronous iteration model the loss of dependenciesmessages is tolerated and does

not affect the convergence of the parallel iterative application (i.e., the solution of

the studied problem). This phase corresponds to line 5 to 9 in Algorithm 3.3.

• After detecting the local convergence: this is the first critical procedure. When

a node detects that its residue is smaller than the requested precision, it com-

putes a pseudo-period. It waits to receive new dependencies vectors from all

its neighbors, then it computes a new iteration using these new data. If the

residue evaluated after this iteration is still smaller than the threshold, the node

declares its local convergence. This phase corresponds to line 12 to 16 in Al-

gorithm 3.4. As mentioned before in the DCD algorithm, the locally converged

node tests the number of its unconverged neighbors (NbNeighboursNotConv): if

NbNeighboursNotConv = 1, it executes the sequence of instructions illustrated in

Figure 3.10 and from line 26 to 33 in Algorithm 3.4. If NbNeighboursNotConv = 0
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the node declares itself as Leader and propagates the beginning of the verifica-

tion phase on all its neighbors as in Figure 3.11 and from line 17 to 24 in Algo-

rithm 3.4. If a node involved in this procedure fails, the node recovery mecha-

nism described in Section 3.3.4.2 is applied.

• Verification phase: when a node receives a verification message it executes the

sequence of instructions illustrated in Figure 3.12 and in the ReceiveVerification

procedure in Algorithm 3.5 where it begins the verification phase. During the

verification phase, each node waits for new dependencies tagged with the verifi-

cation tag. Afterward it computes a new iteration using those new data. If during

all these operations the residue is still under the threshold, the node elaborates a

positive response, otherwise it elaborates a negative response.

• Responding to the verification phase: if a node elaborates or receives a negative

message, it directly sends it to the sender of the verification message as detailed

in Algorithm 3.4 from line 72 to 79. On the other hand, if it receives from all its

neighbors (except from the sender of the verification message) positive responses

and elaborates a positive response, it positively responds to the sender of the ver-

ification message. This case is presented in Algorithm 3.4 from line 81 to 87 and

sending a response is illustrated in Figure 3.10. If the response is positive, the

sender saves its computing and convergence data on its neighbors. This phase

is also considered as a critical procedure. As above, if a node, involved in this

procedure, fails, the node recovery mechanism described in Section 3.3.4.2 is ap-

plied.

• Declaring a verdict: when the Leader receives or elaborates a negative response,

it broadcasts a negative verdict to all its neighbors as in Figure 3.11 and in Algo-

rithm 3.4 from line 53 to 60. Then it restarts the convergence detection algorithm

all over again. When the Leader elaborates and receives from all its neighbors

positive responses, it sets its state to global convergence and broadcasts a positive

verdict to all its neighbors, as illustrated in Figure 3.11 and in Algorithm 3.4 from

line 61 to 68. This is also a critical procedure and the node recovery mechanism

described in section 3.3.4.2 may be applied, if a node involved in this procedure

fails.

• Receiving a verdict: when a node receives a verdict, it executes the sequence

of instructions illustrated in Figure 3.12 and in the ReceiveVerdict procedure in

Algorithm 3.5. If the verdict is negative it reinitializes its convergence variables

and restarts the convergence detection algorithm for the same step. On the other

hand if the verdict is positive, it sets its state to global convergence and begins

computing the next step or terminates the application. Here is the fourth critical

procedure. If a node, involved in it, fails, the node recoverymechanism described

in Section 3.3.4.2 is applied.
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Figure 3.10: The instructions executed when sending a convergence or a response mes-
sage.
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Figure 3.11: The instructions executed when broadcasting a verification or a verdict
message.

3.3.5 Reduction functions

Many numerical parallel problems requires computing a reduction function at the end

of a step using data from all the computing nodes. There are two methods to compute

these functions: the first one is centralized. All the computing nodes are synchronized

and they send their data to a central node which executes the reduction function us-

ing all these data. Then, the central node sends the result of the reduction function

to all the computing nodes. Using the second method, all the computing nodes send

directly or indirectly their data to each others, then each computing node evaluates

the reduction function and continues its computing process. These two methods are
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Figure 3.12: The instructions executed when receiving a verification or a verdict mes-
sage.

Algorithm 3.3Main()

1: for each step do

2: Initialize the global convergence variables
3: globalConvergence ← f alse
4: state ← NORMAL
5: while globalConvergence = f alse do
6: Compute an iteration
7: if Residue < Threshold then

8: pseudoConvergence ← true
9: end if

10: DetectGlobalConvergence(pseudoConvergence)
11: end while

12: end for

very efficient in a stable environment like a cluster or a grid. However, these methods

are not well adapted to volatile environments. In fact, in a volatile environment, we

cannot have a central node because it could die at any moment and we cannot use the

data messages because they could be lost if the receiver is dead or if there is a failure

in the network. To remedy this problem, we have adopted a decentralized method to

compute the reduction functions. We merged the reduction function to the decentral-

ized global convergence detection algorithm. So, when the verification phase of the

DCD algorithm begins and if the parallel iterative application being executed, requires

a reduction function, each computing node sends the data (required for computing

the reduction function) in the response message. Once a daemon receives a response

message, it computes the reduction function using its data and the data contained in

the response message. At the end, the Leader will receive the responses containing
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the results of the reduction functions applied to the data of the nodes forming each

subtree connected to the Leader. The Leader applies the reduction function using all

these data, adds the result to the verdict message and broadcasts the verdict message

to all the nodes. Since we use the response and the verdict messages which returns an

acknowledge message when received, we are sure that the messages will not be lost.

Furthermore, the results of the local reduction functions are saved when evaluated by

the computing nodes.

3.4 Conclusion

In this chapter, we have presented the JACEP2P-V2 platform. It is a fault tolerant and

distributed computing environment which is dedicated for executing parallel iterative

algorithms based on the asynchronous iteration model over volatile architectures. The

architecture of JACEP2P-V2 which is mainly composed of three types of nodes (the

spawner, the daemon and the super-node) was presented in details. Moreover, all the

functionalities and the mechanisms implemented in JACEP2P-V2 were exposed. In

particular, we have detailed the fault detection and the restoring mechanisms which

make the platform fault tolerant and the decentralized global convergence detection

mechanism that detects efficiently the global convergence of parallel iterative asyn-

chronous applications.

In the next chapter, we present the experiments that we have conducted over the

Grid’5000 testbed in order to test the performances of JACEP2P-V2 and its scalability.

We will also expose the different problems that we solved using asynchronous parallel

iterative methods that were executed on JACEP2P-V2. Moreover, we will compare

JACEP2P-V2 with its predecessor JACEP2P in order to prove the efficiency of the new

mechanisms thatwe have implemented in the new version. All these experiments were

executed over volatile heterogeneous computing nodes that were located on distant

sites.
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Algorithm 3.4 DetectGlobalConvergence(pseudoConvergence) (1/2)

1: if action = SendVeri f ication / action = SendVerdict then {To broadcast the verification
and verdict messages}

2: Broadcast a verification message / Broadcast the verdict
3: Wait for an acknowledge message from each neighbor
4: if received an acknowledge message from each neighbor then
5: action ← nothing
6: Save Convergence Data on neighbors
7: else
8: Broadcast the message on the next iteration
9: end if

10: end if

11: if state = NORMAL and action = nothing then

12: if pseudoConvergence = f alse then
13: reinitialize the pseudo-period
14: else

15: if PseudoPeriod = true then
16: localConvergence ← true
17: if NbNeighboursNotConv = 0 then
18: BroadcastVerification()
19: Node ← Leader
20: state ← Veri f ication
21: Wait for an acknowledge message from each neighbor
22: if received an acknowledge message from each neighbor then
23: Save Convergence Data on neighbors
24: end if

25: else

26: if NbNeighboursNotConv = 1 then
27: Send convergence message to the neighbor that did not converge
28: Wait for an acknowledge message from the neighbor
29: if received an acknowledge message from the neighbor then
30: state ← WAIT f orVeri f ication
31: Save Convergence Data on neighbors
32: end if

33: end if

34: end if

35: end if

36: end if

37: else

38: if state = WAIT f orVeri f ication then

39: if pseudoConvergence = f alse then
40: localConvergence ← f alse
41: Save Convergence Data on neighbors
42: end if

43: else

44: see that part on page 72...
45: end if

46: end if
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Algorithm 3.4 DetectGlobalConvergence(pseudoConvergence) (2/2)

47: if (state = NORMAL and action = nothing) or state = WAIT f orVeri f ication then

48: see that part on page 71...
49: if state = Veri f ication then

50: if node = leader then
51: if pseudoConvergence = f alse or localConvergence = f alse or received a negative

response then
52: Broadcast a negative verdict
53: Reinitialize the convergence variables
54: Wait for an acknowledge message from each neighbor
55: if received an acknowledge message from each neighbor then
56: Save Convergence Data on neighbors
57: end if

58: else

59: if PseudoPeriod = true and received positive responses from all neighbors then
60: Broadcast a positive verdict
61: state ← Finished
62: Wait for an acknowledge message from each neighbor
63: if received an acknowledge message from each neighbor then
64: Save Convergence Data on neighbors
65: end if

66: end if

67: end if

68: else

69: if node did not send a response yet then
70: if pseudoConvergence = f alse or localConvergence = f alse or received a negative

response then
71: if action = nothing then

72: Send a negative response to the neighbor that sent the verification message
73: Wait for an acknowledge message from the neighbor
74: if received an acknowledge message from the neighbor then
75: Save Convergence Data on neighbors
76: end if

77: end if

78: else

79: if PseudoPeriod = true and received positive responses from all neighbors ex-
cept one then

80: Send a positive response to the neighbor that did not send a response
81: Wait for an acknowledge message from the neighbor
82: if received an acknowledge message from the neighbor then
83: Save Convergence and computing Data on neighbors
84: end if

85: end if
86: end if

87: end if

88: end if

89: end if

90: else

91: if state = FINISHED then

92: globalConvergence ← true
93: end if

94: end if
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Algorithm 3.5 Reception methods

procedure: ReceiveConvergence()

1: if reloading = f alse and action=nothing then

2: NbNeighboursNotConv ← NbNeighboursNotConv − 1
3: Save convergence data on its neighbors
4: Return an acknowledgment message to the sender
5: end if

procedure: ReceiveVerification()

1: if reloading = f alse then
2: if state = WAIT f orVeri f ication then

3: action ← SendVeri f ication
4: Initialize variables for verification phase
5: state ← Veri f ication
6: Save convergence data on its neighbors
7: Return an acknowledge message to the sender
8: end if

9: end if

procedure: ReceiveResponse(Response)

1: if reloading = f alse then
2: Store the response in the response vector
3: Save convergence data on its neighbors
4: Return an acknowledge message to the sender
5: end if

procedure: ReceiveVerdict(verdict)

1: if reloading = f alse then
2: if verdict = true then
3: state ← FINISHED
4: else

5: Reinitialize convergence variables
6: end if

7: action ← SendVerdict
8: Save convergence data on its neighbors
9: Return an acknowledge message to the sender

10: end if
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Chapter 4

Solving Numerical Problems on
Volatile Architectures

4.1 Introduction

In this chapter, we present our experimental work which is decomposed into two cat-

egories. The first one is dedicated for testing and evaluating the performances of the

JACEP2P-V2 platform by executing large parallel iterative asynchronous applications

over volatile heterogeneous architectures. Moreover, we compare the performances

of JACEP2P-V2 to those of the previous version. The aim of these experiments was to

prove the efficiency, the robustness and the scalability of JACEP2P-V2. Since this en-

vironment is dedicated to executing AIAC algorithms, the experiments, listed above,

are composed of applications implemented according to this model. In the second

part of the experimental work, we tackle our initial objective which is to solve linear

and non linear systems over distributed volatile architectures. Therefore we evaluate

some resolution methods that solve these problems. In particular, we concentrate

our research on the Waveform Relaxation method [55, 67] which solves initial values

problems and is compatible with the asynchronous iteration model. However, since

this method has not been tested on distributed architectures before, we have first of all

evaluated its performance in such environments by comparing it to the PVODE [24]

solver. The method was implemented in C in order to have a fair comparison with

the PVODE solver which is written in C. Since the results obtained in these experi-

ments were encouraging, we have pursued our research on the Waveform Relaxation

method. We have implemented it according to the asynchronous iteration model

and we have ported the code to Java in order to execute it over JACEP2P-V2 because

it is the only platform capable of executing iterative parallel asynchronous applica-

tions over volatile and distributed architectures. To evaluate the performance of the

asynchronous Waveform Relaxation method over distributed volatile architectures,

we compared it to the asynchronous Multisplitting-Newton method [17] which also

solves initial value problems is compatible with the asynchronous iteration model.
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The results showed the efficiency of the asynchronous Waveform relaxation method

in distributed volatile environments.

The rest of this chapter is organized as follows: in the next section, we describe

in details the different resolution methods used to solve linear and nonlinear equa-

tion systems. In particular, we present the PVODE solver, the Multisplitting-Newton

method (for nonlinear systems), the Multisplitting method [13] for linear systems (cou-

pled with the Conjugate Gradient method) and the Waveform Relaxation method. In

the third section, we present the three problems that we tried to solve in our experi-

ments using various resolution methods. These problems are: the advection-diffusion

problem, the reaction-diffusion problem and the NAS Parallel Benchmark (with the

Conjugate Gradient test). The experiments and their results are presented in the fourth

section. As explained above, they are decomposed into two parts. In the first one,

we evaluate the performances of JACEP2P-V2 over volatile environments. In the sec-

ond part, we compare at first PVODE to the Waveform Relaxation method in a stable

high latency environment because PVODE is not fault tolerant. Then we compare the

Multisplitting-Newton method to the Waveform Relaxation method while executing

both methods over volatile high latency environments using JACEP2P-V2.

4.2 The resolution methods

As mentioned before, we are interested in solving differential equations which arise

from the simulation of physical and natural phenomena. In particular we focus on

large differential equations, in a distributed cluster environment. There are two types

of differential equations, the ordinary differential equations and the partial differential

equations. An ordinary differential equation (ODE) is a relation that contains functions

of only one independent variable, and one or more of its derivatives with respect to

that variable.

Let y be an unknown function of x.

y : R→ R

An ODE of order n involving y has the form:

F(x, y, y′, y′′, . . . , y(n)) = 0

where y
′
= dy/dx is the first derivative with respect to x, and y(n) = dny/dxn is the

nth derivative with respect to x.

An ODE dependent of time is called a non stationary ODE or an initial value problem

(IVP). An initial value problem of order n has the following general form:

F(t, y, y′ , y′′, . . . , y(n)) = 0 y(t0) = y0
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where y is a function of t, t0:initial time and y0:initial values.

A partial differential equation (PDE) is an equation involving functions and their

partial derivatives. For example, the wave equation is a PDE and it has the following

form:
∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2
=

1

v2
∂2ψ

∂t2

To solve a PDE, we can use the method of lines (“MOL”) [64] which approximates the

PDE with a large ODE by discretizing the partial derivatives. In the next paragraphs

we present some techniques for solving ODE systems:

4.2.1 PVODE

PVODE is a parallel solver for large systems of ordinary differential equations in a dis-

tributed low latency environment. It is an extension of the sequential package known

as CVODE [28] which has been widely distributed and used. The parallelization of

CVODE to PVODE was accomplished through the modification of the vector kernels,

allowing the solver to operate on vectors that have been distributed across proces-

sors. The message passing calls between nodes are made through MPI [58]. Although

PVODE contains many methods for the resolution of both stiff and non-stiff IVPs, the

standard approach to solve ODE systems is based on three steps:

• Converting the differential equations describing the system into a sequence of

non-linear algebraic equations, using the Adams-Moulton Formula [25] to inte-

grate non-stiff problems and the Backward Difference Formula (BDF) [52] for stiff

ones.

• Transforming the non-linear algebraic equations into a sequence of linear prob-

lems using amodifiedNewtonmethod for systems converted by the BDFmethod

or using a functional method for the ones generated by the Adams-Moulton in-

tegration.

• Solving the system of linear equations with Gaussian Elimination like methods

or iterative ones.

To parallelize this method, the system of linear equations is solved with a parallel

solver where each node have to communicate with its neighbors when computing

boundaries’ values. Thus, as shown in [51], this method is fine grained. It synchro-

nizes at each internal step. Therefore, if the implementation of this method is executed

over an architecture that suffers from high latency communications, the performance

of this method is severely reduced due to the extremely penalizing and frequent syn-

chronizations, and communications.



78 Solving Numerical Problems on Volatile Architectures

4.2.2 The Waveform Relaxation method with Euler

First of all we describe the Euler method which can be used with the Waveform Re-

laxation method to solve nonlinear systems. Then, we present the coupling of the

Waveform Relaxation method with the Euler method.

4.2.2.1 the Euler method

The Euler method is a first order numerical sequential procedure for solving ordinary

differential equations (ODEs) with a given initial value. Consider the ordinary differ-

ential equation:

du(t)

dt
= f (u(t), t) (4.1)

in which u(t) is the mesh points vector and f is a nonlinear function. We can solve this

differential equation by approximating the left hand of the equation, using the explicit

Euler method which produces the equation:

u(t + DT) = DT ∗ f (u(t), t) + u(t) (4.2)

where DT is the discrete fixed time step and u(t + DT) is the vector u at time t + DT.

This method can be parallelized according to synchronous models. However, the

resulting fine grained parallel methods are not adapted for heterogeneous distributed

and volatile architectures. An alternative is to couple theWaveform Relaxationmethod

with Euler to develop a coarse grained parallel iterative algorithm that solves ODEs

and that is well suited to such architectures.

4.2.2.2 The Waveform Relaxation method coupled with Euler

In the early 1980’s, the Waveform Relaxation method (WR) was introduced by E.

Lelarasmee as an efficient parallel iterative method for solving large sparsely coupled

differential equations systems that are generated by the simulation of integrated

circuits. Since then, this method has been extended and applied to various other

application areas. With the WR approach, the system of equations is decomposed

spatially into sets of equations. Each set is solved iteratively by using values from

previous iterations: each computing unit integrates its equations on the whole time in-

terval without communicating with its neighbors. At the end of an iteration, each task

exchanges with its neighbors its boundaries’ values which are used in the evaluation

of the next iteration. This procedure is executed iteratively until the solution vector

converges to a stable solution.

The convergence of Waveform Relaxation methods is generally slow and often the

parallel execution gain is not sufficient to compensate for the slowness of the conver-

gence. However, there are different methods to accelerate this convergence. Among
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them, the most usable schemes are the overlapping [53] and the windowing [69]

concepts.

Overlapping: with this technique every node computes a small number of compo-

nents already allocated to its neighbors, so that each node solves additionally to its

own components a percentage of the components computed by its neighbors. This re-

dundancy helps minimizing the error on the extremity points that depend on the un-

available results of the neighbor’s frontier components. Figure 4.1 shows how the divi-

sion of the components vector and the data exchanges between the nodes are changed

if the overlapping concept is applied: each node has a small percentage of its neighbors

components added to its initial components (which is illustrated by doted lines) and

each node transfers the components of index equal to l + 2 ∗ overlap for left boundary

and r− 2 ∗ overlap for right boundary, with overlap equal to the number of components

added to the initial local components vector, r the index of the right boundary and l the

index of the left boundary. The benefits of this concept have been illustrated in [22].

System’s components

initial components overlapping components boundaries points to send

Processor 4Processor 3Processor 2Processor1

Without overlapping

With overlapping

l l+2*

overlap
r−2*

overlap

r

Figure 4.1: The decomposition of the system with/without overlapping. The doted
lines simulate the overlapping and the arrows simulate the data exchanges.

Windowing: usually, using the Waveform Relaxation method, we integrate the

ODE on the whole time interval at each iteration. This procedure slows down the

convergence rate of the method because in contrast with PVODE, every node inte-

grates its equations on a long time interval without communicating with its neighbors,

using only the given initial values. A natural solution to this problem is to divide the

time interval into windows and iterate on each window until convergence. After each

iteration on a window, every node sends its new boundary values to its neighbors.

Figure 4.2 displays an ODE system divided between four nodes and the time interval

is divided at least into two windows.

Although both concepts are efficient in accelerating the convergence rate of the WR

method, it is very difficult to initially choose the amount of overlapping or the size
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of a window that gives the optimal results, i.e. a faster convergence. Note that some

works have attempted to create an adaptive windowing, but we do not focus on this

approach in this document.

Many methods can be coupled with the WR method to integrate the system on

each time step. At first, we used the sequential solver found in the CVODE package

but we had some convergence problems when we tried to solve large ODEs using a

lot of computing nodes. These problems resulted from the adaptative discretization

scheme adopted in CVODE and the heterogeneity of the subproblems being solved on

each node. Indeed, since the boundaries’ values change at each window, CVODE is

unable to well approximate the solution vector. Therefore, we used the explicit Euler

method to solve this problem. This method proved to be efficient in terms of precision

and performance in solving large differential equations when coupled with WR.

2nd Window

1st Window

4 DT

3 DT

2 DT

DT

1st processor’s eq 2nd processor’s eq 3rd processor’s eq 4th processor’s eq

convergence
Iterates until 

Figure 4.2: The windowing concept in the WRmethod: the system is equally split into
four subsystems and the time interval is divided into several windows where each
window contains multiple DTs

Algorithm 4.1 illustrates the main steps of the asynchronous Waveform Relaxation

method coupled with Euler. Once the system has been initialized, the time interval

is decomposed into windows. For each window, an iterative procedure is applied:

the window is decomposed into fixed small time steps DT. Each computing units,

integrates the system on each DT using the Euler method. Then the new boundaries

values are stored in a buffer. After integrating the system on the whole window, the

boundaries values, stored in the buffer at each DT, are exchanged between neighbors.

Then, each computing unit integrates the system again on the same timewindowwhile

using the received values. This procedure is repeated until the system converges to the

solution. Once the convergence is reached, in conformity with the chosen threshold, it

begins integrating the system on the next time window.
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Algorithm 4.1 The asynchronous Waveform Relaxation-Euler algorithm

1: Split the system’s components between the computing nodes
2: Add the overlapped components to the local components
3: uLoc = array containing the local components
4: Set initial values
5: for Each window in the considered time interval do
6: Copy uLoc into olduLoc
7: repeat

8: for Each step of the current window do
9: Compute the values of the local components using the received boundaries values

and uLoc{in our algorithm using the explicit Euler method}
10: Store the new boundaries values in a buffer
11: Compute the local error
12: end for

13: Send asynchronously the stored boundaries values to neighbors
14: Non blocking reception for boundaries values from neighbors
15: Global convergence detection
16: ifNot converged then

17: Copy olduLoc into uLoc
18: end if
19: until Global convergence
20: end for

4.2.3 The Multisplitting-Newton method

In this section, we first of all describe the Newton method which could be used in con-

junction with the Multisplitting method to solve nonlinear systems. Then, we present

the Multisplitting-Newton method which is a parallel iterative method, compatible

with the asynchronous iteration model.

4.2.3.1 The Newton method

To solve equation (4.1), we can also use an implicit time integration method that trans-

forms the system into:

u(t + DT)− u(t)

DT
= f (u(t + DT), t + DT), (4.3)

where DT is a fixed time-step.

The main differences between the explicit and the implicit methods is that the

explicit methods calculate the state of a system at a later time from the state of the

system at the current time (like in Equation 4.2), while implicit methods find a solution

by solving an equation involving both the current state of the system and the later one

(like in Equation 4.3). It is clear that implicit methods require more computation than

explicit methods (solving the equation), and they can be much harder to implement.
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However, implicit methods are often used because many problems arising in real life

are stiff, for which the use of an explicit method requires impractically small time

steps to keep the error in the result bounded. For such problems, to achieve a given

accuracy, it takes much less computational time to use an implicit method with larger

time steps. That said, whether one should use an explicit or implicit method depends

upon the problem to be solved.

The solution to the nonlinear system 4.3 is computed using the standard Newton

method. This approach leads to an iterative scheme, given an initial approximation u0:

J ∗ dk+1 = −F(uk) (4.4)

where J is the Jacobian matrix of F(uk) (the Jacobian matrix is the matrix of all first-

order partial derivatives of a vector-valued function with Jij = ∂Fi(u)
∂uj

), dk+1 = du(t +

DT)k+1 and F(uk) = F(u(t + DT)k, u(t), t) = u(t) + DT ∗ f (u(t + DT)k, t + DT) −
u(t + DT). For more information, the reader can refer to [14].

Solving the equation (4.4) is equivalent to finding the solution of a linear system

at each iteration. One can notice that the Jacobian matrix is sparse. In practice, the

quasi-Newton method is preferred. It consists in computing the Jacobian matrix only

at the first iteration of a given time step in order to reduce the execution time, since this

part is often very time consuming. However, the quasi-Newton may require a slightly

higher number of iterations than the Newton method to converge.

From a parallel point of view, two approaches are possible. The first one consists in

using a parallel sparse linear solver. In this case, a synchronization is required at each

Newton iteration and unless using an asynchronous sparse linear solver, synchroniza-

tions are required between each iterations of the solving process. The alternative is

called the Multisplitting-Newton method. It is described below.

4.2.3.2 The Multisplitting-Newton method

The asynchronous Multisplitting-Newton method (MN) has some similarities with

block decomposition techniques. The principle is to split the initial domain into sev-

eral sub-domains in order to assign one of them to each computing unit involved in

the parallel computation. In our case, the Multisplitting-Newton algorithm allows us

to solve equation (4.4) in parallel.

The Multisplitting-Newton’s decomposition is illustrated in figure 4.3. In fact, the

Jacobian matrix is split into blocks and du and F are decomposed in a compatible man-

ner and are respectively called dLoc and FLoc (because each part is a local one assigned

to a computing unit). Dependencies on the left and the right, illustrated by parts with

0 in the figure, can be ignored since those parts of the Jacobian are taken into account

in the right hand side. This solution has the advantage of ignoring large parts of the

Jacobian matrix which simplifies its implementation.
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Figure 4.3: the decomposition of the Jacobian matrix, vector solution and function in
the Multisplitting-Newton method.

Algorithm 4.2 The asynchronous Multisplitting-Newton algorithm

1: oldu = Array containing vector u at the previous iteration
2: uLoc = Array containing local components
3: -FLoc = Local part of the function used to approximate the ODE
4: JLoc = Local part of the Jacobian matrix
5: dLoc = Local part of du, the solution of the linear system obtained with Newton
6: Initialization of variables, especially oldu and uLoc
7: for each step of the considered time interval do
8: repeat

9: Computation of boundary conditions if processor is concerned
10: Computation of the Jacobian matrix JLoc at the first iteration with -FLoc, uLoc and

oldu
11: Computation of FLoc with uLoc and oldu
12: dLoc=LinearSolver(JLoc,-FLoc)
13: uLoc=uLoc+dLoc
14: Send asynchronously the boundaries values to neighbors
15: Non blocking reception for boundaries values from neighbors
16: Global convergence detection
17: until Global convergence
18: Copy uLoc into oldu
19: end for

Algorithm 4.2 summarizes the main ideas of the Multisplitting-Newton algorithm.

After the initialization part, the main loop is executed until the considered simulation

time is reached. For each time step, the algorithm iterates on the Newton process.

At each iteration the computing process applies, if necessary, the boundary conditions.

This algorithm uses the quasi-Newton method, therefore it only computes the Jacobian

matrix at the first iteration. Afterward, FLoc is computed using both arrays uLoc and
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oldu. As explained previously, the exchanged vector between neighbors is not du but

u. That is why, in the algorithm, the vector u at the previous iteration (oldu) is not a

local vector, since it contains values computed by some neighbors. The following step

allows the algorithm to solve the local linear system composed of the Jacobian matrix

and FLoc. The solution is used to set up the value of the vector uLoc.

Once the convergence is reached, in conformity with the chosen threshold, values

of uLoc are copied into oldu at the right location. For each time step the quasi-Newton

method is applied, resulting in the computation of the solution of the ordinary differ-

ential equation.

4.2.4 The Multisplitting method for linear systems

In this section we describe the association of Multisplitting method with the the Conju-

gate Gradient method to solve linear systems. The resulting parallel iterative method

uses the Multisplitting concept to decompose the linear system and then each subsys-

tem is solved using the sequential Conjugate Gradient method. This method is also

compatible with the asynchronous iteration model.

4.2.4.1 The sequential Conjugate Gradient

The Conjugate Gradient (CG) belongs to both minimization and projection methods.

It solves systems of linear equations (Ax = b where the n× n matrix A is symmetric

positive definite, the unknown vector x and right hand vector b are of dimensions n).

At each iteration, x(k+1) is updated in the following way:

x(k+1) = xk + α(k+1)p(k+1) (4.5)

where α(k+1) is a multiple of the search direction vector p(k+1) and α(k+1) =

(r(k), r(k))/(Ap(k+1) , p(k+1)) ((a, b) denotes the scalar product of vector a and b).

The residual vectors are updated in the same way:

r(k+1) = rk + α(k+1)q(k+1) (4.6)

where q(k+1) = Ap(k+1). Now the search directions are updated as follows: p(k+1) =

r(k+1) + β(k)p(k) where β(k) = (r(k), r(k))/(r(k−1) , r(k−1)). This process iterates until a

given threshold is reached. Clearly, at each iteration, two inner products and one

matrix-vector product are required. It is shown in [68] that this last operation rep-

resents about 90% of the total computation time.

4.2.4.2 The Multisplitting-Conjugate Gradient method

In the multisplitting-Conjugate Gradient parallel method, the A matrix is split into

horizontal rectangle parts (see figure 4.4). Each of these parts is then affected to a pro-

cessor. In this way, a processor is in charge of computing its XSub part by solving the
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following subsystem: ASub ∗ XSub = BSub− DepLe f t ∗ XLe f t −DepRight ∗ XRight.

XSub must then be sent to other processors which depend on it.

DepLeft DepRight

X
Left

X
R

ight

ASub

X
S

ub

B
S

ub

Figure 4.4: The decomposition of the system using the Multisplitting method for linear
systems

The method can be decomposed into four phases:

1. Data decomposition. In this phase, data are allocated to each processor assum-

ing the decomposition exposed in figure 4.4. Then, each processor iterates until

convergence on the following phases.

2. Computation. Firstly, each processor computes BLoc = BSub − DepLe f t ∗
XLe f t − DepRight ∗ XRight. Then, it solves ASub ∗ XSub = BLoc by using a

sequential version of the Conjugate Gradient method.

3. Data exchange. Each processor sends its XSub part to its neighbors. Here, the

neighborhood is closely related to the density of the A matrix. Clearly, a dense

matrix implies an All-to-all communication scheme while a matrix with a small

bandwidth reduces the density of the communication scheme.

4. Convergence detection. Each processor computes its local convergence and de-

pending on the type of the global convergence detection method that is applied

the global convergence can be detected in a centralized or decentralized manner.

It is possible to modify the data decomposition in order to obtain non disjoint rect-

angular matrices, to apply the overlapping concept, in order to improve the conver-

gence speed.

4.3 The problems studied in the experiments

In this section we present the problems solved in the experiments using JACEP2P-V2.
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4.3.1 The Advection-Diffusion problem

The Advection-Diffusion equation represents mathematically the transport processes

of pollutants, salinity, and so on, combined with their bio-chemical interactions. It

follows an initial boundary value problem for a nonlinear system of PDEs, in which

nonlinearity only comes from the bio-chemical interspecies reactions.

4.3.1.1 Mathematical description

A system of 3D advection-diffusion-reaction equations has the following form:

∂c

∂t
+ A (c, a) = D (c, d) + R (c, t) (4.7)

where c denotes the vector of unknown species concentrations, of length m, and the

two vectors

A (c, a) = [J (c)]× aT, (4.8)

D (c, d) = [J (c)]× d×∇T, (4.9)

respectively define the advection and diffusion processes (J (c) denotes the Jacobian

of c with respect to (x, y, z)). The local fluid velocities u, v and w of the field a =

(u, v,w) and the diffusion coefficients matrix d are supposed to be known in advance.

A simulation of pollution evolution in shallow seas is obtained if a is provided by a

hydro-dynamical model. The chemical species dynamic transport is defined by both

advection and diffusion processes, whereas the term R includes interspecies chemical

reactions and emissions or absorption from sources.

Following a common approach, R (c, t) can be expressed using production and loss

terms, denoted respectively by P and L:

R (c, t) = P (c, t)− L (c, t) . (4.10)

Both terms can be further refined:

P (c, t) = PI (c, t) + PS (t) ,

L (c, t) = (LI (c) + LS (t))× c.

While, the terms P and L indexed by I denote the contributions (emission and absorp-

tion) from chemical interspecies reaction, the contributions from sources are indexed

by S.

As we consider a test problem in three spatial dimensions, reduced to two chemical

species, the system described by Equation (4.7) becomes a system of two PDEs:

(

∂c1

∂t
∂c2

∂t

)

+

( ∇c1 × a

∇c2 × a

)

=

( ∇ ·
((

∇c1
)

× d
)

∇ ·
((

∇c2
)

× d
)

)

+

(

R1(c, t)

R2(c, t)

)

, (4.11)
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where ∇c is the space derivative of vector c and matrix d satisfies

d =





ǫ(x) 0 0

0 ǫ(y) 0

0 0 ǫ(z)



 , (4.12)

and the vector function R (c, t) is defined according to:

• production terms PI and PS:

PI (c, t) =

(

q4 (t) c2

q1c
1c3

)

, PS (t) =

(

2q3 (t) c3

0

)

, (4.13)

• loss terms LI and LS:

LI (c) =

(

0 q2c
1

q2c
2 0

)

, LS (t) =

(

q1c
3 0

0 q4(t)

)

. (4.14)

Clearly, the coupling of the two PDEs is induced by the reaction term R.

As far as transport is concerned, in this work vertical advection (dimension z) is

neglected, and the velocity field vector a is supposed to have a constant value. Hence,

a is given by:

a = (u, v,w) = (−V,−V, 0) , (4.15)

with V = 10−3. Regarding diffusion coefficients, horizontally they are positive con-

stants, whereas the vertical ones vary. Thus we have a matrix d of the form:

d =





Kh 0 0

0 Kh 0

0 0 Kv(z)



 , (4.16)

where Kh = 4.0× 10−6 and Kv(z) = 10−8× exp
(

z
5

)

.

For the reaction term (apart from the two unknown concentrations of the contam-

inants, i.e. c1 and c2), the different quantities in equations (4.11)-(4.14), are chosen as

follows:

• c3 = 3.7× 1016, q1 = 1.63× 10−16 and q2 = 4.66× 10−16,

• q3(t), q4(t) are chosen according to (j = 3, 4),

qj(t) = exp
[ −aj
sin(ωt)

]

if sin(ωt) > 0,

qj(t) = 0 if sin(ωt) ≤ 0,
(4.17)

using the following parameters: ω = π/43200, a3 = 22.62 and a4 = 7.601.

For more information concerning the mathematical description of the problem

the reader can refer, for example to [66]. On the other hand, for more information

concerning the implementation of the problem, we can cite [48].
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4.3.2 The reaction-diffusion system

A reaction-diffusion system describes how the concentration of one or more sub-

stances, distributed in space, changes under the influence of two processes: local

chemical reactions in which the substances are converted into each other, and dif-

fusion which causes the substances to spread out in space. The reaction-diffusion

system, also known as the Diffusion Equation [47], has the following form:

∂u

∂t
= B + u2v− (A + 1)u + α

∂2u

∂x2

∂v

∂t
= Au− u2v + α

∂2v

∂x2

In our experiments, A = 3, B = 1 and α = 1/50.

Here u and v denote chemical concentrations of reaction products, A and B are con-

centrations of input reagents which are taken to be constant and α = d
L2

where d is a

diffusion coefficient and L a reactor length. To solve this problem, we apply the MOL

technique and we obtain a large ODE.

4.3.3 The NAS parallel benchmark 3.0

The Numerical Aerodynamic Simulation (NAS) program, which is based at the NASA

Ames research center, has developed a set of benchmarks, called the NAS parallel

benchmarks [29], that are dedicated to the performance evaluation of highly parallel

supercomputers. These benchmarks consist of five parallel kernels and three simulated

application benchmarks. All details of these benchmarks are only specified algorithmi-

cally in order to make them independent of programming languages and distributed

architectures constraints. The user implementing the benchmarks on a given system

is expected to solve the various problems in the most appropriate way for the specific

system. The choice of data structures, algorithms, processor allocation and memory

usage are all (to the extent allowed by the specification) left open to the discretion of

the implementer.

In our experiments, we solved the Conjugate Gradient benchmark using the Mul-

tisplitting method (coupled with a sequential Conjugate Gradient method) which is

adapted to the asynchronous iteration model. It uses a conjugate gradient method to

compute an approximation of the smallest eigenvalue of a large, sparse, symmetric

positive definite matrix with a random pattern of nonzeros. This kernel is typical of

unstructured grid computations in that it tests irregular long distance communication,

employing unstructured matrix vector multiplication.
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4.4 Experimentations

In this section we present our experimental work which is divided into two parts.

In the first subsection, we present some experiments that compare JACEP2P-V2 to

JACEP2P and show the efficiency, scalability and robustness of JACEP2P-V2. In par-

ticular, we compare the two platforms while solving the 3D advection-diffusion prob-

lem over a local cluster and over distributed clusters and we test the scalability of

JACEP2P-V2 by solving a large 3D advection-diffusion problem with a large number

of computing units. Finally, we solve the CGNASBenchmark over JACEP2P-V2which

shows its compatibility with different problems. In the second subsection, we evaluate

some resolution methods that solve initial value problems. In particular, we concen-

trate our research on the Waveform Relaxation method which is compatible with the

asynchronous iteration model. However, since this method has not been tested on

distributed architectures before, we have first of all evaluated its performance in such

environments by comparing it to the PVODE solver. The methods were implemented

in C in order to have a fair comparison with the PVODE solver which is written in C.

Since the results obtained in these experiments were encouraging, we have pursued

our research on the Waveform Relaxation method. We have implemented it accord-

ing to the asynchronous iteration model and we have ported the code to Java in order

to execute it over JACEP2P-V2 because it is the only platform capable of executing it-

erative parallel asynchronous applications over volatile and distributed architectures.

To evaluate the performance of the asynchronous Waveform Relaxation method over

distributed volatile architectures, we compared it to the asynchronous Multisplitting-

Newton method. The results showed the efficiency of the asynchronous Waveform

relaxation method in distributed volatile environments. Most of the experiments were

conducted over the Grid’5000 platform described in Section 1.3.

4.4.1 Comparison between JACEP2P and JACEP2P-V2

4.4.1.1 First experiment: local cluster

In this experiment, we compare JACEP2P (with the decentralized convergence de-

tection algorithm) to JACEP2P-V2 while solving the advection-diffusion 3D problem

using the Multisplitting-Newton method. This application solves a system contain-

ing 405,224,000 components and that simulates a 90 seconds time interval. 252 bi-

processors computing units, located in Orsay, were used to run this application. The

computing nodes were equipped with 2 AMD Opteron 246 2.0GHz or 250 2.4GHz

processors. To prove that both platforms are fault tolerant, we used a shell script that

randomly kills three computing nodes each n seconds and launches again the dead

daemons after a short period of time.

The results for this set of experiments are presented in table 4.1. It shows the ex-

ecution times taken by JACEP2P and JACEP2P-V2 to solve the problem with various
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The frequency of the 3 crashes: n ∞ 90 60 30
Execution time for JACEP2P 522s 873s 1003s 1611s

Total number of crashes for JACEP2P 0 30 51 159
Execution time for JACEP2P-V2 495s 565s 595s 744s

Total number of crashes for JACEP2P-V2 0 18 28 68

Table 4.1: Execution time taken to solve the 3D advection-diffusion problem using 252
machines located on a single site and while killing 3 random computing nodes every
n seconds

frequencies of nodes crashes. It is clear that JACEP2P-V2 outperforms JACEP2P in

each category. We also notice that JACEP2P-V2 is less affected than JACEP2P by the

disconnection of computing nodes. Indeed, when the computing nodes disconnect fre-

quently, JACEP2P suffers a lot because of the centralized nature of some of its compo-

nents. On the other hand, with the JACEP2P-V2’s decentralized dead nodes detection,

the dead nodes are detected faster by their neighbors and thus they are quickly re-

placed by new ones to continue their tasks. Although during the recovery the daemon

has to reinitialize the task which for some problems could be highly time consuming,

thanks to the newly implemented mechanisms the influence of crashes on the perfor-

mance of JACEP2P-V2 platform is drastically reduced.

4.4.1.2 Second experiment: distributed clusters

In this second set of experiments, we aimed at simulating a global computing archi-

tecture which has the following characteristics: large number of heterogeneous com-

puting units, high latency communications and volatile nodes. So, we used the same

number of computing nodes but this timewe have chosen them from three distant sites

in order to have heterogeneous computing nodes. Moreover, the latency between two

nodes from distinct sites is superior to the one between two nodes located on the same

site, thus the latency of the communications is also heterogeneous. The computing

nodes were selected from the following sites:

• The site of Nancy where each computing unit is equipped with 2 dualcores 1.6

GHz Intel Xeon 5110.

• The site of Sophia Antipolis (Nice) where each computing unit is equipped with

2 processors AMD Opteron 246 2.0GHz

• The site of Orsay (Paris) which is described in the first experiment.

We executed the same application as in the first experiment using JACEP2P and

JACEP2P-V2. We have also simulated the volatility of the computing nodes by using

the same perturbator script. However in this experiment, the script killed one daemon
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on each site each n seconds. The results for this set of experiments are presented

in table 4.2. As in the previous experiment, JACEP2P-V2 outperforms JACEP2P, in

particular when the environment is highly volatile. Moreover, the crashes’ overhead

is totally acceptable in JACEP2P-V2. These experiments prove that the modifications

implemented in JACEP2P improve its performance on volatile architectures that suffer

from high latency between computing nodes. Finally, if we compare the execution

times between the first and the second experiment, we notice that the problem is

solved a little bit faster on a single cluster than on distributed clusters. This is caused

by the higher communications’ latency and resources’ heterogeneity in the distributed

clusters’ architectures.

The frequency of the 3 crashes: n ∞ 90 60 50
Execution time for JACEP2P 565s 1438s 2008s 2050s

Total number of crashes JACEP2P 0 48 100 122
Execution time for JACEP2P-V2 581s 624s 632s 663s

Total number of crashes JACEP2P-V2 0 19 30 38

Table 4.2: Execution time taken to solve the 3D advection-diffusion problem using
252 machines located on 3 distant sites and while killing one computing node every n
seconds at each site

4.4.1.3 Third experiment: the scalability test

To test the scalability of JACEP2P-V2, we tried to solve a large problem using a huge

number of nodes. We executed an application that solves the advection diffusion 3D

problem. The system contained 512,000,000 components and simulated a 90 seconds

time interval with a relative convergence threshold equal to 10−11. We used 392 ma-

chines (as a single user) to solve this problem. These computing units were located on

the following three sites:

• Site 1 (Nancy), where we used two clusters, in the first one, each machine is

equippedwith 2 dualcore 1.6 GHz Intel Xeon 5110 and in the second one they are

equipped with 2 processors AMD Opteron 246 2.0GHz.

• Site 2 (Sophia), where we used three clusters. In the first one each machine is

equipped with 2 processors AMD Opteron 246 2.0GHz, the second one is com-

posed of machines containing 2 dualcore processors AMD Opteron 275 2.2GHz

and the third one is formed of machines containing 2 dualcore processors AMD

Opteron 2218 2.6GHz.

• Site 3 (Orsay), the computing nodes are equipped with 2 AMD Opteron 246

2.0GHz processors or with 2 AMD Opteron 250 2.4GHz processors.
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The total number of cores used in these experiments exceeds 1000 cores. This experi-

ment was only conducted using JACEP2P-V2 because JACEP2P was unable to handle

the huge number of computing nodes, due to its centralized mechanisms. The results

for this set of experiments are presented in table 4.3.

The frequency of the crashes: n ∞ 30 20 10
Execution time 591s 660s 682s 763s

Total number of crashes 0 20 31 67

Table 4.3: Execution time taken to solve the 3D advection-diffusion problem, composed
of 512,000,000 components, using 392 machines located on 3 distant sites and while
killing a random computing node every n seconds

As shown in table 4.3, JACEP2P-V2 handles well the huge number of computing

nodes. Moreover, it resists to nodes crashes. Indeed, if a daemon crashes, the platform

replaces the dead daemon with a new one that could be located in a different site

or cluster. This new node continues the task from the last checkpoint. Furthermore,

the spawners in JACEP2P-V2 share the load between them and their number can be

increased in order to support more computing nodes. From an experimental point of

view, JACEP2P-V2 is much more scalable than its previous versions and this due to its

decentralizedmechanisms (global convergence detection, failure detection and backup

mechanisms). Finally, we notice that the frequent crashes do not reduce significantly

the performance of JACEP2P-V2 (the fault management overhead is acceptable).

4.4.1.4 Fourth experiment: the NAS parallel benchmark CG

aThe NAS parallel benchmark CG consists in a number of steps, each one of them call-

ing the iterative multisplitting method which also uses a sequential conjugate gradient

algorithm. When the system converges internally, each computing node executes three

reduction operations using data from all the computing nodes. Moreover, we have re-

duced thematrix bandwidth (illustrated in Figure 4.5) to reduce some of the computing

dependencies. The sparse bands contain the nonzero values, but since they are sparse,

they also contain components with zero values. For more details on the resolution of

this problem, interested readers can refer to [13].

We have implemented this method to test the decentralized global convergence de-

tection mechanism that computes at the same time the reduction functions. In the past

when executing this application, the computing nodes had to synchronize three times

at the end of each step to compute these reduction functions. With this new mecha-

nism, the computing nodes do not have to synchronize at all. In this experiment, we

solved a large problem containing 20,000,000 components and the application com-

puted only six steps with a relative convergence threshold equal to 10−14. We only
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Figure 4.5: The bandwidth of a input matrix in the NAS CG experiment.

used 200 machines (as a single user) because this application consumes a lot of mem-

ory and requires machines equipped with more than 2GB of RAM which are not easy

to reserve on Grid’5000 due to their small number compared to the the great number

of users. These computing units were located on the following three sites:

• Site 1 (Rennes), where we used two clusters, all the machines are equipped with

2 dualcore processors Intel Xeon 5148 LV 2.33GHz.

• Site 2 (Sophia), where we used two clusters, their specifications are presented in

the third experiment.

• Site 3 (Bordeaux), each machine is equipped with 2 dualcore processors AMD

Opteron 2218 2.6GHz

The frequency of the crashes: n ∞ 30 20 10
Execution time 304s 457s 515s 545s

Total number of crashes 0 16 25 52

Table 4.4: Execution time taken to solve the NAS parallel benchmark CG, composed of
20,000,000 components, using 200 machines located on 3 distant sites and while killing
a random computing node every n seconds

Table 4.4 presents the execution time taken for solving the problem with different fre-

quencies of crashes. JACEP2P-V2 has computed the reduction functions at the end

of each step without any synchronization between computing nodes. We notice that

our approach has resisted the high number of nodes’ crashes. When a dead node is
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replaced by a new one, it retrieves the last checkpoint of the dead node and has to re-

generate the random matrix A to which we are computing the eigen value. Therefore,

the recovery phase for this experiment ismore time consuming than the recovery phase

in the advection-diffusion experiment. Nevertheless, the performance of JACEP2P-V2

is not significantly reduced with the huge number of crashes, with more than 50 dis-

connections it needs less than twice the execution time with 0 disconnections.

4.4.2 Testing of the Waveform Relaxation method

Since our main objective is to solve linear and non linear systems over volatile dis-

tributed environments, while developing JACEP2P-V2 we were also working on

iterative parallel methods compatible with the asynchronous iteration model. In

particular, we concentrated our research on the Waveform Relaxation method. It is an

iterative parallel method that solves initial value problems and could be implemented

according to the asynchronous iteration model. Most of the work in this domain tested

the waveform relaxation method on parallel machines with low latency between

processors. So we had to test the Waveform Relaxation method over distributed

architectures interconnected via high latency networks before adding failures to the

environment. For this reason, we have compared the Waveform Relaxation method to

the standard solver for solving non linear systems, PVODE. Since PVODE is imple-

mented in C, the WR method was also implemented in C and the nodes exchanged

messages via MPI. The good results obtained from this experiment motivated us to

pursue our research in this domain. The next step was to implement the Waveform

Relaxation method according to the asynchronous iteration model and testing it over

distributed and volatile environments. However, the only platform capable of execut-

ing such algorithms over distributed volatile environments is JACEP2P-V2. Therefore,

we had to port the code to the Java programming language and implement it according

to the JACEP2P-v2’s specification. The preliminary tests proved that the application

worked fine over distributed and volatile architectures. So afterwards, we compared

the WRmethod to the asynchronous iterative parallel method, Multisplitting-Newton,

while solving a 2D advection-diffusion problem over distributed volatile environ-

ments. The objective of this comparison is to test the performance of the WR method

in such environments and to rate its capacities compared to the Multisplitting-Newton

method.

In the next subsections we present in details the experiments undertaken to com-

pare the WR method with the other resolution methods, cited above.

4.4.2.1 Comparison between PVODE and the Waveform Relaxation method

The comparisons between PVODE and the Waveform Relaxation method can be di-

vided into two parts. First of all, we coupled the WR method with the CVODE solver



4.4. Experimentations 95

to solve non linear systems. This method is compared with the PVODE solver while

solving the 1D reaction-diffusion problem and the 2D advection-diffusion problem.

Afterwards, the WR method is coupled with the Euler method to solve the large scale

2D advection-diffusion problem over the Grid’5000 testbed.

WRVODE: Waveform Relaxation with CVODE

The WR method can be used with different sequential solvers. First we used

CVODE which is a very powerful and complex sequential solver. Also, it is an adap-

tative solver with dynamic stepping. We used the CVODE solver as a black box,

so no modifications were done to its core. In order to test the performance of the

Waveform Relaxation algorithm with CVODE on large problems, we have conducted

two experiments:

1. One dimensional reaction-diffusion equation

In this experiment, we solve the one dimensional reaction-diffusion problem pre-

sented in Section 4.3.2. It is well-known that the nature of components ordering

can have important influence on the convergence of the Waveform Relaxation al-

gorithms. These are the two natural ways to order the components of the system:

u1, u2, ..., uN, v1, v2, .., vN and u1, v1, u2, v2, ..., uN, vN

We chose the second ordering because it is shown in [22, 23] that the application

that uses this ordering requires less storage space and less execution time than

the one adopting the first ordering. In our approach, the system components are

split equally between the nodes.

We implemented two algorithms using the standard ANSI C language to solve

this system: the first uses PVODE scheme and the second uses the WRVODE

method. We used the predefined solvers available in the Sundials suite [49]. The

nodes communicate with each other using the LAMMPI interface, with synchro-

nized exchanges.

We tested the two applications using a cluster composed of 20 machines, each

one contains a 3.0 Ghz processor and up to 1GB RAM. The nodes in this cluster

are interconnected via a high speed network with a bandwidth of 1Gbps. How-

ever, since we wanted to test this application in a high latency environment, we

had to increase the latency of the network. In order to simulate this latency, we

have implemented a shell script that delays each packet going through a port to

another node a specified amount of time. Using our program a 9ms delay cor-

responds to 50ms round-trip time when pinging a machine located in the same

country and connected to Internet via a DSL connection. Moreover, an 18ms de-

lay corresponds to a 250ms round-trip time when pinging a machine located in
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another continent and connected to Internet via a DSL connection. Many real-life

tests were conducted to evaluate these delays. It is obvious that the resulting en-

vironment is not realistic. However, we realized this first experiment to get an

idea of the behavior of the new algorithm because it is easier to experiment on a

cluster, before tackling real grid systems.

latency(ms) 0 9 18
PVODE 13m18s 533m3s 931m46s

WRVODE 161m6s 180m12s 199m22s

Table 4.5: Execution time taken by PVODE and WRVODE to solve a 100,000 compo-
nents 1D reaction-diffusion problem on the time interval [0.555s, 0.65s] with various
latencies in communications over 10 homogeneous machines

The results of the experiments are displayed in table 4.5. It presents the time

taken by each algorithm to solve a non-stationary differential equation system

consisting of 100,000 components. The system is integrated on the time interval

[0.555s, 0.65s] which corresponds to a hard part of the problem, using ten ma-

chines. The results show that PVODE took just 13 minutes and 18 seconds to

solve the system using a very low latency network and the WRVODE algorithm

needed about 161 minutes to solve the same problem, which means that PVODE

goes ten times faster. However, these results are completely turned around when

some latency is added to the communications between the nodes. With only 9ms

seconds of latency, PVODE needs around 553 minutes to solve the same system

that it had solved in 13 minutes using a fast network. This huge increase in time

consumption is due to the great amount of communications between the pro-

cessors using the PVODE scheme. On the other hand, the WRVODE algorithm

is not very affected by the delays, it only needs 180 minutes to solve the same

problem. As we increase the latencies we notice that PVODE suffers more and

more in terms of time consumption, but, the WRVODE algorithm is not much

sensible to these delays. These results allow us to conclude that if the network

latency is low enough, PVODE is very adequate to solve large problems. Oth-

erwise the WRVODE algorithm is more robust to solve large problem in a high

latency network.

2. 2D advection-diffusion equation In this experiment, we solve a two dimensional

instance of the advection-diffusion problem presented in Section 4.3.1.1. The

ODE system is generated from the following 2-species diurnal kinetics advection-

diffusion PDE system in a 2 dimensions space [50]:

∂c(i)

∂t
= Kh ∗ (

∂

∂x
)2c(i) + V ∗ ∂c(i)

∂x
+ (

∂

∂y
)(Kv(y) ∗ ∂c(i)

∂y
+ Ri(c1, c2, t))
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for i=1,2, where:

R1(c1, c2, t) = −q1 ∗ c1 ∗ c3− q2 ∗ c1 ∗ c2+ 2 ∗ q3(t) ∗ c3 + q4(t) ∗ c2
R2(c1, c2, t) = q1 ∗ c1 ∗ c3− q2 ∗ c1 ∗ c2− q4(t) ∗ c2
Kv(y) = Kv0 ∗ e( y5 )

Kh,V,Kv0, q1, q2, and c3 are constants, and q3(t) and q4(t) vary diurnally. The

problem is posed on the square 0 ≤ x ≤ 20, 30 ≤ y ≤ 50 (all in km), with

homogeneous Neumann boundary conditions.

To solve this system, we have also implemented the PVODE and WRVODE al-

gorithms and we have conducted the experiments over the Grid’5000 platform.

It is important to notice that Grid’5000 is a fast grid where the latency between

the sites is lower than the usual latency of a normal grid. Indeed, the round-trip

time between twomachineswith a standard connection located in France is about

80ms, on the other hand, the round-trip time between two machines in Grid’5000

on different sites, for example Sophia and Toulouse, is equal to 14.5ms. To have

a latency similar to the one in distributed clusters that communicates over ADSL

connections, we applied the perturbator script on the computing nodes while

testing the performance of the two algorithms. For these experiments, we used

32 heterogeneous machines of the Grid’5000 platform, distributed over four sites:

• Site of Nancy (cluster Grelon), 8 nodes, 2 CPUs 1.6GHz Intel Xeon 5110 per

node with 2 cores per CPU.

• Site of Rennes (cluster Paravent), 8 nodes, 2 CPUs 2.0GHz AMD Opteron

246 per node.

• Site of Lyon (cluster Capricorne), 8 nodes, 2 CPUs 2.0GHz AMD Opteron

246 per node.

• Site of Sophia Antipolis (cluster Helios), 8 nodes, 2 CPUs 2.2GHz AMD

Opteron 275 per node with 2 cores per CPU.

latency(ms) 0 9 18
PVODE 8m15s 55m27s 85m54s

WRVODE 9m37s 31m5s 46m37s

Table 4.6: Execution time taken by PVODE and WRVODE to solve the 2D advection-
diffusion problem composed of 720,000 components over 32 heterogeneous computing
units located over four distant sites.

Table 4.6 displays the execution time taken by the two algorithms to solve a sys-

tem of 720,000 components on the time interval [0s, 7200s] with various latencies

in communications. These experiments confirm the previous ones and show that
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the WRVODE algorithm can be applied on different kinds of applications and is

very well adapted to high latencies communications. In fact, if the nodes are con-

nected via an ADSL connection, this algorithm outperforms PVODE in terms of

execution time. Here, we underline that although we used heterogeneous nodes,

the computing process is not affected because we are using synchronized com-

munications between neighboring nodes. In this way we think that it would be

very useful to apply the asynchronous iteration model on the WRVODE algo-

rithm. Indeed, this will fasten its execution time because the nodes would not

have to synchronize and wait for the dependencies data from its neighboring

nodes at each iteration. On the other hand, we had some slow convergence prob-

lems with CVODE because it uses an adaptative stepping. Therefore, in the rest

of this document, we used the explicit Euler method with a fixed stepping.

The Waveform Relaxation method with Euler

Although we obtained interesting results when coupling the WR method with the

adaptative sequential solver CVODE, this algorithm had limited scalability, because

we could not control CVODE without changing its core methods, specially the reini-

tializing method which we use after each iteration. In addition to that, the iterative

algorithm had some slow convergence problems when solving large systems because

of the dynamic stepping used in CVODE. For all these reasons, we decided to test the

WR method with a simpler solver that implements the Euler or Runge-Kutta methods

which use fixed steps. In the following paragraph we test the implementation of the

WR method with Euler to solve the 2D advection-diffusion equation presented before.

2D advection-diffusion equation with Euler

For this experiment, we used 100 heterogeneous nodes distributed over 4 distant sites:

• Site of Nancy (cluster Grillon), 25 nodes, 2 CPUs 2.0GHz AMD Opteron 246 per

node.

• Site of Rennes (cluster Paravent), 25 nodes, 2 CPUs 2.0GHz AMD Opteron 246

per node.

• Site of Toulouse (cluster Violette), 25 nodes, 2 CPUs 2.2GHz AMD Opteron 248

per node.

• Site of Sophia antipolis (cluster Helios), 25 nodes, 2 CPUs 2.2GHz AMDOpteron

275 per node with 2 cores per CPU.

Table 4.7 presents the execution time taken to solve the 2D advection diffusion sys-

tem using PVODE or Euler with various number of components. These tests prove

that Euler with the WRmethod outperforms the parallel solver PVODE: our algorithm
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solves the problem twice faster than PVODE over distributed clusters. This experiment

demonstrates that combining Euler with the WR method results in a parallel iterative

algorithm very well suited for solving this problem on a distributed grid architecture.

Furthermore, it proves that this algorithm is very scalable (we used up to 100 nodes)

and that it converges even when using a large number of nodes. For this experiment,

we did not use the perturbator script because our method outperformed PVODE with-

out any perturbation of the Grid’5000 platform. So, we predict that on a normal grid,

with ADSL connection speed, PVODE will suffer more and our algorithm will be al-

most unaffected. We also tested the effect of the overlap technique on the convergence

Number of components (millions) 8 12.5 18
PVODE 76m27s 100m55s 135m40s

Euler+WR 35m46s 49m42s 68m14s

Table 4.7: Execution time taken by PVODE and Euler with the Waveform Relaxation
method to solve the 2D advection-diffusion problem with various number of compo-
nents on the time interval [0,7200] using 100 computing units.

of the WR method combined with the Euler method. The results are displayed in fig-

ure 4.6, where we present two graphs: the first one shows the execution time and the

number of iterations needed to solve the 2D advection-diffusion problem on the time

interval [1000s, 1057.6s] (which is equivalent to a window composed of 800 ∗ DT with

DT = 0.072s), while varying the amount of overlapped points. We chose this time

interval because we have noticed that the values of the components vary a lot when

integrating on this time interval which make it a little bit difficult for the Waveform

Relaxation method to converge, specially if no overlap is used. This graph shows the

importance of the overlapping concept in accelerating the convergence of the iterative

algorithm. It also shows how difficult it is to predict the value of an optimal overlap.

In the second graph, we present the execution time needed to solve the same applica-

tion on a larger time interval which contains both easy and difficult sub-time intervals.

With this experiment, we show that a large amount of overlapped points would re-

duce the benefits of this concept on the overall execution time of the application. As

a conclusion we can say that some overlapped points are necessary for increasing the

convergence rate of this iterative method, but the optimal percentage of overlapped

points is directly related to the problem being solved and on which time interval the

application is integrating.

4.4.2.2 Comparison between PVODE, the Multisplitting-Newton and the Wave-
form Relaxation-Euler method

Since the experiments, comparing PVODE and the WR method, showed that the WR

method have a great potential and outperforms PVODE in high latency environments.
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Figure 4.6: The effect of the overlap concept on the convergence of the WR method.
The first graph shows the execution time and the number of iterations needed to solve
the 2D advection-diffusion problem on the time interval [1000s, 1057.6s] while varying
the amount of overlapped points and the second graph shows the execution time taken
to solve the same problem on the time interval [1000s, 2000s].

We have continued our studies in this domain and we have ported the WR method to

Java and implemented it according to the asynchronous iteration model. The resulting

Java code can be executed on JACEP2P-V2 andwe can now compare the asynchronous

WR method with the Newton-Multisplitting method while solving large problems

over distributed volatile environments. We have chose the transport model for this

experiment. This problem models the transport of pollutants in shallow seas. The

main objective of the simulation is to exhibit the long term evolution trends of the con-

sidered ecosystem after pollution. The results of the simulation are chemical species

concentrations in time and space. Transport processes of pollutants, salinity, and so

on, combined with their bio-chemical interactions can be mathematically formulated

as a system of advection-diffusion-reaction equations. It follows an initial boundary

value problem for a nonlinear system of PDEs.

Before comparing the performances of the two methods, we have compared their

precision to the standard solver, PVODE.

Numerical precision

To test the pertinence of the solutions given by the two methods and since we do

not know the exact solution of the problem, we considered the solution obtained by

PVODE as the reference solution for this problem. Then, we have evaluated the relative

error for each solution according to the solution given by PVODE. The relative error
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(r) is computed as follows:

r =
maxi(|vapproxi − vi|)
maxi(vi, v

approx
i )

i = 0, ..., n

where V = (v0, ..., vn) is the solution vector for PVODE and Vapprox is the solution

vector computed using the WR-Euler method or the Multisplitting-Newton method.

Table 4.8 presents the relative errors obtained when the solutions given by the

different methods are compared. We have executed the PVODE method using two

precisions: For the first one (respectively second one) the required precision was equal

to 10−4 (respectively 10−10). For the WR-Euler method and the Multisplitting-Newton

method, the respective required precisions were 10−11 and 10−12. The first set of

relative errors is obtained by comparing the solution vectors for a simulation over

the time interval [0, 200s]. These experiments show that the solutions obtained by

the WR-Euler method and the Multisplitting-Newton method are very close to the

solution computed by the PVODE method. Indeed, the relative error between the

three solutions is less than 0.1%. Moreover, if we compare the solution vectors of

these methods with PVODE’s solution that is computed with high precision, we notice

that the relative error between the three solutions is less than 0.01%. Therefore, the

solutions computed with the two coarse grained methods are more accurate than

those computed with PVODE at normal precision. So, we can consider that they are

relatively correct.

The second set of relative errors is obtained by comparing the solution vectors of the

different methods for a simulation over the time interval [0, 1000s]. We have performed

these experiments to discover how much the accuracy of the results is reduced when

simulating over long time intervals. Using the relative errors presented in table 4.8,

we notice that the results are 10 times less accurate than those obtained over a small

time interval. This reduction of precision is due to the small errors (like rounding

errors) that accumulate over time. These problems are very common in the numerical

computing domain, even the PVODE method suffers from them.

Performance

Since we are interested in solving large differential equations in high latency,

volatile and heterogeneous environments, we have implemented the Multisplitting-

Newton method and the WR-Euler method according to the asynchronous iteration

model which is more suitable to such architectures. These applications were executed

over JACEP2P-V2 which made them fault tolerant and provided them with all the

functionalities required to solve the problem according to the asynchronous iteration
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Time Method MN WR-Euler PVODE PVODE

interval High precision

WR-Euler 4.27× 10−5 0 1.01× 10−4 2.32× 10−5

MN 0 4.27× 10−5 1.23× 10−4 3.89× 10−50 to 200s

PVODE 1.23× 10−4 1.01× 10−4 0 1.04× 10−4

WR-Euler 3.31× 10−4 0 2.8× 10−3 3.09× 10−4

MN 0 3.31× 10−4 2.79× 10−3 1.79× 10−40 to 1000s

PVODE 2.79× 10−3 2.8× 10−3 0 2.78× 10−3

Table 4.8: The relative errors obtained when comparing the solutions computed by the
different methods: Multisplitting-Newton (MN), Waveform Relaxation coupled with
Euler (WR-Euler) and PVODE.

model (like asynchronous messaging and multi-threading).

Two sets of experiments have been realized. In the first one, we only used one site

with homogeneous computing units: we used the cluster Grelon located in Nancy.

Each computing unit was equipped with two dualcores Intel Xeon 5110 1.6GHz and

2GB RAM. We used 100 nodes to solve a problem containing 16,000,000 components

on the time interval [0, 200s]. The optimal overlap values were used in these experi-

ments. To simulate a volatile environment, we used a shell script that randomly kills

each 60 seconds a daemon that is executing a task. Then, a new daemon is launched

on that computing unit. This new daemon is connected to the platform and is ready to

execute a new task.

Method
Decomposition Status Multisplitting-Newton WR-Euler

without crashes 21m30s 3m24s
10× 10 with crashes 21m56s 3m32s

without crashes 12m5s 3m4s
100× 1 with crashes 12m16s 3m13s

without crashes 17m9s 4m56s
1× 100 with crashes 17m30s 5m5s

Table 4.9: Execution time taken with JACEP2P-V2 to integrate the system on the sim-
ulated time interval [0,200s] using 100 computing units located on one site and while
killing a random computing node each 60 seconds.

Table 4.9 presents the execution times taken for solving the problem described

above using the Multisplitting-Newton method and the WR-Euler method. It also

shows the different execution times taken while varying the problem’s decomposition
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scheme or the volatility of the computing units. The 10× 10 decomposition means

that the system has been vertically decomposed into 10 subsystems and each sub-

system is horizontally decomposed into 10 smaller subsystems. In the same way, the

100 × 1 (respectively 1 × 100) decomposition means that the system is horizontally

(respectively vertically) decomposed into 100 subsystems. The results show that the

WR-Euler method outperforms the Multisplitting-Newton method and solves the

problem in a small time period. Although, the Multisplitting-Newton method can

integrate the system on a larger time steps than the WR-Euler method (we used a

time step equal to 10 seconds for the Multisplitting-Newton method and equal to 0.1

second for the the WR-Euler method), the iterative Multisplitting-Newton method

requires solving a linear system at each iteration which takes an important amount

of time. In our implementation of this method, we used the GMRES method for

solving the linear system on each computing unit. This method is implemented in

the Matrix Toolkits for Java package (MTJ) [2] which can benefit from multicores

machines because it is multi-threaded. Moreover, the Multisplitting-Newton method

requires more iterations than the WR-Euler method to converge to the solution. On

the other hand, the WR-Euler method computes directly the solution at each iteration

using the Euler formula and the implementation of the windowing concept in this

method has drastically accelerated its convergence and reduced the execution time

it takes. All these reasons made the WR-Euler method a faster resolution method

than the Multisplitting-Newton method for solving complex ODEs. However, we can

notice that if we decompose the system in just one dimension, (1× 100 or 100× 1), the

execution time taken by the Multisplitting method is considerably reduced. Indeed,

when the system is decomposed in one dimension rather than two, each subsystem

has two or less boundaries rather than four. Thus it is less dependent on data received

from neighbors and the linear system is easier to solve. Therefore, each iteration is

computed faster than in a two dimensional decomposition scheme and the system

converges in fewer iterations. In the same way, we notice that if the system is decom-

posed only horizontally, it is solved faster than when decomposed vertically. This is

related directly to the problem being solved. Indeed, in this problem the values of the

components aligned horizontally vary more than those aligned vertically. So if the

system is only decomposed vertically, each subsystem must executes a lot of iterations

to converge to the solution because the values of the boundaries components are

evolving at each time step. Moreover, we also notice that both methods resist to the

computing units’ crashes which demonstrates the benefits of the asynchronous iter-

ation model and the efficiency of the JACEP2P-V2 platform for detecting the crashes

and replacing the dead daemons. Finally, we point out that the effect of these crashes

is negligible since the execution times are almost unaffected. Therefore, these methods

are well adapted to volatile environments.

In the second set of tests, we used distributed computing units located on two dis-
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tant sites in order to have a higher latency in the communications between nodes,

especially between nodes from distinct sites. Half of the computing units were located

in Nancy’s site. The architecture of the computing units on this site was described in

the previous set of experiments. The second half of the computing units were located

in Rennes’ site. We used some computing units from the Paraquad cluster. Each one

was equipped with two dualcores Intel Xeon 5148 LV 2.33GHz and 4GB RAM. This

heterogeneous architecture represents a real distributed cluster environment. We used

100 computing units distributed over these two sites to solve the same problem de-

scribed above over the same time interval. Moreover, the same shell script was used to

simulate the volatility of the computing units.

Method
Decomposition Status Multisplitting-Newton WR-Euler

without crashes 23m2s 3m24s
10× 10 with crashes 23m29s 3m40s

without crashes 11m33s 3m1s
100× 1 with crashes 11m51s 3m32s

without crashes 16m53s 4m44s
1× 100 with crashes 17m25s 4m57s

Table 4.10: Execution time taken with JACEP2P-V2 to integrate the system on the sim-
ulated time interval [0,200s] using 100 computing units located on two distant sites
and while killing a random computing node each 60 seconds.

Table 4.10 presents the execution times taken for solving the problem described

above using the Multisplitting-Newton method and the WR-Euler method. It also

shows the different execution times taken while varying the problem’s decomposi-

tion scheme or the volatility of the computing units. The results of this set of experi-

ments show that the WR-Euler method outperforms again the Multisplitting-Newton.

In fact, the results are very similar to those of the first experiment. Since both meth-

ods are coarse gained and implemented in the asynchronous iteration model, they are

almost immune to the high latency of the communications and to the heterogeneity of

the computing units. Indeed, the computing units do not have to synchronize at each

iteration and they do not have to wait for the reception of data messages from their

neighbors to compute the next iteration. So, there is no idle times between iterations

and fast computing units do not have to wait for slower ones. Therefore, both methods

are well adapted for high latency and heterogeneous environments. It is important to

point out that the connection between the two sites has a large bandwidth and if it

was smaller, we predict that the performance of the WR-Euler method would be dras-

tically reduced because the data messages exchanged between neighbors when using

theWR-Euler method are a lot bigger than those in the Multisplitting-Newton method.

For example, if a subsystem has 100 boundaries components with its right-hand side



4.5. Conclusion 105

neighbor and is using the Multisplitting-Newton method to solve its local task, each

message sent by this node to its right-hand side neighbor is about 100× 8 = 800Bytes

(each component is a double that requires 8Bytes of storage space). For our experi-

ments, this method required around 60 iterations to integrate on one time step, so the

total size of the messages sent to that neighbor is around 60× 800 = 48KBytes. On

the other hand, if using the WR-Euler method with windows composed of 100 discrete

time steps, each message is about 100× 800 = 80kBytes. For our experiments, this

method required around 15 iterations to integrate on one window, so the total size of

the messages sent to the right-hand side neighbor is around 15× 80000 = 1.2MBytes

which is 25 times bigger than the size of the messages exchanged in the Multisplitting-

Newton method.

4.5 Conclusion

In this chapter, we have described some iterative parallel methods for solving linear

and nonlinear equation systems. In particular, we have presented the PVODE solver,

the Multisplitting-Newton method, the Waveform Relaxation method and the Multi-

splitting method for linear systems. These methods were used to solve large problems

like the advection-diffusion problem in 2D and 3D. All these iterative methods are

compatible with the asynchronous iteration model.

Many experiments were conducted over the Grid’5000 platform using the JACEP2P-

V2 platform to solve large problems using these different methods. These experi-

ments proved the efficiency, the robustness and the scalability of the JACEP2P-V2 plat-

form. Moreover, the comparison between the JACEP2P and JACEP2P-V2 platforms

showed the efficiency of the improvements that we have introduced into JACEP2P-

V2. JACEP2P-V2 outperformed JACEP2P in every category. Thanks to these improve-

ments, JACEP2P-V2 is totally fault tolerant, totally decentralized and highly scalable.

In particular, it has withstood the frequent crashes and was able to simultaneously har-

ness the computing power of around 400 computing units (more than 1000 cores).

We have also compared the different resolution methods. In particular, we have com-

pared the execution time taken by the PVODE solver and the the Waveform Relaxation

method to solve large problems over distributed clusters. These experiments showed

that the WR method is more adapted than the PVODE solver to high latency environ-

ments because it reduces the penalizing synchronizations between the distant com-

puting units. We have also compared the performance of the Multisplitting-Newton

method and the WR-Euler method while executing a large parallel application over

volatile environments and according to the asynchronous iteration model. This com-

parison was conducted using JACEP2P-V2 and it showed that the WR-Euler method

outperforms the Multisplitting-Newton method in such conditions but gives similar

precisions with the appropriate parameters.
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Conclusion and perspectives

Conclusion

The work presented in this document concerns numerical parallel computing over

volatile heterogeneous distributed architectures like distributed clusters and volunteer

computing architectures. Our main objective was to efficiently solve large complex lin-

ear and nonlinear equation systems over the distributed architecture described above.

To solve such problems, we were in particular interested by iterative resolution meth-

ods that can be parallelized according to the asynchronous iteration model. As shown

in the third chapter, this model has many advantages over synchronous models in

volatile heterogeneous distributed environments like:

• Eliminating idle time periods between successive iterations.

• Eliminating synchronizations between the computing nodes

• Tolerating the loss of data messages.

To be able to execute parallel applications based on this concept, a dedicated platform

that fulfill all the functionalities of this model must be implemented. Therefore, our

work was divided into two main parts:

1. Developing a distributed platform dedicated to designing and executing parallel

iterative applications based on the asynchronous iteration model over volatile

heterogeneous distributed architectures.

2. Optimizing, testing and comparing various numerical parallel resolution meth-

ods that are implemented according to the asynchronous iteration model and

executed over volatile heterogeneous architectures.

In this way we have presented the JACEP2P-V2 platform which is an evolution

of the JACEP2P platform. This platform is dedicated to executing parallel iterative

applications based on the asynchronous iteration model. Moreover, JACEP2P-V2 is

completely fault tolerant:
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• It uses the uncoordinated distributed checkpointing mechanism to save the dae-

mon’s data over other daemons.

• It duplicates the spawner by transforming some daemons into spawners which

share the load between them.

• It uses a decentralized fault detection mechanism: every group of entities form

a circular network where each node sends heartbeat messages to the next node

in the circular network. If a node does not receive heartbeat messages from its

neighbor for a given time period, it detects that the next node is dead.

• It replaces dead daemons and spawners without interrupting the computing pro-

cess of other nodes. A newdaemon, replacing a dead one, continues the task from

the last checkpoint the dead node had made.

All the mechanisms that are implemented in JACEP2P-V2 are totally decentralized, for

example:

• Decentralized global convergence detection mechanism.

• Distributed uncoordinated checkpointing mechanism.

• Decentralized fault detection mechanism.

This distribution of tasks makes JACEP2P-V2 highly scalable.

To confirm this approach, we have conducted over the Grid’5000 testbed, a set of

experiments that test the performance of JACEP2P-V2 while solving parallel iterative

applications based on the asynchronous iteration model over heterogeneous volatile

architectures. The experiments proved the efficiency and robustness of JACEP2P-

V2. Indeed, This new version has resisted to the frequent crashes and outperformed

JACEP2P on local and distant clusters. Furthermore, This platform was highly scal-

able: it was able to solve large problems using more than 1000 cores distributed over

three different sites. On the other hand, we have combined the Waveform Relaxation

method with the Euler sequential method and compared its performance to the widely

used PVODE algorithm while solving the advection diffusion problem over high la-

tency architectures. The results showed that the WR-Euler method is more adapted to

high latency environments than the standard PVODE algorithm. Finally, we have com-

pared the Multisplitting-Newton method to the WR-Euler method, both implemented

according to the asynchronous iteration model, while solving the advection-diffusion

2D problem over a heterogeneous volatile environment using JACEP2P-V2. The re-

sults show that the WR-Euler method outperforms the Multisplitting-Newton method

in terms of time of execution. Although the research work presented in this document

is complete, it offers many open tracks to continue researching in this domain.
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Perspectives

In the near future, we will pursue our research in two fields: JACEP2P-V2 and parallel

iterative methods.

The JACEP2P-V2 platform

This platform is now completely operational and ready to be published as an open

source project. Interested researchers can soon use this platform to execute parallel

iterative applications based on the asynchronous iteration model. However, JACEP2P-

V2 will not be the last version of this platform. Indeed, until now, we did not consider

the hardware specifications of the heterogeneous computing nodes that are being

used to execute parallel applications. We did not either took into account the char-

acteristics (bandwidth and latency) of the networks relating the different computing

units participating to the computation. Therefore, in the near future, we would like to

implement a scheduler algorithm into the JACEP2P-V2 platform. It has to assign every

task to an appropriate computing unit while taking into consideration the estimated

computing power and memory space required to execute that task and the capacities

of the selected computing unit. Thus, a problem can be divided into non equal sub-

problems and fast computing units will execute the big subproblems while the slow

computing units will get the small ones. This distribution added to the asynchronous

iteration model will allow the platform to tackle more efficiently the heterogeneity

problem. Moreover, the scheduler must take into account the geo-localization of all

the computing units. This property will allow it to assign heavily interdependent tasks

to computing units located in the same area and thus reducing network latencies and

communication times. Furthermore, a scheduler can be added to the daemon in order

to assign properly the different threads onto the different computing cores and thus

increasing the performances of daemons.

Besides conceiving an adapted scheduler, it will be interesting to test the JACEP2P-

V2 platform in a real volunteer computing environment. Until now, all the experiments

were conducted over the Grid’5000 testbed which is composed of distributed clusters

dedicated for research experiments and the volatility of the nodes was simulated by

randomly killing a daemon every n seconds. We would like to evaluate the perfor-

mances of JACEP2P-V2 in a environment composed of heterogeneous volatile public

computing units interconnected via high latency networks, like DSL Internet connec-

tions.

Finally, it would be interesting to compare the performance of JACEP2P-V2 to other

existent platforms. However, to our knowledge there is no other platform able to ex-
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ecute parallel iterative applications based on the asynchronous iteration model over

volatile distributed architectures. It would not be objective to compare JACEP2P-V2

with other existent platforms that are not dedicated to executing the same tasks. How-

ever, we are planning on modifying some platforms in order to make them compatible

with the asynchronous iteration model and thenwe can compare them to JACEP2P-V2.

Parallel iterative methods based on the asynchronous iteration model

In this document, we have presented three methods based on the asynchronous

iteration model: the Waveform Relaxation-Euler method, the Multisplitting-Newton

method and the Multisplitting method for linear systems. As emphasized before,

these methods are well adapted to volatile heterogeneous high latency environments.

Moreover, a comparison between WR-Euler and PVODE showed that WR-Euler

outperforms the latter in a high latency environment. However, we were not able

to compare these two methods in a volatile environment because PVODE uses a

standard implementation of MPI which is not fault tolerant. But nowadays, fault

tolerant implementations of MPI, like MPICH-V, exist and it would be interesting

to compare synchronous and asynchronous resolution methods over volatile envi-

ronments. The advantages of parallel iterative methods based on the asynchronous

model over synchronous parallel iterative methods will be clearly demonstrated in

such environments.

It would be also interesting to solve different types of problems using parallel

iterative methods based on the asynchronous iteration model in order to prove that

this model is compatible with a wide range of numerical problems and not limited to

the ones presented in this document.

Finally, since there are no real numerical comparisons between the various parallel

iterative resolution methods based on the asynchronous iteration model, it would be

interesting to compare the performances and precisions of these methodswhile solving

large problems over volatile heterogeneous environments with high latency networks

as we did in the experiment comparing the WR-Euler method to the Multisplitting-

Newton method.
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[36] P. Felber, X. Défago, R. Guerraoui, and P. Oser. Failure detectors as first class

objects. In DOA, pages 132–141, 1999.

[37] I. Foster and C. Kesselman. Globus: Ametacomputing infrastructure toolkit. The

International Journal of Supercomputer Applications and High Performance Computing,

11(2):115–128, Summer 1997.

[38] A. Frommer and D. B. Szyld. Asynchronous iterations with flexible communica-

tion for linear systems. Calculateurs Parallèles, Réseaux et Systèmes répartis, 10:421–
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Résumé

Avec l’émergence de nouvelles architectures distribuées, comme les grappes de calcul dis-
tantes et les architectures de calcul volontaire, il apparaı̂t important de définir des algorithmes
et des intergiciels bien adaptés à ces architectures. En effet, l’utilisation de ces plate-formes
introduit plusieurs nouvelles contraintes par rapport à un contexte de grappes locales ho-
mogènes : hétérogénéité des machines, hétérogénéité des réseaux, volatilité des noeuds de
calcul, etc. Dans ce contexte, plusieurs travaux montrent que pour les algorithmes itératifs il
peut être préférable d’utiliser les algorithmes IACA (Itérations Asynchrones avec Communica-
tions Asynchrones) pour lesquels les communications sont recouvertes par du calcul et la perte
des messages de données est tolérée.
Les travaux présentés dans cette thèse concernent la conception et la mise en oeuvre
d’une plate-forme dédiée à l’exécution d’algorithmes IACA sur des architectures distribuées,
hétérogènes et volatiles. Cette plate-forme, JACEP2P-V2, est tolérante aux pannes et
décentralisée. Elle offre un mécanisme de communications asynchrones et un mécanisme de
détection de la convergence globale adapté aux caractéristiques des algorithmes IACA.
De plus, nous reportons des expérimentations sur grappes hétérogènes volatiles et distantes
afin de tester l’efficacité et la robustesse de notre plate-forme. Les résultats obtenus, avec plus
de 1000 coeurs de calculs, sont très encourageants et montrent que JACEP2P-V2 est extensible
et performante. Nous terminons ce document par la présentation d’une étude comparative de
plusieurs méthodes de résolutions de systèmes non linéaires (comme la multi-décomposition
et la relaxation d’ondes) implémentées avec JACEP2P-V2.

Mots clefs: algorithmes parallèles itératifs asynchrones, plateforme décentralisée, tolérance
aux pannes, systèmes linéaires et non linéaires.

Abstract

With the emergence of newdistributed architectures, such as distributed clusters and volunteer
computing architectures, it seems important to design algorithms and middlewares that are
well adapted to these architectures. Indeed, when using these architectures, developers are
faced with many new constraints that they do not encounter when using local clusters, like the
heterogeneity of the machines and the networks that interconnect them, the volatility of the
computing nodes, etc. In this context, many research works show that for iterative methods, it
is preferred to use the AIAC (Asynchronous iterations with Asynchronous Communications)
model where the communications are overlapped by the computations and the loss of data
messages is tolerated.
The research work, presented in this document, concerns the design and the implementation
of a platform dedicated to executing AIAC algorithms over distributed heterogeneous volatile
architectures. This platform, JACEP2P-V2, is fault tolerant and decentralized. It offers an
asynchronous communication mechanism and a global convergence detectionmechanismwell
adapted to the characteristics of AIAC algorithms.
Moreover, we present many experiments that we have conducted over volatile distributed
heterogeneous architectures using JACEP2P-V2 in order to test the efficiency and robustness
of our platform. The experiments’ results are very encouraging and prove that JACEP2P-V2
is scalable and powerful. We end this document with a comparative study of many methods
that solve nonlinear systems (such as Multisplitting and Waveform relaxation) and are imple-
mented according to JACEP2P-V2’s API.

Key words: parallel asynchronous iterative algorithms, decentralized platform, fault tol-
erance, linear and nonlinear systems.


