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Résumé

Cette thèse s’est déroulée de Septembre 2006 à Mai 2008 sous la direction de Youri
Kabanov. Elle aborde plusieurs problèmes qui se posent pour les marchés financiers soumis
à des coûts de transaction.
Nous revisitons d’abord la méthode d’approximation des portefeuilles de couverture des
options Européennes suggérée par Leland pour le call Européen. On met en évidence la
convergence en probabilité des portefeuilles discrétisés vers le pay-off lorsque ce dernier
est bien plus général. Dans le même esprit, on mesure la vitesse de convergence en
estimant la moyenne de l’erreur quadratique. Cela nous conduit à formuler un théorème
de convergence en loi de l’erreur d’approximation du type « central-limite ». Toutefois, le
modèle de Black et Scholes utilisé est critiquable dans la pratique puisque la volatilité est
supposée constante. C’est pourquoi, nous proposons d’établir un théorème de convergence
en probabilité analogue au précédent lorsque la volatilité ne dépend pas seulement du
temps mais aussi de l’actif risqué sous-jacent.

Enfin, on s’intéresse à des marchés continus plus abstraits décrits par des cônes générés
par les coûts de transactions. Nous formulons quelques notions d’arbitrage mais surtout
on propose une description duale des prix de couverture des options américaines comme
cela a déjà été fait pour les marchés discrétisés.
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Abstract

This thesis has been supervised by Youri Kabanov between September 2006 and May
2008. It deals with different problems on financial markets under transaction costs. The
first part is devoted to the method of approximation suggered by Leland in order to hedge
European options. We show that we can prove the convergence in probability, conjectured
by Leland and proved by Lott with the European call, for a more general pay-off. We
estimate the rate of convergence by computing the mean square error which leads us to
establish a functional limit theorem, that is a kind of ”central-limit theorem ”. The second
part is about arbitrage and hedging of American options for models in continuous time.
The main theorem extends the hedging theorem for the American options in discrete time.
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Chapitre 1

Introduction

Les mathématiques financières constituent un domaine des mathématiques appliquées
ayant pour objectif la modélisation des phénomènes régissant les marchés financiers. Elles
fournissent ainsi aux traders des outils pour spéculer. Louis Bachelier (1870-1946) est
considéré comme le fondateur de la finance mathématique. Sa thèse (1900) intitulée
« Théorie de la Spéculation »contient des idées novatrices pour analyser les marchés
financiers, introduisant l’utilisation du mouvement brownien, l’une des découvertes les
plus importantes du vingtième siècle. L’essor des mathématiques financières a depuis été
spectaculaire notamment grâce au développement du calcul stochastique.

Dans le souci de décrire le plus vraisemblablement possible la réalité des marchés
financiers, une théorie des marchés avec coûts de transaction, prenant en compte les
différents frais inhérents à la spéculation, est en pleine expansion. De nombreux articles
paraissent sur le sujet et beaucoup de problèmes restent ouverts.

Notre sujet principal (première partie) s’appuie sur le fameux article de Heyne Leland
[21] qui, dans le cadre du modèle de Black et Scholes, propose une méthode pour couvrir le
call Européen lorsqu’on introduit des coûts de transaction proportionnels au mouvement du
portefeuille, c’est à dire proportionnels au volume d’actions achetées ou vendues. Lorsque
le taux de transaction n’est pas constant, on suppose que ce dernier est d’autant plus faible
que le trader spécule un grand nombre de fois, ce qui traduit l’idée d’une offre commerciale
de la part de l’intermédiaire ( une banque par exemple) à qui s’adresse le propriétaire du
portefeuille pour vendre ou acheter des actions. Précisément, il est supposé que le taux est
défini par kn = k0n

−α où n est le nombre de révisions et α ∈ [0, 1/2] est un paramètre
constant ainsi que k0. Leland propose une procédure efficace et simple à mettre en oeuvre
puisque sa stratégie est discrétisée ; on modifie la valeur du portefeuille à des dates de
révision fixées à l’avance et on maintient son portefeuille jusqu’à la prochaine date. Sans
coût de transaction, la stratégie de réplication à suivre est bien connue et des formules
explicites sont données. Le portefeuille correspondant est continu ( dans la pratique, on
discrétise) et réplique exactement le pay-off (S1 −K)+ du call Européen . Leland propose
de suivre cette dernière stratégie en substituant la volatilité du modèle considéré par une
volatilité modifiée afin de compenser les coûts de transaction.

Il a été démontré par Lott [24] puis Kabanov et Safarian [18] que cette approche
est efficace pour un grand nombre de révisions puisqu’on obtient une convergence en
probabilité du portefeuille discrétisé de Leland vers le call Européen lorsque le nombre de
révisions n converge vers +∞. Malheureusement, c’est faux lorsque le taux de transaction
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est constant (α = 0) puisqu’apparaît une erreur systématique qui cependant est fournie
explicitement dans [18] et donne ainsi aux traders une information précieuse. D’ailleurs,
Pergamenshchikov [26] s’est intéressé à ce cas. Il a évalué la vitesse de convergence (d’ordre
n1/4) et a formulé un théorème de convergence en loi de l’erreur d’approximation. On
peut citer aussi le travail récent de Sekine et Yano qui proposent de diminuer l’erreur de
couverture lorsque la valeur terminale de l’action ( à la date d’échéance) est proche du
strike K. Enfin, Kabanov et Gamys [12] estiment la vitesse de convergence (d’ordre n1/2)
dans le cas où α = 1/2.

Ici, commence notre travail. Il est tout naturel de se demander si l’approche de Leland
est encore valable pour des options Européennes différentes du call Européen définies
par une fonction de pay-off h autre que h(x) = (x − K)+. Le chapitre 2 apporte une
réponse positive à cette question sous la condition que h soit assez régulière et convexe.
Il s’avère qu’une erreur d’approximation systématique apparaît si h n’est pas convexe. Le
problème de couverture approximative reste donc ouvert pour les fonctions non convexes,
pour lesquelles une bonne connaissance des EDP non linéaires semble nécessaire. Notons
que contrairement au travail initié par Leland, il n’est pas nécessaire de choisir des dates
de révision uniformes comme cela est suggéré dans l’article [14].

Afin de préciser la vitesse de convergence, un travail similaire à celui de [12] est
proposé dans le chapitre 3. La principale difficulté par rapport au cas initial du call
Européen est d’estimer les dérivées successives de la fonction Ĉ(t, x) générant le portefeuille
de Leland Ĉ(t, St). En effet, ces dernières sont nécessaires car la démonstration de la
convergence en probabilité mais aussi celle de la convergence de la moyenne quadratique
de l’erreur d’approximation reposent sur une utilisation intensive du calcul analytique (
approximations de Taylor) et du calcul stochastique. Il ressort que concentrer les dates de
révision autour de l’échéance semble améliorer la vitesse de convergence.

Grâce à l’étude de la moyenne quadratique du chapitre 3, l’erreur d’approximation
apparaît dans le cas α = 1/2 comme composée essentiellement d’une martingale. Dans
l’esprit du travail initié par Pergamenshchikov pour α = 0 [26], nous nous intéressons donc
à la convergence en loi de l’erreur d’approximation amplifiée par la vitesse de convergence
n1/2 ( n1/4 lorsque α = 0 [26]). Nous énonçons ainsi dans le chapitre 4 un théorème du type
« central-limite », utile dans la pratique puisqu’il fournit des intervalles de confiance. La
preuve du théorème ainsi proposé s’appuie sur la théorie développée par Jacod et Shiryaev
[16].

Le chapitre 5 est consacré à l’étude de la convergence en probabilité de l’erreur
d’approximation tout comme dans le chapitre 2 sauf qu’ici la volatilité du modèle décrivant
l’actif risqué est une fonction dépendant du temps mais aussi de la valeur de l’action. La
méthode pour prouver la convergence est sensiblement la même. La grande difficulté est
d’estimer les dérivées successives de Ĉ en tant que solution d’une EDP. En effet, des
estimations existent dans la littérature mais malheureusement elles ne nous satisfont pas
lorsque α < 1/2 car alors l’EDP dépend de n. C’est pourquoi, nous avons dû reprendre
les estimations faites par Friedman [11] afin de préciser l’influence de la variable n sur les
inégalités vérifiées par les dérivées. Nous avons alors réussi à prouver que la convergence en
probabilité du portefeuille de couverture selon Leland vers le pay-off est toujours vérifiée
tout au moins pour α ∈]1/4, 1/2].

La deuxième partie est consacrée à la théorie de l’arbitrage. Pour un marché donné, on
veut savoir s’ il est possible de faire des profits (gains positifs non-nuls sur un ensemble non-
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Introduction

négligeable ) en partant d’un capital initial nul. Un portefeuille le permettant s’appelle un
arbitrage. On s’intéresse aussi aux prix des options ; à quel prix dois-je vendre à mon client
une option Européenne (respectivement Américaine ) afin d’être en mesure de démarrer
un portefeuille dont la valeur à la date d’échéance (respectivement à tout instant) sera au
moins égale au revenu promis (on parle de sur-réplication ) ? C’est un sujet de première
importance en finance.

Pour les modèles sans coût de transaction, la théorie est déjà très développée. L’ab-
sence d’arbitrage est équivalente à l’existence d’une probabilité sous-laquelle le processus
(St)t∈[0,T ] décrivant l’actif risqué est une martingale. Pour les modèles discrets, il s’agit
du fameux théorème de Dalang-Morton-Willinger tandis que pour les modèles à temps
continu, Delbaen et Schachermayer ont introduit la condition « No Free Lunch ». Dans les
deux cas, la théorie développée s’appuie sur le théorème de séparation de Hahn-Banach
qui a donné naissance au fameux théorème de Kreps-Yann. De nombreux articles traitent
le sujet. Notons que des théorèmes de sur-réplication existent utilisant le théorème de
décomposition optionnelle (voir [19]).

Pour les modèles avec coûts de transaction, la théorie de l’arbitrage est bien développée
dans le cas discret. La modélisation mathématique s’appuie sur la notion de processus gé-
nérant des cônes. En particulier, le cône de solvabilité K̂ qu’on aura l’occasion d’introduire
a un rôle essentiel. Si un portefeuille exprimé en quantité d’actions détenues est dans ce
dernier, on peut, moyennant des transactions, se ramener à un portefeuille dont toutes les
positions sont positives. L’absence d’arbitrage (cas discret) est équivalente à l’existence
d’une martingale évoluant dans le dual positif K̂∗ du cône K̂. Lorsqu’il n’y a pas d’op-
portunité d’arbitrage, on sait alors définir les prix de sur-réplication aussi bien pour les
options Européennes qu’Américaines [1], [19].

Pour les modèles avec coûts de transaction et en temps continu, la théorie est moins
développée. Elle a été initiée par Kabanov avec son modèle X pour lequel il fournit un théo-
rème de sur-réplication des options Européennes mais aussi par Campi et Schachermayer
qui permettent l’extension de ce dernier grâce au modèle Y plus général. Ici commence
notre travail de la partie 2. Dans le cas discret, on peut observer que les théorèmes de sur-
réplication sont énoncés sous des conditions de non-arbitrage. On est alors naturellement
amené à se demander si les conditions utilisées pour les théorèmes de sur-réplication des
modèles X ou Y sont équivalentes à l’absence d’arbitrage. Dans le chapitre 6, on propose
une notion d’arbitrage pour un modèle très proche du modèle X . Le théorème de sur-
réplication des options Europènnes est toujours valable. Pour les options Américaines, le
résultat de Bouchard et Temam [1] dans le cas discret conduit à une idée de démonstration
dans la cas continu qui au premier abord s’avère inefficace pour le modèle X . Mais elle
se révèle fructueuse pour le modèle Y (voir travail commun avec De Vallière et Kabanov
[6]) permettant ainsi de conclure aussi pour le modèle X . Le chapitre 7 montre que les
conditions utilisées pour les théorèmes de sur-réplication des options Européennes et Amé-
ricaines sont équivalentes à une condition de non-arbitrage dans le cas où le marché est
défini par des processus de prix et de coûts de transaction qui sont « en escalier ». Enfin,
dans l’esprit du travail initié par Kabanov et Kramkov pour des marchés sans coût de
transaction [17], sont proposées dans le chapitre 8, différentes notions d’arbitrage pour des
marchés dont l’horizon converge vers ∞.
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Première partie

Leland’s Approximations
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Chapter 2

Approximate Hedging for the
Leland–Lott Hedging Strategy for
General Pay-offs

In 1985 Leland suggested an approach to pricing contingent claims under proportional
transaction costs. Its main idea is to use the classical Black–Scholes formula with a suitably
enlarged volatility for a periodically revised portfolio whose terminal value approximates
the pay-off h(ST ) = (ST−K)+ of the call-option. In subsequent studies, Lott, Kabanov and
Safarian, Gamys and Kabanov provided a rigorous mathematical analysis and established
that the hedging portfolio approximates this pay-off in the case where the transaction costs
decrease to zero as the number of revisions tends to infinity. The arguments used heavily the
explicit expressions given by the Black–Scholes formula leaving open the problem whether
the Leland approach holds for more general options and other types of price processes. In
this paper we show that for a large class of the pay-off functions Leland’s method can be
successfully applied. On the other hand, if the pay-off function h(x) is not convex, then
this method does not work.

2.1 Introduction

In his famous paper [21] Leland suggested, in the framework of a two-asset model of
financial market with proportional transaction costs, a modification of the Black–Scholes
approach to pricing contingent claims. The idea is very simple: one can use the Black–
Scholes formula but not with a true volatility parameter σ but with an artificially enlarged
one, σ̂. A theoretical justification of this approach is based on the replication principle: the
terminal value of a “real-world" self-financing portfolio, revised at sufficiently large number
n of dates tk, should approximate the terminal pay-off. Leland gave an explicit formula for
enlarged volatility σ̂ which may depend on n. His pricing methodology is of great practical
importance, in particular, due to an easy implementation.

However, a mathematical validation of this “approximate replication principle" hap-
pened to be quite delicate. The first rigorous result was obtained by Lott [24] who shown
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Main Results

that the convergence in probability, as it was conjectured by Leland, holds when the trans-
action costs coefficient kn = k0n

−α decreases to zero for α = 1/2 (in this case, σ̂ does not
depend on n). On the other hand, for the constant k0 the replication principle fails to be
true. This was observed by Kabanov and Safarian [18] who calculated the limiting approx-
imation error. They also proved that the replication error tends to zero when α ∈]0, 1/2[.
Interesting limit theorems for the case α = 0 (i.e. constant k) were obtained by Granditz
and Schachinger [13] and Pergamenshchikov [26]. Results on the first-order asymptotics
of the L2-norm of the approximation error can be found in [12]. All mentioned papers
deal with the call option, i.e. with the particular pay-off function h(x) = (x−K)+. Even
in this case the arguments need a lot of estimates. The explicit expressions given by the
Black–Scholes formula simplify calculations which are quite involved.

The limits of applicability of the Leland approach remains an open problem. In this
paper we address this issue and establish convergence results for more general pay-
off functions and non-uniform revision intervals following the methodology of [12]. In
particular, we show, for the case α ∈]0, 1/2], that the approximation error converges to
zero for convex pay-off functions of "moderate" growth. For non-convex pay-off functions
we calculate the systematic error depending on the value of the stock price at maturity.
We find this limiting error also for α = 0 (Theorem 2.5.1).

2.2 Main Results
We consider the standard two-asset model with the time horizon T = 1 assuming that it
is specified under the martingale measure, the non-risky asset is the numéraire, and the
price of risky asset is given by the formula

St = S0 exp

{∫ t

0

σsdWs −
1

2

∫ t

0

σ2
sds

}
where W is a Wiener process. So, dSt = σtStdWt. We assume that σt is a strictly positive
and continuous function on [0, 1] verifying the Lipschitz condition

|σt − σu| 6 L|t− u|

where L > 0 is a constant. In particular, we have σt ∈ [σ, σ] where σ > 0. Note that

St ∼ S0 exp{αtξ − α2
t/2}

where α2
t =

∫ t
0
σ2
sds and ξ ∼ N (0, 1).

Recall that, according to Black and Scholes, the price of the contingent claim h(S1) is
the initial value of the replicating portfolio

Vt = V0 +

∫ t

0

HrdSr = E(h(S1)|Ft) = C(t, St),

where

C(t, x) = E h(x exp{ρtξ − ρ2
t/2}),

ρ2
t =

∫ 1

t

σ2
sds,

8
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and the replication strategy is Hr = Cx(r, Sr).
In the model with proportional transaction costs and a finite number of revisions the

current value of the portfolio process at time t is described as

(2.2.1) V n
t = V n

0 +

∫ t

0

Hn
udSu −

∑
ti6t

knSti |Hn
i+1 −Hn

i |

where Hn is a piecewise-constant process with Hn = Hn
i on the interval ]ti−1, ti], ti = tni ,

i 6 n, are the revision dates, and Hn
i are Fti−1

-measurable random variables. Of course,
V n

0 is the initial endowment. We assume that the transaction costs coefficient verifies

(2.2.2) k = kn = k0n
−α, α ∈ [0, 1/2],

and the dates ti are defined by a strictly increasing function g ∈ C1[0, 1] with g(0) = 0,
g(1) = 1, so that ti = g(i/n). Let denote by f the inverse of g. The “enlarged volatility”,
in general, depending on n, is given by the formula

(2.2.3) σ̂2
t = σ2

t + σtknn
1
2

√
8/π
√
f ′(t) = σ2

t + σtγn(t).

We call the Leland strategy the process Hn with

Hn
i = Ĉx(ti−1, Sti−1)

where the function Ĉ(t, x) is the solution of the Cauchy problem:

(2.2.4) Ĉt(t, x) +
1

2
σ̂2
t x

2Ĉxx(t, x) = 0, Ĉ(1, x) = h(x).

Its solution can be written as

Ĉ(t, x) =

∫ ∞
−∞

h(xeρty−ρ
2
t /2)ϕ(y)dy(2.2.5)

where ϕ is the Gaussian density and ρ2
t = (ρnt )2 =

∫ 1

t
σ̂2
sds; to simplify formulae we shall

omit frequently the subscript t at ρ.
Note that σ̂2

s > σ2 + cn
1
2
−α for a constant c > 0 and, therefore,

ρ2
t >

(
σ2 + cn

1
2
−α
)

(1− t).

We use the abbreviations Ĥt = Ĉx(t, St) and ĥt = Ĉxx(t, St). We define V n
0 := Ĉ(0, S0).

We shall use the following hypothesis on the “cadence ” of revisions:
Assumption (G1): g′ > 0, g′′ ∈ C[0, 1[ and there exists a constant λ ∈ [0, 1[ such that
g′′(t)(1− t)λ is bounded on [0, 1[.
Assumption (G2): the function g is concave, g′′ ∈ C[0, 1[ and there exists a constant
λ ∈ [0, 1[ such that g′′(t)(1 − t)λ is bounded on [0, 1[. Moreover, we have some constants
k1 > k2 in ]0, 1/2 + α[, c1, c2 > 0 and h0 > 0 near to 0 such that, for n large enough:

(i) c1 (1− g(u))k1 6 g′(u) 6 c2 (1− g(u))k2 for u near to 1,

(ii) g′
(
1− 1

n

)
>
(

1
n

)µ
, µ ∈ [0, k1],

9
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(iii) limh→0 supt61−h
1−g(t−h)

1−g(t) 6 c2,

(iv) supt<1

∣∣∣f ′(t−h)
f ′(t)

− 1
∣∣∣ 6 c2h

1−t , 0 6 h 6 h0,

(v) |g
′′(u)|
g′(u)2

6 c2
(1−g(u))3/2

, ∀u < 1,

(vi) f
′(t2)
f ′(t1)

6 c2
1−t1
1−t2 if t1 − h 6 t2 6 t1 < 1, 0 6 h 6 h0.

(vii) g′(x)3/4√
1−g(x)

6 c√
1−x , for x near to 1

It is easy to see that, in this two cases, the following properties hold:
Lemma 2.2.1. Assume that (G1) or (G2) hold. Then there exists a constant γ > 1 such
that for i = 0, .., n− 1 and n large enough:

(2.2.6) ∆ti = ti − ti−1 = g′(i− 1/n)n−1 + n−γon(1),

and, moreover, for some constants d1, d2 > 0

(2.2.7) ∆ti 6 d1n
−1,

(2.2.8)
1− ti−1

1− ti
6 d1,

f ′(ti−1)

f ′(ti)
6 d1,

(2.2.9) sup
u∈[ti−1,ti[

f ′(u)(ti − u)n 6 d1,

(2.2.10) 1− tn−1 > d2n
−(µ+1).

Note that the assumption (G2) is verified by the functions

gµ(t) = 1− (1− t)µ, µ > 1.

Our hypothesis on the pay-off function is as follows:
Assumption (H): h is a continuous function on [0,∞[ which is twice differentiable except
the points K1 < · · · < Kp where h′ and h′′ admit right and left limits; h′ is bounded and
|h′′(x)| 6 Mx−β for x > Kp where β > 3/2.

Let K0 = 0 and Kp+1 = ∞. Then h′′ is bounded while h verifies the inequality
|h(x)| 6 M1(1+x) with some constantM1. The function Ĉ(t, x) is continuous on [0, 1]×R.

Put

θ1(x, S1) :=
1√
x

∫ ∞
−∞

h′(S1e
√
xy+x/2)yϕ(y)dy,

εα :=
S1

2

∫ ∞
0

[θ1(x, S1)− |θ1(x, S1)|]dx, α ∈]0, 1/2[,

ε1/2 :=
1

2
k0

√
8

π

∫ 1

0

σt
√
f ′(t)

(
Ĉxx(t, St)− |Ĉxx(t, St)|

)
dt.

10
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Theorem 2.2.2. Let α ∈]0, 1/2[. Suppose that (G1) holds. Then

(2.2.11) P - lim
n
V n

1 = h(S1) + εα.

Let α = 1/2. Suppose that (G1) or (G2) is fulfilled. Then

(2.2.12) P - lim
n
V n

1 = h(S1) + ε1/2.

If h is a convex function, then εα = 0 (for α ∈ [0, 1/2]).

2.3 Estimates
In the following subsections we establish some properties of the solution of the Cauchy
problem (2.2.4) needed for the proof of Theorem 2.2.2.

2.3.1 Explicit Formulae

Lemma 2.3.1. Let Ĉ(t, x) is given by (2.2.5). Then

∂k+1Ĉ(t, x)

∂xk+1
=

1

ρkxk

∫ ∞
−∞

h′(xeρy+ρ2/2)Pk(y)ϕ(y)dy, k > 0,

where Pk(y) = yk + ak−1(ρ)yk−1 + · · ·+ a0(ρ) is a polynomial of degree k whose coefficients
ai(ρ) are polynomials in ρ of degree k − 1.

Proof. By the change of variable z = z(y, x, ρ) = xeρy−ρ
2/2 with the inverse

y = y(z, x, ρ) = −1

ρ

(
ln
x

z
− ρ2

2

)
we transform (2.2.5) to the form more convenient to differentiate:

Ĉ(t, x) =
1

ρ

∫ ∞
0

h(z)

z
ϕ(y(z, x, ρ))dz.

It follows that
Ĉx(t, x) =

1

ρ2

∫ ∞
0

h(z)

xz
y(z, x, ρ)ϕ(y(z, x, ρ))dz

because we can differentiate under the sign of the integral. Indeed, it is easily seen that for
every x0 > 0 the integrand in the last formula, for x varying in a sufficiently small interval
]x0 − α, x0 + α[, can be dominated by an L1-function of variable z which does not depend
of x.

Turning back to the integration with respect to y, we have the formula

Ĉx(t, x) =
1

ρx

∫ ∞
−∞

h(z(x, y, ρ))yϕ(y)dy.

Splitting the integral and integrating by parts on each interval ]δ̃j, δ̃j+1[ with

δ̃j =
1

ρ
ln
Kj

x
+
ρ

2
,

11
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j = 0, .., p + 1 and K0 = 0, Kp+1 = ∞, we deduce from here, after the change of variable
y′ = y − ρ, that

Ĉx(t, x) =

∫ ∞
−∞

h′(z̃(y, x, ρ))ϕ(y)dy(2.3.13)

where z̃ = z̃(y, x, ρ) = xeρy+ρ2/2.
In particular, |Ĉx(t, x)| 6 ||h′||∞.
Similar calculations give the formulae:

Ĉxx(t, x) =
1

ρx

∫ ∞
−∞

h′(z̃(y, x, ρ))yϕ(y)dy,(2.3.14)

Ĉxxx(t, x) =
1

ρ2x2

∫ ∞
−∞

h′(z̃(y, x, ρ))P2(y)ϕ(y)dy,(2.3.15)

Ĉxxxx(t, x) =
1

ρ3x3

∫ ∞
−∞

h′(z̃(y, x, ρ))P3(y)ϕ(y)dy(2.3.16)

with

P2(y) = y2 − ρy − 1,

P3(y) = y3 − 3ρy2 + (2ρ2 − 3)y + 3ρ.

The general formula for the derivatives in x follows by induction. Indeed, assume that

∂kĈ(t, x)

∂xk
=

1

ρk−1xk−1

∫ ∞
−∞

h′(xeρy+ρ2/2)Pk−1(y)ϕ(y)dy,

where Pk−1(y) = yk−1 + ak−2(ρ)yk−2 + · · · + a0(ρ) is a polynomial of degree k − 1 whose
coefficients ai(ρ) are polynomials in ρ of degree k−2. With the change of variable y = y′−ρ,
we obtain

∂kĈ(t, x)

∂xk
=

1

ρk−1xk−1

∫ ∞
−∞

h′(xeρy−ρ
2/2)Pk−1(y − ρ)ϕ(y − ρ)dy.

By the change of variable z = z(y, x, ρ) = xeρy−ρ
2/2, we write

∂kĈ(t, x)

∂xk
=

1

ρk−1xk−1

∫ ∞
−∞

h′(z)

ρz
Pk−1 (y(z, x, ρ)− ρ)ϕ (y(z, x, ρ)− ρ) dz

and we deduce that

∂k+1Ĉ(t, x)

∂xk+1
=

1− k
ρk−1xk

∫ ∞
−∞

h′(z)

ρz
Pk−1 (y(z, x, ρ)− ρ)ϕ (y(z, x, ρ)− ρ) dz,

+
1

ρk−1xk−1

∫ ∞
−∞

h′(z)

ρz
Pk−1 (y(z, x, ρ)− ρ)

y(z, x, ρ)− ρ
ρx

ϕ (y(z, x, ρ)− ρ) dz,

+
1

ρk−1xk−1

∫ ∞
−∞

h′(z)

ρz

1

ρx
P ′k−1 (y(z, x, ρ)− ρ)ϕ (y(z, x, ρ)− ρ) dz.

12
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Then,

∂k+1Ĉ(t, x)

∂xk+1
=

1

ρkxk

∫ ∞
−∞

h′(z)

ρz
Pk (y(z, x, ρ)− ρ)ϕ(y(z, x, ρ)− ρ)dz,

=
1

ρkxk

∫ ∞
−∞

h′(xeρy−ρ
2/2)Pk (y − ρ)ϕ(y − ρ)dy,

where Pk(y) = (1−k)ρPk−1(y)+yPk−1(y)+P ′k−1(y) is a polynomial of degree k because of
the degree of Pk−1. The coefficient of the main term xk is clearly equal to unit whereas the
other coefficients are polynomials in ρ of degree k−1 by induction. Then, we can conclude
using the change of variable y = y′ + ρ.

By similar reasoning we obtain, using the previous lemma and the PDE 2.2.4:
Lemma 2.3.2. Let Ĉ(t, x) is given by (2.2.5). Then

Ĉt(t, x) =
−σ̂2

t x

2ρ

∫ ∞
−∞

h′(xeρy+ρ2/2)yϕ(y)dy,(2.3.17)

Ĉtx(t, x) =
σ̂2
t

2ρ2

∫ ∞
−∞

h′(xeρy+ρ2/2)Q2(y)ϕ(y)dy,(2.3.18)

Ĉxxt(t, x) =
σ̂2
t

2ρ3x

∫ ∞
−∞

h′(xeρy+ρ2/2)Q3(y)ϕ(y)dy,(2.3.19)

with

Q2(y) = −y2 − ρy + 1,

Q3(y) = −y3 − ρy2 + 3y + ρ.

2.3.2 Inequalities

Lemma 2.3.3. There is a constant c > 0 such that

(2.3.20) |Ĉxx(t, x)| 6 c
1

ρx3/2
e−ρ

2/8

p∑
j=1

exp

{
−1

2

ln2(Kj/x)

ρ2

}
+ c

1

x3/2
e−ρ

2/8.

Proof.We integrate by parts the integral of the formula (2.3.14) on each interval ]δj, δj+1[
with

δj =
1

ρ
ln
Kj

x
− ρ

2
.

As
{y : Kj < z̃(y, x, ρ) < Kj+1} =]δj, δj+1[,

we have:

Ĉxx(t, x) =

p∑
j=0

1

ρx
[−h′(z̃)ϕ(y)]

δj+1

δj
+

p∑
j=0

1

ρx

∫ δj+1

δj

ρz̃h′′(z̃)ϕ(y)dy.

Notice that Ĉxx(t, x) > 0 if h is convex.

13
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Using the change of variable u = y + ρ/2 and the boundedness of h′′, we have:∣∣∣∣ 1

ρx

∫ δp

−∞
ρz̃h′′(z̃)ϕ(y)dy

∣∣∣∣ = e−ρ
2/8

∣∣∣∣∣
∫ ln(Kp/x)/ρ

−∞
e

3
2
ρyh′′(xeρy)ϕ(y)dy

∣∣∣∣∣
6 c e−ρ

2/8e
3
2

ln(Kp/x) 6 c
1

x3/2
e−ρ

2/8,

where c is a constant.
Using the assumption on the growth of h′′, we get in a similar way that∣∣∣∣∣ 1

ρx

∫ ∞
δp

ρz̃h′′(z̃)ϕ(y)dy

∣∣∣∣∣ = e−ρ
2/8

∣∣∣∣∣
∫ ∞

ln(Kp/x)/ρ

e
3
2
ρyh′′(xeρy)ϕ(y)dy

∣∣∣∣∣
6 e−ρ

2/8

∫ ∞
ln(Kp/x)/ρ

e
3
2
ρy−βρyx−βϕ(y)dy 6 c

1

x3/2
e−ρ

2/8.

Noting that −h′(z̃)ϕ(y) = 0 for y = δ0 and y = δp+1, we dominate the first sum by the
estimate

1√
2πρx

p∑
j=1

2||h′||∞e−δ
2
j /2.

The desired inequality follows from the above bounds.
Recall the following identity (see [12]):

Lemma 2.3.4. Let η ∼ N (0, 1). Then for any real numbers a 6= 0, b and c

Eecηe−(aη+b)2 =
1√

2a2 + 1
exp

{
− b̃2

2a2 + 1
+ b̃2 − b2

}

where b̃ = b− c/(2a).
It will serve to get the following:

Corollary 2.3.5. There exists a constant c such that for t ∈ [0, 1[

ES4
t Ĉ

2
xx(t, St) 6 c

1

ρ
e−ρ

2/4.

Proof. By (2.3.20)

Smt Ĉ
2
xx(t, St) 6

K

ρ2

p∑
j=1

ectηe−(atη+bjt )
2

+Ke−ρ
2/4Sm−3

t

with ct = (m− 2)αt, at = αt/ρ, and

bjt =
1

ρ

(
ln
S0

Kj

− 1

2
α2
t

)
+
ρ

2
.

Then

ESmt Ĉ
2
xx(t, St) 6 K

p∑
j=1

exp{−Bj
t }

ρ
√

2α2
t + ρ2

+Ke−ρ
2/4

14
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for some constant K and

Bj
t =

(
ln S0

Kj
− 1

2
α2
t − 1

2
(m− 3)ρ2

)2

2α2
t + ρ2

− (m− 2)(m− 4)

4
ρ2.

We conclude by taking m = 4.
Similarly, we can deduce the following bounds:

Corollary 2.3.6. There exists a constant c such that for t ∈ [0, 1[

ES2
t Ĉ

2
xx(t, St) 6 c

(
p∑
j=1

1

ρ2
√

2u2 + 1
exp

{
−

v2
j

2u2 + 1

}
+ e−ρ

2/4

)

where c is a constant, u = αt/ρ and

vj =
ln(S0/Kj)− α2

t/2

ρ
+

1

2
ρ.

Corollary 2.3.7. There exists a constant c such that for t ∈ [1
2
, 1[,

ES2
t Ĉ

2
xx(t, St) 6 c

(
1

ρ
+ e−ρ

2/4

)
.

With the same technique we can prove the following estimates:
Lemma 2.3.8. There exists a constant c such that

|Ĉxxx(t, x)| 6
ce−ρ

2/8

ρ2x5/2
(L(x, ρ) + ρ) ,

|Ĉxxxx(t, x)| 6 ce−ρ
2/8x−7/2P3(ρ−1),

|Ĉtx(t, x)| 6
cσ̂2e−

ρ2

8

x1/2ρ2

(
L(x, ρ) + ρ+ ρ2

)
,

|Ĉxxt(t, x)| 6 cσ̂2e−ρ
2/8x−3/2(ρ−1 + ρ−3),

where P3 is a polynomial of the third order and

L(x, ρ) =

p∑
j=1

| ln(x/Kj)|
ρ

exp

{
− ln2(x/Kj)

2ρ2

}
.

Lemma 2.3.9. There exists a constant c and a polynomial Q of third order such that

ESmt Ĉ
2
tx(t, St) 6 cσ̂4

tQ(ρ−1)e−ρ
2/4.

Proof. It suffices to use Lemma 2.3.8 and observe that

ESmt ln2 St
K

exp

{
− ln2(St/K)

ρ2

}
6 c(ρ5 + ρ3).
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2.4 Proof of Theorem 2.2.2
By the Ito formula we get that

(2.4.21) Ĉx(t, St) = Ĉx(0, S0) +Mn
t + Ant

where

Mn
t :=

∫ t

0

σuSuĈxx(u, Su)dWu,

Ant :=

∫ t

0

[
Ĉxt(u, Su) +

1

2
σ2
uS

2
uĈxxx(u, Su)

]
du.

The process Mn is a square integrable martingale on [0, 1] in virtue of Corollaries 2.3.6
and 2.3.7.

Following [19] we represent the difference V n
1 − h(S1) in a convenient form.

Lemma 2.4.1. We have V n
1 − h(S1) = F n

1 + F n
2 + F n

3 where

F n
1 :=

∫ 1

0

(Hn
t − Ĥt)dSt − kn|Hn

tn −H
n
tn−1
|Stn ,(2.4.22)

F n
2 :=

1

2

∫ 1

0

σtγn(t)S2
t |Ĉxx(t, St)|dt− kn

n−1∑
i=1

|Hn
ti
−Hn

ti−1
|Sti ,

F n
3 =

1

2

∫ 1

0

σtγn(t)S2
t

(
Ĉxx(t, St)− |Ĉxx(t, St)|

)
dt.

Note that F n
3 = 0 if h is a convex function.

Put Da
i := {(x, y) : x ∈ [1/a, a], xey ∈]Ki, Ki+1[} , a > 0, i = 0, ..., p.

Lemma 2.4.2. The mapping (x, y) 7→ h′(xey) is a Lipschitz function on each set Da
i , i.e.

there exists a constant La such that

|h′(xey)− h′(zeu)| 6 La(|x− z|+ |y − u|)

for all x, z ∈ [1/a, a] and y, u such that xey, zeu ∈]Ki, Ki+1[, i = 0, ..., p.
Proof. Let us consider the representation

h′(xey)− h′(zeu) =

∫ xey

zeu
h′′(s)ds.

Since h′′ is bounded, the assertion for i < p is obvious. For i = p, we use the assumption
that |h′′(s)| 6 Ms−β for s > Kp where β > 3/2.
Lemma 2.4.3. For any α ∈ [0, 1/2],

(2.4.23) P - lim
n
F n

1 = 0.

Proof. Because the processes Hn and Ĥn are bounded, we obtain the convergence to
zero in L2 of the stochastic integral by checking that the difference Hn

u − Ĥn
u tends to zero.

To this end, we note that this difference for u ∈ [ti−1, ti[ can be expressed as
p∑
j=0

[∫
Ij(u)

h′(z̃(y, Su, ρu))ϕ(y)dy −
∫
Ij(ti−1)

h′(z̃(y, Sti−1
, ρti−1

))ϕ(y)dy

]
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with δj(u) = 1
ρu

ln(Kj/Su) − 1
2
ρu and Ij(u) = [δj(u), δj+1(u)]. Note that |ρnu − ρnti−1

| 6

cu
√
knn

−1/4 for some constant cu. The measure of the symmetric difference of the intervals
Ij(u) and Ij(ti−1) tends to zero as n→∞. At last,∫

Ij(u)∩Ij(ti−1)

|h′(z̃(y, Su, ρu))ϕ(y)− h′(z̃(y, Sti−1
, ρti−1

))|ϕ(y)dy → 0

in virtue of the previous lemma.
For the second term in (2.4.22) we note that

Ĉx(tn−1, Stn−1) =

∫ ∞
−∞

h′(Stn−1e
ρy+ρ2/2)ϕ(y)dy

with ρ = ρtn−1 → 0 as n→∞. We conclude using the Lebesgue theorem.
We write F n

2 =
∑5

i=1 L
n
i where

Ln1 :=
1

2

∫ 1

0

σtγn(t)S2
t |ĥt|dt−

1

2

∫ 1

0

n−1∑
i=1

σti−1
γn(ti−1)S2

ti−1
|ĥti−1

|I]ti−1,ti](t)dt

Ln2 :=
n−1∑
i=1

|ĥti−1
|S2
ti−1

(
1

2
σti−1

γn(ti−1)∆ti − knσti−1
n1/2

√
∆tif ′(ti−1)|∆Wti |

)
,

Ln3 := kn

n−1∑
i=1

σti−1
S2
ti−1
|ĥti−1

|n1/2
√

∆tif ′(ti−1|∆Wti | − kn
n−1∑
i=1

Sti−1
|∆Mti |,

Ln4 := kn

n−1∑
i=1

Sti−1
|∆Mti | − kn

n−1∑
i=1

Sti−1
|∆Ĥti |,

Ln5 := −kn
n−1∑
i=1

∆Sti |∆Ĥti |

where we use the abbreviations ∆Wti = Wti −Wti−1
etc.

Lemma 2.4.4. For any α ∈ [0, 1/2] both terms whose difference defines Ln1 converge almost
surely, as n→∞, to the random variable Jα given by the formula

(2.4.24) Jα =
1

2
S1

∫ ∞
0

|θ1(x, S1)| dx, α ∈ [0, 1/2[,

(2.4.25) J1/2 =
1

2

∫ 1

0

σtγn(t)S2
t |ĥt|dt.

Therefore, Ln1 → 0 a.s.
Proof. Let us consider first the case α < 1/2. We shall argue for ω outside the null set

∪i{S1 = Ki}. Recalling the definition ĥt = Ĉxx(t, St) we make the substitution x = (ρnt )2

in integral in the representation of Ln1 and transform this integral to the form

1

2

∫ ρ20

0

σt
γn(t)

σ̂2
t

S2
t |Ĉxx(t, St)|dx.

17



Proof of Theorem 2.2.2

There is an abuse of notation here: we should write t(x) or even tn(x) instead of t.
The function x 7→ t(x) is the inverse of the function t 7→ (ρnt )2, so it depends also
on n. It converges to unit as n → ∞ when α ∈ [0, 1/2[. This follows from the bound
x > c(1 + n1/2−α)(1− t) with some constant c. With the same abuse of notation, we infer
from the formula (2.3.14) that

S2
t Ĉxx(t, St) = St

1√
x

∫ ∞
−∞

h′(Ste
√
xy+x/2)yϕ(y)dy.

Since h′ is bounded and continuous except the points Ki, we get from here S2
t Ĉxx(t, St)→

S2
1Ĉxx(1, S1).
The bound (2.3.20) implies that∣∣∣∣σtγn(t)

σ̂2
t

S2
tCxx(t, St)

∣∣∣∣ 6 ce−x/8(x−1/2 + 1)

and we obtain required convergence of the integral by the Lebesgue theorem.
In a similar way, we rewrite the second term:

1

2

∫ ρ20

0

n−1∑
i=1

σti−1

γn(ti−1)

σ̂2
t

S2
ti−1
|Ĉxx(ti−1, Sti−1

)|1[xi,xi−1[(x)dx

where xi := (ρnti)
2.

Making use the hypothesis (G1) we get that γn(t)→∞ and

σti−1
γn(ti−1)− σtγn(t)

σ̂2
t

→ 0

when t ∈]ti−1, ti], i.e. x ∈ [xi, xi−1[. Thus, σti−1
γn(ti−1)/σ̂2

t → 1. The end of the reasoning
is the same as for the integral term.

In the case α = 1/2 the convergence is obvious for the first term. Moreover, the function
γn(t) does not depend of n and Ln1 → 0 because of convergence of the Riemann sums to
the integral.
Lemma 2.4.5. For any α ∈ [0, 1/2], we have P -limn L

n
2 = 0.

Proof. Taking into account the independence of increments of the Wiener process and
the equalities

E|∆Wti| =
√

2/π
√

∆ti,

E

(
1

2
γn(ti−1)∆ti − kn

√
n∆tif ′(ti−1)|∆Wti|

)2

= (1− 2/π)k2
n nf

′(ti−1)(∆ti)
2,

we obtain that

E(Ln2 )2 = (1− 2/π)k2
n

n−1∑
i=1

σ2
ti−1

ES4
ti−1

Ĉ2
xx(ti−1, Sti−1

)f ′(ti−1)n(∆ti)
2

where f ′(ti−1)∆ti n is bounded. In virtue of Lemma 2.3.5, we have:

E(Ln2 )2 6 c nα/2−1/4k2
n

n−1∑
i=1

(1− ti−1)−1/2∆ti,

and so E(Ln2 )2 → 0 as n→∞.

18
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Lemma 2.4.6. For any α ∈ [0, 1/2], we have P -limn L
n
3 = 0.

Proof. In the case of the assumption (G1), we can prove that

n1/2
√
f ′(ti−1)∆ti = 1 + εn

where εn = on(n−τ ) and τ > 0. We deduce that Ln3 = Cn +Dn with

Cn := knεn

n−1∑
i=1

σti−1
S2
ti−1
|ĥti−1

| |∆Wti |

and

Dn := kn

n−1∑
i=1

[
σti−1

S2
ti−1
|ĥti−1

| |∆Wti | − Sti−1
|∆Mti |

]
.

From Corollary 2.3.5, it follows that:

||Cn||2 6 knεn n
α/4−1/8

n−1∑
i=1

exp
{
−n1/2−α(1− ti−1)/8

}
(1− ti−1)1/4

√
∆ti.

Since |x|e−|x| is bounded, we deduce that

||Cn||2 6 c̃ εn

∫ 1− c
n

0

dt

1− t
6 c̃ εn lnn

where c, c̃ are some constants. Then, ||Cn||2 → 0 as n→∞.
In the case of the assumption (G2) and α = 1/2 , we can establish that

n1/2
√
f ′(ti−1)∆ti = 1 + εi

where
|εi| 6 c

∆ti
1− ti

and c is a constant. Then, we deduce that

||Cn||2 6 cn−1/2

n−1∑
i=1

(∆ti)
3/2

(1− ti)5/4
6 c

lnn

n3/4
.

The remaining part is similar to the proof in [19]:

|Dn| 6 Dn
1 +Dn

2

where

Dn
1 := kn

n−1∑
i=1

Sti−1

∣∣∣∣∫ ti

ti−1

(Sti−1
ĥti−1

− Suĥu)σudWu

∣∣∣∣ ,
Dn

2 := kn

n−1∑
i=1

∣∣∣∣∫ ti

ti−1

(σti−1
− σu)S2

ti−1
ĥti−1

dWu

∣∣∣∣ .
19



Proof of Theorem 2.2.2

We have ‖Dn
2‖2 → 0 because of the assumption on σ whereas

E|Dn
1 | 6 ckn

n−1∑
i=1

(∫ ti

ti−1

E(Sti−1
ĥti−1

− Suĥu)2du

)1/2

.

By the Ito formula, we obtain that

d[Stĥt] = d[StĈxx(t, St)] = ftdWt + gtdt

where

ft := σtStĈxx(t, St) + σtS
2
t Ĉxxx(t, St) =

σt
ρ2

∫ ∞
−∞

h′(z̃)(y2 − 1)ϕ(y)dy,

gt := StĈxxt(t, St) +
1

2
σ2
tS

3
t Ĉxxxx(t, St) + σ2

tS
2
t Ĉxxx(t, St).

Then,

E(Sti−1
ĥti−1

− Stĥt)2 6 2

∫ ti

ti−1

Ef 2
udu+ 2∆ti

∫ ti

ti−1

Eg2
udu.

From Lemma 2.3.8, it follows that

E|Dn
1 | 6 cn−1/2

n−1∑
i=1

∆ti
1− ti

+ c
kn

n1/2(1/2−α)

n−1∑
i=1

(∆ti)
3/2

(1− ti)3/2

6 c n−1/2 lnn+ c
n−α lnn

n1/2(1/2−α)

where c is a constant. Then, E|Dn
1 | converge to zero.

Lemma 2.4.7. For any α ∈]0, 1/2], we have P -limn L
n
4 = 0. For α = 0, the sequence L4

n

is bounded in probability.
Proof. Using again the inequality ||a1| − |a2|| 6 |a1 − a2| we get that

|L4
n| 6 ckn

n−1∑
i=1

Sti−1
|∆Ati |

6 ckn

∫ 1

0

|Ĉxt(u, Su)|du+ kn

∫ 1

0

σ2
uS

2
u|Ĉxxx(u, Su)|du

where c is a constant. Moreover,∫ 1

0

|Ĉxt(u, Su)|du =

∫ ρ20

0

|Ĉxt(u, Su)|σ̂−2
u dx,

where u(x) is defined by x = ρ2
u. Thus, by Lemma 2.3.8,∫ 1

0

|Ĉxt(u, Su)|du 6 c

∫ ρ20

0

G1(x)dx

where

G1(x) :=
1

x
e−x/8

(
p∑
j=1

| ln(Su/Kj)|√
x

exp

{
− ln2(Su/Kj)

2x

}
+
√
x+ x

)
.
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Since 0 6 1 − u 6 c x nα−1/2, it follows that u → 1 as n → ∞ for α ∈ [0, 1/2[. We can
apply the Lebesgue theorem by dominating the function whether x 6 1 or not because
x 6 1 implies that u is sufficiently near from 1 independently of x for n > n0. Indeed,
outside of the null-set ∪i{S1 = Ki}, we have 0 < a 6 | ln(Su/Kj)| 6 b for some constants
a, b (depending on ω) provided that u is sufficiently near unit.

For α = 1/2, the majorant is independent of n but kn → 0. Thus,

kn

∫ 1

0

|Ĉxt(u, Su)|du→ 0 for α ∈]0, 1/2].

The reasoning is similar to analyze the second term using Lemma 2.3.8:∫ 1

0

σ2
uS

2
u|Ĉxxx(u, Su)|du 6 cnα−1/2

∫ ρ20

0

G2(x)dx

where

G2(x) :=
1

x3/2

p∑
j=1

exp

{
− ln2(Su/Kj)

2x

}
+

1√
x
e−x/8.

Thus,

kn

∫ 1

0

σ2
uS

2
u|Ĉxxx(u, Su)|du→ 0.

Lemma 2.4.8. For any α ∈ [0, 1/2] we have P -limn L
n
5 = 0.

Proof. Since maxi |∆Sti | → 0 as n → ∞, it suffices to verify that the sequence
kn
∑n

i=1 |∆Ĥti | is bounded in probability. But this follows from the preceding lemmas.
Lemma 2.4.9. F n

3 → εα a.s. as n→∞.
Proof. Only the case α ∈ [0, 1/2[ needs to be considered. Needed arguments are based

on the change of variables x = ρ2
t and the observation that n1/2−α/σ̂2

t converges to(
σ1k0

√
8/π
√
f ′(1)

)−1

for a fixed x.

Inspecting the formulations of above lemmas, we observe that all terms Lnj → 0 in
probability when α ∈]0, 1/2] and, hence, Theorem 2.2.2 is proven.

2.5 Constant Coefficient: Discrepancy
An inspection of the proof of Theorem 2.2.2 reveals that almost arguments hold also for
α = 0, i.e. when the transaction costs coefficient does not depend on the number of portfolio
revisions, but in Lemma 2.4.7, in this case, we have non-trivial limits. This observation
leads to the following result.
Theorem 2.5.1. Let k = k0 > 0 (i.e. α = 0). Suppose that h is convex or concave and
the assumptions (H) and (G1) hold. Then

(2.5.26) P - lim
n
V n

1 = h(S1) + J1 − J2(k0) + ε0

where J1 is defined (as Lemma (2.4.4)) by the formula

J1 :=
1

2
S1

∫ ∞
0

|θ1(S1, x)| dx,

θ1(S, x) :=
1√
x

∫ ∞
−∞

h′(Se
√
xy+x/2)yϕ(y)dy
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Constant Coefficient: Discrepancy

and J2 is defined by

J2(k0) :=
1

2
S1

∫ ∞
0

j2(S1, x)dx

where

j2(S, x) := |θ1(S, x)| exp
{
−θ2(S, x)/2

}
+ k0 [2Φ (θ(S, x))− 1] θ2(S, x),

θ2(S, x) :=
1

x

∫ ∞
−∞

h′(Se
√
xy+x/2)(−y2 −

√
xy + 1)ϕ(y)dy,

θ(S, x) := k0

√
2

π

θ2(S, x)

θ1(S, x)
, Φ(x) =

∫ x

−∞
ϕ(t)dt.

Proof. In virtue of Lemmas 2.4.4 – 2.4.6 for α = 0, the “chained" terms Ln1 , Ln2 , and Ln3 are
differences of sequences of random variables converging to the common limit J1. Thus, in
our representation of Ln4 , the first component also converges to J1 and it remains to check
the convergence property for the second component, i.e.

(2.5.27) k0

n−1∑
i=1

Sti−1
|Ĥti − Ĥti−1

| → J2(k0).

We put

Zn
i =

∣∣∣σti−1
λiS

2
ti−1

ĥti−1
∆Wti + Sti−1

Ĉxt(ti−1, Sti−1
)∆ti

∣∣∣
where

λi = λni = n1/2
√

∆tif ′(ti−1) = 1 + on(1),

and we represent the left-hand side of (2.5.27) as the sum In1 + In2 + In3 with

In1 := k0

n−1∑
i=1

Sti−1
|Ĥti − Ĥti−1

| − k0

n−1∑
i=1

Zn
i ,

In2 := k0

n−1∑
i=1

[Zn
i − E(Zn

i |Fti−1
)],

In3 := k0

n−1∑
i=1

E(Zn
i |Fti−1

).

Using the inequality ||a1| − |a2|| 6 |a1 − a2| and regrouping terms, we estimate In1 as
follows:

|In1 | 6 k0

n−1∑
i=1

Sti−1
|∆Mti − σti−1

λiSti−1
ĥti−1

∆Wti |

+k0

n∑
i=1

Sti−1

∣∣∣∆Ati − Ĉxt(ti−1, Sti−1
)∆ti

∣∣∣ .
The first sum above coincides with the majorant for |Ln3 | which, as it was established in

the proof of Lemma 2.4.6, converges to zero in probability. The second sum is dominated,
up to a random but fixed multiplier, by∫ 1

0

|Ĉxxx(t, St)|dt+

∫ 1

0

n−1∑
i=1

|Ĉxt(t, St)− Ĉxt(ti−1, Sti−1
)|1[ti−1,ti[(t)dt.
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As we have already shown in Lemma 2.4.7, the first integral converges to zero. The
convergence of the second term to zero (of course, outside the null-set where S1 takes one
of the values Ki) follows by our usual arguments based on the change of variables x = ρ2

u

and dominated convergence. Using the same consideration as in the proof of Lemma 2.4.5,
we can show that In2 → 0 in probability. Indeed, define the sequence

Mn
j =

j−1∑
i=1

[Zn
i − E(Zn

i |Fti−1
)].

It is a martingale and for its quadratic characteristics we have the bound

〈Mn,Mn〉n 6
n−1∑
i=1

σ2
ti−1

λ2
iS

4
ti−1

ĥ2
ti

∆ti +
n−1∑
i=1

S2
ti−1

Ĉ2
xt(ti−1, Sti−1

)(∆ti)
2.

The first sum in the right-hand side converges to zero in virtue of Lemma 2.4.5 while the
second one converges to zero in L1 in virtue of Lemma 2.3.9. By the Lenglart inequality
In2 converges to zero in probability.

For ξ ∼ N (0, 1) and constants α > 0, β ∈ R, we have the formula

E|αξ + β| =
√

2

π
αe−

β2

2α2 + β[2Φ(β/α)− 1]

implying, due to the independence of increments of the Wiener process, the representation

In3 = k0

∫ 1

0

fn(t)dt+ k0

∫ 1

0

gn(t)dt

where

fn(t) :=
n−1∑
i=1

fn(ti−1)I]ti−1,ti](t),

gn(t) :=
n−1∑
i=1

gn(ti−1)I]ti−1,ti](t)

with

fn(ti−1) :=

√
2

π

σti−1
λiS

2
ti−1√

∆ti
|ĥti−1

| exp

{
−
Ĉ2
xt(ti−1, Sti−1

)∆ti

2σ2
ti−1

λ2
iS

2
ti−1

ĥ2
ti−1

}
,

gn(ti−1) := Sti−1
Ĉxt(ti−1, Sti−1

)

[
2Φ

(
Ĉxt(ti−1, Sti−1

)
√

∆ti

σti−1
λiSti−1

ĥti−1

)
− 1

]
.

Using the change of variables x = ρ2
t and putting xi = ρ2

ti
, we have :

In3 = k0

∫ ρ20

0

fn(x)dx+ k0

∫ ρ20

0

gn(x)dx
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where

fn(x) =
n−1∑
i=1

fn(xi−1)I]xi−1,xi](x),

gn(x) =
n−1∑
i=1

gn(xi−1)I]xi−1,xi](x)

and

fn(xi−1) =

√
2

π

σti−1
λiSti−1

σ̂2
t

√
∆ti

∣∣θ1(Sti−1
, xi−1)

∣∣ exp
{
−θ̃2

i (Sti−1
, xi−1)/2

}
,

gn(xi−1) =
σ̂2
ti−1

Sti−1

2σ̂2
t

θ2(Sti−1
, xi−1)

[
2Φ
(
θ̃i(Sti−1

, xi−1)
)
− 1
]
,

θ̃i(S, x) =
σ̂2
ti−1

θ2(S, x)
√

∆ti

2σti−1
λiθ1(S, x)

.

Of course, there is an abuse of notation here since ti−1 and t are functions depending,
respectively, on xi−1 and x but also on n. Note that x ∈ [xi, xi−1] if and only if t ∈ [ti−1, ti]
where |ti − ti−1| 6 an−1 for some constant a. Hence, we have also |xi−1 − xi| 6 cn−1/2.
Moreover, the equality x = ρ2

t implies that 1− t 6 cn−1/2 where c is a constant (recall that
ρ depends on n). Then, for each fixed x , ti−1 and t converge to unit as n→∞.
Moreover, using the Taylor approximation, we can easily establish that

√
∆tiσ̂

2
t = σ2

t

√
∆ti + σtk0

√
8

π

√
g′(f(ti−1))

g′(f(t))
+ on(1).

Then, for x fixed,
√

∆tiσ̂
2
t → σ1k0

√
8/π due to the uniform continuity of g′ ◦ f . Thus,

fn(x)→ 1

2k0

S1 |θ1(S1, x)| exp

{
−k

2
0

π

θ2
2(S1, x)

θ2
1(S1, x)

}
as n→∞. Since

σ̂2
ti−1

σ̂2
t

=
σ̂2
ti−1

(∆ti)
1/2

σ̂2
t (∆ti)

1/2
→ 1,

gn(x)→ 1

2
S1θ2(S1, x)

[
2Φ

(
k0

√
2

π

θ2(S1, x)

θ1(S1, x)

)
− 1

]
.

The most delicate point is to justify the domination of fn and gn to use the Lebesgue
theorem. In particular, we have to add the convergence of the last functions because of the
term θ1(S1, x). But we can assume that θ1(S1, x) 6= 0. Indeed, suppose that θ1(S1, x) = 0.
Then, ∫ ∞

−∞
h′(S1e

√
xy+x/2)yϕ(y)dy = 0,

p∑
j=0

[
−h′(S1e

√
xy+x/2)ϕ(y)

]δj+1

δj
+

∫ ∞
−∞

S1

√
xe
√
xy+x/2h′′(S1e

√
xy+x/2)dy = 0
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where
δj =

1√
x

ln
Kj

S1

−
√
x

2

and, therefore, Kj < S1e
√
xy+x/2 < Kj+1 if and only if y ∈]δj, δj+1[. Thus, if h is convex or

concave then either h′ is creasing and h′′ > 0, or h′ is decreasing and h′′ 6 0. So, each term
above is either positive or negative. Then θ1(S1, x) = 0 leads to h′(Kj−) = h′(Kj+) and
h′′ = 0 on ]Kj, Kj+1[ (this means that h(x) = ax+ b for some constants a, b and Zn

i = 0).
Justification for fn. We have

√
∆ti > an−1/2 and σ̂2

t > bn1/2 for some constants a, b
while Su(ω) is bounded on [0, 1]. Otherwise, observing fn(t) and using (2.3.20), we can
deduce that |fn(x)| 6 c e−x/8/

√
x.

Justification for gn. The bounds σ̂2
t 6 a

√
n and σ̂2

ti−1
> b
√
n imply that the quotient of

the two last terms is bounded. Inspecting gn(t) and using Lemma 2.3.8, we can write

|gn(x)| 6 c

x
3/2
i−1

e−xi−1/8

(
p∑
j=1

exp

{
−

ln2(Sti−1
/Kj)

2xi−1

}
+ xi−1 + x

3/2
i−1

)

for x ∈]xi, xi−1]. Hence, |gn(x)| 6 c(x−3/2e−x/8 + x−1/2 + 1) for x > 1.
For x 6 1, the relation x = ρ2

t implies that 0 6 1−t 6 c n−1/2 and ln2(Sti−1
/Kj) > ε > 0

outside of the null-set ∪i{S1 = Ki} provided that n > n0 and knowing that |t − ti−1| 6
|∆ti| 6 cn−1. Thus,

|gn(x)| 6 c

x
3/2
i−1

e−xi−1/8

(
p∑
j=1

exp

{
− ε

2xi−1

}
+ xi−1 + x

3/2
i−1

)
.

Using the fact that the function ye−y is bounded on [0,∞[, we infer that

|gn(x)| 6 c(x−1/2 + 1) for x 6 1.

Theorem 2.5.1 is proven.
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Chapter 3

Mean Square Error for the
Leland–Lott Hedging Strategy for
General Pay-offs

In the previous chapter, we have seen that the Leland strategy produces a portfolio whose
the terminal value converges in probability to the pay-off h(S1) if h is a convex function.
For the case α = 1/2, it was shown in [12] that it converges also in L2 if the pay-off is
h(S1) = (S1 −K)+ and for non-uniform revision intervals. In this chapter, we show that
this is always true for a more general contingent claim h(S1) and for α ∈]0, 1/2].

3.1 Theorems
We assume that the model is the classical Black–Scholes model with transaction costs of
Chapter 2. Although, we suppose that the volatility is constant: the risky asset is defined
by the equation

dSt = σStdWt

where W is a Wiener process.
Our objective is to extend the result, that we can find in [12], giving the rate of

convergence of the mean square replication error. For this, we shall assume that the
pay-off h(S1) is defined by the function h verifying the same conditions (H) as in
Chapter 2. Furthermore, we shall obtain an interesting representation for the error process
n1/2(V n

t − V̂t) ( recall that V̂t = Ĉ(t, St)) as a sum of a martingale and a residual term
which uniformly tends to 0.

We note Λt = EĈ2
xx(t, St)S

4
t and

Λ(x) =
1

x

∫ ∞
−∞

e2σz−σ2

(∫ ∞
−∞

h′
(
eσz−

σ2

2
+
√
xy+x

2

)
yϕ(y)dy

)2

ϕ(z)dz.

Theorem 3.1.1. α = 1/2. Let h(S1) be the contingent claim where h is a convex function
verifying the condition (H). Suppose that the assumptions (G1) or (G2) hold. Then, the
mean square approximation error of the Leland-Lott strategy is such that:

E(V n
t − V̂t)2 = E(1/2)tn

−1 + o(n−1), n→∞(3.1.1)
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with the coefficient

E(1/2)t = σ2

∫ t

0

[
2k0σ

√
2/π
√
f ′(u) + σ2

2f ′(u)
+ k2

0

(
1− 2

π

)]
Λudu.

Note that the convergence is uniform on [0, 1] .
Corollary 3.1.2. We have the following approximation for α = 1/2:

n1/2(V n
t − V̂t) = Mn

t + εnt

where Mn
t =

∑
tni 6t Y

n
i + Zn

i is a martingale with

Y n
i =

σ2

2
n1/2Ĉxx(ti−1, Sti−1

)S2
ti−1

[
∆ti − (Wti−1

−Wti)
2
]
,

Zn
i = k0σĈxx(ti−1, Sti−1

)S2
ti−1

[√
2

π

√
∆ti − |Wti−1

−Wti |

]
,

and E(supt ε
n
t )2 → 0.

Let p(α) be such that 0 6 p(α) < α for α < 1/2. Then we have:
Theorem 3.1.3. α ∈]0, 1/2[. Let h(S1) be the contingent claim where h is a convex function
verifying the condition (H). Then, the mean square approximation error of the Leland-Lott
strategy is such that:

In the case where g = gµ, µ > 1,

n1/2+αE(V n
1 − V̂1)2 → 0.(3.1.2)

Under the assumption (G1),

np(α)E(V n
1 − V̂1)2 → 0.(3.1.3)

3.2 Proof of Theorem 3.1.3
We recall the representation of the hedging error that we can find in [19]:
Lemma 3.2.1. We have the equality V n

t − Ĉ(t, St) = F n
1t + F n

2t where

F n
1t = σ

n∑
i=1

∫ ti∧t

ti−1∧t

(
Ĉx(ti−1, Sti−1

)− Ĉx(u, Su)
)
SudWu,

F n
2t = σk0

√
2

π
n1/2−α

∫ t

0

√
f ′(u)S2

uĈxx(u, Su)du

−k0n
−α

∑
ti6t̂n−1(t)

∣∣∣Ĉx(ti, Sti)− Ĉx(ti−1, Sti−1
)
∣∣∣Sti

where t̂n−1(t) = maxi6n−1{ti : ti 6 t}.
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Inspired by the fact that

Ĉx(ti−1, Sti−1
) ' Ĉx(u, Su) + Ĉxx(ti−1, Sti−1

)(Sti−1
− Su),

we note:

P n
1t =

n−1∑
i=1

σĥti−1
S2
ti−1

∫ ti∧t

ti−1∧t

(
1− Su

Sti−1

)
Su
Sti−1

dWu,

P n
2t = k0n

−α
∑

ti6t̂n−1(t)

ĥti−1
S2
ti−1

[
σ

√
2

π
n1/2

√
f ′(ti−1)∆ti −

∣∣∣∣ StiSti−1

− 1

∣∣∣∣
]
.

Let Rn
i = F n

i − P n
i for i = 1, 2. We have

V n
t − V̂t = P n

1t + P n
2t +Rn

1t +Rn
2t.

So, our objective is to show that

n1/2+αE(P n
1t + P n

2t)
2 → E(α)t

where E(α)t is a coefficient depending on t and

nE(Rn
it)

2 → 0 as n→∞.

From the Taylor formula, we can deduce that Ĉx(ti−1, Sti−1
) is equal to the following sum:

Ĥu + ĥti−1
(Sti−1

− Su) + Ĉxt(ti−1, Sti−1
)(ti−1 − u)− 1

2
Ĉxxx(t̃i−1, S̃ti−1

)(Sti−1
− Su)2

− Ĉxxt(t̃i−1, S̃ti−1
)(Sti−1

− Su)(ti−1 − u)− 1

2
Ĉxtt(t̃i−1, S̃ti−1

)(ti−1 − u)2(3.2.4)

if u ∈ [ti−1, ti[, where (t̃i−1, S̃ti−1
) is a random variable Fti-measurable.

It follows that we have

Rn
1 = σ (Rn

10 −Rn
11 −Rn

12 −Rn
13 + 2Rn

14)

where:

Rn
10(t) =

∫ t

tn−1∧t

(
Ĉx(tn−1, Stn−1)− Ĉx(u, Su)

)
SudWu

Rn
11(t) =

n−1∑
i=1

∫ ti∧t

ti−1∧t
Ĉxt(ti−1, Sti−1

)(u− ti−1)SudWu,

Rn
12(t) =

1

2

n−1∑
i=1

S3
ti−1

∫ ti∧t

ti−1∧t
Ĉxxx(t̃i−1, S̃ti−1

)

(
1− Su

Sti−1

)2
Su
Sti−1

dWu,

Rn
13(t) =

1

2

n−1∑
i=1

Sti−1

∫ ti∧t

ti−1∧t
Ĉxtt(t̃i−1, S̃ti−1

)(u− ti−1)2 Su
Sti−1

dWu,

Rn
14(t) =

1

2

n−1∑
i=1

S2
ti−1

∫ ti∧t

ti−1∧t
Ĉxxt(t̃i−1, S̃ti−1

)

(
1− Su

Sti−1

)
(u− ti−1)

Su
Sti−1

dWu.
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In the same way, we write:
Rn

2 = Rn
20 + · · ·+Rn

24

where

Rn
20(t) = σk0

√
2

π
n1/2−α

∫ t

t̂n−1

S2
uĥu
√
f ′(u)du,

Rn
21(t) = σk0n

1/2−α

√
2

π

∑
ti6t̂n−1(t)

∫ ti

ti−1

S2
uĥu
√
f ′(u)− S2

ti−1
ĥti−1

√
f ′(ti−1)du,

Rn
22(t) = kn

∑
ti6t̂n−1(t)

ĥti−1
|Sti − Sti−1

|(Sti−1
− Sti),

Rn
23(t) = kn

∑
ti6t̂n−1(t)

Θi(Sti − Sti−1
),

Rn
24(t) = kn

∑
ti6t̂n−1(t)

ΘiSti−1
,

Θi = ĥti−1
|Sti − Sti−1

| − |Ĉx(ti, Sti)− Ĉx(ti−1, Sti−1
)|.(3.2.5)

3.2.1 Analyze of the Main Terms

Lemma 3.2.2. We have the following uniform convergences :
If α ∈]0, 1/2[, then

n1/2+α sup
t
E(P n

1t)
2 → 0.

If α = 1/2, then

nE(P n
1t)

2 → σ4

2

∫ t

0

Λu

f ′(u)
du,

where Λt = EĈ2
xx(t, St)S

4
t doesn’t depend on n.

Proof. By the independence of the increments of the Wiener process, we have only:

E(P n
1t)

2 = σ2

n−1∑
i=1

Λti−1

∫ ti∧t

ti−1∧t
E

(
1− Su

Sti−1

)2
S2
u

S2
ti−1

du

where:

E

(
1− Su

Sti−1

)2
S2
u

S2
ti−1

= σ2(u− ti−1) + (u− ti−1)O(n−1).

It follows that:

E(P n
1t)

2 =
σ4

2

∑
ti6t̂n−1(t)

Λti−1
(∆ti)

2(1 +O(n−1)) +
σ4

2
Λt̂n−1

(t− t̂n−1)2(1 +O(n−1))

where ∆ti = g′(θi)/n with θi ∈ [(i− 1)/n, i/n]. We deduce that

E(P n
1t)

2 ∼ σ4

2

∑
ti6t̂n−1(t)

Λti−1

nf ′(g(θi))
∆ti
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and we can write:

nE(P n
1t)

2 =
σ4

2

∫ t

0

fn(u)du+ o(1)

where
fn(t) =

∑
ti6t̂n−1(t)

Λti−1

f ′(g(θi))
1[ti−1,ti[(t)

In the case where α = 1/2, the function Λ doesn’t depend on n and verifies:

Λt 6
c√

1− t

where c > 0 is a constant. Moreover, f ′ is bounded from below. So, there exists a constant
M̃ such that

|fn(t)| 6 M̃√
1− t

.

We can conclude, applying the Lebesgue theorem, that uniformly in t

nE(P n
1t)

2 → σ4

2

∫ t

0

Λu

f ′(u)
du.

In the case where α < 1/2,

n3/2−αE(P n
1t)

2 =
σ4(1 + o(n−1))

2

∑
ti6t̂n−1(t)

Λti−1
(∆tin)

∆tin
1/2−α

xi−1 − xi
(xi−1 − xi) + o(1)

where xi = ρ2
ti
. So, we have:

n1/2+α sup
t
E(P n

1t)
2 6 n2α−1σ

4(1 + o(n−1))

2

∫ ∞
0

fn(x)dx+ o(1)

where

fn(x) =
n−1∑
i=1

Λti−1
(∆tin)

∆tin
1/2−α

xi−1 − xi
1]xi,xi−1](x).

Recall that
0 6 Λti−1

6
c

√
xi−1

e−xi−1/4 6
c√
x
e−x/4

where c is a constant and x ∈]xi, xi−1]. For each fixed x ∈]xi, xi−1], x = ρ2
t > cn1/2−α(1− t)

where t ∈ [ti−1, ti[. It follows that not only t→ 1 but also ti, ti−1 → 1.
We have ∆ti = g′(θi)n

−1 where θi ∈ [(i−1)/n, i/n]. It follows that g(θi)→ 1 and θi → 1
since f is continuous. So, ∆tin→ g′(1). Furthermore, we have

∆tin
1/2−α

xi−1 − xi
=

(
σ2

n1/2−α + σk0

√
8

π

1

∆ti

∫ ti

ti−1

√
f ′(s)ds

)−1

which converges to (
σk0

√
8

π

√
f ′(1)

)−1

.
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Note that

Λti−1
=

1

xi−1

∫ ∞
−∞

e2σ
√
ti−1z−σ2ti−1Υi(z)ϕ(z)dz

where

Υi(z) =

(∫ ∞
−∞

h′
(
eσ
√
ti−1z−

σ2ti−1
2

+
√
xi−1y+

xi−1
2

)
yϕ(y)dy

)2

.

Applying the Lebesgue theorem, we deduce that Λti−1
converges to

Λ(x) =
1

x

∫ ∞
−∞

e2σz−σ2

(∫ ∞
−∞

h′
(
eσz−

σ2

2
+
√
xy+x

2

)
yϕ(y)dy

)2

ϕ(z)dz.

From now on, we can apply once again the Lebesgue theorem to conclude that

σ4(1 +O(n−1))

2

∫ ∞
0

fn(x)dx→ σ3g′(1)

4k0

√
f ′(1)

√
π

2

∫ ∞
0

Λ(x)dx

where
Λ(x) 6

c√
x
e−x/4.

It follows that
n1/2+α sup

t
E(P n

1t)
2 → 0.

Lemma 3.2.3. For α ∈]0, 1/2[, we have the following convergences:

n1/2+αE(P n
21)2 →

k0σ
(
1− 2

π

)
2
√
f ′(1)

√
π

2

∫ ∞
0

Λ(x)dx

n1/2+αE(P n
2t)

2 → 0, ∀t ∈ [0, 1[.

For α = 1/2, the following convergence is uniform on [0, 1]:

E(P n
2t)

2 → k2
0σ

2

(
1− 2

π

)∫ t

0

Λudu.

Proof. We write P n
2 = An +Bn where

Ant = kn
∑

ti6t̂n−1(t)

ĥti−1
S2
ti−1

[
σ

√
2

π
n1/2

√
f ′(ti−1)∆ti −G

(
σ
√

∆ti
2

)]
,

Bn
t = kn

∑
ti6t̂n−1(t)

ĥti−1
S2
ti−1

[
G

(
σ
√

∆ti
2

)
−
∣∣∣∣ StiSti−1

− 1

∣∣∣∣]

where G(x) = 4Φ(x)− 2, i.e.

G

(
σ
√

∆ti
2

)
= E

∣∣∣∣ StiSti−1

− 1

∣∣∣∣ .
32



Mean Square Error for the Leland–Lott Hedging Strategy for General Pay-offs

Moreover, we have

G

(
σ
√

∆ti
2

)
= σ

√
2

π

√
∆ti + (∆ti)on(1),

σ

√
2

π
n1/2

√
f ′(ti−1)∆ti = σ

√
2

π

√
∆ti εi

where εi = n1/2
√

∆ti
√
f ′(ti−1) verifies

|εi − 1| 6 c∆ti
1− ti

because of (G2) or (G1) according to Lemma 3.3.3. So, we can write for some constant c:

sup
t
|Ant | 6 ckn

n−1∑
i=1

ĥti−1
S2
ti−1

(∆ti)
3/2

1− ti
,

n1/2(1/2+α)‖ sup
t
Ant ‖2 6 cn1/4(1/2−α)

n−1∑
i=1

(∆ti)
3/2

(1− ti)5/4
6
cn1/4(1/2−α)

n1/4
lnn→ 0.

We first analyze Bn = B in the case α = 1/2.

nEB2
t = k2

0

∑
ti6t̂n−1(t)

Λti−1
E

[
G

(
σ∆ti

2

)
−
∣∣∣∣ StiSti−1

− 1

∣∣∣∣]2

because of independence. But, it is easy to obtain that:

E

[
G

(
σ
√

∆ti
2

)
−
∣∣∣∣ StiSti−1

− 1

∣∣∣∣]2

=

(
1− 2

π

)
σ2∆ti(1 + on(1)).

It follows that, uniformly on [0, 1],

nEB2
t → k2

0σ
2

(
1− 2

π

)∫ t

0

Λtdt.

If α < 1/2, we use the change of variable x = ρ2
t and we obtain that

n1/2+αE(B2
t ) = (1 + on(1))

∫ ρ20

ρ2t

fn(x)dx

where

fn(x) = k2
0σ

2

(
1− 2

π

) n∑
i=1

Λti−1

∆tin
1/2−α

xi−1 − xi
1]xi−1,xi](x)

and xi = ρ2
ti
with ti 6 t. We have already shown that Λti−1

→ Λ(x) and:

∆tin
1/2−α

xi−1 − xi
→

(
σk0

√
8

π

√
f ′(1)

)−1

.

So, we can conclude. Indeed, if t < 1, ρ2
t > cn1/2−α(1 − t) which implies that ρ2

t → ∞,
otherwise ρ2

1 = 0.
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Lemma 3.2.4. For α = 1/2, we have the following uniform convergence on [0, 1]:

nE(P n
1tP

n
2t)→

σ3k0

2

√
2

π

∫ t

0

Λu√
f ′(u)

du.

Proof. In virtue of the previous lemma, it suffices to analyze the convergence of nEP n
1tB

n
t .

For this, we note Dn
t = P n

1tB
n
t .

EDn
t = σkn

∑
ti6t̂n−1

Λti−1
E

(∫ ti

ti−1

(
1− Su

Sti−1

)
Su
Sti−1

dWu

[
G

(
σ∆ti

2

)
−
∣∣∣∣ StiSti−1

− 1

∣∣∣∣]) .
Moreover, we can easily obtain that

E

(∫ ti

ti−1

(
Su
Sti−1

− 1

)
Su
Sti−1

dWu −
∫ ti

ti−1

σ(Wu −Wti−1
)dWu

)2

= (∆ti)
2on(1),

E

(∣∣∣∣ StiSti−1

− 1

∣∣∣∣− σ|Wti −Wti−1
|
)2

= eσ
2∆ti − 1− σ2∆ti 6 c(∆ti)

2.

Then, we deduce that

EDn
t =

σ3kn
2

∑
ti6t̂n−1(t)

Λti−1
E
(
|∆Wti |3 − |∆Wti|∆ti

)
(1 + on(n−1)),

EDn
t =

σ3kn
2

√
2

π

∑
ti6t̂n−1(t)

Λti−1
(∆ti)

3/2(1 + on(n−1))

where
(∆ti)

1/2 =
√
g′ ((i− 1)/n)n−1/2(1 + on(1)).

Using the Lebesgue theorem, we can conclude that

nEDn
t →

σ3k0

2

√
2

π

∫ t

0

Λu√
f ′(u)

du

uniformly on [0, 1].

Corollary 3.2.5. For α < 1/2,

n1/2+αE(P n
11 + P n

21)2 → k0σ (1− 2/π)

2
√
f ′(1)

√
π

2

∫ ∞
0

Λ(x)dx,

n1/2+αE(P n
1t + P n

2t)
2 → 0, ∀t ∈ [0, 1[ .

Corollary 3.2.6. For α = 1/2,

nE(P n
1t + P n

2t)
2 → σ2

∫ t

0

[
2k0σ

√
2/π
√
f ′(u) + σ2

2f ′(u)
+ k2

0

(
1− 2

π

)]
Λudu

uniformly on [0, 1].
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3.2.2 Analyse of the Residual Terms

Lemma 3.2.7. n1/2+αE(suptR
n
10(t))2 → 0.

Proof. If t < tn−1, Rn
10(t) = 0. Then,

sup
t
|Rn

10(t)| = sup
t>tn−1

∣∣∣∣∫ t

tn−1

(
Ĉx(tn−1, Stn−1)− Ĉx(u, Su)

)
SudWu

∣∣∣∣
and the Doob inequality leads to E supt(R

n
10(t))2 6 4E(Rn

10(1))2. Then

n1/2+αE(sup
t
Rn

10(t))2 6 4n1/2+α

∫ 1

tn−1

E
(
Ĉx(tn−1, Stn−1)− Ĉx(t, St)

)2

S2
t dt.

Moreover, |Ĉx(tn−1, Stn−1)− Ĉx(t, St)|St is equal to∣∣∣∣∫ ∞
−∞

(
h′(Stn−1e

ρtn−1y+ρ2tn−1
/2

)− h′(Steρty+ρ2t /2)
)
ϕ(y)dy

∣∣∣∣St
which is dominated by

κn =

∫ ∞
−∞

sup
tn−16t61

St

∣∣∣h′(Stn−1e
ρtn−1y+ρ2tn−1

/2
)− h′(Steρty+ρ2t /2)

∣∣∣ϕ(y)dy.

The random variable κn converges almost surely to 0 out of the null-set S1 ∈ {K1, · · · , Kp}
because of the continuity of h′ and is bounded from above by k̃ supt St where k̃ is a constant.
Applying the Lebesgue theorem, we can conclude from the inequality

n1/2+αE(sup
t
Rn

10(t))2 6 const nα−1/2Eκ2
n.

Lemma 3.2.8. n1/2+αE(suptR
n
11(t))2 → 0.

Proof. Using the Doob inequality, we obtain that E(suptR
n
11(t))2 6 4E(Rn

11(1))2 and by
independence of the increments of the Wiener process, we deduce that

n1/2+αE(Rn
11(1))2 = n1/2+α

n−1∑
i=1

EĈ2
xt(ti−1, Sti−1

)S2
ti−1

∫ ti

ti−1

(u− ti−1)2E

(
Su
Sti−1

)2

du,

n1/2+αE(Rn
11(1))2 6 cn1/2+α

n−1∑
i=1

EĈ2
xt(ti−1, Sti−1

)S2
ti−1

(∆ti)
3 6 cn−1/4 lnn,

since Lemma 3.3.5 gives

EĈ2
xt(ti−1, Sti−1

)S2
ti−1

6 c
n1/2(1/2−α)f ′(ti−1)

(1− ti−1)3/2

and nf ′(ti−1)∆ti is bounded.

Lemma 3.2.9. n1/2+αE(suptR
n
12(t))2 → 0.
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As previously, we have the Doob inequality E(suptR
n
12(t))2 6 4E(Rn

12(1))2 and

4E(Rn
12(1))2 =

n−1∑
i=1

∫ ti

ti−1

E

(
Ĉ2
xxx(t̃i−1, S̃ti−1

)S6
ti−1

(
1− St

Sti−1

)4
S2
t

S2
ti−1

)
dt

where, from Lemma 3.3.15, we recall that there exists a constant c such that:

EĈ4
xxx(t̃i−1, S̃ti−1

) 6
c

ρ8
ti

ε(a),

E

(
1− St

Sti−1

)16

6 c(ti − ti−1)8,

and ε(a)→ 0 as a→ 1. Using the Cauchy-Schwartz inequality, we deduce that

n1/2+αE(Rn
12(1))2 6 cn1/2+α

n−1∑
i=1

(∆ti)
3

n2(1/2−α)(1− ti)2
ε(a)

6 c
n1/2+α

n2(1/2−α)

lnn

n

which proves the convergence to 0 in the case α < 1/2 . Otherwise, we split the sum
whether ti > a or not and we use the convergence ε(a) → 0 as a → 1. Then, the most
difficult part is to analyse in the case of the assumption (G2) the inequality:

n
∑
ti>a

(∆ti)
3

f ′(ti)(1− ti)2
ε(a) 6 ε(a)

∑
ti>a

∆ti
f ′(ti)(1− ti)

where f ′(ti) = 1/g′(f(ti)) is such that

g′(f(ti)) 6 c2 (1− g(f(ti)))
k2 6 c2(1− ti)k2 .

It follows that
n
∑
ti>a

(∆ti)
3

f ′(ti)(1− ti)2
ε(a) 6 ε(a)

∑
ti>a

∆ti
(1− ti)1−k2

and we can easily conclude.
Lemma 3.2.10. n1/2+αE(supuR

n
13(u))2 → 0.

Proof. We have the Doob inequality E(supuR
n
13(u))2 6 4E(Rn

13(1))2 and

4E(Rn
13(1))2 6

n−1∑
i=1

∫ ti

ti−1

E
(
Ĉ2
xtt(t̃i−1, S̃ti−1

)(t− ti−1)4S2
t

)
dt.

Moreover, using Lemma 3.3.14 and the Cauchy-Schwartz inequality, we deduce that

E
(
Ĉ2
xtt(t̃i−1, S̃ti−1

)S2
t

)
6

c

(1− ti)4
.

Then, we obtain that

n1/2+αE(Rn
13(1))2 6 cn1/2+α

n−1∑
i=1

(∆ti)
5

(1− ti)4
6 c

n1/2+α

n
lnn.
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We can easily conclude in the case where α 6= 1/2.
If α = 1/2, we first consider the sum with ti−1 6 a choosing a sufficiently near to 1: we

can easily conclude. If ti−1 > a, we know that

E
(
Ĉ2
xtt(t̃i−1, S̃ti−1

)S2
t

)
6

c

(1− ti)4
εa

where εa → 0 as a→ 1. So, we can conclude if the assumption (G1) holds.
Under the assumption (G2), the reasoning is the same if a 6 ti−1 6 1− 1/n. Indeed, we

have to estimate:

nεa
∑

a6ti−161− 1
n

(∆ti)
5

(1− ti)4
6
nεa
n4

∫ 1−1/n

0

dt

(1− t)4
6 c εa.

Otherwise, if ti−1 > 1− 1/n, we can write ∆ti = g′(θi)n
−1 where g′(θi) 6 n−k2 because of

(G2). Thus, we analyse the following sum:

n
∑

ti−1>1− 1
n

(∆ti)
5

(1− ti)4
6 c

lnn

nk2
→ 0.

Lemma 3.2.11. n1/2+αE(supuR
n
14(u))2 → 0.

Proof. We have the Doob inequality E(supuR
n
14(u))2 6 4E(Rn

14(1))2 and

4E(Rn
14(1))2 =

n−1∑
i=1

∫ ti

ti−1

E

(
S4
ti−1

Ĉ2
xxt(t̃i−1, S̃ti−1

)

(
1− St

Sti−1

)2

(t− ti−1)2 S2
t

S2
ti−1

)
dt.

From Lemma 3.3.16, we deduce that

E

(
S4
ti−1

Ĉ2
xxt(t̃i−1, S̃ti−1

)

(
1− St

Sti−1

)2
S2
t

S2
ti−1

)
6 c

t− ti−1

(1− ti)3
.

Then,

n1/2+αE(Rn
14(1))2 6 cn1/2+α

n−1∑
i=1

(ti − ti−1)4

(1− ti)3
6 c

n1/2+α

n
lnn.

Thus, we can conclude easily if α 6= 1/2. Otherwise, we consider the case ti−1 > a with
a near to unit and we conclude with the same reasoning as the one used in the previous
lemma, using Lemma 3.3.16.
Lemma 3.2.12. n1/2+αE(suptR

n
20(t))2 → 0.

First, we prove that n1/2+α(suptR
n
20(t))2 is bounded from above by an integrable random

variable. Indeed, we have

0 6 Rn
20(t) 6

cn1/2−α

n1/2(1/2−α)

∫ t

t̂n−1(t)

S
1/2
u f ′(u)1/4

√
1− u

du

where ∫ t

t̂n−1(t)

f ′(u)1/4du√
1− u

6 cn−1/2
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for a constant c. Indeed, it is clear if f ′ is bounded. In the case of assumption (G2), we
choose a fixed a sufficiently near to unit. If t 6 a, it is obvious that∫ t

t̂n−1(t)

f ′(u)1/4du√
1− u

6 can
−1/2.

If t > a, we note t̂n−1 = ti−1 where t ∈ [ti−1, ti[. Using the change of variable x = f(u), we
have ∫ t

ti−1

f ′(u)1/4du√
1− u

6
∫ i/n

(i−1)/n

g′(x)3/4√
1− g(x)

dx.

Note that t̂n−1(t) = ti−1 > a− c/n where c is a constant since t > a and ∆ti 6 c/n. Then,
(i− 1)/n > f(a− c/n) which implies that (i− 1)/n is also near to unit as a→ 1. Because
of (G2), we deduce that∫ i/n

(i−1)/n

g′(x)3/4√
1− g(x)

dx 6 c

∫ i/n

(i−1)/n

dx√
1− x

6
c√
n
.

Then, in all cases, there exists a constant c such that

n1/2+α(sup
t
Rn

20(t))2 6 c sup
u
Su.

From now on, it suffices to prove that n1/2+α(suptR
n
20(t))2 → 0 almost surely and to apply

the Lebesgue theorem. But we can prove easily that supu S
2
uĈxx(u, Su) <∞ out of the null

set {S1 = K1, · · · , Kp}. So, there exists a.s. a constant c(w) such that

n1/2+α(sup
t
Rn

20(t))2 6
c(w)

n1/2+α

if f ′ is bounded. Thus, we can conclude in the case of the assumption (G1). Otherwise, we
use the property of (G2), g′(f(t)) > c(1− t)k1 if t is near to 1. It follows that if t > a, with
a fixed a closed to unit, then∫ t

t̂n−1(t)

√
f ′(t)dt 6 c

∫ t

t̂n−1(t)

dt

(1− t)k1/2
6

c

n1−k1/2

where we recall that k1 < 1/2 + α. Indeed, it is clear if t > tn−1. If t < tn−1, we use the
inequality f ′(t) 6 f ′(tn−1) 6 nµ 6 nk1 . Then,

n1/2+α(sup
t
Rn

20(t))2 6
c(w)

n1/2+α−k1

and we can conclude.
Lemma 3.2.13. n1/2+αE(suptR

n
21(t))2 → 0.

Proof. Let be Ψ(t, x) = x2Ĉxx(t, x)
√
f ′(t). The Ito formula give us

Ψ(t, St) = Ψ(ti−1, Sti−1
) +

∫ t

ti−1

∂Ψ

∂x
(u, Su)σSudWu +

∫ t

ti−1

∂Ψ

∂t
(u, Su)du

+
1

2

∫ t

ti−1

∂2Ψ

∂x2
(u, Su)σ

2S2
udu,
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where

∂Ψ

∂t
(t, x) = x2

[
Ĉxxt(t, x)

√
f ′(t) + Ĉxx(t, x)

f ′′(t)

2
√
f ′(t)

]
,

∂Ψ

∂x
(t, x) =

[
2xĈxx(t, x) + x2Ĉxxx(t, x)

]√
f ′(t),

∂2Ψ

∂x2
(t, x) =

[
2Ĉxx(t, x) + 4xĈxxx(t, x) + x2Ĉxxxx(t, x)

]√
f ′(t).

If we note Xt = S2
t Ĉxx(t, x)

√
f ′(t) then dXt = µtdt+ βtdWt where

µt =
∂Ψ

∂t
(t, St) +

1

2

∂2Ψ

∂x2
(t, St)σ

2S2
t ,

βt =
∂Ψ

∂x
(t, St)σSt.

We write n
1
2

( 1
2

+α)Rn
21(t) = Ant +Bn

t with

Ant = n
1
2

( 1
2

+α)σk0n
1
2
−α

√
2

π

∑
ti6t̂n−1(t)

∫ ti

ti−1

(∫ t

ti−1

βudWu

)
dt,

Bn
t = n

1
2

( 1
2

+α)σk0n
1
2
−α

√
2

π

∑
ti6t̂n−1(t)

∫ ti

ti−1

(∫ t

ti−1

µudu

)
dt.

From Lemma 3.3.8, there exists a constant c such that:

Eβ2
t 6 c

(
ES4

t ĥ
2
t + ES6

t Ĉ
2
xxx(t, St)

)
f ′(t) 6

cf ′(t)

n
3
2

( 1
2
−α)(1− t) 3

2

.

Using hypothesis (G1) or (G2) , we claim that there exists a constant c̃ such that

|f ′′(t)|√
f ′(t)

6 c̃

√
f ′(t)

1− t
.

Thus, we obtain, for some constant c, the following inequality:

Eµ2
t 6

cf ′(t)

n
1
2

( 1
2
−α)(1− t) 5

2

.(3.2.6)

By the stochastic Fubini Theorem, we obtain that

Ant = n
1
2

( 1
2

+α)σk0n
1
2
−α

√
2

π

∑
ti6t̂n−1(t)

∫ ti

ti−1

(ti − u)βudWu.

Moreover, we have the Doob inequality E (suptA
n
t )2 6 4E (An1 )2 where, from the bound-

edness of
√

(ti − u)/(1− u) and f ′(u)(ti − u)n if u ∈ [ti−1, ti[ , we deduce the following
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estimates:

E (An1 )2 6 cn3/2−α
n−1∑
i=1

∫ ti

ti−1

(ti − u)2Eβ2
udu,

E (An1 )2 6 cn3/2−α
n−1∑
i=1

∫ ti

ti−1

(ti − u)2f ′(u)

n3/2(1/2−α)(1− u)3/2
du,

E (An1 )2 6
c

n1/2(1/2−α)

n−1∑
i=1

∫ ti

ti−1

(ti − u)

(1− u)3/2
du 6 c

lnn√
n
→ 0.

Then, we can conclude that E (suptA
n
t )2 → 0.

Secondly, we write:

Bn
t = cn3/4−α/2

∑
ti6t̂n−1(t)

∫ ti

ti−1

µu

∫ ti

ti−1

It>udtdu,

Bn
t = cn3/4−α/2

∑
ti6t̂n−1(t)

∫ ti

ti−1

(ti − u)µudu.

Then,

sup
t
|Bn

t | 6 cn3/4−α/2
n−1∑
i=1

∫ ti

ti−1

(ti − u)|µu|du.

It follows that there exists a constant c such that E supt |Bn
t |2 6 cn3/2−αΥn where

Υn = E

(∫ 1

0

n−1∑
i=1

(ti − u)|µu|I]ti−1,ti](u)du

)2

,

Υn = E

∫ 1

0

∫ 1

0

n−1∑
i, j=1

(ti − u)(tj − v)|µu||µv|I]ti−1,ti](u)I]tj−1,tj ](v)dudv.

Using the Cauchy–Schwartz inequality and 3.2.6, we get that

Υn 6
∫ 1

0

∫ 1

0

n−1∑
i, j=1

(ti − u)(tj − v)
(
Eµ2

u

)1/2 (
Eµ2

v

)1/2
I]ti−1,ti](u)I]tj−1,tj ](v)dudv,

Υn 6

(∫ 1

0

n−1∑
i=1

(ti − u)
(
Eµ2

u

)1/2
I]ti−1,ti](u)du

)2

,

Υn 6 const

(
n−1∑
i=1

∫ ti

ti−1

√
(ti − u)f ′(u)n

√
(ti − u)n−1/2

n1/4(1/2−α)(1− u)5/4
du

)2

,

Υn 6
const

n

(
n−1∑
i=1

(∆ti)
3/2

(1− ti)5/4

)2

6
const

n3/2

(
n−1∑
i=1

∆ti
1− ti

)2

,

Υn 6
const

n3/2
ln2 n.

Then, we can deduce that E supt |Bn
t |2 → 0 and the result follows.
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Lemma 3.2.14. n1/2+αE(suptR
n
22(t))2 → 0.

Proof. We write

−Rn
22(t) = kn

∑
ti6t̂n−1(t)

ĥti−1
S2
ti−1

χi = Mn(t) +Nn(t)

where Mn is a martingale defined by

Mn(t) = kn
∑

ti6t̂n−1(t)

ĥti−1
S2
ti−1

[χi − Eχi] ,

χi =

(
Sti
Sti−1

− 1

)2

sign

(
Sti
Sti−1

− 1

)
and

Nn(t) = kn
∑

ti6t̂n−1(t)

ĥti−1
S2
ti−1

Eχi.

Note that there exists a constant k > 0 such that

Eχi = k(∆tj)
3/2
(
1 + o(n−1/4)

)
.

Indeed,
(

Stj
Stj−1

− 1
)2

sign
(

Stj
Stj−1

− 1
)
has the same law than(

exp
{
σ
√

∆tjξ − σ2∆tj/2
}
− 1
)2 (

1
ξ>σ
√

∆tj/2
− 1

ξ6σ
√

∆tj/2

)
where ξ is the standard Gaussian variable so that ξ and −ξ has the same law. It follows
that

E

(
Stj
Stj−1

− 1

)2

sign

(
Stj
Stj−1

− 1

)
is equal to

E

[(
euξ−u

2/2 − 1
)2

−
(
e−uξ−u

2/2 − 1
)2
]

1ξ>u/2 − E
(
e−uξ−u/2 − 1

)2
1|ξ|6u/2

where u = σ
√

∆tj. Moreover,

E
(
e−uξ−u

2/2 − 1
)2

1|ξ|6u/2 6 u4

whereas, from [19], we recall that

E

[(
euξ−u

2/2 − 1
)2

−
(
e−uξ−u

2/2 − 1
)2
]

1ξ>u/2 =
2√
2π
u3 +O(u4).

We can deduce that for n sufficiently large, we have 0 6 Eχi 6 c(∆ti)
3/2. From the Doob

inequality, we have E (suptM
n(t))2 6 4E (Mn(1))2. Moreover, the independence of the

increments of the Brownian motion implies that

E (Mn(1))2 = k2
n

n−1∑
i=1

EĈ2
xx(ti−1, Sti−1

)S4
ti−1

E (χi − Eχi)2 .
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Then, there exists a constant c such that

n1/2+αE (Mn(1))2 6
c

n1/4
.

At last, for n large enough , Eχi > 0. Hence, 0 6 suptN
n(t) 6 Nn(1). In order to prove

that n1/2+αENn(1)2 → 0, we first analyse the following sum

n1/2+αk2
n

n−1∑
i=1

EĈ2
xx(ti−1, Sti−1

)S4
ti−1

(Eχi)
2 6

c

n7/4

where c a constant. Using the Cauchy-Schwartz inequality, we also have

n1/2−α
∑

ti<tj6tn−1

Eĥti−1
S2
ti−1

ĥtj−1
S2
tj−1

EχiEχj 6
c

n1/2
.

Then, we deduce that n1/2+αENn(1)2 → 0 and we conclude that

n1/2+αE(sup
t
Rn

22(t))2 → 0.

Lemma 3.2.15. n1/2+αE(suptR
n
23(t))2 → 0.

Proof. We observe that supt |Rn
23(t)| is dominated by

kn

n−1∑
i=1

∣∣Ĉx(ti, Sti)− Ĉx(ti−1, Sti−1
)− ĥti−1

(Sti − Sti−1
)
∣∣|Sti − Sti−1

|.

Applying 3.2.4 with t = ti, i = 1, · · · , n− 1, it is sufficient to estimate the following sums
3.2.7, · · · ,3.2.10. First, from Lemma 3.3.5, we have:

EĈ2
xt(ti−1, Sti−1

)(∆ti)
2(Sti − Sti−1

)2 6 c
(∆ti)

3n
1
2

( 1
2
−α)f ′(ti−1)1/4

(1− ti)3/2

which leads to

n
1
2

( 1
2

+α)

∥∥∥∥∥kn
n−1∑
i=1

Ĉxt(ti−1, Sti−1
)(∆ti)(Sti − Sti−1

)

∥∥∥∥∥
2

6 c
1

n1/8
→ 0.(3.2.7)

Secondly, from Lemma 3.3.15, we have

EĈ2
xxx(t̃i−1, S̃ti−1

)(Sti − Sti−1
)6 6

c(∆ti)
3

n2(1/2−α)(1− ti−1)2

and we deduce that

n
1
2

( 1
2

+α)

∥∥∥∥∥kn
n−1∑
i=1

Ĉxxx(t̃i−1, S̃ti−1
)(Sti − Sti−1

)3

∥∥∥∥∥
2

6 c
lnn

n1/2
→ 0.(3.2.8)

Thirdly, from Lemma 3.3.16, we have

EĈ2
xxt(t̃i−1, S̃ti−1

)(Sti − Sti−1
)4(∆ti)

2 6
c(∆ti)

4

(1− ti)3
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and it follows that

n
1
2

( 1
2

+α)

∥∥∥∥∥kn
n−1∑
i=1

Ĉxxt(t̃i−1, S̃ti−1
)(Sti − Sti−1

)2∆ti

∥∥∥∥∥
2

6 c
lnn

n1/4
→ 0.(3.2.9)

Finally, from Lemma 3.3.14, we have

EĈ2
xtt(t̃i−1, S̃ti−1

)(Sti − Sti−1
)2(∆ti)

4 6
c(∆ti)

5

(1− ti)4

and

n
1
2

( 1
2

+α)

∥∥∥∥∥kn
n−1∑
i=1

Ĉxtt(t̃i−1, S̃ti−1
)(Sti − Sti−1

)(∆ti)
2

∥∥∥∥∥
2

6 c
lnn

n1/4
→ 0.(3.2.10)

Lemma 3.2.16. Assume that α ∈]0, 1/2[.
If the revision function is gb(t) = 1− (1− t)b, b > 1, we have

n1/2(1/2+α)E(sup
t
Rn

24(t))2 → 0.

If the assumption (G1) holds, we have only

np(α)E(sup
t
Rn

24(t))2 → 0

where p(α) < α.
Proof. We first suppose that the revision dates are defined by the functions gb. We can

claim that supt |Rn
24(t)| is bounded by the random variable

kn

n−1∑
i=1

∣∣∣Ĉx(ti, Sti)− Ĉx(ti−1, Sti−1
)− Ĉxx(ti−1, Sti−1

)
(
Sti − Sti−1

)∣∣∣Sti−1
.

Using the Ito formula for the increments Ĉx(ti, Sti)− Ĉx(ti−1, Sti−1
), we obtain that

sup
t
|Rn

24(t)| 6 kn

n−1∑
i=1

Sti−1

∣∣∣∣ ∫ ti

ti−1

σSu

[
Ĉxx(u, Su)− Ĉxx(ti−1, Sti−1

)
]
dWu

+

∫ ti

ti−1

[
Ĉxt(u, Su) +

1

2
σ2S2

uĈxxx(u, Su)

]
du

∣∣∣∣.(3.2.11)

We deduce that
n1/2(1/2+α)‖ sup

t
Rn

24(t)‖2 6 T 1
n + T 2

n

where

T 1
n = σk0n

1/2(1/2−α)

n−1∑
i=1

(∫ ti

ti−1

ES2
ti−1

S2
u

(
ĥu − ĥti−1

)2

du

)1/2

and

T 2
n = k0n

1/2(1/2−α)

n−1∑
i=1

(∆ti)
1/2

(∫ ti

ti−1

ES2
ti−1

(
Ĉxt(u, Su) +

1

2
σ2S2

uĈxxx(u, Su)

)2

du

)1/2

.
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We shall prove that T 1
n → 0. Using the Taylor Formula, we deduce that Ĉxx(u, Su) −

Ĉxx(ti−1, Sti−1
) is equal to

Ĉxx(u, Su)− Ĉxx(u, Sti−1
) + Ĉxx(u, Sti−1

)− Ĉxx(ti−1, Sti−1
)

which can be written as

Ĉxxx(u, Sti−1
)(Su − Sti−1

) +
1

2
Ĉxxxx(u, S̃ti−1

)(Su − Sti−1
)2 + Ĉxxt(t̃i−1, Sti−1

)(u− ti−1).

Using estimations from Appendix, we obtain that there exists a constant c such that

ES2
ti−1

S2
u

(
Ĉxx(u, Su)− Ĉxx(ti−1, Sti−1

)
)2

is dominated by the sum

c∆ti

n
7
4

(1/2−α)(1− ti)
7
4

+
c(∆ti)

2

n3(1/2−α)(1− ti)3f ′(ti)3/2
εa +

c(∆ti)
2

n3/2(1/2−α)(1− ti)11/4

where εa → 0 as a→ 1. The last estimate comes from Lemma 3.3.12. Indeed, the proof is
the same because ρt̃i−1

6 ρti−1
.

Then, we can easily deduce that T 1
n → 0 since we assume α < 1/2.

We shall prove that T 2
n → 0. We have from Appendix the following inequalities:

ES2
ti−1

Ĉ2
xt(u, Su) 6

c (f ′(ti))
1/8 n1/4(1/2−α)e−cρ

2
ti

(1− ti)7/4
,

ES2
ti−1

S4
uĈ

2
xxx(u, Su) 6

c

n7/4(1/2−α)(1− ti)7/4

where c > 0 is a constant. So, it follows that T 2
n → 0. Indeed, we have to examine the two

following sums. First,

n1/2(1/2−α)

n−1∑
i=1

∆ti
n7/8(1/2−α)(1− ti)7/8

6
const

n3/8(1/2−α)
→ 0.

Secondly, we have to analyze the sum

n5/8(1/2−α)

n−1∑
i=1

∆tif
′(ti)

1/16e−cn
1/2−αf ′(ti)1/2(1−ti)

(1− ti)7/8
.

We strike the latter on two parts. The first contains the terms verifying ti 6 a where a is
chosen sufficiently near to 1. The convergence to 0 is easy to check. For the second part,
since we assume that g = gb, we deduce from ∆ti = g′b(θi)/n with θi ∈ [(i− 1)/n, i/n] that

∆ti 6 (1− i− 1

n
)b−1 1

n
.

Moreover,

1− ti = (1− i

n
)b,

f ′(ti) = (1− ti)1/b−1 = (1− i/n)1−b.
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Then, it suffices to analyse

Sn = n5/8(1/2−α)
∑
ti>a

e−cn
1/2−αf ′(ti)1/2(1− i−1

n
)b

(1− i−1
n

)15/16(1−b)

verifying

Sn 6 c
n5/8(1/2−α)

n15/16(1/2−α)

∑
ti>a

1

(1− i−1
n

)

1

n
.

Indeed, we use the boundedness of |X|e−|X|. Then, the convergence to 0 is guaranteed.
However, in the case of the assumption G1, the reasoning is the same but we can’t use the
deceleration of g.
Lemma 3.2.17. For α = 1/2, nE(suptR

n
24(t))2 → 0.

Proof. We write
−n1/2Rn

24(t) = k0

∑
ti6t̂n−1(t)

γi

where γi = |αi + βi| − |αi| and, using the Taylor Formula,

αi = Ĉxx(ti−1, Sti−1
)S2

ti−1

(
Sti/Sti−1

− 1
)
,

βi = Sti−1
Ĉxt(ti−1, Sti−1

)∆ti +
1

2
S3
ti−1

Ĉxxx(t̃i−1, S̃ti−1
)
(
Sti/Sti−1

− 1
)2

+

S2
ti−1

Ĉxxt(t̃i−1, S̃ti−1
)
(
Sti/Sti−1

− 1
)

∆ti + Sti−1
Ĉxtt(t̃i−1, S̃ti−1

)(∆ti)
2.

Then, we get that −n1/2Rn
24(t) = An(t) +Bn(t) with

An(t) =
∑

ti6t̂n−1(t)

γi − E
(
γi|Fti−1

)
,

Bn(t) =
∑

ti6t̂n−1(t)

E
(
γi|Fti−1

)
.

First, we prove that E supt (An(t))2 → 0. By the Doob inequality, we have

E sup
t

(An(t))2 6 4E (An(1))2 6 4
n−1∑
i=1

Eγ2
i .

Recall that

αi + βi =
(
Ĉx(ti, Sti)− Ĉx(ti−1, Sti−1

)
)
Sti−1

.

Then, using the inequality ||a| − |b|| 6 |a − b| and the Ito formula for the last increment,
we deduce that E supt (An(t))2 6 const (En

1 + En
2 ) where

En
1 =

n−1∑
i=1

∫ ti

ti−1

ES2
ti−1

S2
u

(
Ĉxx(u, Su)− Ĉxx(ti−1, Sti−1

)
)2

du,

En
2 =

n−1∑
i=1

∆ti

∫ ti

ti−1

ES2
ti−1

(
Ĉxt(u, Su) +

1

2
σ2S2

uĈxxx(u, Su)

)2

du.
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In order to prove that En
1 → 0, we apply the Taylor Formula to Ĉxx(u, Su)−Ĉxx(ti−1, Sti−1

)
as in the previous Lemma. Using estimations from Appendix, we deduce that

ES2
ti−1

S2
u

(
Ĉxx(u, Su)− Ĉxx(ti−1, Sti−1

)
)2

is dominated by:

c∆ti

(1− ti)
7
4

+
const (∆ti)

2

(1− ti)3f ′(ti)3/2
εa +

const (∆ti)
2

(1− ti)11/4

where εa → 0 as a→ 1. The last estimate comes from Lemma 3.3.12. Indeed, the proof is
the same because ρt̃i−1

6 ρti−1
. Then, we have to analyse the following sums where c is a

constant: first,
n−1∑
i=1

(∆ti)
2

(1− ti)
7
4

6
c lnn

n1/4
→ 0.

Secondly, we examine the sum

n−1∑
i=1

(∆ti)
3

(1− ti)3f ′(ti)3/2
εa.

We first deal with the terms verifying ti 6 a for a fixed a chosen sufficiently near to the
unit. Thus, the convergences to 0 is ensured. For ti > a and α = 1/2, we have,∑

ti>a

(∆ti)
3

(1− ti)3f ′(ti)3/2
εa 6 c εa

in the case of (G1), which converges to 0 as a → 1 . In the case of the assumption (G2),
we have, with a near to 1

f ′(ti) =
1

g′(f(ti))
>

c

((1− g(f(ti)))
k2

>
c

(1− ti)k2

where 0 < k2 < 1. It follows that∑
ti>a

(∆ti)
3

(1− ti)3f ′(ti)3/2
εa 6

c lnn

n3/2k2
→ 0.

Thirdly,
n−1∑
i=1

c (∆ti)
3

(1− ti)11/4
6
c lnn

n1/4
→ 0.

At last, En
2 → 0. Indeed, we have

En
2 6 c

n−1∑
i=1

(∆ti)
2f ′(ti)

1/8

(1− ti)7/4
6

c

n1/4
→ 0.

From now on, we shall prove that E supt (Bn(t))2 → 0. For this, we note that

sup
t

(Bn(t))2 6 X n
1 + X n

2
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where

X n
1 =

n−1∑
i=1

(
E(γi|Fti−1

)
)2
,

X n
2 = 2

∑
16i<j6n−1

∣∣E(γi|Fti−1
)
∣∣ ∣∣E(γj|Ftj−1

)
∣∣ .

Since EX n
1 6

∑n−1
i=1 Eγ

2
i , it suffices to use the previous estimations in order to prove that

EX n
1 → 0. Moreover, X n

2 = T n1 + T n2 where, for a fixed a near to 1,

T n1 = 2
∑

16i<j6n−1;tj>a

∣∣E(γi|Fti−1
)
∣∣ ∣∣E(γj|Ftj−1

)
∣∣ ,

T n2 = 2
∑

16i<j6n−1;tj6a

∣∣E(γi|Fti−1
)
∣∣ ∣∣E(γj|Ftj−1

)
∣∣ .

We shall prove that ET n1 → 0. Using the Cauchy–Schwarz Inequality, we obtain that

ET n1 6 c
∑

16i<j6n−1;tj>a

√
Eγ2

i

√
Eγ2

j 6 c

(
n−1∑
i=1

√
Eγ2

i

)∑
tj>a

√
Eγ2

j

 .

Moreover,
√
Eγ2

i is dominated by three terms that we can deduce from the previous analyse
of En

1 and En
2 : √

Eγ2
i 6

∆tif
′(ti)

1/16

(1− ti)
7
8

+
(∆ti)

3/2εa
(1− ti)3/2f ′(ti)3/4

+
(∆ti)

3/2

(1− ti)11/8
.

Then, it suffices to estimate the following sums.
First, the sums where the following term Σ1, verifying

Σ1 =
n−1∑
i=1

∆tif
′(ti)

1/16

(1− ti)7/8
6 const

n−1∑
i=1

∆ti
(1− ti)7/8+k1/16

6 const,

appears in the development of the product dominating ET n1 . They correspond with:

Σ1

∑
tj>a

∆tjf
′(tj)

1/16

(1− tj)7/8
6 ε̃(a),

Σ1

∑
tj>a

(∆tj)
3/2εa

(1− tj)3/2f ′(tj)3/4
6 ε̃(a),

Σ1

∑
tj>a

(∆tj)
3/2

(1− tj)11/8
6 Σ1

∑
tj>a

∆tj
(1− tj)7/8

6 ε̃(a)

where ε̃(a) is a function verifying ε̃(a)→ 0 as a→ 1.
Secondly, for the sums where the following term Σ2, verifying

Σ2 =
n−1∑
i=1

(∆ti)
3/2

(1− ti)3/2f ′(ti)3/4
6 const
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appears, the reasoning is the same as the previous one since we obtain analogous
inequalities. Thirdly, the conclusion is the same where

Σ3 =
n−1∑
i=1

(∆ti)
3/2

(1− ti)11/8
6 const

appears.
From now on, we shall prove that ET n2 → 0. Using the Cauchy–Schwarz inequality, we

get that
ET n2 6 const

∑
16i<j6n−1,tj−1<a

√
Eβ2

i

√
EE(γj|Ftj−1

)2.

But, we have

|αj + βj| − |αj| = |βj|sgn(αjβj) + 2 (|βj| − |αj|) 1αjβj60,|αj |6|βj |

and
|E(γj|Ftj−1

)| 6 |E(βjsgnαj|Ftj−1
)|+ 2E(|βj|1|βj |>|αj ||Ftj−1

).

Note that sgnαj = sgn(Sti−1
/Sti − 1) since Ĉxx(t, x) > 0. In virtue of Lemma 3.3.18, we

obtain the following inequalities

|E(βjsgnαj|Ftj−1
)| 6

cS
1/2
tj−1

(1− tj)2
(∆tj)

3/2,

Eβ2
j 6

c(∆tj)
2

(1− tj)2
,

E(β2
j |Ftj−1

)1/2 6
cS

1/2
tj−1

∆tj

1− tj

where c is a constant. Then, using the Cauchy–Schwarz inequality, we deduce that

E(|βj|1|βj |>|αj ||Ftj−1
) 6 E(β2

j |Ftj−1
)1/2P

(
|βj| > |αj|

∣∣Ftj−1

)1/2
.

Moreover, |βj| 6 β̃j where

β̃j = cS
1/2
tj−1

(
β̃aj + β̃bj + β̃cj

)
is defined using Lemma 2.3.8 with

β̃aj =
∆tj

1− tj
+

1

1− tj

(
1 +

S
5/2
tj−1

S
5/2
tj

)(
Stj
Stj−1

− 1

)2

,

β̃bj =
1

(1− tj)3/2

(
1 +

S
3/2
tj−1

S
3/2
tj

)∣∣∣∣ StjStj−1

− 1

∣∣∣∣∆tj
β̃cj =

(
1 +

Stj−1

Stj

)(
∆tj

1− tj

)2

.
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Then,

P (|βj| > |αj|
∣∣Ftj−1

) 6 P
(
|β̃j| > |αj|

∣∣Ftj−1

)1/2

6 l(Stj−1
)

where

l(x) = P

(
c1u

2 + c2(1 + η−5/2
u )(ηu − 1)2 + c3(1 + η−3/2

u )|ηu − 1|u2

+c4(1 + η−1/2
u )u4 > Ĉxx(tj−1, x)x3/2|ηu − 1|

)
and

c1 = c2 =
c

1− tj
, c3 =

c

(1− tj)3/2
, c4 =

c

(1− tj)2

u = σ
√

∆tj, ηu ∼ euξ−u
2/2, ξ ∼ N (0, 1)

with c a constant. We note

C = 4(c1 + · · ·+ c4), C5(x) =
C

Ĉxx(tj−1, x)x3/2
.

Note that we can assume St ∈ [1/m,m], ∀t for m large enough because

P (∀t , St < 1/m or St > m)→ 0

as m→∞. Since we suppose that tj−1 < a, we can assume that there exists Nm such that
C5 < Nm . We can deduce from Lemma 3.3.19 that l(x) 6 L(Nm)u for x ∈ [1/m,m].

We note
Am = {∀t , St ∈ [1/m,m]} .

We have the following inequality:

ET n2 6 const (An +Bn + Cn)

where

An =
∑

ti<tj6a

∆ti(∆tj)
3/2

(1− ti)(1− tj)2
6
const(a)

n1/2
→ 0,

Bn =
∑

ti<tj6a

∆ti∆tj
(1− ti)(1− tj)

√
E

(
sup
t
St IAcm

)
6 const(a)E

(
sup
t
St IAcm

)
,

Cn =
∑

ti<tj6a

∆ti(∆tj)
3/2

(1− ti)(1− tj)
const(m) 6

const(a,m)

n1/2
.

From now on, it suffices to fix m large enough to conclude that ET n2 → 0 and finally
n1/2+α suptE(Rn

24(t))2 → 0 for α = 1/2.
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3.2.3 Proof of Corollary 3.1.2

From the previous analyze, we deduce the following approximation for α = 1/2:

n1/2(V n
t − V̂t) = Mn

t + εnt

where Mn
t =

∑
tni 6t Ỹ

n
i + Z̃n

i is defined by

Ỹ n
i = σn1/2Ĉxx(ti−1, Sti−1

)S2
ti−1

∫ ti

ti−1

(
1− St

Sti−1

)
St
Sti−1

dWt,

Z̃n
i = k0Ĉxx(ti−1, Sti−1

)S2
ti−1

[
G

(
σ
√

∆ti
2

)
−
∣∣∣∣ StiSti−1

− 1

∣∣∣∣]
and E(supt ε

n
t )2 → 0. Indeed, we note P̃ n

1 (t) =
∑

tni 6t Ỹ
n
i and we recall that

P n
1 (t) = n1/2

n−1∑
i=1

σĈxx(ti−1, Sti−1
)S2

ti−1

∫ ti∧t

ti−1∧t

(
1− St

Sti−1

)
St
Sti−1

dWt.

We observe that
sup
t

(P n
1 (t)− P̃ n

1 (t))2 6 2σ2(θn + ξn)

where

θn = n sup
i

sup
t∈[ti−1,ti[

ĥ2
ti−1

S4
ti−1

R2
i (t),

ξn =
n

4
sup
i

sup
t∈[ti−1,ti[

ĥ2
ti−1

S4
ti−1

(
t− ti−1 − (Wt −Wti−1

)2
)2

and

Ri(t) =

∫ t

ti−1

(
St
Sti−1

− 1

)
St
Sti−1

dWt −
∫ t

ti−1

σ(Wt −Wti−1
)dWt.

In the proof of Lemma 3.2.4, we have shown that ER2
i (ti) 6 (∆ti)

2on(1). Using the Doob
inequality and the independence of the increments of the Wiener process, we deduce that

Eθn 6 n

n∑
i=1

1√
1− ti−1

(∆ti)
2on(1)

so that Eθn → 0.
We write ξn 6 (ξna + ξnb )/4 with

ξna = n sup
i

sup
t∈[ti−1,ti[

ĥ2
ti−1

S4
ti−1

(
∆it− (∆iWt)

2
)2
I

∆
i
W>K

√
∆ti
,

ξnb = n sup
i

sup
t∈[ti−1,ti[

ĥ2
ti−1

S4
ti−1

(
∆it− (∆iWt)

2
)2
I

∆
i
W6K

√
∆ti
,

where K > 0 is a constant, ∆it = t− ti−1, ∆iWt = Wt −Wti−1
and

∆
i
W = sup

t∈[ti−1,ti[

∣∣∆iWt

∣∣ .
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We will show that we can make Eξna arbitrary small provided that K is large enough.
Indeed, using the independence, the Cauchy–Schwarz and Bienaymé–Tchebychev inequal-
ities, we deduce that

Eξna 6
const

K
n

n∑
i=1

1√
1− ti−1

(∆ti)
2 6

const

K

recalling that

E sup
t∈[ti−1,ti[

(∫ t

ti−1

(Wt −Wti−1
)dWt

)4

6 const(∆ti)
4

because of the Burkholder–Davis–Gundy inequalities [20].
Then, with a fixed K large enough, we shall prove that Eξnb → 0. For this, we observe

that a.s. ξnb → 0. Indeed, the Levy modulus [20] ensures that a.s.(ω),

max
i
|∆Wti | 6 const(ω)

lnn

n1/2

for n large enough. Moreover, the singularity generated by ĥti−1
disappears in the neighbor-

hood of the unit, out of the null-set S1 ∈ {K1, · · · , Kp}. But, we also have the inequality
ξnb 6 const(K) supt St. Then, we can conclude applying the Lebesgue theorem. Thus, we
can replace P n

1 by P̃ n
1 . In a similar way, we can substitute∫ ti

ti−1

(
St
Sti−1

− 1

)
St
Sti−1

dWt

for ∫ ti

ti−1

σ(Wt −Wti−1
)dWt =

σ

2
(∆Wti)

2 − σ∆ti
2

.

A last, we define

Ti = G

(
σ
√

∆ti
2

)
−
∣∣∣∣ StiSti−1

− 1

∣∣∣∣− σ
√

2

π

√
∆ti + σ|Wti−1

−Wti |.

In virtue of the proofs of Lemmas 3.2.3 and 3.2.4, we have ET 2
i 6 c(∆ti)

2 for a constant
c. Moreover,

%n(t) =
∑
tni 6t

k0Ĉxx(ti−1, Sti−1
)S2

ti−1
Ti

is a martingale. Thus, E (supt %
n(t))2 6 4E (%n(1))2 with E (%n(1))2 → 0. It follows that

we can replace Z̃n
i by Zn

i .

3.3 Appendix

We give here some necessary calculus and inequalities for the present work. Although, we
use some results that we can find in Chapter 2. In particular, we can show the next one in
a similar way.
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Appendix

Lemma 3.3.1. We have:

Ĉxxt(t, x) =
σ̂2
t

2ρ3
tx

∫ ∞
−∞

h′(xeρty+ρ2t /2)P1(ρt, y)ϕ(y)dy,

Ĉxtt(t, x) = −ρ
′′
t

ρt

∫ ∞
−∞

h′(xeρty+ρ2t /2)P2(ρt, y)ϕ(y)dy

+
σ̂4
t

2ρ4
t

∫ ∞
−∞

h′(xeρty+ρ2t /2)P3(ρt, y)ϕ(y)dy,

Ĉxxxt(t, x) =
σ̂2
t

2ρ4
tx

2

∫ ∞
−∞

h′(xeρty+ρ2t /2)P4(ρt, y)ϕ(y)dy

where

P1(x, y) = −y3 − xy2 + 3y + x,

P2(x, y) = −y2 − xy + 1,

P3(x, y) = y4 − (4 + x2)y2 + 2xy + x2 + 1,

P4(x, y) = −y4 + 2xy3 + (6− x2)y2 − 8xy + x2 − 3.

Moreover, we have the following inequalities:
Lemma 3.3.2.

|Ĉxxt(t, x)| 6 c
e−ρ

2
t /8

x3/2

σ̂2
t

ρ3
t

(
p∑
j=1

(
%j(x)2 + ρ2

t/4 + 1
)
e−%j(x)2/2 + ρt + ρ3

t

)
,

|Ĉxtt(t, x)| 6 X 1(t, x) + X 2(t, x)

where

X 1(t, x) = c
e−ρ

2
t /8

√
x

|ρ′′t |
ρt

(
p∑
j=1

%j(x)e−%j(x)2/2 + ρt + ρ2
t

)
,

X 2(t, x) = c
e−ρ

2
t /8

√
x

σ̂4
t

ρ4
t

(
p∑
j=1

(
%j(x)3 + %j(x)

)
e−%j(x)2/2 +

4∑
j=1

ρjt

)

and %j(x) = |ln(Kj/x)| /ρt.

Lemma 3.3.3. Assume that the assumptions (G1) or (G2) hold, then there exists a
constant c such that εi = n1/2

√
∆ti
√
f ′(ti−1), i 6 n− 1 verifies |εi− 1| 6 c∆ti/(1− ti) for

n large enough.

Proof. First, we suppose that the assumption (G1) holds.
We have

∆i = g′(
i− 1

n
)
1

n
+

1

2
g′′(θi)

1

n2
,

where θi ∈ [(i− 1)/n, i/n], which implies that

n∆tif
′(ti−1) = 1 +

g′′(θi)

2n
f ′(ti−1).
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We deduce that:

|εi − 1| 6 c
|g′′(θi)|(1− θi)λ

(1− θi)λ
∆ti 6

c∆ti

(1− f(ui))
λ

where ui = g(θi) ∈ [ti−1, ti]. Using the fact that f ′ is bounded from below, we obtain:

|εi − 1| 6 c
∆ti

(1− ui)λ
6 c

∆ti
1− ti

.

Secondly, we suppose that the assumption (G2) holds.
We have obviously

|εi − 1| 6 |n∆tif
′(ti−1)− 1|,

where ∆ti = g′(θi)n
−1 and θi ∈ [(i− 1)/n, i/n], which implies that hi = g(θi)− ti−1 verifies

hi ∈ [0,∆ti]. Then using (G2), we obtain that:

|εi − 1| 6
∣∣∣∣f ′(g(θi)− hi)

f ′(g(θi))
− 1

∣∣∣∣ 6 const
∆ti

1− g(θi)
6 const

∆ti
1− ti

.

The following lemma is of first importance in order to specify some expectations with t
near to unit as we shall see further.
Lemma 3.3.4. Suppose that t 6 u < 1, m ∈ R, q ∈ 2N and K > 0. There exists a
constant c = c(m, q) such that

ESmu lnq
Su
K

exp

{
− ln2(Su/K)

ρ2
t

}
6 cPq(ρt)

where

P0(ρt) = ρt,

P2(ρt) = ρ3
t + ρ5

t ,

P4(ρt) = ρ5
t + ρ7

t + ρ9
t ,

P2q(ρt) = ρ2q+1
t + ρ2q+3

t + · · ·+ ρ4q+1
t .

Proof. We note p = ln S0

K
− σ2u/2 , α = σ

√
u and

A(q) = ESmu lnq
Su
K

exp

{
− ln2(Su/K)

ρ2
t

}
.

Then,

A(q) =
Sm0√
2π

∫ ∞
−∞

(p+ αy)q exp

{
αmy − α2m/2− 1

ρ2
t

(p+ αy)2 − y2/2

}
dy,

A(q) =
Sm0 e

A1

√
2π

∫ ∞
−∞

(p+ αy)q exp

{
−1

2

(
1 +

2α2

ρ2
t

)
y2 + α

(
m− 2p

ρ2
t

)
y

}
dy

where

A1 = −α
2m

2
− p2

ρ2
t

.
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Let y = z/A2 with A2 =
√

1 + 2α2/ρ2
t . Then

A(q) =
Sm0 e

A4

√
2πA2

∫ ∞
−∞

(p+
αz

A2

)q exp

{
−1

2

[
z2 − 2(A3/A2)z + A2

3/A
2
2

]}
dz

where A3 = α (m− 2p/ρ2
t ) and A4 = A1 + A2

3/(2A
2
2). After the change of variable

y = z − A3/A2, we obtain that

A(2) =
Sm0 ρte

A4√
ρ2
t + 2α2

[(
p+

αρ2
tA3

ρ2
t + 2α2

)2

+
α2ρ2

t

ρ2
t + 2α2

]
.

Moreover, if u > t, then ρ2
t > σ2(1− t) implies that

ρ2
t + 2α2 > σ2(1− t) + σ2u > σ2.

We have
A4 = −mα

2

2
− p2

ρ2
t

+
α2ρ2

t

2(ρ2
t + 2α2)

(
m2 +

4p2

ρ4
t

− 4pm

ρ2
t

)
where p, α are bounded. But, the term

α2ρ2
t

2(ρ2
t + 2α2)

m2

is obviously bounded whereas we can establish the following inequality

α2ρ2
t

2(ρ2
t + 2α2)

4p2

ρ4
t

6
p2

ρ2
t

.

The following term ∣∣∣∣ α2ρ2
t

2(ρ2
t + 2α2)

4pm

ρ2
t

∣∣∣∣
is also bounded. It follows that eA4 is bounded and we can conclude easily for q = 2. In a
similar way, we can conclude for any q ∈ 2N because we use in particular the property∫ ∞

−∞
ykϕ(y)dy = 0

if k ∈ 2N+ 1.
From now on, we can deduce the following results.

Corollary 3.3.5. If m ∈ R and u > t, then there exists a constant cm > 0 such that

ESmu Ĉ
2
xt(t, Su) 6

cmσ̂
4
t

ρ3
t

e−ρ
2
t /8.

Proof. Indeed, it suffices to use Lemma 2.3.8 established in Chapter 2 and apply the
previous lemma.

In a similar way, we have:
Corollary 3.3.6. If m ∈ R and u > t, then there exists a constant cm > 0 such that

ESmu Ĉ
4
xt(t, Su) 6

cmσ̂
8
t

ρ7
t

e−ρ
2
t /8.
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Corollary 3.3.7. If m ∈ R and u > t, then there exists a constant cm > 0 such that

ESmu Ĉ
4
xx(t, Su) 6

cm
ρ3
t

e−ρ
2
t /4.

Corollary 3.3.8. If m ∈ R and u > t, then there exists a constant cm > 0 such that

ESmu Ĉ
2
xxx(t, Su) 6

cm
ρ3
t

e−ρ
2
t /8.

Corollary 3.3.9. If m ∈ R and u > t, then there exists a constant cm > 0 such that

ESmu Ĉ
2
xxt(t, Su) 6

cmσ̂
4
t

ρ5
t

e−ρ
2
t /8.

Corollary 3.3.10. If m ∈ R and u > t, then there exists a constant cm > 0 such that

ESmu Ĉ
4
xxx(t, Su) 6

cm
ρ7
t

e−ρ
2
t /8.

Corollary 3.3.11. If m ∈ R and u > t, then there exists a constant cm > 0 such that

ESmu Ĉ
2
xxxx(t, Su) 6

cm
ρ5
t

e−ρ
2
t /8.

Corollary 3.3.12. If m ∈ R and u > t, then there exists a constant cm > 0 such that

ESmu Ĉ
4
xxt(t, Su) 6

cmσ̂
8
t

ρ11
u

e−ρ
2
t /8.

Let S̃ti−1
∈ [Sti−1

, Sti ] and t̃i−1 ∈ [ti−1, ti] be random variables. We have the following
inequalities:
Lemma 3.3.13. There exists a constant c such that

EĈ4
xt(t̃i−1, S̃ti−1

) 6
ce−ρ

2
ti
/4

(1− ti)4
.

Moreover, if α = 1/2, there exists a bounded function ε(a) verifying ε(a) → 0 as a → 1
such that

EĈ4
xt(t̃i−1, S̃ti−1

) 6
c

(1− ti)4
ε(a)

if ti−1 > a, i 6 n− 1 and n is sufficiently large.
Proof. We have S̃mti−1

6 Smti−1
+Smti , and ρt̃i−1

> ρti . Furthermore, in virtue of 2.3.8, recall
that we have

|Ĉxt(t, x)| 6 c
σ̂2
t e
−ρ2t /8

x1/2ρ2
t

.

Then, the first result is obvious. Moreover,

|Ĉtx(t, x)| 6 cσ̂2e−
ρ2

8

x1/2ρ2

(
L(x, ρ) + ρ+ ρ2

)
,
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where

L(x, ρ) =

p∑
j=1

| ln(x/Kj)|
ρ

exp

{
− ln2(x/Kj)

2ρ2

}
=

p∑
j=1

Lj(x, ρ).

On the sets Γi,j = {Sti−1
∨ Sti 6 Kj/e

√ρti−1} ∪ {Sti−1
∧ Sti > Kje

√ρti−1}, we have:∣∣∣∣∣ ln(S̃ti−1
/Kj)

ρt̃i−1

∣∣∣∣∣ exp

{
−

ln2(S̃ti−1
/Kj)

2ρ2
t̃i−1

}
6 c

∣∣∣∣ ln(Sti−1
/Kj)

ρti−1

∣∣∣∣ exp

{
−

ln2(Sti−1
/Kj)

2ρ2
ti−1

}

+ c

∣∣∣∣ ln(Sti/Kj)

ρti−1

∣∣∣∣ exp

{
− ln2(Sti/Kj)

2ρ2
ti−1

}

Indeed, ρ2
ti−1

/ρ2
ti

is bounded because of the boundedness of ∆ti/(1 − ti). Secondly, the
mapping x → Lj(x, ρti−1

) is respectively increasing and decreasing on the intervals
]0, Kj/e

√ρti−1 ] and [Kje
√ρti−1 ,∞[. Then, we deduce that

E

 1

S̃
1/2
ti−1

ρ2
t̃i−1

e−
ρ2
t̃i−1
8 Lj(S̃ti−1

, ρt̃i−1
)

4

1Γi,j 6
c

ρ8
ti

ρ
t
9/2
i−1

ρ4
ti

6
c

ρ8
ti

ρ
1/2
ti

if i 6 n − 1 and α = 1/2. Indeed, it suffices to use the Cauchy-Schwartz inequality and
Lemma 3.3.4 with q = 8. Moreover, if α = 1/2, ρt does not depend on n and it is easy to
show that ρti → 0 as ti → 1 even if the assumption (G2) holds.

Finally, it suffices to note that E supt S
m
t <∞ and P (Ω\Γi,j) converges to 0 as ti−1 > a

converges to unit. Indeed, we have a.s. S1 < Kj or S1 > Kj and Su is near to S1 if u > a
whereas ρti → 0 provided that a is sufficiently close to unit. It follows that we can apply
the Lebesgue theorem in order to have for ti−1 > a

E

 1

S̃
1/2
ti−1

ρ2
t̃i−1

e−
ρ2
t̃i−1
8 Lj(S̃ti−1

, ρt̃i−1
)

4

1Ω\Γi,j 6
c

ρ8
ti

εa

where εa → 0 as a→ 1. So, we can conclude about the lemma because the difficult part is
solved.

In the same way, we can prove the following results:
Lemma 3.3.14. There exists a constant c such that

EĈ4
xtt(t̃i−1, S̃ti−1

) 6
ce−ρ

2
ti
/4

(1− ti)8
.

Moreover, if α = 1/2, there exists a bounded function ε(a) verifying ε(a) → 0 as a → 1
such that

EĈ4
xtt(t̃i−1, S̃ti−1

) 6
c

(1− ti)8
ε(a)

if ti−1 > a, i 6 n− 1 and n is sufficiently large.
Note that, in the case of the assumption (G2), we also use the inequality:

g′′(u)

g′(u)2
6

c4

(1− g(u))3/2
, ∀u < 1
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in order to have
ρ′′t
ρt

6
c

(1− t)2
.

Lemma 3.3.15. There exists a constant c such that

EĈ4
xxx(t̃i−1, S̃ti−1

) 6
ce−ρ

2
ti
/4

ρ8
ti

.

Moreover, if α = 1/2, there exists a bounded function ε(a) verifying ε(a) → 0 as a → 1
such that

EĈ4
xxx(t̃i−1, S̃ti−1

) 6
c

(1− ti)4
ε(a)

if ti−1 > a, i 6 n− 1 and n is sufficiently large.

Lemma 3.3.16. There exists a constant c such that

EĈ4
xxt(t̃i−1, S̃ti−1

) 6
ce−ρ

2
ti
/4

n2(1/2−α)(1− ti)6f ′(ti)
.

Moreover, if α = 1/2, there exists a bounded function ε(a) verifying ε(a) → 0 as a → 1
such that

EĈ4
xxt(t̃i−1, S̃ti−1

) 6
c

(1− ti)6
ε(a)

if ti−1 > a, i 6 n− 1 and n is sufficiently large.

Lemma 3.3.17. There exists a constant c such that

EĈ4
xxxx(t̃i−1, S̃ti−1

) 6
ce−ρ

2
ti
/4

ρ12
ti

.

Moreover, if α = 1/2, there exists a bounded function ε(a) verifying ε(a) → 0 as a → 1
such that

EĈ4
xxxx(t̃i−1, S̃ti−1

) 6
c

f ′(ti)3(1− ti)6
ε(a)

if ti−1 > a, i 6 n− 1 and n is sufficiently large.
In order to conclude about the main theorem of this chapter, we add the two following

lemmas, valid for α = 1/2 and used in Lemma 3.2.17.
Lemma 3.3.18. We have the following inequalities for j 6 n− 1:

|E(βjsgnαj|Ftj−1
)| 6

cS
1/2
tj−1

(1− tj)2
(∆tj)

3/2,

E(β2
j |Ftj−1

) 6
cStj−1

(∆tj)
2

(1− tj)2
.

Proof. First, we prove that

|E(βjsgnαj|Ftj−1
)| 6

cS
1/2
ti−1

(1− tj)2
(∆tj)

3/2.

For this, we note that
|E(βjsgnαj|Ftj−1

)| 6 X1 + X2
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where

X1 =
∣∣∣E (Stj−1

Ĉxt(Stj−1
, tj−1)∆tjsgn(αj)|Ftj−1

)∣∣∣ ,
X2 =

∣∣∣E (X̃ 1 + X̃ 2 + X̃ 3|Ftj−1

)∣∣∣ ,
X̃ 1 =

1

2
S3
tj−1

Ĉxxx(S̃tj−1
, t̃j−1)

(
Stj
Stj−1

− 1

)2

sgn(αj),

X̃ 2 = S2
tj−1

Ĉxxt(S̃tj−1
, t̃j−1)

(
Stj
Stj−1

− 1

)
∆tjsgn(αj),

X̃ 3 = Stj−1
Ĉxtt(S̃tj−1

, t̃j−1)(∆tj)
2sgn(αj).

By independence, we get that

X1 = Stj−1

∣∣∣Ĉxt(Stj−1
, tj−1)

∣∣∣∆tj ∣∣∣∣E sgn( Stj
Stj−1

− 1

)∣∣∣∣ .
We recall that, from [12], we have

Esgn

(
Stj
Stj−1

− 1

)
= − 1√

2π

√
∆tj +O(∆tj).

Then, we deduce that

X1 6
const S

1/2
tj−1

(∆tj)
3/2

1− tj−1

.(3.3.12)

We write
X̃ 1 = X̃ 1

a + X̃ 1
b + X̃ 1

c

where, using the Taylor approximation, we get that

X̃ 1
a =

1

2
S3
tj−1

Ĉxxx(Stj−1
, tj−1)

(
Stj
Stj−1

− 1

)2

sgn(αj),

X̃ 1
b =

1

2
S3
tj−1

Ĉxxxx(S
∗
tj−1

, t∗j−1)

(
Stj
Stj−1

− 1

)2

sgn(αj)
(
S̃tj−1

− Stj−1

)
,

X̃ 1
c =

1

2
S3
tj−1

Ĉxxxt(S
∗
tj−1

, t∗j−1)

(
Stj
Stj−1

− 1

)2

sgn(αj)(t̃j−1 − tj−1)

where t∗j−1 ∈ [tj−1, t̃j−1] and S∗tj−1
∈ [Stj−1

, S̃tj−1
] are random variables. Recall the following

approximation from [12]:

E

(
Stj
Stj−1

− 1

)2

sgn(αj) =
2√
2π

(∆tj)
3/2 +O((∆tj)

2).

Then, by independence, we easily deduce that

∣∣∣E(X̃ 1
a |Ftj−1

)
∣∣∣ 6 const S

1/2
tj−1

(∆tj)
3/2

1− tj−1

.(3.3.13)
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Since S∗tj−1
∈ [Stj−1

, Stj ], we deduce, from Appendix, that

∣∣∣Ĉxxxx(S∗tj−1
, t∗j−1)

∣∣∣ 6
const

(1− tj)3/2

(
1

S
7/2
tj−1

+
1

S
7/2
tj

)
,

∣∣∣Ĉxxxt(S∗tj−1
, t∗j−1)

∣∣∣ 6
const

(1− tj)2

(
1

S
5/2
tj−1

+
1

S
5/2
tj

)
.

Then, using the independence of Stj/Stj−1
relatively to Ftj−1

, the Cauchy-Schwarz inequal-
ity and the property

E
(
Stj/Stj−1

− 1
)2m

6 const (∆tj)
m, m ∈ N,

we deduce that ∣∣∣E(X̃ 1
b + X̃ 1

c |Ftj−1
)
∣∣∣ 6 const S

1/2
tj−1

(∆tj)
3/2

(1− tj−1)2
.(3.3.14)

In a similar way, knowing that(
Stj/Stj−1

− 1
)
sgn(αj) =

∣∣Stj/Stj−1
− 1
∣∣ ,

we have∣∣∣E(X̃ 2|Ftj−1
)
∣∣∣ 6 E

(
S2
tj−1

∣∣∣Ĉxxt(S̃tj−1
, t̃j−1)

∣∣∣ (Stj/Stj−1
− 1
)

∆tj sgn(αj)|Ftj−1

)
where ∣∣∣Ĉxxt(S̃tj−1

, t̃j−1)
∣∣∣ 6 const

(1− tj)3/2

(
1

S
3/2
tj−1

+
1

S
3/2
tj

)
.

It follows that, ∣∣∣E(X̃ 2|Ftj−1
)
∣∣∣ 6 const S

1/2
tj−1

(∆tj)
3/2

(1− tj−1)3/2
.(3.3.15)

Finally, with the same argument, since we have∣∣∣Ĉxtt(S̃tj−1
, t̃j−1)

∣∣∣ 6 const

(1− tj)2

(
1

S
1/2
tj−1

+
1

S
1/2
tj

)
,

we deduce that ∣∣∣E(X̃ 3|Ftj−1
)
∣∣∣ 6 const S

1/2
tj−1

(∆tj)
2

(1− tj−1)2
.(3.3.16)

Then, from the inequalities 3.3.12,· · · ,3.3.16 we can conclude about the first assertion of
the lemma.

For the second assertion, we follow the same reasoning. We get that

E(β2
j |Ftj−1

) 6 const
6∑
i=1

Xi
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where:

X1 = S2
tj−1

Ĉ2
xt(Stj−1

, tj−1)(∆tj)
2,

X2 = S6
tj−1

Ĉ2
xxx(Stj−1

, tj−1)E(Stj/Stj−1
− 1)4,

X3 = S8
tj−1

Ĉ2
xxxx(S

∗
tj−1

, t∗j−1)E(Stj/Stj−1
− 1)6,

X4 = S6
tj−1

Ĉ2
xxxt(S

∗
tj−1

, t∗j−1)E(Stj/Stj−1
− 1)4(∆tj)

2,

X5 = S4
tj−1

Ĉ2
xxt(S̃tj−1

, t̃j−1)E(Stj/Stj−1
− 1)2(∆tj)

2,

X6 = S2
tj−1

Ĉ2
xtt(S̃tj−1

, t̃j−1)(∆tj)
4.

From estimations of the successives derivatives of Ĉ, we obtain a constant c such that:

X1 + X2 6
c Stj−1

(∆tj)
2

(1− tj)2
,

X3 + X5 6
c Stj−1

(∆tj)
3

(1− tj)3
,

X4 + X6 6
c Stj−1

(∆tj)
4

(1− tj)4
.

Since we have for j 6 n− 1,

∆tj
1− tj

6 const
∆tj

1− tj−1

6 const,

we can easily conclude about the second assertion.
We consider

l(x) = P

(
c1u

2 + c2(1 + η−5/2
u )(ηu − 1)2 + c3(1 + η−3/2

u )|ηu − 1|u2

+c4(1 + η−1/2
u )u4 > Ĉxx(tj−1, x)x3/2|ηu − 1|

)
,

where ηu = euξ−u
2/2, ξ ∼ N (0, 1) and

C = 4(c1 + · · ·+ c4),

C5(x) =
C

Ĉxx(tj−1, x)x3/2
.

We have the following result :
Lemma 3.3.19. There exists a continuous function F on R+ such that

l(x) 6 F (N)u1C5(x)6N + 1C5(x)>N .

Proof. We can easily establish that l(x) is less than the probability

P

(
C/4

(
u2 + (1 + η−5/2

u )(ηu − 1)2 + (1 + η−3/2
u )|ηu − 1|u2 + (1 + η−1/2

u )u4
)

> C−1
5 C|ηu − 1|

)
.
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It follows that l(x) 6 W +X + Y + Z where

W = P
(
|ηu − 1| 6 C5u

2
)
,

X = P
(
|ηu − 1| 6 C5(1 + η−5/2

u )(ηu − 1)2
)
,

Y = P
(
|ηu − 1| 6 C5(1 + η−3/2

u )|ηu − 1|u2
)
,

Z = P
(
|ηu − 1| 6 C5(1 + η−1/2

u )u4
)
.

We note that
|ηu − 1| = euξ−u

2/2 − 1⇔ ξ > u/2

and
euξ−u

2/2 − 1 6 Nu2 ⇔ ξ 6
1

u
ln(Nu2 + 1) + u/2.

In a similar way,

1− euξ−u2/2 6 Nu2 ⇔ ξ >
1

u
ln(−Nu2 + 1) + u/2.

It suffices to analyse the case C5 6 N . Then,

W 6 P (|ηu − 1| 6 Nu2),

W 6 P

(
u

2
6 ξ 6

1

u
ln(Nu2 + 1) + u/2

)
+ P

(
1

u
ln(−Nu2 + 1) + u/2 6 ξ 6 u/2

)
,

W 6 Nu+
| ln(−Nu2 + 1)|

u
.

We note
K̃ = max

x∈[0,1/2]

| ln(1− x)|
x

.

In the case where u2 > 1/2N , it is obvious that W 6
√

2Nu whereas, if Nu2 6 1/2, we
have

| ln(−Nu2 + 1)|
Nu2

6 K̃.

So, W 6 F1(N)u where F1(N) = (1 + K̃)N +
√

2N .
Always for C5 6 N ,

X 6 P
(
1 6 C5(1 + η−5/2

u )|ηu − 1|
)
,

X 6 P (|ηu − 1| > 1/2N) + P
(
|ηu − 1| > η5/2

u /2N
)
.

Moreover, from the Bienaymé-Tchebychev inequality, we deduce a constant a such that

P (|ηu − 1| > 1/2N) 6 aNu

whereas

P
(
|ηu − 1| > η5/2

u /2N
)

= P
(
|ηu − 1| > η5/2

u /2N, ηu > 1
)

+ P
(
1− ηu > η5/2

u /2N, ηu 6 1
)
,

P
(
|ηu − 1| > η5/2

u /2N
)

6 P (|ηu − 1| > 1/2N) + P
(
1− η5/2

u > η5/2
u /2N

)
where P

(
1− η5/2

u > η
5/2
u /2N

)
= P

(
η
−5/2
u − 1 > 1/2N

)
.
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But η5/2
u ∼ e35u2/8η5u/2 because ξ =law −ξ. So, we have

P
(
η−5/2
u − 1 > 1/2N

)
6 P

(
e35u2/8(η5u/2 − 1) > 1/4N

)
+ P

(
e35u2/8 − 1 > 1/2N

)
6 a1Nu

provided that u is bounded. Then, we can conclude that there exists a continuous function
F2 such that X 6 F2(N)u if C5 6 N .

It is easy to find a continuous function F3 such that Y 6 F3(N)u if C5 6 N .
Finally,

Z 6 P
(
|ηu − 1| 6 2Nu4

)
+ P

(
|ηu − 1| 6 2Nu4η−1/2

u

)
,

Z 6 F1(2Nu2)u+ P
(
|ηu − 1| 6 2Nu4, ηu > 1

)
+ P

(
1− ηu 6 2Nu4η−1

u , ηu 6 1
)
,

Z 6 2F1(2Nu2)u+ P
(
η2
u − ηu + 2Nu4 > 0, ηu 6 1

)
.

In the case where
√

2
√

2Nu > 1, we have

P
(
η2
u − ηu + 2Nu4 > 0, ηu 6 1

)
6

√
2
√

2Nu.

Otherwise x2 − x+ 2Nu4 = 0 holds if and only if

x =
1±
√

1− 8Nu4

2
.

So, we estimate:

P

(
ηu 6

1−
√

1− 8Nu4

2

)
6 P (|ηu − 1| > 1/2) 6 a2u

where a2 is a constant. We have also

P

(
ηu >

1 +
√

1− 8Nu4

2

)
6 P

(
1

u
ln

(
1 +
√

1− 8Nu4

2

)
+
u

2
6 ξ 6

u

2

)
,

P

(
ηu >

1 +
√

1− 8Nu4

2

)
6

∣∣∣∣1u ln

(
1 +
√

1− 8Nu4

2

)∣∣∣∣ 6 K∗
√
Nu

where

K∗ = max
x∈[0,1/

√
8 ]

∣∣∣∣1x ln

(
1 +
√

1− 8x2

2

)∣∣∣∣ .
Then, we have found a continuous function F4 such that Y 6 F4(N)u if C5 6 N . We can
conclude about the lemma considering F = F1 + · · ·+ F4.
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Chapter 4

Functional Limit Theorem for
Leland–Lott Hedging Strategy

Leland’s approach to the hedging of derivatives under proportional transaction costs is
based on an approximate replication of the contingent claim using the classical Black–
Scholes formulae with a suitably enlarged volatility. The formal mathematical framework
is a scheme of series, i.e. a sequence of models with the transaction costs coefficients
kn = k0n

−α where α ∈ [0, 1/2] and n is the number of the revision intervals. The enlarged
volatility σ̂n, in general, depends on n except the case α = 1/2. If the parameter is α = 0,
the approximation errors V n

T − VT converge to a non-trivial random variable ξ. For the
case of call option where VT = (ST − K)+, it was shown by Pergamenshchikov that the
sequence of random variables n1/4(V n

T −VT − ξ) converges in law to a mixture of Gaussian
distributions. In this chapter, we treat the case α = 1/2 with non-uniform revision intervals
and a more general pay-off h(ST ). We show that the sequence n1/2(V n

T − VT ) converges in
law and calculate the limit. Our main result is an application of the theory of diffusion
approximation.

4.1 Introduction and Formulation of the Main Result.

We assume that the model is the classical Black–Scholes model under transaction costs
defined in Chapter 3 where the volatility is constant. The study of convergence happens
to be a mathematically interesting issue. The only limit theorem (in narrow sense, i.e.
dealing with the convergence of distributions) is the Pergamenchtikov theorem: for α = 0
and h(x) = (x − K)+, the sequence n1/4(V n

1 − V1 − ξ) converges in law to a mixture of
Gaussian distributions, [26] (see also [13]). The known exact rate (Chapter 3) for the L2-

convergence if α = 1/2 indicates that in this case the approximation errors multiplied by
the amplifying factor growing as n1/2 also should converge in law. The aim of this chapter
is to show this property: for α = 1/2 the sequence of random variables Xn

1 := n1/2(V n
1 −V1)

converges in law. In fact, we prove a more general result on the diffusion approximation
which claims that the whole process Xn := n1/2(V n− V̂ ) converges in law (in the Skorohod
space), and calculate the limit. We do this for the model with non-uniform revision intervals
and a general pay-off in the setting of Chapter 3 using heavily its results.
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Proof of Theorem 4.1.1

Put ρ2
t =

∫ 1

t
σ̂2
sds and V̂t = Ĉ(t, St).

Theorem 4.1.1. Suppose that the conditions (G1) or (G2) and (H) hold. Then, the
distribution of the process Xn := n1/2(V n − V̂ ) in the Shorohod space D[0, 1] converges
weakly to the distribution of the process

(4.1.1) Xt =

∫ t

0

F (t, St)dW
′
t

where W ′ is a Wiener process and

F (t, x) =

[
σ4

2

1

f ′(t)
+ k0

√
2

π

σ3√
f ′(t)

+ k2
0σ

2

(
1− 2

π

)]1/2

Ĉxx(t, x)x2.

Note that the limiting process X is not a diffusion but only the second component of
the diffusion process (S,X).

4.2 Proof of Theorem 4.1.1

4.2.1 Preliminaries

First of all, we recall Corollary 3.1.2 established in Chapter 3.
Corollary 4.2.1. We have the following approximation for α = 1/2:

n1/2(V n
t − V̂t) = Mn

t + εnt

where Mn
t =

∑
tni 6t Y

n
i + Zn

i is a martingale with

Y n
i =

σ2

2
n1/2Ĉxx(ti−1, Sti−1

)S2
ti−1

[
∆ti − (Wti−1

−Wti)
2
]
,

Zn
i = k0σĈxx(ti−1, Sti−1

)S2
ti−1

[√
2

π

√
∆ti − |Wti−1

−Wti |

]
and E(supt ε

n
t )2 → 0.

In virtue of Lemma 3.31 p 316 in [16], it is sufficient to establish the functional limit
theorem for the process Mn.

4.2.2 Diffusion Approximation

For the reader convenience, we formulate a theorem on identification of the limit process
which is deduced from Theorem 4.3.5.

Let (Ω,F , F ) = (D[0, T ],D,D = (Dt)t6T , Q) be the natural stochastic basis constructed
on the Shorohod space of d-dimensional càdlàg functions on [0, T ] and let C[0, T ] be its
subspace formed by continuous functions. We suppose that X = (Xt)t∈[0,T ] is the canonical
process X(α) = α defined on D[0, T ]. On this basis, we also consider:

(i) C = (Ci,j)i,j6d a continuous adapted process with C0 = 0 and
Ct − Cs is a symmetric nonnegative matrix for all s 6 t,

(ii) the stopping time Sa(α) = inf{t > 0 : |α(t)| > a or |α(t−)| > a},
(iii) C(a) = CSa .
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Functional Limit Theorem for Leland–Lott Hedging Strategy

Let Xn = (Xn
t )t6T be a d-dimensional semimartingale defined on a stochastic basis

(Ωn,Fn,Fn, P n). Let µn and (Bn, Cn, νn) be the jump measure and the triplet of pre-
dictable characteristics of Xn.
H is a fixed continuous truncation function and we define

C̃n,i,j = Cn,i,j + (H iHj) ∗ νn − Σs6.∆B
n,i
s ∆Bn,j

s .

We consider Sna = Sa ◦Xn, B(a)n = (Bn)S
n
a , C̃(a)n = (C̃n)S

n
a and ν(a)n = (νn)S

n
a .

Finally, we say that an increasing càdlàg process B strong majorizes an increasing càdlàg
process A , and we note A ≺ B if At − As 6 Bt −Bs, ∀s 6 t.
Theorem 4.2.2. Suppose that the sequence L(Xn) weakly converges to a limit P , a
probability measure on B(D[0, T ]) which only charges C[0, T ]. Assume that for t ∈ [0, 1],
a > 0 and g ∈ C1(Rd)1, we have:

(i) a) B(a)nt →P 0,

b) C̃(a)nt − C(a)t ◦Xn →P 0,

c) g ∗ ν(a)nt →P 0.

(ii) P − a.s.,
∑
i,j6d

C(a)i,j ≺ F (a)

where s 7→ F (a)s is an increasing and continuous determinist function.
(iii) the function α 7→ Ct(α) is P -a.s. Shorohod-continuous on D[0, T ].

Then, X is a continuous P -local martingale and its quadratic characteristic is given by
〈X,X〉 = C.

4.2.3 Reformulation of the Problem

To apply the above limit theorem we need to reformulate our problem in terms of
semimartingales. To this end we consider the two-dimensional process Xn = (X1n, X2n)
with

X1n
t =

n−1∑
i=0

StiI[ti,ti+1[(t), X1n
1 = X1n

tn−1
,

X2n
t =

∑
tni 6t

Un
i , i 6 n− 1

where
Un
i = Y n

i + Zn
i ,

Y n
i =

σ2

2
n1/2Ĉxx(ti−1, Sti−1

)S2
ti−1

[
∆ti − (Wti −Wti−1

)2
]

and

Zn
i = k0σĈxx(ti−1, Sti−1

)S2
ti−1

[√
2

π

√
∆ti − |Wti −Wti−1

|

]
.

1C1(Rd) is a set of positive and bounded functions vanishing in a neighborhood of the origin.
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Proof of Theorem 4.1.1

We view the process Xn as defined on the stochastic basis (Ω,F ,Fn = (Fn), P ) with
Fnt = Ftni−1

for t ∈ [tni−1, t
n
i [. We consider a fixed truncation function H(x) = xδ(x) where

δ(x) is a continuous function verifying 0 6 δ(x) 6 1, δ(x) = 1 if |x| 6 1 and δ(x) = 0
if |x| > 2. Then, H is clearly bounded and |δ(x) − 1| 6 I|x|>1. It is easily seen that the
triplet of predictable characteristics of Xn associated with the truncation function H is
(Bn, 0, νn) where

Bn
t =

∑
ti6t

E(H(∆Sti , Ui)|Fti−1
), i 6 n− 1

νn([0, t]× Γ) =
∑
ti6t

E(IΓ(∆Sti , Ui)|Fti−1
), i 6 n− 1.

The components of the matrix-valued process C̃n
t are as follows:

C̃n,1,1
t =

∑
ti6t

E
(
(∆Sti)

2δ2(∆Xn
ti

)|Fti−1

)
−
(
E(∆Stiδ(∆X

n
ti

)|Fti−1
)
)2
,

C̃n,1,2
t = C̃n,2,1

t =
∑
ti6t

E(∆StiUiδ
2(∆Xn

ti
)|Fti−1

)

−E(∆Stiδ(∆X
n
ti

)|Fti−1
)E(Uiδ(∆X

n
ti

)|Fti−1
),

C̃n,2,2
t =

∑
ti6t

E(U2
i δ

2(∆Xn
ti

)|Fti−1
)−

(
E(Uiδ(∆X

n
ti

)|Fti−1
)
)2
, i 6 n− 1.

We define the matrix process

C = C(t, α) =

∫ t

0

c(s, αs)ds, α = (α1, α2)

where:

c11(t, x) = (σx1)2,

c12(t, x) = c21(t, x) = 0,

c22(t, x) = F 2(t, x1).

We can observe that c = c(t, x) is continuous in x for any t < 1.
For each T 6 1, we note Y T the process which is the restriction of Y on the interval [0, T ]
and P T the unique solution-measure of the following sde:

(S)


dX1

t = σX1
t dWt,

dX2
t = F (t,X1

t )dBt,
X0 = (1, 0), t ∈ [0, T ].

where (W,B) is a standard brownian motion.
We describe the steps which lead us to prove Theorem 4.1.1:

Step 1 : The sequence Xn,T is C-tight for all T ∈ [0, 1].
Step 2 : The sequence Xn,T converges weakly to P T for all T ∈ [0, 1[ .
Step 3 : The sequence Xn,1 converges weakly to P = P 1.
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Functional Limit Theorem for Leland–Lott Hedging Strategy

4.2.4 Tightness

The process Xn is a locally square integrable locale martingale. In virtue of Theorem 4.13 p
322 in [16], it suffices to show that the sequence of processes Gn = 〈X1n, X1n〉+〈X2n, X2n〉
defined on [0, T ] is C-tight to conclude that the sequence Xn is tight. But Lemma 4.3.1
claims that Gn converges in probability to

G. = 〈S, S〉. +

∫ .

0

F 2(t, St)dt

uniformly on [0, T ]. We can deduce that Gn, as a random variable from Ωn to D[0, T ], not
only converges in probability to G according to the Shorohod topology but also converges
weakly to G. So, the sequence Gn is tight.

Moreover, the continuity of G implies that the sequence Gn is C-tight. Finally, because
of Lemma 4.3.2, we have P (supt |∆Xn

t | > ε) → 0, ∀ε > 0 which implies, according to
Proposition 3.26 p 315 in [16], that the sequence Xn is C-tight.

4.2.5 Limit Measure

We choose the R2-norm defined by

|x| = |(x1, x2)| = Max(|x1|, |x2|).

For more convenience, we note Xn,T = Xn where T < 1. We shall apply Theorem 4.2.2.
From the previous step, we can assume that a subsequence of L(Xn) weakly converges to
a limit P which only charges C[0, T ].

The condition (i)a) is verified. Indeed, from Lemma 4.3.3, we have the convergence
P (supt |Bn

t | > ε)→ 0.

In virtue of Lemma 4.3.4, we have:

P

(
sup
t

∣∣∣∣C̃n
t −

∫ t

0

c(s,Xn
s )ds

∣∣∣∣ > ε

)
→ 0,

and we deduce that (i)b) is also verified.
Note that if g ∈ C1(Rd) then g is bounded and there exists a constant r such that

g(x) = 0 for |x| 6 r ( see definition p 354 in [16]). Moreover, from Chapter 3, there exists
a constant c such that

E(∆Sti)
4 + EU4

i 6 c
(∆tk)

2

(1− tk−1)3/2
6 cT (∆tk)

2.

Using the Bienaymé–Tchebychev inequality, we deduce that (i)c) is verified.
We have P - a.s., Sa(α) = inf{t : |α(t)| > a}. It follows that, P - a.s., |α(s)| 6 a if

s ∈ [0, Sa(α)]. It suffices to consider

F (a)s =

(
σ2a2 +

d

1− T
a

)
s

where d is a constant to conclude that (ii) is verified.

67



Proof of Theorem 4.1.1

Recall that a sequence αn → α ∈ C[0, T ] according to the Shorohod topology if and
only if αn → α locally uniformly. Then, we can easily conclude that α 7→ Ct(α) is P -a.s.
continuous and (iii) holds.

From now on, we can conclude from Theorem 4.2.2 that X has for characteristic (0, C, 0)
and it is a continuous local martingale. We consider the two-dimensional process (W,B)
defined as follows :

Wt =

∫ t

0

σ−1(X1
u)−1dX1

u,

Bt =

∫ t

0

F−1(u,X1
u)dX2

u.

It is easy to prove that (W,B) is a standard Brownian motion in virtue of the Levy
characterization. Thus, X verifies the sde (S) and P = P T .

4.2.6 Identification of the Limit

We consider the mapping ΨT : α 7→ αT from D[0, 1] to D[0, T ] where αT is the restriction
of α on D[0, T ]. It is a continuous function according to the Shorohod topology (see
1.14 p 292 in [16]). We also define for any probability µ on B(D[0, 1]), the probability
µT (A) = µ(ψT ∈ A) on B(D[0, T ]). We note AT = ψT (A).

Then, it is easy to deduce that P 1
T = P T . Furthermore, we have the following lemma:

Lemma 4.2.3. Assume that µ is a probability on B(D[0, 1]) which only charges C[0, 1].
Then, for any compact subset according to the Shorohod Topology which is included in
C([0, 1), we have:

µ(A) = lim
T↗1

µT (AT ).

Proof. We have µT (AT ) = Eµ1αT∈AT and µ(A) = Eµ1α∈A.
If α ∈ A it is obvious that αT ∈ AT . Hence 1αT∈AT → 1α∈A as T ↗ 1.
Suppose that α /∈ A and αT ∈ AT for an infinite family of T < 1. Since µ only charges

C[0, 1], we can assume that α is continuous. For each T , there exists α̃(T ) ∈ A such that
α̃T(T ) = αT . Since A is a compact subset, we can assume that limT↗1 α̃(T ) = α̃ ∈ A where α̃
is continuous. It follows that α̃(T ) → α̃ uniformly on [0, 1]. We can deduce that α̃(u) = α(u)
for any u ∈ [0, 1[. We also have |α̃(T )(T )− α̃(T )| → 0 as T → 1 whereas α̃(T )→ α̃(1) and
α̃(T )(T ) = α(T ) → α(1) since α ∈ C[0, 1]. Finally, we have α = α̃ ∈ A which leads to a
contradiction. Then, 1αT∈AT → 1α∈A µ -a.s. and µT (AT )→ µ(A).

We shall conclude about our main theorem. Assume that a subsequence of L(Xn) weakly
converges to a limit Q, a probability measure on B(D[0, 1]) which only charges C[0, 1]
since Xn is C-tight. We deduce that L(Xn,T ) weakly converges to the limit QT , which is
a probability measure on B(D[0, T ]) for any T < 1. From the second step, it follows that
QT = P T = P 1

T where Q and P = P 1 only charges C[0, 1]. Lemma 4.2.3 implies that for
any compact subset of D[0, 1], we have the following equalities:

Q(A) = Q(A ∩ C[0, 1]) = lim
T↗1

QT ({A ∩ C[0, 1]}T )

= lim
T↗1

P 1
T ({A ∩ C[0, 1]}T ) = P 1(A ∩ C[0, 1]) = P 1(A).
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Functional Limit Theorem for Leland–Lott Hedging Strategy

Recall that, for any σ-finite measure defined on the borels of a polish space, we have

µ(B) = sup
K∈K
{µ(K) : K ⊂ B}

where K is the set of compacts. Then, we deduce that Q = P 1 and our main theorem is
proved.

Note that we can follow an other method to establish the proof of Theorem 4.1.1 [7].
For this, it suffices to use Theorem IX.3.39 in [16] where local uniqueness property holds
in virtue of Lemma IX.4.4.

4.3 Appendix
Lemma 4.3.1. Gn converges in probability to the process

G. = 〈S, S〉. +

∫ .

0

F 2(t, St)dt

uniformly on [0, T ].
Proof. Note that:

〈X1n, X1n〉t =
∑
ti6t

E
(
(∆Sti)

2|Fti−1

)
, i 6 n− 1.

Using the independence of the increments of the Wiener process we have

〈X1n, X1n〉t =
∑
ti6t

S2
ti−1

E(Sti/Sti−1
− 1)2 = σ2

∑
ti6t

S2
ti−1

∆ti + on(1),

where on(1) is a sequence of random variables converging to zero almost surely uniformly
on [0, 1]. It follows that 〈X1n, X1n〉 → 〈S, S〉 in probability uniformly on [0,T].

We have
〈X2n, X2n〉t =

∑
tk6t

E(U2
k |Ftk−1

), k 6 n− 1

where the independence of the increments of the Wiener process gives us:

E(U2
k |Ftk−1

) = F 2(tk−1, Stk−1
)∆tk.(4.3.2)

Here, there is an abuse of notation since the conditional expectation gives a similar
expression to F whose the only difference is the multiplier where tk−1 is replaced by
t∗k−1 ∈ [tk−1, tk]. We note

F 2
n(t, S) =

n−1∑
i=1

F 2(ti−1, Sti−1
)1]ti−1,ti](t).

Then, we have

sup
t

∣∣∣∣〈X2n, X2n〉t −
∫ t

0

F 2(s, Ss)ds

∣∣∣∣ 6 ∫ 1

0

∣∣F 2
n(t,X1n

t )− F 2(t, St)
∣∣ dt

which converges to 0, using the Lebesgue theorem. Indeed, it suffices to argue out of the
null-set S1 ∈ {K1, · · · , Kp} where a.s., we have Ĉxx(s, St)S2

t 6 const(ω).
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Appendix

Lemma 4.3.2. P (supt |∆Xn
t | > ε)→ 0, ∀ε > 0.

Proof. The mapping t 7→ St is a.s. uniformly continuous in [0, 1] whereas, almost surely,
there exists some constant c(w) such that

max
k
|Wtk −Wtk−1

| 6 c(w) ln(n)n−1/2

for n sufficiently large (see [20] ). Moreover, recall that a.s. Ĉxx(ti−1, Sti−1
)S2

ti−1
is bounded,

so the result follows.

Lemma 4.3.3. P (supt |Bn
t | > ε)→ 0.

Proof. Recall that δ(x) := 1− δ(x) verifies 0 6 δ(x) 6 I|x|>1. Moreover, we have

Bn,1
t = −

∑
tk6t

E(∆Stkδ(∆X
n
tk

)|Ftk−1
),

Bn,2
t = −

∑
tk6t

E(Ukδ(∆X
n
tk

)|Ftk−1
).

Then, in order to prove convergence in L1, it suffices to estimate the following sum:

sup
t

∑
tk6t

E(|∆Stk |1{|Uk|>1}) 6
∑
tk61

E(|∆Stk |U2
k1{|Uk>1|})

6
n−1∑
k=1

(
E(∆Stk)

2
)1/2 (

EU4
k

)1/2
.

Moreover, we know (see Chapter 3) that there exists a constant c such that

E(∆Stk)
2 6 c∆tk, EU4

k 6
(∆tk)

2

(1− tk−1)3/2
.

So, we can conclude that
sup
t

∑
tk6t

E(∆|Stk |1{Uk>1})→ 0.

The reasoning is the same for the other terms.

Lemma 4.3.4. P
(

supt

∣∣∣C̃n
t −

∫ t
0
c(s,Xn

s )ds
∣∣∣ > ε

)
→ 0.

Proof. If we note δ̃(x) := 1− δ2(x), we have also 0 6 δ̃(x) 6 I|x|>1. Then, we have

C̃n,1,1
t =

∑
ti6t

E
(
(∆Sti)

2|Fti−1

)
− E

(
(∆Sti)

2δ̃(∆Xn
ti

)|Fti−1

)
−
(
E(∆Stiδ(∆X

n
ti

)|Fti−1
)
)2
, i 6 n− 1

where we have already proved that∑
ti6t

E
(
(∆Sti)

2|Fti−1

)
→ [S, S]t uniformly in probability .
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Functional Limit Theorem for Leland–Lott Hedging Strategy

Furthermore, we can use the arguments of the previous lemma and the Jensen inequality
to prove the uniform convergence in L1 to 0 of the other terms. In a similar way, we have

C̃n,2,2
t =

∑
ti6t

E(U2
i |Fti−1

)− E(U2
i δ̃(∆X

n
ti

)|Fti−1
)

−
(
E(Uiδ(∆X

n
ti

)|Fti−1
)
)2
, i 6 n− 1

where ∑
ti6t

E(U2
i |Fti−1

)→
∫ t

0

c22(s,Xn
s )ds

uniformly on [0, 1] according to Lemma 4.3.1. The other terms converges uniformly to 0 in
L1 as previously.

4.3.1 Identification Theorem

We formulate a theorem on identification of the limit process suggested in [16] which is a
little more general but adapted to our purposes.

Let (Ω,F , F ) = (D[0, T ],D,D = (Dt)t6T , Q) be the natural stochastic basis constructed
on the Shorohod space of d-dimensional càdlàg functions on [0, T ] and let C[0, T ] be its
subspace formed by continuous functions. We suppose that X = (Xt)t∈[0,T ] is the canonical
process X(α) = α defined on D[0, T ]. On this basis, we also consider:

(i) B = (Bi)i6d a predictable process with finite variation, over finite
intervals and B0 = 0,

(ii) C = (Ci,j)i,j6d a continuous adapted process with C0 = 0 and
Ct − Cs is a symmetric nonnegative matrix for all s 6 t,

(iii) ν a predictable random measure on R+ × Rd which charges neither
[0, T ]× 0 nor 0× Rd, such that(1 ∧ |x2|) ∗ νt(w) <∞,∫
ν(w, t× dx)H(x) = ∆Bt(w) and ν(w, t× Rd) 6 1 identically,

(iv) the stopping time Sa(α) = inf{t > 0 : |α(t)| > a or |α(t−)| > a},
(vi) B(a) = BSa , C(a) = CSa and ν(a) = νSa .

H is a fixed continuous truncation function and we define

C̃i,j = Ci,j + (H iHj) ∗ ν − Σs6.∆B
i
s∆B

j
s .

Let Xn = (Xn
t )t6T be a d-dimensional semimartingale defined on a stochastic basis

(Ωn,Fn,Fn, P n) such that Xn
0 = X0 is a constant. Let µn and (Bn, Cn, νn) be the jump

measure and the triplet of predictable characteristics of Xn.
We consider Sna = Sa ◦Xn, B(a)n = (Bn)S

n
a , C̃(a)n = (C̃n)S

n
a and ν(a)n = (νn)S

n
a .

Finally, we say that an increasing càdlàg process B strong majorizes an increasing càdlàg
process A , and we note A ≺ B if ∀s 6 t, At − As 6 Bt −Bs.
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Theorem 4.3.5. Suppose that the sequence L(Xn) weakly converges to a limit P , a
probability measure on B(D[0, T ]). Let D be a dense subset of [0, T ] which is contained
in J(X)c where

J(X) = {t > 0 : P (∆Xt 6= 0) > 0}.
Moreover, assume that for each t ∈ D, a > 0 and g ∈ C1(Rd), we have:

(i) a)B(a)nt −B(a)t ◦Xn →P 0,

b)C̃(a)nt − C̃(a)t ◦Xn →P 0,

c)g ∗ ν(a)nt − (g ∗ ν(a)t) ◦Xn →P 0.

(ii) P − a.s.,
∑
i,j6d

V arB(a)i + C̃(a)i,j + g ∗ ν(a) ≺ F (a)

where s 7→ F (a)s is an increasing and continuous determinist function.
(iii) the function α 7→ Bt(α), α 7→ C̃t(α), and

α 7→ g ∗ νt(α) are P -a.s. Shorohod-continuous on D[0, T ].

Then, X is a P -semimartingale with characteristics (B,C, ν).
Proof. According to [16], we introduce necessary ( but sophisticated) notations in order

to apply Theorem 2.21 page 80:

X ′t = Xt −
∑
s6t

[∆Xs −H(∆Xs)] ,

Vt = X ′t −Bt −X0,

X
′n
t = Xn

t −
∑
s6t

[∆Xn
s −H(∆Xn

s )] ,

V n
t = X

′n
t −Bn

t −Xn
0 .

Note that X ′n = X ′ ◦Xn. Recall that C2(Rd) is defined page 354 in [16] as a subclass of
all continuous bounded functions from Rd to R vanishing in a neighborhood of the origin
and having a limit at infinity. Moreover, C1(Rd) is defined as a subclass of C2(Rd) having
only nonnegative functions which contains all functions ga(x) = (a|x| − 1)+ ∧ 1 for all
positive rationals a, and with the following property: let ηn, η be positive measures on Rd
which do not charge {0} and are finite on the complement of any neighborhood of 0; then
ηn(f)→ η(f) for all f ∈ C1(Rd) implies ηn(f)→ η(f) for all f ∈ C2(Rd).
For a fixed g ∈ C1(Rd), we define:

Zi,j = V iV j − C̃i,j,

N g
t =

∑
s6t

g(∆Xs)− g ∗ νt,

Zn,i,j = V n,iV n,j − C̃n,i,j,

N g
t =

∑
s6t

g(∆Xn
s )− g ∗ νnt .

We can claim that V n is a local martingale. Indeed, since Xn has (Bn, Cn, νn) for triplet
of predictable characteristics, we use Theorem 2.21 page 80 in [16] where, in virtue of 2.4
page 76, we have

Xn(H) = Xn − X̆n(H) = X
′n.
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We deduce that

Mn(H) = Xn(H)−Bn −Xn
0 = X

′n −Bn −Xn = V n.

Note that the jumps of Xn(H) are bounded. Hence, X ′n is a special semi-martingale. In a
similar way, because of Theorem 2.21, Mn(H)iMn(H)j − C̃i,j is a local martingale. Then,
Zn is a local martingale.
Taking C+(Rd) = C1(Rd) where C+(Rd) is defined by 2.20 page 80, we deduce that for
any g ∈ C1(Rd), g ∗ µXn − g ∗ νn is a local martingale. But, recall that

µX
n

(ω, dt, dx) =
∑
s

I∆Xn
s 6=0δs,∆Xn

s
(dt, dx).

Hence,

g ∗ µXn

t (w) =

∫
[0,t]×Rd

g(x)µX
n

(ω, dt, dx) =
∑
s6t

g(∆Xn
s )

and Nn,g is a local martingale.

In order to prove that X is a P -semimartingale with characteristics (B,C, ν), it suffices,
in virtue of Theorem 2.21 page 80, to verify the following conditions:

(a)V is a local martingale,
(b)Z is a local martingale,
(c)N g is a local martingale.

Condition(a). Since we can choose a sequence T n ∈ D converging to ∞, it suffices to
prove that for any T ∈ D, V T is a local martingale. But, since we also have Sa(α) → ∞
as a→∞, we shall prove that Mt = V i

t∧T∧Sa , i = 1, · · · , d are local martingales.

From (ii), we deduce that there exists K > 0 such that P -a.s., C̃ii
T∧Sa(α)(α) 6 K. Let

define the stopping time

T n = inf{t : C̃ii
T∧Sa(Xn) > K + 1}.

We shall apply Proposition 1.12 p 484, which is a corollary of Theorem 1.4 p 482, with
Y n = Xn, Mn

t = V n,i
t∧T∧Sna∧Tn , Y = X and M . The needed conditions are fulfilled. Indeed,

Y n is càdlàg, and 1.4(ii) is verified: L(Y n) = L(Xn)→ P = L(X) = L(Y ). We shall prove
that Mn is a uniformly integrable martingale, i.e. 1.12(i’) holds. First, we recall that Mn

is a local martingale. Moreover, from 2.4 page 76, V n = Mn(H) comes from the canonical
decomposition of the semi-martingaleXn(H) whose the jumps are bounded. It follows from
Theorem 4.24 page 44 that V n has bounded jumps ( as Bn(H)) and is a locally square
integrable martingale: there exists a sequence of stopping times Rp increasing to ∞ such
that V nRp ∈ H2. We can choose Rp such that ZnRp is a uniformly integrable martingale.
Then, from

Zn,iiRp

T∧Sna∧Tn =
(
V n,iRp

T∧Sna∧Tn

)2

− C̃n,iiRp

T∧Sna∧Tn

we deduce that
E
(
V n,iRp

T∧Sna∧Tn

)2

= EC̃n,iiRp

T∧Sna∧Tn 6 K + 1 + const.
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The latter inequality comes from the definition of the stopping time T n and the fact that
the jumps of C̃i,j are bounded by a constant which only depends on H. Indeed, recall that:

C̃n,i,j = Cn,i,j + (H iHj) ∗ νn − Σs6.∆B
n,i
s ∆Bn,j

s

where Cn,i,j is continuous, Bn = Bn(H) has bounded jumps, as already shown, whereas:

|∆(H iHj) ∗ νnt | = lim
tp↗t

∣∣∣∣∫
]tp,t]×Rd

H i(x)Hj(x)νn(w, ds, dx)

∣∣∣∣
6 Cνn(w, {t} × Rd) 6 C

where C is a constant ( see 1.17 page 76). From now on, using the Doob inequality, we
deduce that

E

(
sup
t6Rp

Mn
t

)2

6 4E
(
V n,iRp

T∧Sna∧Tn

)2

6 const

and finally, as p→∞,

E

(
sup
t
Mn

t

)2

6 const.

Then, M is a uniformly integrable martingale: (1.4(i)) replaced by (1.12(i′)) holds.
We shall prove that (1.4(iii)) holds. First, we prove that the mapping α→ X ′t∧T∧Sa(α)

is continuous where
X ′t = Xt −

∑
s6t

[∆Xs −H(∆Xs)] .

Recall that x−h(x) = 0 on a neighborhood of 0. Using Theorem 2.8 p 305 we deduce that
the mapping

α→
∑
s6t

∆Xs(α)−H(∆Xs(α))

is continuous. Moreover,

Xt∧Sa(α)(α) = α(t ∧ Sa(α)) = αSa(t) = Xt(α
Sa).

It follows that X ′t∧Sa(α)(α) = X ′t(α
Sa). According to the proof of Proposition 1.17 page 485,

the following sets

Ṽ = {a > 0 : P (α : a ∈ V (α)) > 0},
Ṽ ′ = {a > 0 : P (α : a ∈ V ′(α)) > 0}

are at most countable, and we recall that:

V (α) = {a > 0 : Sa(α) < Sa+(α)},
V ′(α) = {a > 0 : ∆α(Sa(α)) 6= 0 and |∆α(Sa(α)−)| = a}.

Then, we choose a out of Ṽ ∪ Ṽ ′ in order to have for each fixed a:

P (α : a ∈ V (α) ∪ V ′(α)) = 0
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and we apply Proposition 2.12 page 305 which claims that the mapping α → αSa is
continuous at each point α such that a /∈ V (α) ∪ V ′(α). We deduce that, P -a.s., the
mapping

X ′t∧T∧Sa : α→ αSa → X ′t∧T (αSa)

is continuous. Indeed, from what precedes, it suffices to note that t ∧ T ∈ D where
D ⊂ R+\J(X). It follows that, P -a.s.(α), ∆α(t ∧ T ) = 0 and using Theorem 2.3 page
303, we deduce that the mapping α→ α(t) = Xt(α) is P -a.s. continuous.

In a similar way, we can claim that the mapping α → Bt∧T∧Sa(α) is P -a.s. continuous.
For this, it suffices to apply Theorem 3.42 page 511 and Proposition 2.11 page 305. From
all what precedes, we can conclude that for any t ∈ D, α → Mt(α) is P -a.s. continuous
and (1.4(iii)) holds.

We shall prove that (1.4(iv)) holds. In virtue of the hypothesis (i)b,

C̃n,ii
T∧Sa◦Xn − C̃ii

T∧Sa ◦X
n →Pn 0.

Moreover, recall that P -a.s., C̃ii
T∧Sa(α)(α) 6 K. Then,

P n
(
C̃n,ii
T∧Sa◦Xn > K + 1

)
→ 0

as n→∞. In virtue of Proposition 2.17 page 79, C̃n,ii is an increasing process. It follows
that limn P

n(T n < T ) = 0.
Moreover, on the set {T n > T}, we have:

Mn
t = Vt∧T∧Sa◦Xn = X

′i
t∧T∧Sa(X

n)−Bn,i
t∧T∧Sna −X

n,i
0 ,

Mt ◦Xn = Vt∧T∧Sa ◦Xn = X
′i
t∧T∧Sa(X

n)−Bi
t∧T∧Sa(X

n)−X i
0.

It follows that,

Mn
t −Mt ◦Xn = Bi

t∧T∧Sa ◦X
n −Bn,i

t∧T∧Sna +X i
0 −X

n,i
0 .

Recall that, by convention (see page 3), ∆X0 = X0 − X0− = 0, ∆Xn,i
0 = 0. Then

0 ∈ R+\J(X) and, according to Proposition 3.14 page 313, we can assume that Xn
0 → X0

where X is the canonical process (by hypothesis, we also have noted Xn
0 = X0). Finally,

using hypothesis (i)a, we can claim that (1.4(iv)) holds. Then, applying Theorem 1.4 page
482, we conclude that M ◦ Y is a martingale, i.e. V i

t∧T∧Sa ◦X is a martingale. Since X is
the identity process, it follows that V i

t∧T∧Sa is also a martingale and finally, we deduce that
V is a local martingale.

Condition(b). In a similar way, we shall prove that Zi,j,T∧Sa is a local martingale. We
consider a constant K such that P -a.s. (α),

C̃ii
t∧T∧Sa(α) + C̃ij

t∧T∧Sa(α) 6 K

and the stopping time

T n = inf{t : C̃n,ii
t∧Sna + C̃n,ij

t∧Sna > K + 1}.
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We shall apply Proposition 1.12 p 484 with Y n = Xn, Mn
t = Zn,i,j

t∧Tn∧T∧Sna , Y = X and
Mt = Zi,j

t∧T∧Sa . First, we prove that (1.12(i’)) holds. We note that, as for (a), we have

C̃n,ii
t∧T∧Tn∧Sna + C̃n,ij

t∧T∧Tn∧Sna 6 const

and we recall that
Mn

t = V n,i
t∧Tn∧T∧SnaV

n,j
t∧Tn∧T∧Sna − C̃

n,ij
t∧T∧Tn∧Sna .

Moreover, in virtue of Lemma 3.34 page 382, there exists two constants K1 and K2 such
that

E sup
t

(
V n,i
t∧Tn∧T∧Sna

)4

6 (K1γ +K2)

√
E
(
C̃n,ii
t∧T∧Tn∧Sna

)2

where
γ = sup

t,ω

∣∣∣∆V n,i
t∧Tn∧T∧Sna (ω)

∣∣∣
is bounded (see previous remark for (a)) and

C̃n,ii
t∧T∧Tn∧Sna = 〈V n,i, V n,i〉t∧Tn∧T∧Sna .

We deduce that
E sup

t

(
V n,i
t∧Tn∧T∧Sna

)4

6 const

and using the Cauchy–Schwarz inequality:

E sup
t

(
V n,i
t∧Tn∧T∧Sna

)2 (
V n,j
t∧Tn∧T∧Sna

)2

6 const.

It follows that
E sup

t
(Mn

t )2 6 const

and M is a uniform integrable martingale, i.e. (1.4(i)) replaced by (1.12(i′)) holds.
We shall prove that (1.4(iii)) holds. Recall that

Mt = V i
t∧T∧SaV

j
t∧T∧Sa − C̃

i,j
t∧T∧Sa

where we have already shown that the mapping α→ V i
t∧T∧SaV

j
t∧T∧Sa(α) is P -a.s. continuous

(see (a)). But, in virtue of Theorem 3.42 page 511, we can claim that the mapping
α→ C̃i,j

t∧T∧Sa(α) is also continuous. Then, (1.4(iii)) holds.
We shall prove that (1.4(iv)) holds. We also have limn P

n(T n < T ) = 0. Moreover, we
have

Mn
t −Mt ◦Xn = V n,i

t∧T∧Tn∧Sna

(
V n,j
t∧T∧Tn∧Sna − V

j
t∧T∧Sa ◦X

n
)

+V j
t∧T∧Sa ◦X

n
(
V n,i
t∧T∧Tn∧Sna − V

i
t∧T∧Sa ◦X

n
)

+C̃i,j
t∧T∧Sa ◦X

n − C̃n,i,j
t∧T∧Tn∧Sna .

We have already shown that
(
V n,i
t∧T∧Tn∧Sna

)
t
is uniformly integrable and(

V n,j
t∧T∧Tn∧Sna − V

j
t∧T∧Sa ◦X

n
)
→Pn 0.
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It follows that
V n,i
t∧T∧Tn∧Sna

(
V n,j
t∧T∧Tn∧Sna − V

j
t∧T∧Sa ◦X

n
)
→Pn 0.

Moreover, on the set {T n > T}, we have P -a.s.

V n,i
t∧T∧Tn∧Sna − V

i
t∧T∧Sa ◦X

n = Bi
t∧T∧Sa ◦X

n −Bn,i
t∧T∧Sna

which converges to 0 in probability according to the hypothesis (i)a). Always on {T n > T},
we have:

V j
t∧T∧Sa ◦X

n =
(
V j
t∧T∧Sa ◦X

n − V n,j
t∧T∧Sna

)
+ V n,j

t∧T∧Tn∧Sna

where the first term of the right hand side converges to 0 in probability, whereas the second
term is uniformly integrable. Then, we deduce that

V j
t∧T∧Sa ◦X

n
(
V n,i
t∧T∧Tn∧Sna − V

i
t∧T∧Sa ◦X

n
)
→Pn 0

Finally, using the hypothesis (i)b), we deduce that Mn
t −Mt ◦Xn →Pn 0 and the condition

(1.4(iv)) holds. We can conclude that Zi,j is a local martingale.

Condition(c). We shall prove that Mt = N g
t∧T∧Sa is a local martingale. Recall that

there exists a constant K such that g ∗ νT∧Sa 6 K. We consider

T n = inf{t : g ∗ νnt∧Sa > K + 1},
Y n = Xn, Y = X, Mn

t = Nn,g
t∧T∧Sna∧Tn .

We can write

Mn
t =

∑
s6t∧T∧Sna∧Tn

g(∆Xn
s )− g ∗ νnt∧T∧Sna∧Tn ,

= g ∗ (µX
n − νn)t∧T∧Sna∧Tn ,

= gI[0,Tn∧T∧Sna ] ∗ (µX
n − νn)t

where gI[0,Tn∧T∧Sna ] is P̃-measurable. Then, according to Lemma 4.3.6, we have

C(gI[0,Tn∧T∧Sna ])t 6 g2I[0,Tn∧T∧Sna ] ∗ νnt 6 g2 ∗ νnt∧Tn∧T∧Sna

where C is defined in 4.3.6. Moreover, g2∗νnt∧Tn∧T∧Sna is bounded on [0, T n[ whereas, because
of the bound of g, we have:

g2 ∗ νnTn − g2 ∗ νnTn− =

∫
Rd
g2(x)νn(ω, {T n(ω)} × dx) 6 const.

It follows that C(gI[0,Tn∧T∧Sna ])t 6 const and using 1.33 p 73, we have

〈Mn,Mn〉t = C(gI[0,Tn∧T∧Sna ])t 6 const.

We can conclude that E(Mn
∞)2 = E〈Mn,Mn〉∞ 6 const and (1.4(i)) replaced by (1.12(i′))

p 484 in Proposition 1.12 of [16] holds.
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Condition (1.4(ii)) is naturally verified. In a similar way as for (b), (1.4(iii)) holds.
Moreover, on the set {T n > T}, we have

Mn
t −Mt ◦Xn = Nn,g

t∧T∧Sna −N
g
t∧T∧Sa ◦X

n,

= g ∗ νt∧T∧Sa ◦Xn − g ∗ νnt∧T∧Sa

which converges, by hypothesis, to 0 in probability. Then, (1.4(iv)) holds and we can
conclude, using Proposition 1.4 p 482 in [16] that N g is a local-martingale. Finally, we can
conclude about Theorem 4.3.5.

Recall that, if W is P̃-measurable, we define C(W ) by the formula 1.31 p 73 in [16]:

C(W )t = (W − Ŵ )2 ∗ νt +
∑
s6t

(1− as)(Ŵs)
2

where as = ν
(
ω, {s} × Rd

)
∈ {0, 1}.

Lemma 4.3.6. If W is P̃-measurable, then C(W ) is also given by the formula

C(W )t = W 2 ∗ νt −
∑
s6t

Ŵ 2
s .

Proof. According to Proposition 1.14 p 68,

D = {(ω, t) : ν
(
ω, {t} × Rd

)
= 1} = {(ω, t) : at(ω) > 0}

is a random set. Then, for each fixed ω, the set {t : (w, t) ∈ D} is countable and according
to 1.14,

W ∗ νt =
∑
s6t

W (s, βs)ID(s) =
∑
s6t

W (s, βs)as

where β is an Rd-valued optional process. Moreover, we can write

C(W )t = W 2 ∗ νt − 2WŴ ∗ νt + Ŵ 2 ∗ νt +
∑
s6t

Ŵ 2
s −

∑
s6t

asŴ
2
s

where

Ŵ 2 ∗ νt(ω) =

∫
[0,t]×Rd

Ŵ 2(ω, s)ν(ω, ds, dx),

Ŵ (ω, s) =

∫
Rd
W (ω, s, x)ν(w, {s} × dx).

Since Ŵ (ω, s) = 0 if as = 0, we deduce that

Ŵ 2 ∗ νt(ω) =
∑
s6t

Ŵ 2
s as

and in a similar way, we have
WŴ ∗ νt =

∑
s6t

Ŵ 2
s .

So, we can conclude about the lemma.
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Chapter 5

Leland’s Approximations when
the Volatility is not Constant

In the previous chapters, we have applied the Leland method to pricing contingent claims
under proportional transaction costs in the case where the volatility parameter, for the
better, depends on t, the current time. From now on, we take interest in the model where
the volatility varies also according to the price of the risky asset and we prove that the
convergence in probability always holds if α ∈]1/4, 1/2] under reasonable assumptions.

5.1 Theorems

We consider the standard two-asset model with the time horizon T = 1 assuming that it
is specified under the martingale measure. The non-risky asset is the numéraire, and the
price of the risky asset is given by the stochastic equation

dSt = Stσ(t, St)dWt

where W is a Wiener process. Note that S is a strictly positive and continuous martingale
verifying, in virtue of Theorem 2.3 p 107 in [10],

E sup
t∈[0,1]

S2m
t <∞, ∀m ∈ R.

We assume that σ(t, x) is a strictly positive and continuous function on [0, 1]×R+ verifying

0 < σ 6 σ(t, x) 6 σ

where σ, σ are two constants.
In the model with proportional transaction costs and a finite number of revisions, the

current value of the portfolio process at time t is described as

(5.1.1) V n
t = V n

0 +

∫ t

0

Hn
udSu −

∑
ti6t

knSti |Hn
i+1 −Hn

i |
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where Hn is a piecewise-constant process with Hn = Hn
i on the interval ]ti−1, ti], ti = tni ,

i 6 n, are the revision dates, and Hn
i are Fti−1

-measurable random variables. We assume
that the transaction costs coefficient is

(5.1.2) k = kn = k0n
−α, α ∈]1/4, 1/2],

and the dates ti are defined by a strictly increasing function g ∈ C2[0, 1] with g(0) = 0,
g(1) = 1 so that ti = g(i/n). Let denote by f the inverse of g. The “enlarged volatility”, in
general depending on n, is given by the formula

(5.1.3) σ̂2(t, x) = σ2(t, x) + σ(t, x)γn(t)

where
γn(t) = knn

1
2

√
8/π
√
f ′(t).

We shall use the following hypothesis on the "cadence" of revisions:
Assumption (G): g′ > 0 and f ′′ is bounded.

We use the abbreviations Ĥt = Ĉx(t, St) and ĥt = Ĉxx(t, St) where Ĉ is the "Leland
Strategy" defined later by the PDE

(e) =

{
Ĉt(t, x) + 1

2
σ̂2(t, x)x2Ĉxx(t, x) = 0, (x, t) ∈]0,∞[⊗[0, 1[

Ĉ(1, x) = h(x), x ∈]0,∞[.

Of course, we define Hn
i := Ĥti−1

.
Our hypothesis on the pay-off function is as follows:

Assumption (H̃): h is a continuous function on [0,∞[ which is once differentiable except
the points K1 < · · · < Kp < · · · where h′ admits right and left limits. Moreover, h verifies
the Lipschitz condition |h(x)− h(y)| 6 L|x− y| (h′ is bounded).

Now, we give some hypotheses on σ in order to ensure the existence of a solution for
the following PDE (e) (k0 = 4 is sufficient for our needs).
Assumption (E): There exists some positive constant K such that for 1 6 k 6 k0

a) |σ(t, x)− σ(t′, x′)| 6 K (|x− x′|+ |t− t′|) ,

b)
∂k

∂xk
σ(t, x),

∂

∂t
σ(t, x) are continuous ,

c)

∣∣∣∣xk ∂k∂xkσ(t, x)

∣∣∣∣+

∣∣∣∣ ∂2

∂x2
σ(t, x)

∣∣∣∣+

∣∣∣∣ ∂2

∂x∂t
σ(t, x)

∣∣∣∣ 6 K,

d) σ(t, x) + xσx(t, x) > const > 0

We shall prove later the following results:
Theorem 5.1.1. Assume that α ∈]1/4, 1/2] and the conditions (E), (G), (H̃) hold.
Moreover, suppose that Ĉxx > 0. Then, V n

1 converges in probability to h(S1).

Theorem 5.1.2. Assume that α = 1/2 and the conditions (E), (G), (H̃) hold. Then, V n
1

converges in probability to

h(S1) +
1

2

∫ 1

0

σ(t, St)γ(t)S2
t

(
Ĉxx(t, St)− |Ĉxx(t, St)|

)
dt

where γ(t) = k0

√
8/π
√
f ′(t).
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Remark 5.1.3. In the case where α = 1/2, Ĉ does not depend on n.

Remark 5.1.4. In the case where h is convex and σ̂ does not depend on t, we can prove
that Ĉxx > 0 (Lemma 5.6.7).

5.2 The Leland Strategy
In the Black–Scholes model, the hedging portfolio is C(t, St) where C is the solution of the
PDE

(e0) =

{
Ct(t, x) + 1

2
σ2(t, x)x2Cxx(t, x) = 0, (x, t) ∈]0,∞[×[0, 1[

C(1, x) = h(x), x ∈]0,∞[

It exactly replicates the contingent claim h(S1) and verifies:

C(t, St) = Eh(S1) +

∫ t

0

Cx(u, Su)dSu.

Under transaction costs, Leland suggested in his famous paper [21] to substitute the
volatility σ by an artificially enlarged one, σ̂. The idea is to consider the following PDE

(e) =

{
ut(t, x) + 1

2
σ̂2(t, x)x2uxx(t, x) = 0, (x, t) ∈]0,∞[⊗[0, 1[

u(1, x) = h(x), x ∈]0,∞[

and to define σ̂ in order to take transaction costs into account. Precisely, the Ito Formula
implies that the possible smooth solution Ĉ of (e) verifies

Ĉ(t, St) = Ĉ(0, S0) +

∫ t

0

Ĉx(u, Su)dSu +
1

2

∫ t

0

[
σ2(u, Su)− σ̂2(u, Su)

]
S2
uĈxx(u, Su)du.

Then, Ĉ may be a portfolio process as defined above provided that the last term of the
right hand side of the previous formula corresponds to the transaction costs, i.e. we want
to make equal the two following increments :

1

2

[
σ2(u, Su)− σ̂2(u, Su)

]
S2
uĈxx(u, Su)∆u = −k0n

−α
∣∣∣Ĉx(u+ ∆u, Su+∆u)− Ĉx(u, Su)

∣∣∣Su+∆u.

For this, we write

Ĉx(u+ ∆u, Su+∆u)− Ĉx(u, Su) = Ĉxt(u, Su)∆u + Ĉxx(u, Su) (Su+∆u − Su) ,
' Ĉxx(u, Su) (Su+∆u − Su)

where
Su+∆u − Su = σ(u, Su)Su (Wu+∆u −Wu) .

Assuming that Ĉxx > 0, we deduce the equality

1

2

[
σ2(u, Su)− σ̂2(u, Su)

]
∆u = −k0n

−ασ(u, Su) |Wu+∆u −Wu|
Su+∆u

Su
.

Then, considering the conditional expectation knowing Fu, the fact that

E|W∆u| =
√

∆u

√
2

π
,
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and
Su+∆u

Su
= 1 + σ(u, Su) (Wu+∆u −Wu)

we obtain, considering only the main terms, that

1

2

[
σ2(u, Su)− σ̂2(u, Su)

]
∆u = −k0n

−ασ(u, Su)
√

∆u

√
2

π
.

But, from u = g(t) we deduce that ∆u = g′(t)∆t = g′(f(u))∆t where ∆t = 1/n. So, we
can conclude that

σ̂2(u, Su) = σ2(u, Su) + k0n
1/2−α

√
8

π
σ(u, Su)

√
f ′(u).

Proposition 5.2.1. Under the assumptions (E) and (H̃), the PDE (e) has a unique
solution.

Proof. Note that we can’t immediately conclude about the existence of a solution for (e)
because our operator is not uniformly parabolic on ]0,∞[⊗[0, 1[. That’s why, we shall bring
the problem back to one for which the domaine verifies the needed uniform parabolicity .

In virtue of Lemma 5.6.1, we consider the unique solution Ŝx,s(t) of the stochastic
equation defined on [s, 1] for all s ∈ [0, 1] by :{

dŜx,s(t) = σ̂(t, Ŝx,s(t))Ŝx,s(t)dWt

Ŝx,s(s) = x

verifying
E sup

s6t61
Ŝ2
x,s(t) 6 C∗(1 + x2)

where C∗ is a constant. We define g(x, t) = Eh(Ŝx,t(1)) which verifies

|g(x, t)| 6 const
(

1 + E|Ŝx,t(1)|
)

6 const
(

1 + (EŜ2
x,t(1))1/2

)
6 const (1 + |x|).

Since h′ is bounded, we obtain, using the Cauchy-Schwarz inequality and the Lipschitz
condition verified by h, that

|g(x, t)− g(y, u)| 6 L

√
E
(
Ŝx,t(1)− Ŝy,u(1)

)2

.

From Lemma 3.3 p 112 with Condition (A′) p 113 [10], we deduce the existence of a
constant CR such that

|g(x, t)− g(y, u)| 6 CR
√

(x− y)2 + |t− u|

if |x|, |y| 6 R. It follows that g is continuous.
Using the notations of page 138 [10], written for t replaced by 1 − t, we consider the
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following sets for m ∈ N∗:

Qm = ]
1

m
,m[×]0, 1[,

Bm = ]
1

m
,m[×{1},

Tm = ]
1

m
,m[×{0},

Sm = { 1

m
,m} × [0, 1[.

For each y ∈ ∂Qm, it is easy to observe that there exists a closed ball Km
y such that

Km
y ∩ Qm = Ø and Km

y ∩ Qm = {y}. Then, the function Wy proposed p 134 [10] defines
a barrier for each y ∈ Sm ⊆ ∂Qm. At last, we have g(x, t) = Eh(Ŝx,1(1)) = h(x) if
(x, t) ∈ Bm ∩ Sm. We can deduce that, under the assumptions (E) and (H̃), the Dirichlet
problem

(Dm) =

{ ut(t, x) + 1
2
σ̂2(t, x)x2uxx(t, x) = 0 (x, t) ∈ Qm ∪ Tm

u(T, x) = h(x) x ∈ Bm

u(t, x) = g(x, t) (x, t) ∈ Sm

has a unique solution um according to Theorem 3.6 p 138 [10]. Indeed, g and h are
continuous whereas, Qm being bounded, the following condition holds:∣∣σ̂2(t, x)x2 − σ̂2(t, x)x2

∣∣ 6 const(m)|x− x|.

We note that um is assumed continuous on Qm, whereas the derivatives are continuous on
Qm ∪ Tm. Moreover, we also have∣∣σ̂2(t, x)x2 − σ̂2(t, x)x2

∣∣ 6 c(m)
(
|x− x|+ |t− t|

)
.

Then, Theorem 5.2 p 147 [10] asserts that um has the representation

um(x, t) = Eg(Ŝx,t(τ), τ)Iτ<1 + Eh(Ŝx,t(1))Iτ=1,

where h(x) = g(x, 1) and τ is a stopping time. It follows that um(x, t) = Eg(Ŝx,t(τ), τ).
But we have

g(Ŝx,t(τ), τ) = Eh
(
ŜŜx,t(τ),τ (1)

)
where we have clearly ŜŜx,t(τ),τ (1) = Ŝx,t(1). It follows that um(x, t) = g(x, t). Finally, we
can deduce that we have a unique solution u(x, t) = g(x, t) to the PDE

(e) =

{
ut(t, x) + 1

2
σ̂2(t, x)x2uxx(t, x) = 0, (x, t) ∈]0,∞[×[0, 1[

u(1, x) = h(x), x ∈]0,∞[

Indeed, from what precedes, it is easy to show that g verifies (e). Moreover, if we consider
v(t, y) = u(t, ey), then we deduce easily that v verifies the following uniformly parabolic
PDE {

vt(t, y) + 1
2
σ̂2(t, ey)vyy(t, y) −1

2
σ̂2(t, ey)vy(t, y) = 0, (x, t) ∈ R× [0, 1[

v(1, y) = h(ey), x ∈ R.
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It suffices to apply Corollary 4.2 page 140 [10] to conclude to the uniqueness of the solution
v. Hence, u is also unique.

From now on, we define the Leland Strategy as the unique solution Ĉ(t, x) of (e) given
by:

Ĉ(t, x) = Eh(Ŝx,t(1)).(5.2.4)

Let define
Λ̂(t, x) := (σ̂(t, x) + xσ̂x(t, x)) σ̂(t, x)

and, in virtue of Lemma 5.6.2, we consider the solution S̃x,t of the sde:{
dS̃x,t(u) = σ̂(u, S̃x,t(u))S̃x,t(u)dWu + Λ̂(u, S̃x,t(u))S̃x,t(u)du

S̃x,t(t) = x.

Then, we have:
Lemma 5.2.2. Ĉx(t, x) = Eh′

(
S̃x,t(1)

)
.

Proof. We write:

Ĉ(t, x)− Ĉ(t, x0) = Eh(Ŝx,t(1))− Eh(Ŝx0,t(1)),

Ĉ(t, x)− Ĉ(t, x0) = E

∫ 1

0

d

dµ
h
(
Ŝx0,t(1) + µ(Ŝx,t(1)− Ŝx0,t(1))

)
dµ.

Since h′ exists out of a countable set, we can claim that

Ĉ(t, x)− Ĉ(t, x0)

x− x0

= E

∫ 1

0

h′
(
Ŝx0,t(1) + µ(Ŝx,t(1)− Ŝx0,t(1)

) Ŝx,t(1)− Ŝx0,t(1)

x− x0

dµ.

Under the assumption (E), we apply Theorem 5.12 p120 [10] and we deduce that
∂Ŝx,t(1)/∂x exists in the L2 sense, i.e.:

Ŝx,t(1)− Ŝx0,t(1)

x− x0

→ ∂Ŝx0,t(1)

∂x
in L2.

Indeed, it suffices to verify that Condition (A) page 108 [10] holds for the sde of Lemma
5.6.1. First, we have |σ̂(t, x)x| 6 const |x| and secondly:

|σ̂(t, x)x− σ̂(t, x)x| 6 |σ̂(t, x)| |x− x|+ |x (σ̂(t, x)− σ̂(t, x))|

where
σ̂(t, x)− σ̂(t, x) = σ̂x(t, x0)(x− x), x0 ∈ [x, x].

Then, we write:

|x (σ̂(t, x)− σ̂(t, x))| 6 |σ̂(t, x)− σ̂(t, x)| |x− x0|+ |x0σ̂x(t, x0)| |x− x|

where, from
2σ̂x(t, x)σ̂(t, x) = 2σx(t, x)σ(t, x) + γn(t)σx(t, x)
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we deduce that |x0σ̂x(t, x0)| is bounded. It follows that there exists a constant c such that
for all x, x

|σ̂(t, x)x− σ̂(t, x)x| 6 c |x− x|.

Since σx is continuous, Condition (A) is well verified.
Furthermore, we have:

∂Ŝx,t(u)

∂x
= 1 +

∫ u

t

Λ̂
(
s, Ŝx,t(s)

)
σ̂
(
s, Ŝx,t(s)

) ∂Ŝx,t(s)
∂x

dWs

which is a strictly positive martingale ( see Lemma 5.6.3). Note that, as in the proof of
the next lemma, we claim that the distribution of Ŝx0,t(1) is of density relatively to the
Lebesgue measure. It follows that, out of the null-set Ŝx0,t(1) ∈ {Kp : p ∈ N∗}, we have
almost surely: ∫ 1

0

h′
(
Ŝx0,t(1) + µ(Ŝxn,t(1)− Ŝx0,t(1)

)
dµ→ h′(Ŝx0,t(1))

provided that xn is sufficiently near to x0 and xn is a subsequence such that

Ŝxn,t(1)− Ŝx0,t(1)

x− x0

→ ∂Ŝx0,t(1)

∂x
a.s.

Since h′ is bounded, it follows that

Ĉx(t, x) = Eh′(Ŝx,t(1))
∂Ŝx,t(1)

∂x
.

Finally, we note dP = ∂Ŝx,t(1)

∂x
dP in order to have

Ĉx(t, x) = Eh′(Ŝx,t(1)).

The Girsanov theorem ((5.1) p 190 [20]) asserts that the process

Bu = Wu −Wt −
∫ u

t

Λ̂
(
s, Ŝx,t(s)

)
σ̂
(
s, Ŝx,t(s)

)du
is a standard Brownian motion under P . Moreover, Ŝx,t verifies the sde

dŜx,t(u) = σ̂(u, Ŝx,t(u))Ŝx,t(u)dBu + Λ̂(t, Ŝx,t(u))Ŝx,t(u)du.

Since σ̂ and Λ̂ are bounded, the sde admits a unique strong solution, hence a unique weak
solution. We can conclude that Ĉx(t, x) = Eh′(S̃x,t(1)).

Lemma 5.2.3. We have:

Ĉx(t, x) =

∫ ∞
−∞

h′(ez)Γ∗(lnx, t, z, 1)dz
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where Γ∗(x, t, z, τ) is the fundamental solution of the operator:

1

2
σ̂2
a(t, x)

∂2

∂x2
+ σ̂b(t, x)

∂

∂x
+
∂

∂t

with

σ̂a(t, x) = σ̂(t, ex),

σ̂b(t, x) = Λ̂(t, ex)− 1

2
σ̂2(t, ex).

Proof. We define η̂x,t(u) = ln S̃ex,t(u) which verifies the following sde:{
dη̂x,t(u) = σ̂a(u, η̂x,t(u))dWu + σ̂b(u, η̂x,t(u))du
η̂x,t(t) = x

Indeed, it suffices to apply the Ito formula to exp(η̂x,t) where η̂x,t is the solution of the
previous sde. According to Lemma 5.6.4, η̂x,t is a Markov process of transition density
function Γ∗(x, t, z, 1), the fundamental solution of the operator:

1

2
σ̂2
a(t, x)

∂2

∂x2
+ σ̂b(t, x)

∂

∂x
+
∂

∂t
.

This means that:
P (η̂x,t(u) ∈ dz) = Γ∗(x, t, z, u)dz

and it follows that

Ĉx(t, x) =

∫ ∞
−∞

h′(ez)Γ∗(lnx, t, z, 1)dz.

5.3 Estimation of the Derivatives of Γ∗.

In all this section, we suppose that the assumptions (E), (G) and (H) hold. Let define for
0 6 τ 6 t 6 1, Γ(x, t, z, τ) = Γ∗(x, 1− t, z, 1− τ) which is the fundamental solution of the
operator:

1

2
σ̂2
a(1− t, x)

∂2

∂x2
+ σ̂b(1− t, x)

∂

∂x
− ∂

∂t
.

By definition, Γ is the function such that, for every continuous function f , we have:

1
2
σ̂2
a(1− t, x) ∂2

∂x2 Γ(x, t, z, τ) + σ̂b(1− t, x) ∂
∂x

Γ(x, t, z, τ)− ∂
∂t

Γ(x, t, z, τ) = 0,∫∞
−∞ Γ(x, t, z, τ)f(z)dz −→ f(x) as t ↓ τ.

There exists some estimations of the derivatives of Γ [11] but, unfortunately, they are too
imprecise for our needs because of σ̂ depends on n. That’s why, we propose to repeat the
calculus of Chapter 9 [11] in the case where α < 1/2. In order to be clear, we shall specify
with brackets the indexation of [11] if necessary.
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5.3.1 The Parametrix

For more convenience, we note σ̂2
a(1 − t, x) = σ̂2

a(t, x) and σ̂b(1 − t, x) = σ̂b(t, x) which
won’t have impact on the result. We first construct a fundamental solution Z(x, t, ξ, τ) for
the parabolic system:

[2.1] :
∂u

∂t
=

1

2
σ̂2
a(t)

∂2

∂x2
+ σ̂b(t)

∂

∂x
.

We associate the following linear ordinary differential equation:

[2.2] :
∂v

∂t
=

(
−1

2
σ̂2
a(t)ζ

2 + σ̂b(t)ζi

)
v

v(τ) = 1.

Obviously, we have

v(t, ζ, τ) = exp

{∫ t

τ

−1

2
σ̂2
a(s)ζ

2 + σ̂b(s)ζids

}
.

From the hypotheses, we deduce some strictly positive constants m and M such that for
n sufficiently large:

mn1/2−α 6 σ̂2
a 6 Mn1/2−α,

mn1/2−α 6 σ̂b 6 Mn1/2−α.

We deduce that for β > 0,

|v(t, α + iβ, τ)| 6 exp

{
−mρ

τ
t

2
α2 +

Mρτt
2

β2 −mρτt β
}

and for β 6 0,

|v(t, α + iβ, τ)| 6 exp

{
−mρ

τ
t

2
α2 +

Mρτt
2

β2 −Mρτt β

}
.

where ρτt = n1/2−α(t− τ). We define the fundamental solution as follows:

[2.4] : Z(x, t, ξ, τ) =
1

2π

∫ ∞
−∞

eiα(x−ξ)v(t, α, τ)dα.

From [11], we have for all β

Z(x, t, ξ, τ) =
1

2π

∫ ∞
−∞

ei(α+iβ)(x−ξ)v (t, α + iβ, τ) dα.

It follows that there exists a constant c such that for β 6 0,

|Z(x, t, ξ, τ)| 6 c√
ρτt
e−β(x−ξ)+ 1

2
Mρτt β

2−Mρτt β.

So, choosing

β = 1 +
x− ξ
Mρτt

6 0
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we deduce that

|Z(x, t, ξ, τ)| 6 c√
ρτt

exp

{
−1

2

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

In the case where β = 1 + x−ξ
Mρτt

> 0, we write x− ξ = Mρτt β −Mρτt and we deduce that:

|Z(x, t, ξ, τ)| 6 c√
ρτt

exp

{
1

2
Mρτt

(
−β2 + 2(1−m/M)β

)}
.

Moreover, for β > 4(1−m/M), we have

−β2 + 2(1−m/M)β 6 −β2/2.

So, in all cases, we can deduce that

|Z(x, t, ξ, τ)| 6 ce4Mρτt
√
ρτt

exp

{
−1

4
Mρτt β

2

}
,(5.3.5)

|Z(x, t, ξ, τ)| 6 ce4Mρτt
√
ρτt

exp

{
−1

4

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

In a similar way, if k > 0, there exists a constant ck such that

[2.5] : |Dk
xZ(x, t, ξ, τ)| 6 cke

4Mρτt

(ρτt )
k+1
2

exp

{
−1

5

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.(5.3.6)

Indeed,

Dk
xZ(x, t, ξ, τ) =

1

2π

∫ ∞
−∞

[i(α + iβ)]k ei(α+iβ)(x−ξ)v (t, (α + iβ), τ) dα

and

|Dk
xZ(x, t, ξ, τ)| 6 c1

ke
4Mρτt
√
ρτt
|β|k exp

{
−1

4
Mρτt β

2

}
+
c2
ke

4Mρτt

(ρτt )
k+1
2

exp

{
−1

4
Mρτt β

2

}
.

5.3.2 The Parametrix for Equations with Parameters

We consider the fundamental solution Z(x − ξ, t, y, τ) for the parabolic system (with y
fixed):

[2.1] :
∂u

∂t
=

1

2
σ̂2
a(t, y)

∂2

∂x2
+ σ̂b(t, y)

∂

∂x
.

From the previous section, we deduce the following inequalities:

[3.3] : |Dk
xZ(x− ξ, t, y, τ)| 6 cke

4Mρτt

(ρτt )
k+1
2

exp

{
−1

5

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}

(5.3.7)

where ck is independent of y. In a same way, we have:
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Lemma 5.3.1.

|Dk
yZ(x− ξ, t, y, τ)| 6 cke

ckMρτt

(ρτt )
1
2

exp

{
−1

5

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}

Proof. First, we can easily show that for p > 1, there exists a constant c(p) such that∣∣∣∣ ∂p∂ypv(y, t, α + iβ, τ)

∣∣∣∣ 6 c(p)

p∑
l=1

(
ρτt
(
α2 + β2 + |α|+ |β|

))l
v(y, t, α + iβ, τ).(5.3.8)

Moreover,

Dk
yZ(x− ξ, t, y, τ) =

1

2π

∫ ∞
−∞

ei(α+iβ)(x−ξ) ∂
k

∂yk
v(y, t, α + iβ, τ)dα.

Then, taking β = 1 + (x−ξ)
Mρτt

, we deduce that

|Dk
yZ(x− ξ, t, y, τ)| 6 const e4Mρτt exp

{
−1

4
Mρτt β

2

}
Σ(k)

where

Σ(k) =
k∑
p=1

[
(ρτt )

p

(ρτt )
p+1/2

+
(ρτt )

p

(ρτt )
p/2+1/2

+
(ρτt )

p β2p

(ρτt )
1/2

+
(ρτt )

p |β|p

(ρτt )
1/2

]
.

Using the fact that |X|e−|X| is bounded, we can conclude about the lemma.

5.3.3 Construction of the Fundamental Solution; the Cauchy
Problem

We note Γ(x, t, ξ, τ) the fundamental solution of

[1.6] :
∂

∂t
u(t, x) =

1

2
σ̂2
a(t, x)

∂2

∂x2
+ σ̂b(t, x)

∂

∂x
.

From [11], we have

[4.4] : Γ(x, t, ξ, τ) = Z(x− ξ, t, ξ, τ) +

∫ t

τ

∫ ∞
−∞

Z(x− y, t, y, σ)Φ(y, σ, ξ, τ)dydσ

where, for ς = α + iβ, we define

Φ(x, t, ξ, τ) := Σ∞k=1Kk(x, t, ξ, τ),

K1(x, t, ξ, τ) :=

[
1

2
σ̂2
a(t, x)

∂2

∂x2
+ σ̂b(t, x)

∂

∂x
− ∂

∂t

]
Z(x− ξ, t, ξ, τ),

Kk(x, t, ξ, τ) :=

∫ t

τ

∫ ∞
−∞

K1(x, t, y, σ)Kk−1(y, σ, ξ, τ)dydσ.

Note that

K1(x, t, ξ, τ) = − 1

4π

∫ ∞
−∞

eiς(x−ξ)
[
σ̂2
a(t, x)− σ̂2

a(t, ξ)
]
ς2v (ξ, t, ς, τ) dα

+
i

2π

∫ ∞
−∞

eiς(x−ξ) [σ̂b(t, x)− σ̂b(t, ξ)] ςv (ξ, t, ς, τ) dα.

We have the following inequalities:
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Lemma 5.3.2. There exists some constants ck for 0 6 k 6 k0 such that∣∣∣∣ ∂k∂xkK1(x, t, ξ, τ)

∣∣∣∣ 6 ckn
1/2−αe5Mρτt

(ρτt )
k+2
2

exp

{
−1

6

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

Proof. We have, with ς = α + iβ,

∂k

∂xk
K1(x, t, ξ, τ) =

k−1∑
p=0

Cp
k

∫ ∞
−∞

ςp+2eiς(x−ξ)
∂k−p

∂xk−p
σ̂2
a(t, x)v(ξ, t, ς, τ)dα

+
k−1∑
p=0

C̃p
k

∫ ∞
−∞

ςp+1eiς(x−ξ)
∂k−p

∂xk−p
σ̂b(t, x)v(ξ, t, ς, τ)dα

+c

∫ ∞
−∞

ςk+2eiς(x−ξ)
(
σ̂2
a(t, x)− σ̂2

a(t, ξ)
)
v(ξ, t, ς, τ)dα

+d

∫ ∞
−∞

ςk+1eiς(x−ξ) (σ̂b(t, x)− σ̂b(t, ξ)) v(ξ, t, ς, τ)dα

where c, d are constants whereas Cp
k , C̃

p
k are some constants depending on p and k. From

the hypotheses, we deduce that there exists a constant c such that

|σ̂2
a(t, x)− σ̂2

a(t, ξ)| 6 cn1/2−α|x− ξ|,
|σ̂b(t, x)− σ̂b(t, ξ)| 6 cn1/2−α|x− ξ|.

Furthermore, we have ∣∣∣∣ ∂k∂xk σ̂2
a(t, x)

∣∣∣∣+

∣∣∣∣ ∂k∂xk σ̂b(t, x)

∣∣∣∣ 6 c(k)n1/2−α(5.3.9)

where c(k) is a constant. Indeed, recall that xk ∂k

∂xk
σ(t, x) is assumed bounded. Always using

β = 1 +
x− ξ
Mρτt

,

it follows that:∣∣∣∣ ∂k∂xkK1(x, t, ξ, τ)

∣∣∣∣ 6 c(k)n1/2−αe−
1
5
Mρτt β

2+4Mρτt (Σ(p) + Θk)

where

Σ(p) =
k−1∑
p=0

[
1

(ρτt )
(p+2)/2

+
1

(ρτt )
(p+3)/2

+
|β|p+1

(ρτt )
1/2

+
|β|p+2

(ρτt )
1/2

]
,

Θk =
1

(ρτt )
(k+1)/2

+
1

(ρτt )
(k+2)/2

+ |β|k+1 + |β|k+2.

Indeed, in order to dominate the last two terms of the previous sums (for p = k), we use
the inequality

|X|e−b(
X
a

+a)2 6 const (b) (a+ a2)

with X = x−ξ and a =
√
Mρτt . From now on, it is easy to conclude using the boundedness

of |X|e−|X|.
Moreover, we have:
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Lemma 5.3.3. There exists a constant ck such that:∣∣∣∣ ∂k∂xkK1(x, t, y + x, τ)

∣∣∣∣ 6 cke
5Mρτt

t− τ
exp

{
−1

6

(
y√
Mρτt

+
√
Mρτt

)2
}
.

Proof. First, we deduce easily from the hypothesis, that∣∣∣∣ ∂∂yv(y, t, α + iβ, τ)

∣∣∣∣ 6 cρτt
(
α2 + β2 + |α|+ |β|

)
|v(y, t, α + iβ, τ)|

and we can estimate the successive derivatives in a similar way. Indeed, it suffices to use
5.3.9 in order to obtain 5.3.8. Moreover, we can find a constant c(k) such that

Θa(k, x, y) =
∂k

∂xk
[
σ̂2
a(t, x)− σ̂2

a(t, x+ y)
]

verifies |Θa(k, x, y)| 6 cn1/2−α|y|, and analogously,

Θb(k, x, y) =
∂k

∂xk
[σ̂b(t, x)− σ̂b(t, x+ y)]

is such that |Θb(k, x, y)| 6 cn1/2−α|y|. Secondly,

∂k

∂xk
K1(x, t, y + x, τ) =

−1

4π

k−1∑
p=0

Cp
k

∫ ∞
−∞

e−iςyΘa(k − p, x, y)ς2 ∂
p

∂yp
v(y + x, t, ς, τ)dα

+
i

2π

k−1∑
p=0

Cp
k

∫ ∞
−∞

e−iςyΘb(k − p, x, y)ς2 ∂
p

∂yp
v(y + x, t, ς, τ)dα

where ς = α + iβ. We deduce that∣∣∣∣ ∂k∂xkK1(x, t, y + x, τ)

∣∣∣∣ 6 c(k)eβyn1/2−α|y|
k∑
p=0

∫ ∞
−∞

(
α2 + β2 + |α|+ |β|

) ∣∣∣∣ ∂p∂ypv(y + x, t, α + iβ, τ)

∣∣∣∣ dα.
Then, if β 6 0 ( the case β > 0 is similar ), we deduce that∣∣∣∣ ∂k∂xkK1(x, t, y + x, τ)

∣∣∣∣ 6 c(k) eβy+ 1
2
Mρτt β

2−Mρτt βn1/2−α|y|
k∑
p=0

p∑
l=1

ρ(n, β, l, t, τ)

where

ρ(n, β, l, t, τ) = (ρτt )
l

∫ ∞
−∞

(
α2 + β2 + |α|+ |β|

)l+1 |v(y + x, t, ς, τ)| dα.

We choose β = 1− y
Mρτt

and we can deduce that:∣∣∣∣ ∂k∂xkK1(x, t, y + x, τ)

∣∣∣∣ 6 ckn
1/2−α|y|e−

1
4
Mρτt β

2+4Mρτt Σ(k)
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where

Σ(k) =
k∑
p=0

p∑
l=1

[
(ρτt )

l

(ρτt )
(2l+3)/2

+
(ρτt )

l

(ρτt )
(l+2)/2

+
(ρτt )

l β2l+2

(ρτt )
1/2

+
(ρτt )

l |β|l+1

(ρτt )
1/2

]
.

Since |X|e−|X| is bounded, we can replace β by 1/
√
ρτt . Finally, we use the inequality

|y|e−b(
−y
a

+a)2 6 const (b) (a+ a2)

with a =
√
Mρτt in order to conclude about the lemma.

We write now K2(x, t, ξ, τ) = K21(x, t, ξ, τ) +K22(x, t, ξ, τ) with:

K21(x, t, ξ, τ) =

∫ τ+ t−τ
2

τ

∫ ∞
−∞

K1(x, t, y, σ)K1(y, σ, ξ, τ)dydσ,

K22(x, t, ξ, τ) =

∫ t

τ+ t−τ
2

∫ ∞
−∞

K1(x, t, y + x, σ)K1(y + x, σ, ξ, τ)dydσ,

after a change of variable in the second integral. Using the two previous lemmas, we obtain
the following inequality.
Lemma 5.3.4.∣∣∣∣ ∂k∂xkK2(x, t, ξ, τ)

∣∣∣∣ 6 ckn
1/2−αe7Mρτt

(ρτt )
k+1
2

exp

{
−1

7

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

Proof. First, ∂k

∂xk
K22(x, t, ξ, τ) is equal to

k∑
p=0

Cp
k

∫ t

τ+ t−τ
2

∫ ∞
−∞

∂k−p

∂xk−p
K1(x, t, y + x, σ)

∂p

∂xp
K1(y + x, σ, ξ, τ)dydσ.

Using the function f of Lemma 5.6.6 with a =
√
Mn1/2−α, we obtain that

∣∣∣ ∂k∂xkK22(x, t, ξ, τ)
∣∣∣

is bounded by

c(k)
k∑
p=0

n1/2−αe5Mρτt

(n1/2−α)
(p+2)/2

∫ t

τ+ t−τ
2

∫ ∞
−∞

e−f(t,σ,τ,x,x+y,ξ)/6

(t− σ) (σ − τ)(p+2)/2
dydσ.

Note that σ > τ + (t − τ)/2 implies that σ − τ > (t − τ)/2. Then, we use the change of
variable

z =
−y√
Mρσt

+
√
Mρσt

and we deduce, using the first assertion of Lemma 5.6.6 , that∣∣∣∣ ∂k∂xkK22(x, t, ξ, τ)

∣∣∣∣ 6 c(k)
k∑
p=0

n1/2−αe5Mρτt

(ρτt )
(p+1)/2

exp

{
−1

7

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}

since ∫ t

τ+ t−τ
2

dσ√
t− σ

√
σ − τ

dy
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is bounded.
We obtain a similar inequality for ∂k

∂xk
K21(x, t, ξ, τ) but in this case, it’s not necessary

to use a change of variable. Then, we can conclude about the lemma.
Following the same scheme, we shall obtain inductively some constants up,k > 6 such

that:
Lemma 5.3.5.∣∣∣∣ ∂k∂xkKp(x, t, ξ, τ)

∣∣∣∣ 6 ck,pn
1/2−αeup,kMρτt

(ρτt )
k+3−p

2

exp

{
− 1

up,k

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

Proof. We know that the lemma holds for p = 1, 2. Assume that it holds for any k and
1, · · · , p− 1 where p− 1 > 2. We note

Kp(x, t, ξ, τ) = Ka
p (x, t, ξ, τ) +Kb

p(x, t, ξ, τ)

where

∂k

∂xk
Ka
p (x, t, ξ, τ) =

∫ τ+ t−τ
2

τ

∫ ∞
−∞

∂k

∂xk
K1(x, t, y, σ)Kp−1(y, σ, ξ, τ)dydσ.

In virtue of the previous lemmas and the first assertion of Lemma 5.6.6, we obtain some
constants c(k, p) and up,k such that

∣∣∣ ∂k∂xkKa
p (x, t, ξ, τ)

∣∣∣ is bounded by the product of the
two following terms:

c(k, p)eup,kMρτt
(
n1/2−α)2

exp

{
− 1

up,k

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}

and ∫ τ+ t−τ
2

τ

∫ ∞
−∞

exp
{
− 1
up,k

(
(y − ξ)/

√
Mρτσ +

√
Mρτσ

)2
}

(n1/2−α(t− σ))
(k+2)/2

(n1/2−α(σ − τ))
(4−p)/2dydσ.

In the present case, we use the property

1

(n1/2−α(t− σ))
(k+2)/2

6
const

(n1/2−α(t− τ))
(k+2)/2

.

After the change of variable

z =
y − ξ√
Mρτσ

+
√
Mρτσ,

it suffices to estimate∫ τ+ t−τ
2

τ

dσ

(n1/2−α(σ − τ))
(3−p)/2 6 const

(
n1/2−α)(p−3)/2

(t− τ)(p−1)/2.

It follows that
∣∣∣ ∂k∂xkKa

p (x, t, ξ, τ)
∣∣∣ verifies the inequality of the lemma. In a similar way,

∂k

∂xk
Kb
p(x, t, ξ, τ) is equal to

k∑
j=0

Cj
k

∫ t

τ+ t−τ
2

∫ ∞
−∞

∂k−j

∂xk−j
K1(x, t, y + x, σ)

∂j

∂xj
Kp−1(y + x, σ, ξ, τ)dydσ.
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Choosing a constant
ũp,k > 2 max

j=0,··· ,k
up−1,j,

using the induction hypothesis and the first assertion of Lemma 5.6.6, we deduce that
there is a constant c(k, p) such that

∣∣∣ ∂k∂xkKb
p(x, t, ξ, τ)

∣∣∣ is bounded by the product of the
two following terms:

c(k, p)eũp,kMρτt n1/2−α exp

{
− 1

ũp,k

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}

and

k∑
j=0

∫ t

τ+ t−τ
2

∫ ∞
−∞

exp
{
− 1
ũp,k

(
(x− y)/

√
Mρσt +

√
Mρσt

)2
}

(t− σ) (n1/2−α(σ − τ))
(j+4−p)/2 dydσ.(5.3.10)

From now on, we take in consideration the fact that

1

(n1/2−α(σ − τ))
(j+3−p)/2 6

const

(n1/2−α(t− τ))
(j+3−p)/2

and we use the change of variable

z =
x− y√
Mρσt

+
√
Mρσt

in order to dominate 5.3.10 by

const(k)
k∑
j=0

1

(n1/2−α(t− τ))
(j+3−p)/2 .

Then, from the boundedness of |X|e−|X|, we deduce that ∂k

∂xk
Kb
p(x, t, ξ, τ) also verifies the

needed inequality and we can conclude about the lemma.
In particular, we can easily find an increasing sequence ak > 6 such that:∣∣∣∣ ∂k∂xkKk+3(x, t, ξ, τ)

∣∣∣∣ 6 ckn
1/2−αe(ak− 1

2k
)Mρτt exp

{
− 1

ak

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

We deduce inductively that there exists a constant Bk such that:
Lemma 5.3.6.

∣∣∣ ∂k∂xkKk+3+p(x, t, ξ, τ)
∣∣∣ is bounded by

(Bk)
p+1n1/2−α (ρτt )

p/2 e(ak− 1

2k
)Mρτt

Γ(1 + p/2)
exp

{
− 1

ak

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

Proof. We shall argue by applying a double induction, i.e., we assume that the result is
true for 1, · · · , k − 1 and for any p, and we show it for k. For this, we know from the last
remark that the lemma holds for p = 0. Then, by induction, we assume that it’s true for
1, · · · , p and we shall prove it for p+ 1.

94



Leland’s Approximations when the Volatility is not Constant

We split Kk+3+p+1 as K1
k+3+p+1 +K2

k+3+p+1 with:

∂k

∂xk
K1
k+3+p+1(x, t, ξ, τ) =

∫ τ+ t−τ
2

τ

∫ ∞
−∞

∂k

∂xk
K1(x, t, y, σ)Kk+3+p(y, σ, ξ, τ)dydσ.

From the previous inequalities and the induction hypothesis, it follows that there exists
a common constant ck independent of p such that

∣∣∣ ∂k∂xkK1
k+3+p+1(x, t, ξ, τ)

∣∣∣ is bounded by
the product of the two following terms:

ck(B0)k+p+1e(ak− 1

2k
)Mρτt

(
n1/2−α)2

Γ(1 + k+p
2

)
exp

{
− 1

ak

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}

and

∫ τ+ t−τ
2

τ

∫ ∞
−∞

e
−( 1

6
− 1
ak

)
(

(x−y)/
√
Mρσt +

√
Mρσt

)2

(ρσt )
k+2
2

(ρτσ)
k+p
2 dydσ.

Moreover, we have t − σ > (t − τ)/2 and σ − τ 6 (t − τ)/2. Then, we obtain from
the last integral, after a change of variable, a constant dk independent of p such that∣∣∣ ∂k∂xkK1

k+3+p+1(x, t, ξ, τ)
∣∣∣ is bounded by the product of the two following terms:

dkck(B0)k+p+1e(ak− 1

2k
)Mρτt

(
n1/2−α)1+ p+1

2

Γ(1 + k+p
2

)
exp

{
− 1

ak

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}

and ∫ t

τ

(σ − τ)
p
2 (t− σ)−1/2dσ = (t− τ)

p+1
2 Γ(1 +

p

2
)Γ(

1

2
)/Γ(1 +

p+ 1

2
).

We use Lemma 5.6.5 and we choose Bk such that

Bk > max{2ckdkBk
0 , B0}.

It follows that
∣∣∣ ∂k∂xkK1

k+3+p+1(x, t, ξ, τ)
∣∣∣ is dominated by

Bp+1
k n1/2−α (ρτt )

p+1
2 e(ak− 1

2k
)Mρτt

Γ(1 + p+1
2

)
exp

{
− 1

ak

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

Furthermore, ∂k

∂xk
K2
k+3+p+1(x, t, ξ, τ) is equal to

k∑
m=0

Cm
k

∫ t

τ+ t−τ
2

∫ ∞
−∞

∂m

∂xm
K1(x, t, y + x, σ)

∂k−m

∂xk−m
Kk+3+p(y + x, σ, ξ, τ)dydσ.

In order to use the induction hypothesis, we write

k + 3 + p = (k −m) + 3 + p+m
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if m 6= 0. So, we deduce a constant ek independent of p such that∣∣∣∣ ∂k∂xkK2
k+3+p+1(x, t, ξ, τ)

∣∣∣∣
is bounded by

k∑
m=0

ekckn
1/2−α(Bk−m)p+m+1 (ρτt )

m/2 e−
2m

2k
Mρτt

(
n1/2−α)p/2 Θa(k, p)Θb(m)

where

Θa(k, p) =

∫ t

τ+ t−τ
2

∫ ∞
−∞

e−ãk
(

(x−y)/
√
Mρσt +

√
Mρσt

)2

t− σ
(σ − τ)

p
2dydσ

Θb(m) =
eakMρτt

Γ(1 + p+m
2

)
exp

{
− 1

ak

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}

and ãk = 1/6 − 1/ak. Using the boundedness of |x|me−x2 , we deduce a constant fk
independent of p such that (ρτt )

m/2 exp
{
−Mρτt /2

k
}

6 fk. So,∣∣∣∣ ∂k∂xkK2
k+3+p+1(x, t, ξ, τ)

∣∣∣∣
is dominated by

k∑
m=0

ckdkekfkn
1/2−α(Bk−m)p+m+1

(
n1/2−α) p+1

2 e−
1

2k
Mρτt Θ̃a(k, p)Θ̃b(k)

where

Θ̃a(k, p) =

∫ t

τ+ t−τ
2

(σ − τ)
p
2

√
t− σ

dσ
eakMρτt

Γ(1 + p+m
2

)

Θ̃b(k) = exp

{
− 1

ak

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

Thus, it is enough to choose Bk verifying

Bk > max

{
4

k∑
m=1

ckdkekfk(Bk−m)m; 4ckdkekfk;B0, · · · , Bk−1

}

in order to obtain that
∣∣∣ ∂k∂xkK2

k+3+p+1(x, t, ξ, τ)
∣∣∣ is bounded by

(Bk)
p+2n1/2−α (ρτt )

p+1
2 e(ak− 1

2k
)Mρτt

Γ(1 + p+1
2

)
exp

{
− 1

ak

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

We conclude that the recurrence is well verified for p and finally for k. Indeed, we can
initiate it by reproducing the last reasoning when k = 0.

Henceforth, we can deduce the following result:
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Lemma 5.3.7. There exists some constants Ak > ak and Ck > 0 such that:∣∣∣∣ ∂k∂xkΦ(x, t, ξ, τ)

∣∣∣∣ 6 Ckn
1/2−αeAkMρτt

(ρτt )
k+2
2

exp

{
− 1

Ak

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

Proof. Recall that

Φ(x, t, ξ, τ) =
∞∑
i=1

Ki(x, t, ξ, τ).

So, we write: ∣∣∣∣ ∂k∂xkΦ(x, t, ξ, τ)

∣∣∣∣ 6 Σ1 + Σ2

where

Σ1 =
k+2∑
i=1

∣∣∣∣ ∂k∂xkKi(x, t, ξ, τ)

∣∣∣∣ ,
Σ2 =

∞∑
p=0

∣∣∣∣ ∂k∂xkKk+3+p(x, t, ξ, τ)

∣∣∣∣ .
Using Lemma 5.3.5 we deduce that

Σ1 6
k+2∑
i=1

ck,in
1/2−αeui,kMρτt

(ρτt )
(k+3−i)/2 exp

{
− 1

ui,k

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

Then, it is easy to find some constants Ak, Ck such that

Σ1 6
1

2

Ckn
1/2−αeAkMρτt

(ρτt )
k+2
2

exp

{
− 1

Ak

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

Finally, in virtue of Lemma 5.3.6, we have, up to a multiplier constant c(k),

Σ2 6
n1/2−αeakMρτt

(ρτt )
(k+2)/2

exp

{
− 1

ak

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
∞∑
p=0

(Bk)
p (ρτt )

p/2

Γ(1 + p/2)

because
(ρτt )

(k+2)/2 exp

{
− 1

2k
Mρτt

}
6 const (k).

Moreover, using the Stirling formula

Γ(1 + x) ∼
(x
e

)x√
2πx, x→∞

and splitting the sum in the right hand side of the last inequality in two parts ( p ∈ 2N or
not), we deduce a constant c such that

∞∑
p=0

(Bk)
p (ρτt )

p/2

Γ(1 + p/2)
6 c exp{B̃kρ

τ
t }

and we can conclude about the lemma.
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Lemma 5.3.8. We have some constant Ak such that∣∣∣∣ ∂k∂xkΓ(x, t, ξ, τ)

∣∣∣∣ 6 Cke
AkMρτt

(ρτt )
k+1
2

exp

{
− 1

Ak

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

Proof. Recall that:

[4.4] : Γ(x, t, ξ, τ) = Z(x− ξ, t, ξ, τ) + Υ(x, t, ξ, τ)

where

Υ(x, t, ξ, τ) =

∫ t

τ

∫ ∞
−∞

Z(x− y, t, y, σ)Φ(y, σ, ξ, τ)dydσ,

= Υ1(x, t, ξ, τ) + Υ2(x, t, ξ, τ).

We have

∂k

∂xk
Υ1(x, t, ξ, τ) =

∫ τ+ t−τ
2

τ

∫ ∞
−∞

∂k

∂xk
Z(x− y, t, y, σ)Φ(y, σ, ξ, τ)dydσ.

Using 5.3.7 and the function of Lemma 6.2.11 with a =
√
Mn1/2−α, we deduce the existence

of a constant Ck such that
∣∣∣ ∂k∂xkΥ1(x, t, ξ, τ)

∣∣∣ is bounded by:

Cke
A0Mρτt n1/2−α

∫ τ+ t−τ
2

τ

∫ ∞
−∞

exp{−f(t, σ, τ, x, y, ξ)/A0}
(ρσt )

k+1
2 ρτσ

dydσ

and finally ∣∣∣∣ ∂k∂xkΥ1(x, t, ξ, τ)

∣∣∣∣ 6 Cke
A0Mρτt

(ρτt )
k
2

1√
n1/2−α

∫ τ+ t−τ
2

τ

1√
σ − τ

Ia(1/A0)dσ.

From now on, it suffices to use Lemma 5.6.6 and the boundedness of |X|e−|X| to conclude
that there is a constant Ãk such that:∣∣∣∣ ∂k∂xkΥ1(x, t, ξ, τ)

∣∣∣∣ 6 Cke
ÃkMρτt

(ρτt )
k
2

exp

{
− 1

Ãk

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

Using the change of variable x− y = z, we deduce that ∂k

∂xk
Υ2(x, t, ξ, τ) is equal to:

k∑
p=0

Cp
k

∫ t

τ+ t−τ
2

∫ ∞
−∞

∂p

∂yp
Z(z, t, x− z, σ)

∂k−p

∂xk−p
Φ(x− z, σ, ξ, τ)dydσ.

Applying again the last change of variable and Lemma 5.3.1, we obtain that
∣∣∣ ∂k∂xkΥ2(x, t, ξ, τ)

∣∣∣
is bounded by

c(k)eAkMρτt n1/2−α
k∑
p=0

∫ t

τ+ t−τ
2

∫ ∞
−∞

exp {−f(t, σ, τ, x, y, ξ)/Ak}
√
ρσt (ρτσ)(k−p+2)/2

dydσ.
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Then, we use the change of variable

z =
y − ξ√
Mρτσ

+
√
Mρτσ

and the first assertion of Lemma 5.6.6 in order to have∣∣∣∣ ∂k∂xkΥ2(x, t, ξ, τ)

∣∣∣∣ 6 c(k)
eÃkMρτt

(ρτt )
(k+1)/2

exp

{
− 1

Ãk

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

From the two previous inequalities and 5.3.6, we can conclude about the lemma.

Since we have:

∂

∂t
Γ(x, t, ξ, τ) =

1

2
σ̂2
a(t, x)

∂2

∂x2
Γ(x, t, ξ, τ) + σ̂b(t, x)

∂

∂x
Γ(x, t, ξ, τ),

we easily deduce from the previous inequalities the following lemma.

Corollary 5.3.9. There exists some constants Ck and Dk such that:∣∣∣∣ ∂k+1

∂xk∂t
Γ(x, t, ξ, τ)

∣∣∣∣ 6 Ckn
1/2−αeDkMρτt

(ρτt )
k+3
2

exp

{
− 1

Dk

(
x− ξ√
Mρτt

+
√
Mρτt

)2
}
.

5.3.4 Conclusion

We note:
ρτ (t) = n1/2−α(τ − t)

where t ∈ [0, τ [. From the previous inequalities, we get the following
Lemma 5.3.10. There exists some constants Ck and Ak such that

∣∣∣∣ ∂k∂xkΓ∗(x, t, ξ, τ)

∣∣∣∣ 6
Cke

AkMρτ (t)

ρτ (t)
k+1
2

exp

− 1

Ak

(
x− ξ√
Mρτ (t)

+
√
Mρτ (t)

)2
 ,

∣∣∣∣ ∂k+1

∂xk∂t
Γ∗(x, t, ξ, τ)

∣∣∣∣ 6
Ckn

1/2−αeAkMρτ (t)

ρτ (t)
k+3
2

exp

− 1

Ak

(
x− ξ√
Mρτ (t)

+
√
Mρτ (t)

)2
 .

5.4 Estimates

5.4.1 Explicit Formulae

Recall that, in virtue of Lemma 5.2.2, we have :

Ĉx(t, x) =

∫ ∞
−∞

h′(ey)Γ∗(lnx, t, y, 1)dy(5.4.11)
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and by the change of variable z = ey, we obtain:

Ĉx(t, x) =

∫ ∞
0

h′(z)

z
Γ∗(lnx, t, ln z, 1)dz,(5.4.12)

Ĉxx(t, x) =
1

x

∫ ∞
0

h′(z)

z

∂

∂x
Γ∗(lnx, t, ln z, 1)dz,(5.4.13)

Ĉxxx(t, x) = −1

x
Ĉxx(t, x) +

1

x2

∫ ∞
0

h′(z)

z

∂2

∂2x
Γ∗(lnx, t, ln z, 1)dz,(5.4.14)

Ĉxt(t, x) =

∫ ∞
0

h′(z)

z

∂

∂t
Γ∗(lnx, t, ln z, 1)dz,(5.4.15)

Ĉxxt(t, x) =

∫ ∞
0

h′(z)

z

∂2

∂t∂x
Γ∗(lnx, t, ln z, 1)dz.(5.4.16)

5.4.2 Inequalities

For all the sequence, we note
ρ2
t = n1/2−α(1− t).

Lemma 5.4.1. There exists some constants A, C > 0 such that:

∣∣∣Ĉxx(t, x)
∣∣∣ 6

CeAρ
2
t

xρt
,(5.4.17) ∣∣∣Ĉxxx(t, x)

∣∣∣ 6
CeAρ

2
t

x2ρ2
t

,(5.4.18) ∣∣∣Ĉxt(t, x)
∣∣∣ 6

CeAρ
2
t

1− t
,(5.4.19) ∣∣∣Ĉxxt(t, x)

∣∣∣ 6
Cn1/2−αeAρ

2
t

xρ3
t

,(5.4.20) ∣∣∣Ĉxxxt(t, x)
∣∣∣ 6

Cn1/2−αeAρ
2
t

x2ρ4
t

.(5.4.21)

Proof. From Lemma 5.3.10, it follows that there exists some constants C,A such that∣∣∣Ĉxx(t, x)
∣∣∣ 6 C

eAρ
2
t

xρ2
t

∫ ∞
0

1

z
exp

{
− 1

A

(
ln(x/z)

ρt
+ ρt

)2
}
dz.

Considering the change of variable

y =
ln(x/z)

ρt
+ ρt

verifying dz = −ρtzdy, we obtain that∣∣∣Ĉxx(t, x)
∣∣∣ 6 const

eAρ
2
t

xρt

∫ ∞
−∞

e−
y2

A dy

and the result follows. The same reasoning gives us similar inequalities for the other
derivatives.
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Note that the exponential term in the previous formulae is embarrassing if α < 1/2.
That’s why, for α 6= 1/2, we put together revision dates in intervals whose the breadth is
comparable to 1/n1/2−α. We fix: j−1 := j0 := n, and for 1 6 p 6 pn, we define inductively

jp := jnp = min

{
i : tni > tjp−1 −

1

n1/2−α

}
until the last term tjpn verifies:

1

n1/2−α 6 tjpn <
2

n1/2−α .

Moreover, we define tjpn+1 := tjpn+2 := 0. We consider the number N(n) of sub-intervals
of [0, 1] generated by the sequence (tjp)p=0,··· ,pn . Since there exists a constant c such that
∆ti 6 c n−1, we deduce that for n > n0 large enough, we have

tjp − tjp+1 >
1

2n1/2−α .

It follows that N(n) 6 2n1/2−α.
Lemma 5.4.2. Assume that α 6= 1/2. There exists a constant C̃ independent of n and p
such that for all p = 0, · · · , pn, we have:∣∣∣Ĉ(tjp , x)

∣∣∣ 6 C̃ (p+ 1)(1 + |x|).

Proof. We shall argue inductively. The result is true by hypothesis with p = 0. So, we
suppose that

∣∣∣Ĉ(tjp , x)
∣∣∣ 6 C̃ (p+ 1)(1 + |x|) and we prove it for p+ 1. It is obvious that Ĉ

is the solution of the following PDE:

(ep) =

{
Ĉt(t, x) + 1

2
σ̂2(t, x)x2Ĉxx(t, x) = 0, (x, t) ∈]0,∞[×[0, tjp [

Ĉ(tjp , x) = hp(x), x ∈]0,∞[

where hp(x) = Ĉ(tjp , x) verifies |h′p(x)| 6 ‖h′‖∞ because of Lemma 5.2.2.
From 5.2.4, we have

Ĉ(tjp+1 , x) = Ehp(Ŝx,tjp+1
(tjp))

and ∣∣∣Ĉ(tjp+1 , x)− Ĉ(tjp , x)
∣∣∣ 6 ‖h′‖∞E ∣∣∣Ŝx,tjp+1

(tjp)− x
∣∣∣ .

Moreover,

Ŝx,tjp+1
(t) = x+

∫ t

tjp+1

σ̂(u, Ŝx,tjp+1
(u))Ŝx,tjp+1

(u)dWu

is such that:

Ŝ2
x,tjp+1

(t) 6 2x2 + 2

(∫ t

tjp+1

σ̂(u, Ŝx,tjp+1
(u))Ŝx,tjp+1

(u)dWu

)2

.

It follows that there is a constant c such that:

EŜ2
x,tjp+1

(t) 6 2x2 + 2cn1/2−α
∫ t

tjp+1

EŜ2
x,tjp+1

(u)du.
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The Gronwall lemma implies that:

EŜ2
x,tjp+1

(tjp) 6 2x2
(

1 + e2cn1/2−α(tjp−tjp+1
)
)
.

We deduce the inequality ∣∣∣Ĉ(tjp+1 , x)− Ĉ(tjp , x)
∣∣∣ 6 C̃|x|

where C̃ is a judicious constant. It follows that∣∣∣Ĉ(tjp+1 , x)
∣∣∣ 6 C̃(p+ 2)(1 + |x|).

Since Ĉ is the solution of the PDE (ep), with the essential inequality

‖h′p(x)‖ 6 ‖h′‖∞,

we deduce from Lemmas 5.3.10 and 5.4.1 the following result.
Corollary 5.4.3. Assume that α 6= 1/2. There exists a constant C such that for any
p = 0, · · · , pn and t ∈ [tjp+2 , tjp [, we have:

∣∣∣Ĉxx(t, x)
∣∣∣ 6

C

x
√
n1/2−α(tjp − t)

,(5.4.22)

∣∣∣Ĉxxx(t, x)
∣∣∣ 6

C

x2n1/2−α(tjp − t)
,(5.4.23) ∣∣∣Ĉxt(t, x)

∣∣∣ 6
C

tjp − t
,(5.4.24) ∣∣∣Ĉxxt(t, x)

∣∣∣ 6
C

x
√
n1/2−α(tjp − t)3/2

,(5.4.25) ∣∣∣Ĉxxxt(t, x)
∣∣∣ 6

C

x2n1/2−α
(
tjp − t

)2 .(5.4.26)

5.5 Proofs of Theorems 5.1.1 and 5.1.2
We essentially present the proof for α < 1/2 because for α = 1/2, the latter is similar but
more easy since we don’t need to introduce the sequence (tjp)p=0,··· ,pn and use Corollary
5.4.3.

We recall a classical result, representing the difference V n
1 −h(S1) in a convenient form.

Lemma 5.5.1. We have V n
1 − h(S1) = F n

1 + F n
2 + F n

3 where

F n
1 :=

∫ 1

0

(Hn
t − Ĥt)dSt − kn|Hn

tn −H
n
tn−1
|Stn ,(5.5.27)

F n
2 :=

1

2

∫ 1

0

σ(t, St)γn(t)S2
t |Ĉxx(t, St)|dt− kn

n−1∑
i=1

|Hn
ti
−Hn

ti−1
|Sti ,(5.5.28)

F n
3 :=

1

2

∫ 1

0

σ(t, St)γn(t)S2
t

(
Ĉxx(t, St)− |Ĉxx(t, St)|

)
dt.(5.5.29)
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Our objective is to prove that F1, F2 converge to zero in probability.
Lemma 5.5.2. We have P − lim F n

1 = 0.
Proof. It is obvious that kn|Hn

tn −H
n
tn−1
|Stn → 0. So, we note

F̃ n
1 =

∫ tn−1

0

(Hn
t − Ĥt)dSt,

Ḟ n
1 =

∫ 1

tn−1

(Hn
t − Ĥt)dSt

with:

E
(
F̃ n

1

)2

=

∫ tn−1

0

n∑
i=1

Eσ2(t, St)S
2
t

(
Ĉx(ti−1, Sti−1

)− Ĉx(t, St)
)2

1]ti−1,ti](t)dt

and

E
(
F̃ n

1

)2

6 const

∫ tn−1

0

n∑
i=1

ES2
t

(
Ĉx(ti−1, Sti−1

)− Ĉx(t, St)
)2

1]ti−1,ti](t)dt.

Note that for α < 1/2∫ tn−1

tj1

n∑
i=1

ES2
t

(
Ĉx(ti−1, Sti−1

)− Ĉx(t, St)
)2

1]ti−1,ti](t)dt 6 const
1

n1/2−α → 0.

Otherwise, since |Ĉx(t, St)| 6 ‖h′‖, it suffices to prove that for each fixed t 6 tj1 ,
respectively t 6 tn−1 if α = 1/2,

ES2
t

(
Ĉx(ti−1, Sti−1

)− Ĉx(t, St)
)2

→ 0

and apply the Lebesgue theorem. Using again this latter, it suffices to prove that a.s.(ω),

Ĉx(ti−1, Sti−1
)− Ĉx(t, St)→ 0

since supt S
2
t is integrable. The case α = 1/2 is obvious because Ĉ does not depend on n.

Otherwise, we have:

Ĉx(ti−1, Sti−1
)− Ĉx(t, St) = Ĉxt(θi, Sti−1

)(ti−1 − t) + Ĉxx(t, S̃t)(Sti−1
− St)

where θi ∈ [ti−1, t] and S̃t ∈ [Sti−1
, St].

From the condition ti−1 < t 6 ti 6 tj1 , we deduce that there exists mn verifying
the inequality tjmn+1 6 ti−1 < t 6 ti 6 tjmn < tjmn−1

. Indeed, it suffices to choose
mn = max{k > 0 : tjk > ti}. Then, from Corollary 5.4.3, we deduce some constants
c1, c2 such that:

|Ĉxt(θi, Sti−1
)(ti−1 − t)| 6 c1

∆ti
tjmn−1

− θi
with

tjmn−1
− θi >

c2

n1/2−α .
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It follows that:

|Ĉxt(θi, Sti−1
)(ti−1 − t)| 6 c

n1/2−α

n
→ 0.

In a same way, there exists a constant c(ω) depending on ω ∈ Ω such that:

|Ĉxx(t, S̃t)(Sti−1
− St)| 6 c(ω)

|Sti−1
− St|√

n1/2−α(tjmn−1
− t)

6 c(ω)
√
n1/2+α|Sti−1

− St|.

But, from [10] page 112, there exists a constant c such that

n1/2+αE(Sti−1
− St)2 6 c n1/2+α∆ti 6 cnα−1/2 → 0.

Then, we can conclude that E
(
F̃ n

1

)2

→ 0 whereas it is simpler to prove that E
(
Ḟ n

1

)2

→ 0.
By the Ito Formula, we get that

Ĉx(t, St) = Ĉx(0, S0) +Mn
t + Ant

where

Mn
t :=

∫ t

0

σ(u, Su)SuĈxx(u, Su)dWu,

Ant :=

∫ t

0

[
Ĉxt(u, Su) +

1

2
σ2(u, Su)S

2
uĈxxx(u, Su)

]
du.

We write F n
2 =

∑5
i=1 Li where

Ln1 :=
1

2

∫ 1

0

σ(t, St)γn(t)S2
t |ĥt|dt−

1

2

∫ 1

0

n−1∑
i=1

σ(ti−1, Sti−1
)γn(ti−1)S2

ti−1
|ĥti−1

|I]ti−1,ti](t)dt

Ln2 :=
n−1∑
i=1

σ(ti−1, Sti−1
)|ĥti−1

|S2
ti−1

(
1

2
γn(ti−1)∆ti − kn n1/2

√
∆tif ′(ti−1)|∆Wti |

)
,

Ln3 := kn

n−1∑
i=1

σ(ti−1, Sti−1
)S2

ti−1
|ĥti−1

|n1/2
√

∆tif ′(ti−1|∆Wti | − kn
n−1∑
i=1

Sti−1
|∆Mti |,

Ln4 := kn

n−1∑
i=1

Sti−1
|∆Mti | − kn

n−1∑
i=1

Sti−1
|∆Ĥti |,

Ln5 := −kn
n−1∑
i=1

∆Sti |∆Ĥti|

Lemma 5.5.3. We have P − lim Ln1 = 0.
Proof. We note Ln1 =

∑6
k=1 L

n
1k and we prove that P − lim Ln1k = 0.

Ln11 =
1

2

∫ 1

0

n−1∑
i=1

[σ(t, St)− σ(ti−1, St)] γn(t)S2
t |ĥt|I]ti−1,ti](t)dt
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Using the hypothesis on σ, and Lemma 5.4.3, we deduce a constant cω depending on ω ∈ Ω
such that:

|Ln11| 6 cω

√
n1/2−α

n

pn∑
p=0

∫ tjp

tjp+1

dt√
tjp − t

6 cω

√
n1/2−α

n
N(n)

1√
n1/2−α

.

It follows that P − |Ln11| → 0.

Ln12 =
1

2

∫ 1

0

n−1∑
i=1

[
σ(ti−1, St)− σ(ti−1, Sti−1

)
]
γn(t)S2

t |ĥt|I]ti−1,ti](t)dt

In a same way, we deduce a constant cω depending on ω ∈ Ω such that |Ln12| 6 cωL̃
n
12 where

L̃n12 =
√
n1/2−α

pn∑
p=0

∫ tjp

tjp+1

n−1∑
i=1

|St − Sti−1
|√

tjp − t
I]ti−1,ti](t)dt.

But, since E|St − Sti−1
| 6
√
t− ti−1, we obtain that

EL̃n12 6 const

√
n1/2−α
√
n

pn∑
p=0

∫ tjp−tjp+1

0

du√
u

6 const
n1/2−α

n1/2
→ 0.

It follows that P − |Ln12| → 0.

Ln13 =
1

2

∫ 1

0

n−1∑
i=1

[γn(t)− γn(ti−1)]σ(ti−1, Sti−1
)S2

t |ĥt|I]ti−1,ti](t)dt

Using the hypothesis on f we deduce that

|γn(t)− γn(ti−1)| 6 const n1/2−α∆ti.

So, there exists a constant cω such that:

|Ln13| 6 cω
n−1/2−α
√
n1/2−α

pn∑
p=0

∫ tjp−tjp+1

0

du√
u

6 cω n
−1/2−α → 0.

Ln14 =
1

2

∫ 1

0

n−1∑
i=1

[
S2
t − S2

ti−1

]
γn(ti−1)σ(ti−1, Sti−1

)|ĥt|I]ti−1,ti](t)dt

A reasoning similar to the one used for Ln12 leads to P − |Ln14| → 0.

Ln15 =
1

2

∫ 1

0

n−1∑
i=1

[
|Ĉxx(t, St)| − |Ĉxx(t, Sti−1

)|
]
γn(ti−1)σ(ti−1, Sti−1

)S2
ti−1

I]ti−1,ti](t)dt

Using ||a| − |b|| 6 |a− b| and

Ĉxx(t, St)− Ĉxx(t, Sti−1
) = Ĉxxx(t, S̃i)

(
St − Sti−1

)
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where S̃i ∈ [St, Sti−1
], we deduce that there exists a constant cω such that: |Ln15| 6 cωL̃

n
15

where

L̃n15 =

pn∑
p=0

∫ tjp∧tn−1

tjp+1

n−1∑
i=1

|St − Sti−1
|

tjp−1 − t
I]ti−1,ti](t)dt.

But we have:

EL̃n15 6
const√
n

pn∑
p=0

∫ tjp∧tn−1

tjp+1

1

tjp−1 − t
dt

where ∫ tjp∧tn−1

tjp+1

1

tjp−1 − t
dt =

∫ ∆p

∆−p

1

u
du = ln

(
∆p

∆−p

)
6 const lnn,

∆p = tjp−1 − tjp+1 , ∆−p = tjp−1 − tjp ∧ tn−1

because ∆p 6 3/n1/2−α and tjp−1 − tjp ∧ tn−1 > c/n. It follows that

EL̃n15 6
const n1/2−α lnn√

n
→ 0

and P − |Ln15| → 0.

Ln16 =
1

2

∫ 1

0

n−1∑
i=1

[
|Ĉxx(t, Sti−1

)| − |Ĉxx(ti−1, Sti−1
)|
]
γn(ti−1)σ(ti−1, Sti−1

)S2
ti−1

I]ti−1,ti](t)dt

In a same way, we write:

Ĉxx(t, Sti−1
)− Ĉxx(ti−1, Sti−1

) = Ĉxxt(t̃i, Sti−1
)(t− ti−1)

where t̃i ∈ [ti−1, ti]. Note that, if t ∈ [ti−1, ti] ∩ [tjp+1 , tjp ], we have tjp > ti and ti 6 tn−1

implies that
tjp−1 − ti−1

tjp−1 − ti
= 1 +

ti − ti−1

tjp−1 − ti
6 1 +

c n

n
6 const.

So, there exists a constant cω such that:

|Ln16| 6 cωn
1/2−α

pn∑
p=0

∫ tjp∧tn−1

tjp+1

∆ti√
n1/2−α(tjp−1 − t)3/2

dt.

For p = 0, the term of the previous sum verifies

n1/2−α
∫ tn−1

tj1

∆ti√
n1/2−α(1− t)3/2

dt 6 const

√
n1/2−α

n
lnn→ 0

whereas, for p > 1,
tjp−1 − t >

const

n1/2−α .

It follows that it is sufficient to estimate

n1/2−α

n

pn∑
p=0

∫ tjp

tjp+1

dt

tjp−1 − t
6 const

n2(1/2−α)

n
→ 0.

Then P − |Ln16| → 0.
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Lemma 5.5.4. We have P − lim Ln2 = 0.
Proof. Recall that we have a constant c such that ∆ti > cn−1. We have:

Ln2 =
n−1∑
i=1

∣∣∣Ĉxx(ti−1, Sti−1
)
∣∣∣S2

ti−1
ξi

where
ξi =

1

2
γn(ti−1)∆ti − kn n1/2

√
∆tif ′(ti−1)|∆Wti |

is independent of Fti−1
and verifies Eξi = 0, and

Eξ2
i = (1− 2/π)k2

nnf
′(ti−1)(∆ti)

2.

It follows that

E (Ln2 )2 =
n−1∑
i=1

EĈ2
xx(ti−1, Sti−1

)S4
ti−1

Eξ2
i

and

E (Ln2 )2 6 const
n−2α

n1/2−α

pn∑
p=0

∫ tjp∧tn−1

tjp+1

dt

tjp−1 − t
6 const n−2α lnn.

Then, we deduce that P − |Ln2 | → 0.
Lemma 5.5.5. We have P − lim Ln3 = 0.

Proof. Since g′′ is supposed bounded, we deduce that

n1/2
√

∆tif ′(ti−1) = 1 + εn

where εn = O(n−1). Then, we write Ln3 = An +Bn with

An = knεn

n−1∑
i=1

σ(ti−1, Sti−1
)S2

ti−1
|ĥti−1

||∆Wti |,

Bn = kn

n−1∑
i=1

σ(ti−1, Sti−1
)S2

ti−1
|ĥti−1

||∆Wti | − Sti−1
|∆Mti|.

By independence, we deduce a constant c such that

E |An| 6 c n1/2−αεn

n−1∑
i=1

E
∣∣∣Ĉxx(ti−1, Sti−1

)
∣∣∣S2

ti−1
∆ti,

E |An| 6 c
√
n1/2−αεn

pn∑
p=0

∫ tjp∧tn−1

tjp+1

dt√
tjp − t

6 c n1/2−αεn → 0.

Moreover, |Bn| 6 Dn
1 +Dn

2 +Dn
3 where Dn

i , i = 1, 2, 3 are defined as follows.

Dn
1 = kn

n−1∑
i=1

∣∣∣∣∫ ti

ti−1

ξi(t)dWt

∣∣∣∣
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with
ξi(t) = S2

ti−1

[
σ(ti−1, Sti−1

)− σ(ti−1, St)
]
Ĉxx(ti−1, Sti−1

).

Then, there exists a constant c such that

‖Dn
1‖2 6 c n−α

n−1∑
i=1

(∫ ti

ti−1

Eξ2
i (t)dt

)1/2

.

We note Inp = Ip := [tjp+1 , tjp ∧ tn−1]. Using the hypothesis on σ and the Cauchy-Scwharz
inequality, we obtain that

‖Dn
1‖2 6 c n−α

pn∑
p=0

∑
ti−1,ti∈Inp

(∫ ti

ti−1

∆tidt

n1/2−α(tjp − ti−1)

)1/2

,

‖Dn
1‖2 6 c

n−α√
n1/2−α

pn∑
p=0

∑
ti−1,ti∈Inp

∆ti√
tjp − ti−1

,

‖Dn
1‖2 6 c

n−α√
n1/2−α

pn∑
p=0

∫ tjp∧tn−1

tjp+1

dt√
tjp − t

6 c n−α → 0.

We have

Dn
2 = kn

n−1∑
i=1

∣∣∣∣∫ ti

ti−1

ξ̃i(t)dWt

∣∣∣∣
where

ξ̃i(t) = S2
ti−1

[σ(ti−1, St)− σ(t, St)] Ĉxx(ti−1, Sti−1
).

Following the previous reasoning, we also obtain that ‖Dn
2‖2 → 0. From now on, we deal

with

Dn
3 = kn

n−1∑
i=1

∣∣∣∣∫ ti

ti−1

Xi(t)dWt

∣∣∣∣
where

Xi(t) =
[
Sti−1

Ĉxx(ti−1, Sti−1
)− StĈxx(t, St)

]
σ(t, St).

In a similar way, we have

‖Dn
3‖2 6 c n−α

n−1∑
i=1

(∫ ti

ti−1

EX 2
i (t)dt

)1/2

where, using the Ito formula in the similar way as in the proof of Lemma 2.4.6, Chapter
2, we obtain a constant c such that

EX 2
i (t) 6

c∆ti
n2(1/2−α)(tjp−1 − ti)2

+
c (∆ti)

2

n1/2−α(tjp−1 − ti)3

under the condition tjp+1 6 ti−1 6 t 6 ti 6 tjp ∧ tn−1.
Recall that if t ∈ [ti−1, ti] ∩ [tjp+1 , tjp ], there is a constant c such that

tjp−1 − ti−1

tjp−1 − ti
6 c.
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Then, it suffices to analyse the two following sums:

S1
n = n−α

pn∑
p=0

∑
ti−1, ti∈Inp

∆ti
n1/2−α(tjp−1 − ti−1)

,

S2
n =

n−α

n1/2n1/2(1/2−α)

pn∑
p=0

∑
ti−1, ti∈Inp

∆ti
(tjp−1 − ti−1)3/2

.

First, we have

S1
n 6

n−α

n1/2−α

pn∑
p=0

∫ tjp∧tn−1

tjp+1

dt

tjp−1 − t
6 const n−α lnn→ 0.

Secondly, we have for p = 0,

tjp−1 − ti−1 >
const

n
.

It follows that the first term of the sum S2
n is less than

const n−α
∫ tn−1

tj1

dt

1− t
6 const n−α lnn→ 0.

Otherwise, for p > 1, we use the inequality

tjp−1 − t >
const

n1/2−α

and it suffices to estimate

n−α

n1/2

pn∑
p=1

∫ tjp∧tn−1

tjp+1

dt

tjp−1 − t
6
const n−αn1/2−α

n1/2
lnn→ 0.

Finally, we can claim that P − lim Ln3 = 0.
Lemma 5.5.6. We have P − lim Ln4 = 0.

Proof. Using again the inequality ||a| − |b|| 6 |a− b| we get that

|L4
n| 6 kn

n−1∑
i=1

Sti−1
|∆Ati | 6 c(ω) (In + Jn)

where

In = kn

∫ 1

0

|Ĉxt(u, Su)|du,

Jn = kn

∫ 1

0

σ2S2
u|Ĉxxx(u, Su)|du.

We have

In 6 c(ω)n−α
pn∑
p=0

∫ tjp∧tn−1

tjp+1

dt

tjp−1 − t
6 cωn

1/2−2α lnn→ 0
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and

Jn 6 c(ω)
n−α

n1/2−α

pn∑
p=0

∫ tjp∧tn−1

tjp+1

dt

tjp−1 − t
6 c n−α lnn→ 0.

Then, we can conclude that P − lim Ln4 = 0.
Lemma 5.5.7. We have P − lim Ln5 = 0.

Proof. We use the Taylor expansion

Ĉx(ti−1, Sti−1
)− Ĉx(ti, Sti) = Ĉxt(θi, Sti−1

)(ti−1 − ti) + Ĉxx(ti, S̃ti)(Sti−1
− Sti)

where θi ∈ [ti−1, ti] and S̃ti ∈ [Sti−1
, St]. Then, |Ln5 | 6 c(w)(An +Bn) with

An =
n−α√
n1/2−α

pn∑
p=0

∑
ti−1, ti∈Inp

(∆Sti)
2√

tjp−1 − ti−1

,

Bn = n−α
pn∑
p=0

∑
ti−1, ti∈Inp

|∆Sti |∆ti
tjp−1 − ti−1

.

We deduce a constant c such that

EAn 6 c
n−α√
n1/2−α

pn∑
p=0

∫ tjp∧tn−1

tjp+1

dt√
tjp − t

6 c n−α → 0

and

Bn 6
n−α

n1/2

pn∑
p=0

∫ tjp∧tn−1

tjp+1

dt

tjp−1 − t
6 c n−2α lnn→ 0.

Then, we can conclude that P − lim Ln5 = 0.

5.6 Appendix
Lemma 5.6.1. The stochastic equation defined on [s, 1] for all s ∈]0, 1[ by :{

dŜx,s(t) = σ̂(t, Ŝx,s(t))Ŝx,s(t)dWt

Ŝx,s(s) = x

has a unique solution verifying, for a constant C∗,

E sup
s6t61

Ŝ2
x,s(t) 6 C∗(1 + x2).

Proof. It suffices to apply Theorem 2.2 p104 [10]. For this, we verify the following
conditions with σ(t, x) = σ̂(t, x)x (depending on n).

Since f ′ is bounded, there exists a constant cn such that

|σ(t, x)| 6 cn|x|.

Moreover, if |x|, |x| 6 N ,

|σ(t, x)− σ(t, x)| 6 |σ̂(t, x)| |x− x|+N |σ̂(t, x)− σ̂(t, x)| .
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Since σ̂(t, x) is bounded from below by a strictly positive constant, we have

|σ̂(t, x)− σ̂(t, x)| 6 const
∣∣σ̂2(t, x)− σ̂2(t, x)

∣∣
where

σ̂2(t, x)− σ̂2(t, x) = σ2(t, x)− σ2(t, x) + γn(t) (σ(t, x)− σ(t, x)) .

From the hypothesis on σ we deduce a constant Kn(N) such that for |x|, |x| 6 N ,

|σ(t, x)− σ(t, x)| 6 Kn(N)|x− x|.

Then, we can conclude about the lemma.

Lemma 5.6.2. Assume that t ∈ [0, 1]. Then, the stochastic equation:{
dS̃x,t(u) = σ̂(u, S̃x,t(u))S̃x,t(u)dWu + Λ̂(u, S̃x,t(u))S̃x,t(u)du

S̃x,t(t) = x

has a unique solution on [t, 1].

Proof. It suffices to apply Theorem 2.2 p104 [10]. For this, we verify the needed
conditions with:

σ̃(t, x) = σ̂(t, x)x,

b(t, x) = Λ̂(t, x)x.

From
σ̂2(t, x) = σ2(t, x) + γn(t)σ(t, x)

we deduce that
2σ̂x(t, x)σ̂(t, x) = 2σx(t, x)σ(t, x) + γn(t)σx(t, x).

Recall that
Λ̂(t, x) = σ̂2(t, x) + σ̂x(t, x)σ̂(t, x)x.

Then, from the boundedness of |xσx(t, x)|, it is easy to deduce that there exists a constant
c such that |b(t, x)| 6 c |x|. Furthermore, it is clear that there exists a constant c̃ such that
|σ̃(t, x)| 6 c̃ |x|.

Finally, we suppose that |x|, |x| 6 N . We have

|b(t, x)− b(t, x)| 6
∣∣∣Λ̂(t, x)

∣∣∣ |x− x|+ |x| ∣∣∣Λ̂(t, x)− Λ̂(t, x)
∣∣∣

where
∣∣∣Λ̂(t, x)

∣∣∣ is bounded and |x| 6 N , whereas

Λ̂(t, x)− Λ̂(t, x) = σ̂2(t, x)− σ̂2(t, x) + xσ̂x(t, x)σ̂(t, x)− xσ̂x(t, x)σ̂(t, x).

But, from the hypotheses on σ and f , we deduce a constant c such that the following
inequality |σ̂2(t, x)− σ̂2(t, x)| 6 c |x− x| holds. Moreover

xσ̂x(t, x)σ̂(t, x) = xσx(t, x)σ(t, x) +
1

2
γn(t)xσx(t, x).
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Since the next expression is bounded, we first write x = (x−x)+x and finally, we estimate

σx(t, x)σ(t, x)− σx(t, x)σ(t, x) = σ(t, x) (σx(t, x)− σx(t, x)) + σx(t, x) (σ(t, x)− σ(t, x))

where

|σx(t, x)− σx(t, x)| 6 const |x− x|,
|σ(t, x)− σ(t, x)| 6 const |x− x|.

because σxx(t, x) is bounded. Then, we can conclude that for |x|, |x| 6 N ,

|b(t, x)− b(t, x)| 6 const(N) |x− x|.

In a similar way, it is easy to prove that

|σ̃(t, x)− σ̃(t, x)| 6 const(N) |x− x|.

Lemma 5.6.3. The local martingale

∂Ŝx,t(u)

∂x
= 1 +

∫ u

t

Λ̂
(
s, Ŝx,t(s)

)
σ̂
(
s, Ŝx,t(s)

) ∂Ŝx,t(s)
∂x

dWs

is a strictly positive martingale.
Proof. The Doleans–Dade formula give us

∂Ŝx,t(u)

∂x
= exp

{∫ 1

t

Λ∗
(
v, Ŝx,t(v)

)
dWv −

1

2

∫ 1

t

Λ∗2
(
v, Ŝx,t(v)

)
dv

}
where Λ∗ = Λ̂/σ̂. Since Λ̂ is bounded, we deduce that there exists a constant c such that(

∂Ŝx,t(u)

∂x

)2

6 cNu

where

Nu = exp

{∫ u

t

2Λ∗
(
v, Ŝx,t(v)

)
dWv −

1

2

∫ 1

t

4Λ∗2
(
v, Ŝx,t(v)

)
dv

}
is a strictly positive locale martingale verifying

dNu = 2NuΛ
∗
(
u, Ŝx,t(u)

)
dWu.

Using the Fatou lemma, we deduce that the latter is integrable and finally

sup
u
E

(
∂Ŝx,t(u)

∂x

)2

<∞.

So, we can conclude about the lemma.
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Lemma 5.6.4. The process η̂x,t is a Markov process of transition density function
Γ∗(x, t, z, τ), the fundamental solution of the operator:

1

2
σ̂2
a(t, x)

∂2

∂x2
+ σ̂b(t, x)

∂

∂x
+
∂

∂t
.

Proof. In virtue of Theorem 5.4 p 149 [10], it suffices to verify the needed conditions.
Condition (A1) is well verified since σ̂2

a(t, x) > const > 0.
Let verify Condition (B1)(i). First, σ̂2

a(t, x) = σ̂2(t, x) and σ̂b(t, x) are bounded.
Secondly, suppose |x|, |x| 6 N . Then∣∣σ̂2(t, ex)− σ̂2(t′, ex)

∣∣ 6 ∣∣σ̂2(t, ex)− σ̂2(t′, ex)
∣∣+
∣∣σ̂2(t′, ex)− σ̂2(t′, ex)

∣∣
where, as already shown, |σ̂2(t′, ex)− σ̂2(t′, ex)| 6 c|x− x| whereas∣∣σ̂2(t, ex)− σ̂2(t′, ex)

∣∣ 6 ∣∣σ2(t, ex)− σ2(t′, ex)
∣∣+
∣∣∣√f ′(t)σ(t, ex)−

√
f ′(t′)σ(t′, ex)

∣∣∣ .
Since f ′ > 0 and f ′′ are bounded, there exists a constant c such that∣∣∣√f ′(t)−

√
f ′(t′)

∣∣∣ 6 c|t− t′|.

It follows that if |x|, |x| 6 N ,∣∣σ̂2
a(t, e

x)− σ̂2
a(t
′, ex)

∣∣ 6 C(N) (|t− t′|+ |x− x|) .

In a similar way, since we suppose that σ̂x,t is bounded, we have∣∣σ̂b(t, ex)− σ̂b(t′, ex)∣∣ 6 const(N) (|t− t′|+ |x− x|) .

Finally, since xσ̂x(t, x) is bounded, we deduce that Condition (B1)(ii) holds, i.e. for any
x, x, ∣∣σ̂2

a(t, e
x)− σ̂2

a(t, e
x)
∣∣ 6 C (|x− x|) .

Lemma 5.6.5. For any n, p ∈ N, we have

Γ(1 + n
2
)Γ(1

2
)

Γ(1 + n+p
2

)
6 2.

Proof. From the formula Γ(1 + z) = zΓ(z), it is easy to prove that

Γ(1 +
n+ p

2
) > Γ(1 +

n

2
) if p is even.

Otherwise, Γ(1 + n+p
2

) > Γ(1 + n+1
2

). It suffices to use the Bessel function

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt

verifying

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)

provided that Re(p), Re(q) > 0 with p = 1 + n/2 and q = 1/2 to conclude.
Now, we propose a lemma similar to Lemma 6 p 252 [11]:
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Lemma 5.6.6. Let consider

f(t, σ, τ, x, y, ξ) =

(
x− y
a
√
t− σ

+ a
√
t− σ

)2

+

(
y − ξ

a
√
σ − τ

+ a
√
σ − τ

)2

where a > 0 and

Ia,k =

∫ ∞
−∞

1√
t− σ

√
σ − τ

exp{−kf(t, σ, τ, x, y, ξ)}dy.

Then

f(t, σ, τ, x, y, ξ) >

(
x− ξ
a
√
t− τ

+ a
√
t− τ

)2

and for all ε ∈]0, 1[,

Ia,k 6 exp

{
−k(1− ε)

(
x− ξ
a
√
t− τ

+ a
√
t− τ

)2
} √

2a
√
t− τ

√
kε
.

Proof. For the first assertion, it suffices to use Lemma 6 p 252 [11]. Indeed, we have:

(x− y)2

t− σ
+

(y − ξ)2

σ − τ
>

(x− ξ)2

t− τ
.

Secondly, we deduce that

Ia,k 6 exp

{
−k(1− ε)

(
x− ξ
a
√
t− τ

+ a
√
t− τ

)2
}∫ ∞

−∞

exp{−kεf(t, σ, τ, x, y, ξ)}√
t− σ

√
σ − τ

dy.

If τ 6 σ 6 τ + (t− τ)/2, we have t− σ > (t− τ)/2. So, it suffices to use the inequality

f(t, σ, τ, x, y, ξ) >

(
y − ξ

a
√
σ − τ

+ a
√
σ − τ

)2

to conclude. The case τ + (t− τ)/2 6 σ 6 t is similar.

Theorem 5.1.1 holds provided that Ĉxx > 0. The convexity propagation is a subject of
first importance ([25], [22]). We prove that this condition is guaranteed if h is a convex
function and σ̂(t, x) = σ̂(x).

Lemma 5.6.7. Assume that h is a convex function verifying the condition (H̃). If σ̂ does
not depend on t, then Ĉxx > 0.

In virtue of the Tanaka–Meyer formula, we have:

h
(
Ŝx,t(1)

)
= h(x) +

∫ 1

t

h′−

(
Ŝx,t(u)

)
dWu +

1

2

∫
R
Lu1µ(du)

where h′− is the left derivative and

µ = h′′(u)du+
∑
i

[h′+(Ki)− h′+(Ki)]δKi ,
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δKi is the Dirac measure. Moreover, (Lus )s∈[t,1] is a continuous and positive semi-martingale
verifying ∫

R
g(u)Lusdu =

∫ s

t

g
(
Ŝx,t(u)

)
d〈Ŝx,t〉u, s ∈ [t, 1]

for any positive and bounded measurable functions g. It follows that

h
(
Ŝx,t(1)

)
= h(x) +

∫ 1

t

h′−

(
Ŝx,t(u)

)
dWu +

1

2

∑
i

[h′+(Ki)− h′−(Ki)]L
Ki
1

+
1

2

∫ 1

t

h′′
(
Ŝx,t(u)

)
σ̂2
(
Ŝx,t(u)

)
Ŝ2
x,t(u)du.(5.6.30)

Recall that (
Ŝx,t(u)−K

)+

= (x−K)+ +

∫ u

t

IŜx,t(s)>KdŜx,t(s) +
1

2
LKu .

Then,
1

2
ELKi1 = Ĉi(t, x)− (x−Ki)

+

where Ĉi(t, x) is the solution of (e) with h(x) = (x−Ki)
+. Having computed expectations,

we deduce from 5.6.30 that

Ĉt(t, x) =
∑
i

αiĈ
i
t(t, x)− 1

2
E
(
h′′
(
Ŝx,t(1)

)
σ̂2
(
Ŝx,t(1)

)
Ŝ2
x,t(1)

)
(5.6.31)

where αi = h′+(Ki) − h′+(Ki) > 0. Indeed, to obtain derivatives, we note that we have
Ŝx,t(u) = Sx,0(u− t) where Sx,0 verifies

dSx,0(v) = σ̂
(
Sx,0(v)

)
Sx,0(v)dWv, v ∈ [0, 1− t]

and we use the change of variable v = u− t.

We first prove the lemma for h(x) = (x − K)+ where K is a constant. For this, we
define:

hn(x) := 0, x ∈ [0, K − 1/n]

:= n (x−K + 1/n)2 /4, x ∈ [K − 1/n,K + 1/n]

:= x−K, x ∈ [K + 1/n,∞[.

This latter is a continuous and convex function and verifies

0 6 hn(x)− h(x) 6
1

4n
,

|h′n(x)− h′(x)| 6 I[K−1/n,K+1/n](x).

It follows that Ĉn
x (t, x) → Ĉx(t, x) where Ĉn, Ĉ are the solutions of (e) respectively with

terminal conditions hn and h(x) = (x−K)+. Indeed, it suffices to recall Lemma 5.2.2. Since
hn is a C1-function, we deduce from 5.6.31 ( with αi = 0 and h′′n > 0) that Ĉn

xx(t, x) > 0

and x→ Ĉn
x is increasing. Then, x→ Ĉx is also increasing and finally Ĉxx > 0.

In the general case, since h′′ > 0 and

Ĉt(t, x) = −1

2
σ̂2(t, x)x2Ĉxx(t, x),

it suffices to apply 5.6.31 where, as already shown with h(x) = (x−Ki)
+, Ĉi

t(t, x) 6 0.

115



Appendix

116



Deuxième partie

Arbitrage Theory

117





Chapter 6

Arbitrage Theory for a
Continuous Time Model

We consider the continuous-time model developed in [19] for markets with transaction
costs. In the latter, the strategies generating the value processes are expressed in physical
units of assets. The ones which are bounded from below in sense of partial ordering
generated by the solvency cône are considered as admissible. Here, by a slightly different
approach of the admissibility condition, we can suggest and characterize a “ No Generalized
Arbitrage ” (NGA) criteria. Moreover, we give a version of hedging theorem for European
options but also a dual description of the set of initial endowments from which we can
start a portfolio process hedging a given American option. The latter is deduced from our
joint work with Dimitri De Vallière and Yuri Kabanov [6] about the hedging of American
options 1. Finally, we propose to define hedging “ minimal prices ”.

6.1 Introduction

6.1.1 The Standard Discrete-Time Model

All processes are given on a fixed stochastic basis (Ω,FT , (Ft)t6T , P ) satisfying the usual
conditions and t = 0, 1, · · · , T . A finite time horizon T is fixed and the initial σ-algebra
is trivial. We suppose that the agent portfolio contains d assets. Their quotes are given in
units of a fixed numéraire which not be a traded security. At time t, they are expressed by
the vector of prices St = (S1

t , · · · , Sdt ); its components are strictly positive and adapted.
The agent’s positions can be described either by the vector of "physical" quantities
V̂t = (V̂ 1

t , · · · , V̂ d
t ) or by the vector Vt = (V 1

t , · · · , V d
t ) of values invested in each asset;

they are related as follows:
V̂ i
t = V i

t /S
i
t , i 6 d.

In the considered market, any asset can be exchanged to any other. At time t, the increase
of the value of the ith position in one unit of the numéraire by changing the value of the
jth position requires diminishing the value of the latter in 1 + λj,it units of the numéraire.

1Bruno Bouchard and Jean-François Chassagneux, by an other approach, produce a similar result [2].
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We assume that the matrix of transaction cost coefficients is adapted and has positive
components whereas the diagonal is zero.

The portfolio evolution can be described by the initial condition V−0 = v and the
increments at dates t > 0:

∆V i
t = V̂ i

t−1∆Sit + ∆Bi
t,(6.1.1)

∆Bi
t =

d∑
i=1

∆Lj,it −
d∑
i=1

(1 + λi,jt )∆Li,jt ,(6.1.2)

where Li,jt ∈ L0(R+,Ft) represents the accumulated net amount transferred from the
position i to the position j at the date t. The first term in the right-hand side of 6.1.1 is
due to the price increments while the second corresponds to the agent’s own actions at the
date t after knowledge of the new prices.

Note that any ∆Lt ∈ L0(Rd+,Ft) defines the Ft-measurable random variable ∆Bt with
values in the set −Mt where

Mt :=

{
x ∈ Rd : ∃a ∈ Rd+ such that x =

d∑
i=1

[(1 + λi,jt )ai,j − aj,i], i 6 d

}
.

Reciprocally, a measurable selection argument shows that any portfolio increment ∆Bt ∈
L0(−Mt,Ft) is generated by a certain ∆Lt ∈ L0(Rd+,Ft). So, we can decide to choose B
as the control strategy.

It is convenient to consider the dynamics of the portfolio in "physical units". Indeed, it
is given by the following formula:

∆V̂t = ∆B̂t, ∆B̂t ∈ −M̂t

where, for a set At, we note Ât = {x̂ : x ∈ At} with x̂i = xi/Sit , i = 1, · · · , d. An important
concept in the above setting is the solvency cone

Kt = Mt + Rd+,

i.e. the set of portfolios which can be converted at time t, paying transaction costs, to
portfolios without short position.

For this model, an arbitrage theory is already developed in [19] as well as hedging
theorems for European and American options [1].

6.1.2 The Continuous Time Model

The continuous-time model with efficient market friction suggested in [19] is inspired by
the previous one. It requires the continuity of the price processes and transaction cost
coefficients. Of course, theses conditions are fulfilled in the traditional case of Brownian
motion and constant transaction coefficients.

All processes are given on a fixed stochastic basis (Ω,FT , (Ft)t6T , P ) satisfying the
usual conditions. A finite time horizon T is fixed and the initial σ-algebra is trivial. In a
financial context, the continuous-time model is defined by a continuous semi-martingale
S = (S1, · · · , Sd) ∈ intRd+ with S0 = 1 = (1, · · · , 1) considered as the price process. The
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transaction costs are represented by an adapted and continuous matrix-valued process
Λ = (Λi,j) verifying Λi,j > 0 and Λi,i = 0. We shall assume that at each instant at least
one Λi,j 6= 0 in order to have Kt = Mt where the solvency cone K and the cone M are
defined as in the discrete-time model (see [19]).

The portfolio processes are controlled by the class of strategies B, the set of all
right-continuous d-dimensional adapted processes B of bounded variations such that
dBt = Ḃtd‖B‖t where Ḃt ∈ −L0(Kt,Ft) and ‖B‖ is the total variation. The choice of
the norm is of no importance since all norms are equivalent in a finite-dimensional space.
Recall that B ∈ B is such that ∆Bt represents the variation of the portfolio expressed in
numéraire at date t due to the trader.

So, it is easy to deduce that the dynamic of the process V̂ = V̂ v,B, value of a self-
financing portfolio defined by the strategy B and the initial endowment v, is given by:

V̂ i
t = vi +

∫
]0,t]

dBi
u

Siu
.

It follows that the portfolio processes V̂ are of bounded variations, right-continuous and
verifies dV̂ /d‖V̂ ‖ ∈ −K̂ a.s.

The last properties lead us to consider the arbitrage not only for the cone G = K̂ but
for more general C-valued process G = (Gt)t>0 as defined later.

We note G∗t = {y ∈ Rd+ : yx > 0, ∀x ∈ Gt} and MT
0 (G∗) is the set of all martingales

(Zt)t∈[0,T ] such that Zt ∈ G∗t a.s.

6.2 Generalized Arbitrage in Abstract Setting
We consider a C-valued process G = (Gt)t∈[0,T ] defined by a countable sequence of adapted
d-dimensional processes ξk = (ξkt ) such that for every t and ω only a finite but non-zero
number of ξkt (ω) are different from zero and Gt(ω) = cone{ξkt (ω), k ∈ N}, i.e. Gt(ω) is a
polyhedral cone generated by the finite set {ξkt (ω), k ∈ N}.

We suppose that G dominates the constant process Rd+, all cones Gt are proper, i.e.
Gt ∩ (−Gt) = {0} or, equivalently, intG∗t 6= Ø.

We assume that the generators of G are continuous processes and we add the following
assumption about the generators of G∗t :
Assumption (G):There is a countable family of continuous adapted processes (ζk)
such that for each ω only a finite number of vectors ζk are different from zero and
G∗t = cone{ζkt : k ∈ N} for every t.

The next hypothesis, used for hedging theorems, is a requirement that the setM0
T (G∗)

is rich enough (see [19]) and is fulfilled for the model with constant transaction costs
admitting an equivalent martingale measure:
Assumption (B): Let ξ ∈ L0(Rd,Ft). If the scalar product Ztξ > 0 for all Z ∈M0

T (G∗),
then ξ ∈ L0(Gt,Ft).

Let X = X 0
T be the set of all càdlàg processes X of bounded variations with X0 = 0

such that dX = Ẋd‖X‖ with Ẋt ∈ L0(−Gt,Ft) for all t ∈ [0, T ] and let X x = x + X ,
x ∈ Rd. We denote by X x

b = X x
b,T where X x

b,t is the subset of X x
t formed by the processes X

on [0, t] such that Xs + κX1 ∈ L0(Gs,Fs), with κX > 0, and Xt + κX1 ∈ L0(Rd+,Ft). Such
processes X ∈ X x

b are called admissible. Our admissibility condition is more restrictive
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than the one proposed in [19] where it is only assumed that Xs + κX1 ∈ L0(Gs,Fs)
but legitimate. Indeed, we can cite [8] in which short sales are ruled out. Finally, we put
X x(t) = {Xt : X ∈ X x

t } and X x
b (t) = {Xt : X ∈ X x

b,t}. It is easy to show the following
property:
Lemma 6.2.1. We have: X (t) ⊆ X (T ) and Xb(t) ⊆ Xb(T ) for all t ∈ [0, T ].

Proof. Let ξ = Xt ∈ Xb(t) where X ∈ Xb,t.
We define the stopped process Y = X t such that ‖Y ‖ = ‖X‖t. Then, dYs = Ẏsd‖Y ‖s

where Ẏs = ẊsIs6t verifies Ẏs ∈ L0(−Gs,Fs) for all s and Ys+κX1 ∈ L0(Rd+,Fs) for s > t.
It follows that ξ ∈ Xb(T ).

We shall propose an arbitrage theory inspired by [3]. For this, we introduce some
notations.

If x ∈ Rd+, we note x > 0.
Let be RT ⊆ X (T ) verifying L∞(−Gt,Ft) ⊆ RT , ∀t ∈ [0, T ]. We define the set

A := RT − L0(Rd+) and

R
F

T :=
{
ξ = lim ξn a.s. : ξn ∈ RT and there exists k > 0 such that ξn + k1 > 0

}
.

If C ∈ RF

T , we note Υ(C) = 1 + C − essinf C where essinf C is a constant defined by

(essinf C)i = essinf Ci, i = 1, · · · , d.

Observe that for C ∈ RF

T , there exists k > 0 such that C > −k1. So, essinf C is well defined
and Υ(C) > 1 a.s. We note, for a, b ∈ Rd, a/b and a× b the vectors whose components are
respectively ai/bi and aibi. Finally, we define for C ∈ RF

T :

AN(C) = {X/Υ(C) : X ∈ A} ,
A∞N (C) = AN(C) ∩ L∞,
A∞N

w
(C) = A∞N (C) closure in σ(L∞, L1),

R =
{
Z ∈M0

T (G∗\{0}) : E(ZTX)− > E(ZTX)+, ∀X ∈ RT

}
,

R(C) =
{
Z ∈M0

T (G∗\{0}) : E|ZTX| <∞ and EZTX 6 0

if X ∈ RT verifies X > −αC − β1 where α, β > 0
}
.

Définition 6.1. We say that G satisfies the No General Arbitrage property NGA if for all
C ∈ RF

T ,
A∞N

w
(C) ∩ L0(Rd+) = {0}.

We shall prove later the following results:
Theorem 6.2.2. Suppose that RT = Xb(T ), then

A∞N
w

(0) ∩ L0(Rd+) = {0} ⇔M0
T (G∗\{0}) 6= Ø.

Theorem 6.2.3. Assume that A∞N
w

(C) ∩ L0(Rd+) = {0}. Then R(C) 6= Ø.

Theorem 6.2.4. Assume that R 6= Ø then the NGA condition holds.
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Corollary 6.2.5. Assume that there exists C0 ∈ R
F

T such that R(C0) = R. Then

(NGA) ⇔ R 6= Ø.

Corollary 6.2.6. Suppose that RT = Xb(T ), then we have

(NGA)⇔M0
T (G∗\{0}) 6= Ø.

Remark 6.2.7. We can partially follow the proof of Corollary 6.2.5 in order to have for
RT = Xb(T ),

A∞N
w

(0) ∩ L0(Rd+) = {0} ⇔M0
T (G∗\{0}) 6= Ø.

In the case where RT = Xb(T ), we can extend to the continuous time the concept
introduced in the discrete model. We say that G satisfies :

Weak No Arbitrage property NAw if for all t ∈ [0, T ],

Xb(t) ∩ L0(Gt,Ft) ⊆ L0(∂Gt,Ft).

Proposition 6.2.8. Assume that RT = Xb(T ), then:

NAw ⇔ Xb(T ) ∩ L0(Rd+,Ft) = {0}.

Remark 6.2.9. (NGA)⇒ (NAw).

For the following definition inspired from [3], we consider a random variable F ,
considered as the contingent claim expressed in physical units, verifying −kF1 6 F 6 kF1
for some constants kF , kF > 0 . In a financial context, such a pay-off exits: we can cite for
example F (St) = (St −K)+/St.

Définition 6.2. A real number x is a fair price of F if the extended model(
Ω,F , P, RT + {h(F − x) : h ∈ R}

)
satisfies the NGA condition.

Note that there exists new cones

G′t = Gt + {h(F − x) : h ∈ R}I{t=T}

corresponding to the extended model. Indeed, if we note

R′T = RT + {h(F − x) : h ∈ R},

we have the following inclusion.

Lemma 6.2.10. We have R′T ⊆ X (G′)(T ).
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Proof. We consider X ′T = XT + h(F − x) where X ∈ X . It suffices to define

Ys = Xs + h(F − x)I{s=T}

which verifies:

‖Ys‖ = ‖X‖s + (‖∆XT + h(F − x)‖ − ‖∆XT‖) I{s=T},

Ẏs = Ẋs1{s<T} +
∆XT + h(F − x)

‖∆XT + h(F − x)‖
I{s=T}I∆XT+h(F−x)6=0.

It follows that Ẏs ∈ −G′s a.s. and X ′T ∈ X (G′)(T ). Moreover, if we suppose that
RT = Xb(T ), then there exists kX > 0 such that XT + kX1 > 0 and Xt + kX1 ∈ Gt .
But we also have −kF1 6 F 6 kF1, so Y ∈ Xb,T (G′) and X ′T ∈ Xb(G′)(T ).

We define IF the set of all fair prices for F verifying −kf1 6 F 6 kF1.
Theorem 6.2.11. Assume that there exists C0 ∈ R

F

T such that R(C0) = R and the NGA
condition holds. Then, we have:

IF = {x ∈ Rd : ∃Z ∈ R such that Z0x = EZTF}.

For Z ∈MT
0 (G∗\{0}), we define

x(Z) =
Z0

‖Z0‖2
EZTF.

This latter is such that EZTF = Z0x
(Z) and x(Z) 6

√
d kF1. So, in virtue of Theorem

6.2.11, we deduce that x(Z) ∈ IF . Moreover, for x ∈ IF , we note Zx ∈ MT
0 (G∗) verifying

EZx
TF = Zx

0x and |Zx
0 | = 1. Finally, we give the following definition, in order to propose

minimal prices for European options as we shall see later.

Définition 6.3. Assume that there exists C0 ∈ R
F

T such that R(C0) = R and the NGA
condition holds. If −kf1 6 F 6 kF1, we define:

αI = sup
{
EZTF : Z ∈MT

0 (G∗) and |Z0| = 1
}
,

MI = {Z0 : Z0 = limZxn
0 with Zxn

0 xn → αI} .

Note that we have clearly

αI = sup {Zx
0x : x ∈ IF} = sup

{
Z0x

(Z) : Z ∈MT
0 (G∗) and |Z0| = 1

}
.

6.3 Hedging Theorem For European Options
In this section, we only consider the case RT = Xb(T ).
Let L0

b be the cone in L0(Rd) formed by random variables ξ verifying ξ + k1 > 0 a.s. for
some k > 0. We are given a non-null random variable F ∈ L0

b considered as a contingent
claim. We define the convex set

ΓF =
{
x ∈ Rd : F ∈ X x

b (T )
}
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and the closed convex set

DF =
{
x ∈ Rd : Z0x > EZTF ∀Z ∈MT

0 (G∗)
}
.

We denote by D = D(G) the subset ofMT
0 (G∗) formed by martingales Z such that not only

Zτ ∈ L0(intG∗τ ) for any stopping times τ but also Zτ− ∈ L0(intG∗τ−) for any predictable
times τ ∈ [0, T ].
Note that D 6= Ø implies the (NGA) condition. We shall recall the following version of
hedging theorem (the only difference from [19] is the model):
Theorem 6.3.1. Assume D 6= Ø, (G) and (B) hold, then ΓF = DF .

Remark 6.3.2. It is easy to show that if the NGA condition holds then

DF =
{
x ∈ Rd : Z0x > EZTF ∀Z ∈MT

0 (G∗\{0})
}
.

Indeed, for Z ∈MT
0 (G∗), it suffices to consider Zn = Z + 1

n
Z̃ where Z̃ ∈MT

0 (G∗\{0}).
We define minimal prices for the European option defined by a contingent claim F :

Lemma 6.3.3. Assume that D 6= Ø, (G) and (B) hold. If x1 ∈ ΓF 6= Ø, we can define
minimal prices pF ∈ {x 6 x1 : x ∈ ΓF} according to the partial ordering generated by Rd+.

Proof. Let consider x1 ∈ ΓF . Suppose that for all p ∈ N, there exists xp ∈ ΓF verifying
xp 6 x1 and xip 6 −p where i ∈ {1, · · · , d}. Then for Z ∈MT

0 (G∗\{0}),

Z0xp 6 −pmin
i
Zi

0 + dmax
i
Zi

0 max
i
|xi1|.

Moreover, we have Z0xp > EZTF > −kFZ01. This leads to a contradiction if we get p
converged to∞. So, there exists p ∈ N such that x 6 x1 and x ∈ ΓF implies that x > −p1.
Using the Zorn lemma, it follows that the set {x 6 x1 : x ∈ ΓF} has, at least, a minimal
element pF .

From the definition, it is clear that pF ∈ ΓF and we have the following characterization:
Theorem 6.3.4. Assume that D 6= Ø, (G) and (B) hold. If x1 ∈ ΓF 6= Ø, then the two
following conditions are equivalent:

a) pF ∈ {x 6 x1 : x ∈ ΓF} is a minimal price.
b) There exists a sequence Zn ∈MT

0 (G∗\{0}) verifying Zn
0 → Z0

where |Z0| = 1 and EZn
TF → Z0pF .

For the sequence, we suppose that −kF1 6 F 6 kF1. In this case, we have obviously
kF1 ∈ ΓF and it is natural to define minimal prices as minimal elements

pF ∈ {x 6 kF1 : x ∈ ΓF}

according to the Zorn lemma. We note that for all x ∈ ΓF and Z0 ∈MI , we have Z0x > αI .
From 6.3.4, we deduce easily the following corollaries.
Corollary 6.3.5. Assume that D 6= Ø, (G) and (B) hold. Suppose that −kF1 6 F 6 kF1
and pF ∈ {x 6 kF1 : x ∈ ΓF} verifies Z0pF = αI where Z0 ∈ MI . Then pF is a minimal
price of ΓF .

Corollary 6.3.6. Assume that D 6= Ø, (G) and (B) hold. Suppose that −kF1 6 F 6 kF1
and e = lim↗ xn where xn ∈ IF . If e /∈ IF , then e is a minimal price of ΓF .
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6.4 Hedging Theorem For American Options
In this section, we only consider the case RT = Xb(T ).
We are given a cadlag process F considered as a contingent claim, defined on (ΩT ,O)
where ΩT = Ω× [0, T ], O is the optional σ-field . We assume that F− > F and there exists
kF > 0 such that Ft + kF1 > 0 for all t. We define the convex set

ΓaF :=
{
x ∈ Rd : ∃X ∈ Xb such that x+Xτ > Fτ for all stopping time τ

}
and the closed convex set

Da
F :=

{
x ∈ Rd : EµηF 6 xEµη, ∀η ∈ PT0 (G∗, µ),∀µ ∈ νT

}
where

PT0 (G∗, µ) :=
{
η ∈ L1(ΩT , P ⊗ µ,Rd+) : Zη,µ

u ∈ G∗u, ∀u > 0
}

and νT is the set of all positive finite measures on [0, T ]. Moreover, Eµ means the
expectation on ΩT under the measure P ⊗ µ whereas

Zη,µ
u = E

(∫ T

u+

ηtdµ(t)|Fu
)

is a cadlag version.
We shall prove the following version of hedging theorem:

Theorem 6.4.1. Assume that D 6= Ø, (G) and (B) hold, then ΓaF = Da
F .

Note that we can also produce an analogous theorem for the initial X-model introduced
in [19], following the same reasoning [6].

It is easy to show the following lemma.
Lemma 6.4.2. Assume that D 6= Ø, (G) and (B) hold, then

ΓaF =
{
x ∈ Rd : EµηF 6 xEµη, ∀η ∈ PT+

0 (G∗, µ), ∀µ ∈ νT
}

where
PT+

0 (G∗, µ) = PT0 (G∗, µ) ∩ L1(ΩT , P ⊗ µ, intRd+).

Note thatMT
0 (G∗\{0}) ⊆ PT+

0 (G∗, µ).
Since F > −kF1, x ∈ ΓaF = Da

F implies that x > −kF1 and we can define, using the
Zorn lemma, minimal prices paF ∈ ΓaF .

Theorem 6.4.3. Assume that D 6= Ø, (G) and (B) hold. Then, the two following
conditions are equivalent:

a) The price paF is a minimal price of ΓaF .
b) There exists a sequence µn ∈ νT , ηn ∈ PT+

0 (G∗, µn)
verifying Eµnηn → Z0 where |Z0| = 1 and EµnηnF → Z0p

a
F .

Proof. This is similar to Theorem 6.3.4. Indeed, Eµnηn ∈ G∗0.

With the hypothesis −kF1 6 F 6 kF1, we define:

αa = sup
{
EµηF : µ ∈ νT , η ∈ PT+

1 (G∗, µ)
}
,

Ma = {Z0 : Z0 = limEµnη
n and EµnηnF → αa}
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where
PT+

1 (G∗, µ) =
{
η ∈ PT+

0 (G∗, µ) : |Eµη| = 1
}
.

Note that for all x ∈ ΓaF and Z0 ∈ Ma, we have Z0x > αa. From 6.4.3, we deduce easily
the following corollary.
Corollary 6.4.4. Assume that D 6= Ø, (G) and (B) hold.
Suppose that −kF1 6 F 6 kF1. If paF ∈ ΓaF verifies Z0p

a
F = αa where Z0 ∈Ma, then paF is

a minimal price of ΓaF .

6.5 Proofs

6.5.1 Proof of Proposition 6.2.8

First we assume that the condition NAw holds and we consider ξ ∈ Xb(T ) ∩ L0(Rd+).
Then ξ ∈ Xb(T )∩L0(GT ,FT ) ⊆ L0(∂GT ,FT ). So, if ξ ∈ Rd+\{0} on a non-null set , then

ξ ∈ intGT on the latter because the domination of Rd+ by G means that Rd+ \{0} ⊆ intGT .
This contradicts the hypothesis ξ ∈ ∂GT a.s.

Suppose that Xb(T ) ∩ L0(Rd+) = {0}. Then, Xb(t) ∩ L0(Rd+,Ft) = {0} for all t. Let
ξ ∈ Xb(t) ∩ L0(Gt,Ft) and suppose that ξ ∈ intGt on a non-null set. By a measurable
selection argument, we deduce the existence of X+ ∈ L∞(Rd+,Ft) \ {0} such that
Zt = ξ −X+ ∈ L0(Gt,Ft).

We first suppose that ξ ∈ L∞. Then, −Zt ∈ L∞(−Gt,Ft) and we deduce that
X+ ∈ Xb(t) ∩ L0(Rd+,Ft) = {0} which leads to a contradiction. So, we have

Xb(t) ∩ L∞(Gt,Ft) ⊆ L0(∂Gt,Ft).

Otherwise, we define ξn = ξ1‖ξ‖6n and we show that ξn ∈ Xb(t). Indeed, let the process be
Xn
s = Xs − ξ1‖ξ‖>nIs=t where X ∈ Xb,t. It is such that Xt = ξ. We have

‖Xn‖s = ‖X‖s +
(
‖∆Xt − ξ1‖ξ‖>n‖ − ‖∆Xt‖

)
Is=t

and

Ẋn
s = ẊsIs<t +

∆Xt − ξ1‖ξ‖>n
‖∆Xt − ξ1‖ξ‖>n‖

I{∆Xt−ξ1‖ξ‖>n 6=0}1s=t ∈ L0(−Gs,Fs).

Furthermore, we can easily verify that there exists κn > 0 such that Xn
s + κn1 ∈

L0(Gs,Fs) and Xn
t + κn1 ∈ L0(Rd+,Ft) since we have Xn

t = ξn ∈ L∞. It follows that
ξn ∈ Xb(t) ∩ L∞(Gt,Ft) ⊆ L0(∂Gt,Ft) and we deduce that ξ ∈ L0(∂Gt,Ft) as n→∞.

6.5.2 Proofs of Theorems 6.2.3 and 6.2.4

We need some auxiliary results.
Let recall the following lemma that we can find in [19]:

Lemma 6.5.1. Let G be a family of measurable sets such that any non-null set Γ has the
non-null intersection with an element of G. Then, there is at most countable subfamily of
sets {Γi} of full measure.

We can deduce the following theorem:
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Theorem 6.5.2. Let C be a convex cone in L∞ closed in σ(L∞, L1) containing L∞(Rd−)
and such that C ∩ L∞(Rd+) = {0}. Then, there exists ρ ∈ L0(intRd+) verifying EρX 6 0
for all X ∈ C and E|ρ| <∞.

Proof. From the Hahn-Banach theorem, we deduce that for any element x ∈ L∞(Rd+) \
{0}, there exists Zx ∈ L1 such that EZxξ < EZxx, for all ξ ∈ C. We note ei the vector whose
only the ith component is non-null and equal to unit. Taking ξ = αeiZi

x1−M6Zix<0 ∈ C, for
all α,M > 0, we deduce that Zx > 0. Moreover, Zx 6= 0. So, we can assume that EZx 6 1
and EZxx > 0. Let define

Gk =
{
{Zk

x 6= 0}, x ∈ L∞(Rd+) \ {0}
}
.

Then, for all Γ such that P (Γ) 6= 0, we have P (Γ∩{Zk
x 6= 0}) 6= 0 where x = ek1Γ. Indeed,

EZx.x > 0. We deduce from the previous lemma a countable family Zxk,i such that

P
(
∪i
{
Zk
xk,i
6= 0
})

= 1.

Defining ρ =
∑

k,i 2
−k−iZxk,i , it is obvious that E|ρ| <∞ and we can easily verify that for

any k, we have ρk > 0 on the set

N c =
d⋂

k=1

⋃
i

{
Zk
xk,i
6= 0
}

of full measure. So ρ ∈ intRd+ a.s. and, from what precedes , we have Eρξ 6 0 for any
ξ ∈ C .
Lemma 6.5.3. For all C ∈ RF

T , we have R ⊆ R(C).

Proof. Let consider C ∈ R
F

T and Z ∈ R. We have C = limXn where Xn ∈ RT

verifies Xn > −k1 with k > 0. Since Z ∈ R, we have E(ZTXn)− > E(ZTXn)+ whereas
ZTXn > −kZT1 implies that E(ZTXn)− 6 kE|ZT1| < ∞. Thus E|ZTXn| 6 2kE|ZT1|
and E|ZTC| <∞ by the Fatou Lemma.

From now on, we suppose that X ∈ RT verifies X > −αC − β1 where α, β > 0. Then
ZTX > −αZTC − βZT1 and it follows that E(ZTX)− < ∞. So, Z ∈ R implies that
E(ZTX)+ 6 E(ZTX)− <∞ and EZTX 6 0. We can conclude that Z ∈ R(C).

Lemma 6.5.4. Let consider C0 ∈ R
F

T such that there exists ρ ∈ L0(intRd+) verifying
E|ρ| < ∞ and EρX 6 0 for all X ∈ A∞N

w
(C0). Assume that X ∈ RT verifies

X/Υ(C0) > −a1 where a > 0. Then we have:

E

∣∣∣∣ρ X

Υ(C0)

∣∣∣∣ <∞, Eρ
X

Υ(C0)
6 0.

Proof. For all c ∈ R+, we define (X − c1)+ and X ∧ c1 the random variables whose
components are respectively (X i − c)+ and X i ∧ c.

Then, X ∧ c1 = X − (X − c1)+ ∈ A. It follows that ζc = X ∧ c1/Υ(C0) ∈ AN(C0).
Moreover, −a1 6 ζc 6 c1. It follows that ζc ∈ A∞N

w
(C0) and Eρζc 6 0. But we have

ρζc =
∑
i

ρiζ ic > −a
∑
i

ρi

where Eρi < ∞. Then, we can apply the Fatou lemma as c → ∞ to conclude about the
lemma.
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Corollary 6.5.5. Assume that A∞N (C0) ∩ L0(Rd+) = {0}. Then R(C0) 6= Ø.

Proof. First, we claim that L∞(Rd−) ⊆ A∞N
w

(C0). Indeed, if X ∈ L∞(Rd−), we have
Υ(C0) × X ∈ L(Rd−) ⊆ A. It follows that X ∈ A∞N

w
(C0). In virtue of Theorem 6.5.2,

we deduce the existence of ρ ∈ L0(intRd+) such that E|ρ| < ∞ and EρX 6 0 for all
X ∈ A∞N

w
(C0).

Let define the cadlag version martingale Z by ZT = ρ/Υ(C0) ∈ intRd+ and Zt =
E(ZT |Ft) verifying E|ZT | < ∞. We shall prove that Z ∈ M0

T (G∗\{0}). Suppose that
Zt /∈ G∗t on a non-null set. By a measurable selection argument, we can find Xt ∈ Gt a.s.
verifying |X| 6 1, ZtXt 6 0 and ZtXt < 0 on a non-null set. Thus −Xt ∈ RT and verifies
−Xt/Υ(C0) > −1. From Lemma 6.5.4, it follows that EZtXt > 0 in contradiction with
the inequality EZtXt < 0. We can conclude that Z ∈MT

0 (G∗\{0}).
Let show that Z ∈ R(C0). If X ∈ RT verifies X > −αC0−β1 where α, β > 0, we have:

X i

Υ(C0)i
> −α +

α(1− essinfCi
0)− β

Υ(C0)i
> −α

provided that α(1− essinfCi
0)− β > 0 and otherwise

α(1− essinfCi
0)− β

Υ(C0)i
> α(1− essinfCi

0)− β.

It follows that there exists a > 0 such that X/Υ(C0) > −a1. In virtue of Lemma 6.5.4, we
deduce that E|ZTX| <∞ and EZTX 6 0. Thus, Z ∈ R(C0).
Corollary 6.5.6. Assume that R 6= Ø. Then the NGA condition holds.

Proof. Suppose that R 6= Ø and consider Z ∈ R ⊆ R(C) for some C ∈ RF

T .
If Y ∈ A∞N

w
(C) ∩ L0(Rd+), we have Y = limYn in σ(L∞, L1) where

Yn =
Xn − εn

Υ(C)
, Xn ∈ RT , εn > 0.

We deduce that Xn > −‖Yn‖∞Υ(C). So, Z ∈ R(C) implies that E|ZTXn| < ∞ and
EZTXn 6 0. From the proof of Lemma 6.5.3, we know that E|ZTC| < ∞. Moreover, the
components of ZT ×Υ(C) verify 0 6 Zi

TΥ(C)i 6 ZTΥ(C).
So, ZT ×Υ(C) ∈ L1 and EZT ×Υ(C)Yn → EZT ×Υ(C)Y 6 0. We deduce that Y = 0

and the (NGA) condition holds.

6.5.3 Proof of Corollary 6.2.6

From [19], we recall the following lemma.
Lemma 6.5.7. If Z ∈MT

0 (G∗) and X ∈ X x
b , then ZX is a supermartingale and

E(−ZẊ).‖X‖T 6 Z0x− EZTXT .

So, we easily deduce that in the case where RT = Xb(T ), we have

M0
T (G∗\{0}) = R = R(C)

for all C ∈ RF

T . Thus, we can conclude about Corollary 6.2.6.
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6.5.4 Proof of Theorem 6.2.11

If we define, for the extended model, C ′0 = C0 + F − x, we have obviously C ′0 ∈ R
F

T
′.

Since x ∈ IF implies that the NGA condition holds for the extended model, we deduce,
from Theorem 6.5.2, the existence of a random variable ρ ∈ L0(intRd+) verifying E|ρ| <∞
and EρX 6 0 for all X ∈ A∞N

w
(C ′0, G

′). From Lemma 6.5.4, we deduce that if X ∈ A′T
verifies X/Γ(C ′0) > −a1 where a > 0, then we have EρX/Γ(C ′0) 6 0. We define the
martingale

Zt = E

(
ρ

Γ(C ′0)
|Ft
)
.

From the hypothesis
L∞(−Gt,Ft) ⊆ RT ⊆ R′T ,

and it is easy to see that Z ∈ R(C0) in virtue of Lemma 6.5.4. Moreover, since we assume
that F is bounded, we finally have from what precedes EZT (F − x) = 0 because F − x
and x− F belong to A′T .

Reciprocally, suppose that Z0x = EZTF for some Z ∈ R. First, we consider an element
Y = X + h(F − x) ∈ R′T verifying Y > −α1 for some constant α > 0. We deduce easily
that E(ZTX)− < ∞ and finally, Z ∈ R implies that EZTX 6 0. So, E|ZTY | < ∞ and
EZTY 6 0. It follows that for all C ′ ∈ RF

T
′, we have E|ZTC ′| <∞ and EZTC ′ 6 0 because

of the Fatou lemma.
From now on, we define ZT = Υ(C ′) × ZT . From what precedes, we have E|ZT | < ∞.

We deduce that if Y = X + h(F − x) ∈ R′T verifies the inequality Y/Υ(C ′) > −α1, then
using the previous reasoning we obtain that

E|ZT
Y

Υ(C ′)
| <∞, EZT

Y

Υ(C ′)
6 0.

Finally,

EZT
Y − V
Υ(C ′)

6 0

provided that
Y − V
Υ(C ′)

> −α1

and V > 0. It follows that EZTX 6 0 for all X ∈ A∞N (C ′) and finally for all X ∈ A∞N
w

(C ′).
But, if we consider X ∈ A∞N

w
(C ′)∩L0(Rd+), we have obviously ZTX > 0. So, ZTX = 0 and

X = 0 since ZT ∈ intRd+. It follows that the NGA condition is verified for the extended
model and x ∈ IF .

6.5.5 Proof of Theorem 8.1.2

From [19], we recall the following result.
Lemma 6.5.8. Assume that D 6= Ø and (G) holds. Let R̃ be a subset of Xb. Suppose
that there exists a constant κ such that XT + κ1 > 0 for all X ∈ R̃. Then there exists a
probability measure Q ∼ P with bounded density such that

sup
X∈R̃

EQ‖X‖T <∞.
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We also recall the following Komlós theorem [19]:
Theorem 6.5.9. Let (ξn) be a sequence of random variables on (Ω,F , P ) bounded in L1,
i.e. with supnE|ξn| < ∞. Then, there exists a random variable ξ ∈ L1 and a subsequence
(ξnk) Césaro convergent to ξ a.s., that is k−1

∑k
i=1 ξni → ξ a.s. Moreover, the subsequence

(ξnk) can be chosen in such way that any its further subsequence is also Césaro convergent
to ξ a.s.

We note νT the space of positive finite measures on [0, T ] with the topology of weak
convergence in probabilistic sense. An optional measure is a νT -valued random variable
such that the process µt(w) = µ(w, [0, t]) is adapted. Then, we get the following lemma
[19].
Lemma 6.5.10. Let µn be optional random measures with supnEµ

n
T < ∞. Then, there

exists an optional random measure µ such that µT ∈ L1 and a subsequence µn′ such that
all its further subsequences are Césaro convergent in νT to µ a.s.

We define
QT = {qnk =

kT

2n
, k 6 2n, k, n ∈ N}.

The following result can be found in [19]. We recall the proof. For more details, we refer
the reader to Lemma 6.6.1 where similar arguments are used.
Lemma 6.5.11. Assume D 6= Ø, (B) and (G) hold. Let consider a sequence Xn ∈ X x

b

verifying Xn(T ) + k1 > 0 a.s. for a constant k > 0 and Xn(T ) converges almost surely.
Then, there exists X ∈ X x

b , a subsequence Xn′ such that Xn′(T ) are Césaro convergent to
X(T ).

Proof. Let Xn ∈ X x
b be a sequence with Xn

T + κ1 > 0 converging to U a.s.
We note, for each component:

X i
n = X

i

n −X i
n

where X i

n and X i
n are two increasing processes such that

‖Xn‖ =
d∑
i=1

‖X i
n‖, ‖X i

n‖ = X
i

n +X i
n.

Applying Lemmas 6.5.8 and 6.5.10, we may assume that there exists a subsequence n′
such that, for all subsequences, each components of Xn′ and Xn′ are Césaro-convergent
a.s. in νT to increasing processes X i and X i. It follows that Xn′(T ) is Césaro-convergent to
X(T ) = XT −XT a.s. Otherwise, we can assume that Xn′(t) is Césaro-convergent to X̃(t),
for all points of QT and we note Xt = lims↘t; s∈QT X̃s . Since all the processes ζkXn′ are
decreasing, we deduce from the continuity of ζk that the process ζkX is also decreasing.
Thus, X ∈ X x.

It remains to check that, for all t, Xt + k1 ∈ Gt for some k > 0. For this, we
consider Z ∈ M0

T (G∗). In virtue of Lemma 8.1.1, the prelimit processes Z(Xn + κ1)
are supermartingales, positive at the terminal date. It follows that

E1ΓZt(X
n
t + κ1) > 0 ∀Γ ∈ Ft.

Therefore, Zt(Xn
t + κ1) > 0. Condition B implies that Xn

t + κ1 ∈ Gt. It follows that
Xt + κ1 ∈ Gt, at least for t ∈ QT but, by continuity, for all points of [0, T ]. Moreover, we
have obviously XT + κ1 > 0. So, we can deduce that X ∈ X x

b .
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We deduce easily from the previous lemma, the following corollary.
Corollary 6.5.12. Assume D 6= Ø, (B) and (G) hold. Then, Xb(T ) is Fatou-closed.

From [19], we recall the following result:
Lemma 6.5.13. The set X x

b (T ) ∩ L∞ is Fatou-dense in X x
b (T ).

In virtue of the Bipolar Theorem ([19]), the previous lemma and Corollary 6.5.12, we
deduce a dual description of X x

b (T ).
Lemma 6.5.14. Assume that D 6= Ø, (B) and (G) hold, then

X x
b (T ) =

{
ξ ∈ L0

b : Eξη 6 sup
X∈Xxb (T )

EXη ∀η ∈ L1(Rd+)

}
.

Corollary 6.5.15. Assume that D 6= Ø, (B) and (G) hold, then ΓF = DF .
Proof. In virtue of Lemma 8.1.1, it is easy to deduce that ΓF ⊆ DF .
Assume that x ∈ DF and suppose that x /∈ ΓF . This means that F − x /∈ Xb(T ). Then,

from Lemma 6.5.14, we deduce the existence of η ∈ L1(Rd+) verifying: EηX < E(F −
x)η, ∀X ∈ Xb(T ). Since L∞(−Gt,Ft) ⊆ Xb(T ), we have EZtX 6 0, ∀X ∈ L∞(−Gt,Ft)
where Zt = E(η|Ft). It follows that Z belongs to MT

0 (G∗) and verifies in particular
Z0x < EZTF . So, x /∈ DF which leads to a contradiction.

6.5.6 Proof of Theorem 6.3.4

Assume that pF ∈ ΓF is a minimal price. Thus, pF − 1
n
1 /∈ ΓF which implies that there

exists Zn ∈M0
T (G∗\{0}) verifying |Zn

0 | = 1 and

Zn
0 (pF −

1

n
1) < EZn

TF 6 Zn
0 pF .

Since there exists a subsequence such that Zn
0 → Z0, we deduce easily that EZn

TF converges
to Z0pF .

Reciprocally, if x verifies x 6 pF and x ∈ ΓF , then Zn
0 pF > Zn

0 x > EZn
TF and as

n→∞, we obtain that Z0(pF − x) = 0. Moreover, pF − x > 0 and Z0 ∈ G∗0\{0} ⊆ intRd+
since G dominates Rd+. It follows that x = pF and pF is a minimal price.

6.5.7 Proof of Corollary 6.3.6

We consider he extended model defined in Definition 6.2 for e and we shall prove that
e ∈ IF if e /∈ ΓF . Note that R′ = R′(0). So, it suffices to prove that

A′∞N
w

(0) ∩ L0(Rd+) = {0}

in order to have R′ 6= Ø and prove the NGA condition for the extended model.
Let be ξ ∈ A′∞N

w
(0) ∩ L0(Rd+). We have ξ = lim(rmT − εm) where εm > 0 and rmT has

the representation rmT = Xm
T + hm(F − e) ∈ R′eT (2) with Xm

T ∈ Xb(T ) . Considering
rm,nT = Xm

T + hm(F − xn) ∈ R′xnT , we can assume that ξ = lim(rmT − εm) where
rmT = Xm

T + hm(F − xm) ∈ R′xmT and xm ↗ e. In the case where there exists a subsequence

2We note by R′e
T the set of the terminal values of portfolios in the extended model for e
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such that hm > 0, we have the inequality rmT 6 Xm
T + hm(F − xm0) for m > m0. Since

Z̃0xm0 = EZ̃TF for some Z̃ ∈M0
T (G∗\{0}), we deduce from Lemma 8.1.1 that ErmT Z̃T 6 0

and EZ̃T ξ 6 0 as n→∞. Thus ξ = 0.
Otherwise, assume that hm 6 0.
If there exists Z ∈M0

T (G∗\{0}) such that Z0e 6 EZTF , we deduce that

hmEZT (F − xm) 6 hmEZT (F − e) 6 0.

So, we also have ξ = 0 and e ∈ IF .
Finally, we can suppose that e ∈ ΓF . Since there exists some Zn ∈M0

T (G∗\{0}) such that
EZn

TF = Zn
0 xn → Z0e with Zn

0 → Z0 and |Zn
0 | = 1, it suffices to apply Theorem 6.3.4 to

conclude that e is a minimal price.

6.6 Proof of Theorem 6.4.1
In this section, we only consider the case RT = Xb(T ). We recall the Campi–Schachermayer
model Y defined as follows (see [19]).

6.6.1 Y-Model

We are given on the interval [0, T ] two set-valued processes G = (Gt) and G∗ = (G∗t )
where Gt = cone {ξkt : k ∈ N} and G∗t = cone {ζkt : k ∈ N}. It is assumed that the
generating processes are càdlàg, adapted, and for each ω only a finite number of ξt(ω),
ξkt−(ω), ζkt (ω) and ζkt−(ω) are different from zero, i.e. all cones are polyhedral. We put
G∗t− = cone {ζkt− : k ∈ N}.

We define the portfolio processes following the paper [6].
Let Y be a d-dimensional predictable process of bounded variation starting from zero

and having trajectories with left and right limits (French abbreviation: làdlàg). Put
∆Y := Y − Y−, as usual, and ∆+Y := Y+ − Y where Y+ = (Yt+). Define the right-
continuous processes

Y d
t =

∑
s6t

∆Ys, Y d,+
t =

∑
s6t

∆+Ys

(the first is predictable while the second is only adapted) and, at last, the continuous one:

Y c := Y − Y d − Y d,+
− .

Let Y be the set of such processes Y satisfying the following conditions:
1) Ẏ c ∈ −G dP d||Y c||-a.e.;
2) ∆+Yτ ∈ −Gτ a.s. whatever is a stopping time τ 6 T ;
3) ∆Yσ ∈ −Gσ− a.s. whatever is a predictable time σ 6 T .
Let Yx := x+Y , x ∈ Rd. We denote by Yxb the subset of Yx formed by the processes Y

such that Yt + κY 1 ∈ L0(Gt,Ft), t 6 T , for some κY ∈ R. In the financial context (where
G = K̂) the elements of Yxb are the admissible portfolio processes.

We associate with Y the following right-continuous adapted process of bounded varia-
tion:

Ȳ := Y c + Y d + Y d,+,
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i.e. Ȳ = Y + ∆+Y = Y+. Since the generators are right-continuous, the process Ȳ inherits
the boundedness from below of Y (by the same constant process κY 1).

We formulate for our needs, the following lemma
Lemma 6.6.1. Let An be a sequence of predictable and increasing làdlàg processes on [0, T ]
such that supnEA

n
T <∞. Then, there exists a predictable and increasing làdlàg process A

and a subsequence Ank such that all its further subsequences Añkt are Césaro convergent to
At for any t ∈ [0, T ].

Proof. We note QT = {tk, k ∈ N\{0}}. It is clear that supnEA
n
t1
<∞. From Theorem

6.5.9, we deduce a subsequence n(1) such that, for all its subsequences, we have the

convergence An
(1)
k

t1
→ Ãt1 on a set

∧
1 of full measure where

A
n

(1)
k

t1
=

1

k
(A

n
(1)
1
t1 + · · ·+ A

n
(1)
k
t1 ).

In a similar way, since we also have supk EA
n

(1)
k
t2 <∞, we deduce from n(1) a subsequence

n(2) such that the convergence An
(2)
k

t2
→ Ãt2 holds on a set

∧
2 of full measure for all its

subsequences. Following this scheme, we inductively construct a sequence n(p) extracted

from n(p−1) such that the convergence An
(p)
k

tp → Ãtp holds on a set
∧
p of full measure

for all its subsequences. Then, we deduce that the subsequence mp = n
(p)
p verifies the

convergence Ampt → Ãt for any t ∈ QT on the set
∧

=
⋂
p

∧
p of full measure for all

its subsequences. Indeed, let ñp = n
(kp)
kp

be a subsequence of mp and t = tk0 ∈ QT . By

hypothesis, the convergence An
(k0)
k

t → Ãt holds not only for the sequence n(k0) but also
for its subsequences. Moreover, if p > k0, then kp > p > k0. It follows that n(kp) is a
subsequence extracted from n(k0) and finally ñ too. We can conclude that Añpt → Ãt.

We shall prove that the mapping s → Ãs is a.s. increasing on QT . For this, it suffices
to argue on the set

∧
of full measure. If t1 6 t2, then Amit1 6 Amit2 for i 6 p by hypothesis

on A. It follows that Ampt1 6 A
mp
t2

and Ãt1 6 Ãt2 as p → ∞.We define the process

At = lims↗t; s∈QT Ãs on [0, T ] and we prove that the mapping s → As is a.s. increasing.
It suffices to argue on the set

∧
of full measure and use the increase of Ã. Indeed, if

s1 < t1 < s2 < t2 where s1, s2 ∈ QT , then Ãs1 6 Ãs2 and we get that At1 6 At2 as
si → ti, i = 1, 2.

Moreover, A is a.s. left-continuous. Indeed, for t0 fixed and any arbitrary small ε > 0,
we have At0 − ε 6 Ãs 6 At0 provided that s ∈ QT verifies t0 − r 6 s 6 t0 where r > 0

is near to 0. It follows that t0 − r/2 6 t 6 t0 implies that At = lims→t;s>t0−r Ãs. Then, it
is clear that At0 − ε 6 At 6 At0 and finally At → At0 as t ↗ t0. Note that A is clearly
predictable.

We shall prove that Ampt0 → At0 provided that A is continuous at t0. Note that At0 6 Ãt0
and by continuity at t0, for any ε > 0 arbitrary small, we have At0 6 Ãt0 6 At 6 At0 + ε

provided that t ∈]t0, t0 + r[ where r > 0 is near to 0. Furthermore, |Ampt0 − Ãt0 | 6 ε for p
large enough. It follows that |Ampt0 − At0| 6 2ε and we can conclude.

Note that A+
t = lims↘tAs is right-continuous and has the same jumps as A. Then,

we can claim that there exists stopping times τk exhausting the jumps of A. By similar
arguments, that is a diagonal procedure, we deduce from the sequence mp a subsequence
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np such that Anpt → At at each point t of continuity for A and Anpτk → Aτk on a set
∧

of full
mesure where At = At at each point t of continuity for A. Clearly, Anp → A and finally
we can claim that A is a predictable and increasing process. We can conclude about the
lemma. This latter serves to get the following (see [6]).

Lemma 6.6.2. Let Y n be a sequence of Yb such that there is a threshold k at time T , i.e.
Y n
T + k1 ∈ L0(GT ,FT ). Suppose that D(G) 6= Ø and B holds. Then, there exists Y ∈ Yb

and a subsequence nk such that a.s.(ω), Y nk
t is Césaro convergent to Yt for all t ∈ [0, T ].

We observe that the conditions of this model are verified by the C-valued process
G = (Gt)t∈[0,T ] of our X-model. We can deduce that Y ∈ Y ⇒ Ȳ ∈ X . Indeed, X = Ȳ is
such that a version of its density Ẋ is given by the following formula

Ẋ = lim supn
∑
k

Ytk+1+ − Ytk+

||Y+||tk+1
− ||Y+||tk

I]tk,tk+1].

Then, we can conclude using the next lemma from [6].
Let Gs,t(ω) denotes the closure of cone {Gr(ω) : s 6 r < t} and let

Gs,t+(ω) := ∩ε>0Gs,t+ε(ω), Gs−,t(ω) := ∩ε>0Gs−ε,t(ω)

with an obvious change when s = 0.
We assume 3 in all this chapter that Gt,t+ = Gt and Gt−,t = Gt−.

Lemma 6.6.3. Let Y be a predictable process of bounded variation. Then

Y ∈ Y ⇔ Yσ − Yτ ∈ L0(Gσ,τ ) for all stopping times σ, τ, σ 6 τ 6 T.

6.6.2 Proof

First, we give an obvious result for more convenience.
Lemma 6.6.4. We have

ΓaF =
{
x ∈ Rd : ∃X ∈ Xb,T such that x+Xτ > Fτ for all stopping time τ and x+XT = FT

}
.

Proof. Let consider X ∈ Xb,T verifying x + Xτ > Fτ for all stopping times τ . We have
x+XT = FT + YT with YT > 0. It suffices to consider

X ′t = Xt − YT IT (t)

in order to have X ′ ∈ Xb,T with x+X ′T = FT and x+X ′τ > Fτ .
Lemma 6.6.5. We have ΓaF ⊆ Da

F .
Proof. Suppose that X ∈ Xb,T verifies x+Xt > Ft for all t and consider η ∈ PT0 (G∗, µ).

We have chosen a càdlàg version of the martingale

Mt = E

(∫ T

0

ηsdµ(s)|Ft
)

3The property Gt,t+ = Gt is considered as obvious in [19] and [9] but the proof is not produced and
seems to be an open problem.
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such that the process

Yt = Mt −
∫ t

0

ηsdµ(s)

is a semi-martingale verifying by hypothesis Yt ∈ L0(G∗t ) and YT = 0. We recall that the
formula of integration by parts is:

[X, Y ] = XY −
∫
X−dY −

∫
Y−dX.

So, we obtain for all stopping times τn,∫ τn

0

Xt−ηtdµ(t) =

∫ τn

0

Xt−dMt +

∫ τn

0

YtdXt −XτnY τn

where τn is chosen such that the process X−.M τn is a martingale. Recall that Y verifies
Yt ∈ G∗t . So, we have

E

∫ τn

0

YtdXt = E

∫ τn

0

YtẊtd‖X‖t 6 0

It follows that
E

∫ τn

0

Xt−ηtdµ(t) 6 −EXτnY τn.

Since F verifies Ft 6 Ft− we have Ftηt 6 xηt +Xt−ηt and

E

∫ τn

0

Ftηtdµ(t) 6 xE

∫ τn

0

ηtdµ(t)− EXτnY τn.

Note that there is a constant c such that −EXτnY τn 6 −cEYτn1 where

EYτn1 = EµηI]τn,T ] → 0.

Moreover, F being bounded from below, it suffices to use the Fatou lemma to conclude.
We note

L0
b(Ω) =

{
ξ ∈ L0(Ω) : ∃kξ > 0 such that ξ + kξ1 > 0

}
.

With

µn =
2n∑
k=0

δqnk ,

we define the following sets of L0
b(ΩT , P ⊗ µn,Rd):

An0 =

{
ξ : ξqnk ∈ Fqnk ,∃Y ∈ Yb such that Yqnk > ξqnk ,∀k 6 2n

}
.

Lemma 6.6.6. Assume that D 6= Ø, (B) and (G) hold, then An0 is Fatou-closed.
Proof. We assume that ξm → ξ P ⊗ µn a.s. (ω, t) with ξm ∈ An0 verifying ξm + p1 > 0

P ⊗ µn a.s. (ω, t) for some constant p > 0. Then, we deduce that ξmqnk → ξqnk P a.s.(ω) for
all k 6 2n and ξmT + p1 > 0 a.s.(ω). It follows that ξqnk ∈ Fqnk .

By hypothesis, there exists Y m ∈ Yb such that Y m
qnk

> ξmqnk a.s. (ω) and Y m
T + p1 > 0.

From now on, it suffices to apply Lemma 6.6.2 to conclude that there exists Y ∈ Yb and a
subsequence mp such that for all t, Y mp

t is Césaro convergent to Yt.
It follows that Yqnk > ξqnk a.s. (ω).
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Lemma 6.6.7. An0 ∩ L∞ is Fatou-dense in An0 .
Proof. Let consider ξ ∈ An0 verifying ξ + p1 > 0 for some constant p > 0. There exists

Y ∈ Yb such that Yqnk > ξqnk a.s. (ω) for all k. It suffices to consider Y m = Y and ξm = ξ∧m
in order to have ξm ∈ An0 , with ξm → ξ P ⊗ µn a.s. (ω, t).

In virtue of the Bipolar Theorem ([19]) and the previous lemma, we deduce a dual
description of An0 .
Corollary 6.6.8. If D 6= Ø, (B) and (G) hold, then

An0 =

{
ξ ∈ L0

b : Eµnξη 6 sup
X∈An0

EµnXη, ∀η ∈ L1(ΩT , P ⊗ µn,Rd+)

}
.

Finally, we can prove Theorem 6.4.1.
Corollary 6.6.9. Assume that D 6= Ø, (B) and (G) hold. Then,

Da
F ⊆ ΓaF .

Proof.We consider x ∈ Da
F and we first suppose that there exists n ∈ N such that F−x /∈

An0 . Then, we deduce from the previous corollary the existence of ηn ∈ L1(ΩT , P ⊗µn,Rd+)
such that:

E

∫ T

0

(Ft − x)ηnt dµ
n(t) > E

∫ T

0

ξtη
n
t dµ

n(t)

for all ξ ∈ An0 . We deduce that for all ξ ∈ An0 ,

E

∫ T

0

ξtη
n
t µ

n(t) 6 0.

Considering, for any u > 0 and Nu ∈ L∞(−Gu), the process ξ(t) = NuI]u,T ](t) ∈ An0 ∩ Yb,
we deduce that ηn ∈ PT0 (G∗, µn). This leads to a contradiction since 0 ∈ An0 implies that

E

∫ T

0

Ftη
n
t dµ

n(t) > xE

∫ T

0

ηnt dµ
n(t)

whereas x ∈ Da
F and ηn ∈ PT0 (G∗, µn).

From now on, we can assume that F −x ∈ An0 for all n ∈ N. It follows that for all n ∈ N,
there exists Y n ∈ Yb such that x+Y n

qnk
> Fqnk a.s.(ω) for all k 6 2n, and Y n

T +p1 > 0 where
p > 0. Then, it suffices to use again Lemma 6.6.2 to conclude that there exists Y ∈ Yb
such that a subsequence of Y n

t is Césaro-convergent to Yt for all t ∈ QT . Moreover, for
each fixed t ∈ QT , there exists nt, kt such that

t =
ktT

2nt
, n > nt ⇒ t =

2n−ntktT

2n
.

Then, n > nt implies that x + Y n
t > Ft a.s. (ω) because F − x ∈ An0 . We deduce that

x+ Yt > Ft a.s. (ω), for each t ∈ QT .
Furthermore, if we consider any stopping time τ , we have τ = lim↘ τn everywhere on

Ω with:

τn =
2n−1∑
k=0

(k + 1)T

2n
1{ kT

2n
6τ< (k+1)T

2n
}.

Obviously, we have x+ Yτn > Fτn a.s. (ω) and we deduce, from the fact that F is càdlàg,
that x+Yτ+ > Fτ a.s. (ω) for all stopping times τ where Y+ ∈ Xb. Indeed, we have already
observe that Ȳ = Y+ ∈ X . Moreover, because of F , it is clear that Y+ is bounded from
below.
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Chapter 7

No Free Lunch Arbitrage in the
Y-Model

We consider the continuous-time model Y of financial market with proportional transaction
costs. In a recent paper [6], a dual description of the set of initial endowments of self-
financing portfolios super-replicating American-type contingent claim is proved under some
assumptions. The hypotheses used in order to show the hedging theorem of European
options are the same. We suggest to link these conditions with the absence of arbitrage
when the market verifies an hypothesis fulfilled if transaction costs and risky assets are
jump processes.

7.1 Introduction and Formulation of the Main Results.

In the present paper, we investigate the problem of no-arbitrage using the approach of
Campi and Schachermayer. The model (see [6]) is the following:

We shall work in a general “abstract" setting where we are given on the interval [0, T ]
two set-valued processes G = (Gt) and G∗ = (G∗t ) where Gt = cone {ξkt : k ∈ N} and
G∗t = cone {ζkt : k ∈ N}. It is assumed that the generating processes are càdlàg, adapted,
and for each ω only a finite number of ξt(ω), ξkt−(ω), ζkt (ω) and ζkt−(ω) are different from
zero, i.e. all cones are polyhedral. We put G∗t− = cone {ζkt− : k ∈ N}.

Standing hypotheses. Throughout the paper we shall assume that all conesGt contain
Rd+ and are proper, i.e. Gt ∩ (−Gt) = {0} or, equivalently, intG∗t 6= Ø. In the financial

setting, the cones Gt are the solvency cones K̂t provided that the portfolio positions are
expressed in physical units:

K̂t = cone{πijt ei − ej, ei, 1 6 i, j 6 d}

where
πijt = (1 + λi,jt )Sjt /S

i
t

and Sit are the risky assets whereas λi,jt are the transaction costs.
This hypothesis means that we are working assuming efficient friction.

139



Introduction and Formulation of the Main Results.

We denote D(G) the subset of MT
0 (G∗) formed by martingales Z such that not only

Zτ ∈ L0(intG∗τ ) for any stopping time τ ∈ [0, T ] but also Zτ− ∈ L0(intG∗τ−) for any
predictable time τ ∈ [0, T ].

In a similar way, if I is a countable set of stopping times, we note DI(G) the subset of
MT

0 (G∗) formed by martingales Z such that not only Zτ ∈ L0(intG∗τ ) for any stopping time
τ ∈ I but also Zτ− ∈ L0(intG∗τ−) for any predictable time τ ∈ I. For more convenience,
we note Ip the subset of all predictable times of I.

Moreover, we assume the following condition:
D’. If DI(G) 6= Ø for any countable set I of stopping times , then D(G) 6= Ø.
In a financial context, where the cones are defined as above, we can observe that this

assumption is verified in the following case:
Lemma 7.1.1. Assume that the risky asset S = (Si)i=1,··· ,d and the transaction costs
λ = (λi,j)i,j=1,··· ,d are jump processes having the form

Xt =
∑
n

XnI[Tn,Tn+1[

where T n are stopping times totally inaccessible and Xn are random variables FTn-
measurable. Moreover, suppose that there exists ε0 > 0 such that τn+1 − τn > ε0 where
(τn)n is the set of all stopping times exhausting the jumps of the processes S and λ. Then,
the condition D’ holds.

Proof. We consider the countable set I of all stopping times

τn,ε = τn + ε, ε ∈ Q+

where τn exhaust the jumps of the processes defining the risky asset and transaction costs.
We can suppose that 0, T ∈ I. Then, assuming the required hypothesis for D’, we can
define Z := ZI and we prove that Z belongs to D(G). In the contrary case, suppose that
there exists a stopping time τ ∈ [0, T ] such that ZτNτ = 0 where Nτ ∈ L∞(Gτ ,Fτ )\{0}.
We can assume that τ 6= τn because of Z. We deduce that ZτNτIτn<τ<τn,ε = 0 for any n and
ε ∈]0, ε0[. It follows that EZτn,εNτIτn<τ<τn,ε = 0 where Zτn,ε ∈ intG∗τn,ε and G∗τn,ε = G∗τn
whereasNτ ∈ Gτn\{0} on the set τn 6 τ < τn,ε < τn+1. We deduce that Iτn6τ<τn,ε<τn+1 = 0
for any n, ε which leads to a contradiction. The reasoning is similar if we assume that
Zτ−Nτ− = 0 since we suppose in this case that τ is predictable. Indeed, the stopping times
τn are assumed totally inaccessible and we can assume that τ 6= τn. It follows that we can
repeat the previous reasoning.

We define the portfolio processes following the paper [9].
Let Y be a d-dimensional predictable process of bounded variation starting from zero

and having trajectories with left and right limits (French abbreviation: làdlàg). Put
∆Y := Y − Y−, as usual, and ∆+Y := Y+ − Y where Y+ = (Yt+). Define the right-
continuous processes

Y d
t =

∑
s6t

∆Ys, Y d,+
t =

∑
s6t

∆+Ys

(the first is predictable while the second is only adapted) and, at last, the continuous one:

Y c := Y − Y d − Y d,+
− .

Let Y be the set of such process Y satisfying the following conditions:
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1) Ẏ c ∈ −G dP d||Y c||-a.e.;
2) ∆+Yτ ∈ −Gτ a.s. whatever is a stopping time τ 6 T ;
3) ∆Yσ ∈ −Gσ− a.s. whatever is a predictable time σ 6 T .
Let Yx := x+Y , x ∈ Rd. We denote by Yxb the subset of Yx formed by the processes Y

such that Yt + κY 1 ∈ L0(Gt,Ft), t 6 T , for some κY ∈ R. In the financial context (where
G = K̂) the elements of Yxb are the admissible portfolio processes. We note

Yxb (T ) := {YT : Y ∈ Yxb } .

We associate with Y the following right-continuous adapted process of bounded varia-
tion:

Ȳ := Y c + Y d + Y d,+,

i.e. Ȳ = Y + ∆+Y = Y+. Since the generators are right-continuous, the process Ȳ inherits
the boundedness from below of Y (by the same constant process κY 1).
Fix ξ ∈ L0(Rd,FT ) with ξ + κ1 ∈ L0(GT ,FT ) where κ is constant and define the convex
set

Γ := {x ∈ Rd : ξ ∈ Yxb (T )}
and the closed convex set

D := {x ∈ Rd : Z0x > EZT ξ ∀Z ∈MT
0 (G∗)}.

The next hypothesis is a requirement that the setMT
0 (G∗) is rich enough.

B. Let ξ ∈ L0(Rd,Ft). If the scalar product Ztξ > 0 for all Z ∈ MT
0 (G∗), then

ξ ∈ L0(Gt,Ft).
Then, recall the hedging theorem of European options for the considered model.

Theorem 7.1.2. Assume that D(G) 6= Ø and B holds. Then Γ = D.
Our objective is to prove that the hypotheses of this theorem are equivalent to the

conditions of No Free Lunch Arbitrage (NFL) ( in the literature, the notion of No Free
Lunch Arbitrage is usually defined using a closure of the set of incomes). For this, we define
the following sets

γt(B) :=
{
ξ ∈ L0(Rd,Ft) : Ztξ 6 0, ∀Z ∈MT

0 (G∗)
}
, t ∈ [0, T ]

and we say that the model satisfies the (NFL) condition if the following statements hold:
(i)Y0

b (T )∞
w
∩ L0(Gτ ,Fτ ) = {0},

(ii)Y0
b (T )∞

w
∩ L0(Gτ−,Fτ−) = {0},

(iii)Y0
b (T )∞

w
∩ γt(B) ⊂ L0(−Gt,Ft)

where Y0
b (T )∞

w
means the closure in σ(L∞, L1) of the set Y0

b (T )∩L∞, τ is any stopping
time τ ∈ [0, T ], assumed predictable for (ii). Then, we can establish that the (NFL)
condition is equivalent to the hypotheses used for hedging theorems.
Theorem 7.1.3. Assume that the assumption D′ holds. Then, the following conditions
are equivalent:

(a) (NFL) condition holds.
(b)D(G) 6= Ø and the condition B holds.
(c)Y0

b (T ) is Fatou-closed and (NFL) condition holds.
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7.2 Proof of Theorem 7.1.3
First, the implication (b)⇒ (c) is obvious. Indeed, the Fatou-closure under (b) was shown
in [6]. Moreover, if we consider YT ∈ Y0

b (T )∞
w
∩ L0(Gτ ,Fτ ), choosing a fixed Z ∈ D(G),

we have ZτYT > 0 since Zτ ∈ L0(intG∗τ ,Fτ ). But, recall from [6], the following lemma:
Lemma 7.2.1. If Z ∈ MT

0 (G∗) and Y ∈ Yxb , then both processes ZȲ and ZY are
supermartingale and

(7.2.1) E(−Z ˙̄Y ) · ||Ȳ ||T 6 Z0x− EZT ȲT .

Then, we write YT = limn Y
n
T and from EZTY

n
T 6 0, we deduce that EZTYT 6 0 which

implies that ZτYT = 0 and YT = 0. From the condition B , we can easily deduce (iii).
Obviously, (c) implies (a). So, it remains to prove the implication (a) ⇒ (b). For this, we
need some preliminary lemmas:
Lemma 7.2.2. Assume that (i) holds. We consider a fixed constant k > 0 and a countable
set I of stopping times. Then, for any càdlàg process ζ verifying ζτ ∈ L0(Gτ ,Fτ ) for any
stopping time τ , there exists a martingale Zζ such that

(1)Zζ
t ξ > 0 for any t 6 T , ξ ∈ L0(Gt,Ft),

(2) ζτI{Zζτ ζτ=0} = 0 for any τ ∈ I,

(3) ‖Zζ
t ‖1 6 k.

Lemma 7.2.3. Assume that (ii) holds. We consider a fixed constant k > 0 and a countable
set I of stopping times. Then, for any càdlàg process ζ verifying ζt ∈ L0(Gt,Ft), ∀t and
ζτ− ∈ L0(Gτ−,Fτ−) for any predictable time τ , there exists a martingale Zζ− such that

(1)Zζ−
t− ξ > 0 for any t 6 T , ξ ∈ L0(Gt−,Ft−),

(2)Zζ−
t ξ > 0 for any t 6 T , ξ ∈ L0(Gt,Ft),

(3) ζτ−I{Zζ−τ−ζτ−=0} = 0 for any τ ∈ Ip,

(4) ‖Zζ−
t ‖1 6 k.

Proofs. Proofs of the previous lemmas are similar. That’s why we only give the second.
We define

ZT := {η ∈ L1(Rd) : Eηξ 6 0, ∀ξ ∈ Y0
b (T )∞

w
}.

For each η ∈ ZT , we consider the martingale Zη
t = E(η|Ft) and we first show that it

verifies (1). In the contrary case, there exists t 6 T , ξ ∈ L∞(Gt−,Ft−) such that Zη
t−ξ < 0

on a non-null set. We define ξ̃ = −ξIΓ where Γ = {Zη
t−ξ < 0}. So, ξ̃ ∈ Y0

b (T )∞
w
. Moreover,

EZη
t−ξ̃ > 0 which implies that Eηξ̃ > 0 in contradiction with the fact that η ∈ ZT . We

can prove (2) in a similar way. In order to prove (3), we define, for each predictable time
τ ∈ Ip,

cτ = sup
η∈ZT

P (Zη
τ−ζτ− > 0) .

There exists a sequence ηn ∈ ZT such that P (Zηn

τ−ζτ− > 0) increases to cτ . Obviously, we
can choose ‖ηn‖1 6 k. We note

η∗(τ) =
∞∑
n=1

2−nηn ∈ L1.
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We prove easily that η∗(τ) ∈ ZT and, since τ is predictable,

Z
η∗(τ)
τ− =

∞∑
n=1

2−nZηn

τ−.

It follows that
P (Zηn

τ−ζτ− > 0) 6 P (Zη∗(τ−)
τ ζτ− > 0) 6 cτ

and cτ = P (Z
η∗(τ)
τ− ζτ− > 0). We note Ip = {τm : m ∈ N∗} and we define

η∗ =
∞∑
m=1

2−mη∗(τm)

verifying ‖η∗‖1 6 k. We still have η∗ ∈ ZT . Moreover, for any τ ∈ Ip, cτ = P (Zη∗

τ−ζτ− > 0).
We shall prove that Zη∗ verifies (3). In the contrary case, there exists τ ∈ Ip and

a > 0 such that γaτ = ζτ−I{Zη∗τ−ζτ−=0;|ζτ−|<a} 6= 0. But, γaτ ∈ L∞(Gτ−,Fτ−) and (ii) implies

that γaτ /∈ Y0
b (T )∞

w
. Thanks to the Hahn–Banach theorem, we deduce the existence of

η ∈ L1(FT ) such that
EηY < Eηγaτ , ∀Y ∈ Y0

b (T )∞
w

which implies that EηY 6 0 for all Y and η ∈ ZT . Moreover, Eγaτ η > 0 and finally
EZη

τ−γ
a
τ > 0 since it is easy to show that Zη ∈ M0

T (G∗). It follows that Zη
τ−γ

a
τ > 0 on a

non-null set Γ. From now on, we define Z̃ = Zη∗ +Zη. We observe that F = {Zη∗

τ−ζτ− > 0}
verifies F ∪ Γ ⊂ G where G = {Z̃τ−ζτ− > 0}. Moreover, it is obvious that F ∩ Γ = Ø. It
follows that

cτ = P (F ) < P (F ∪ Γ) 6 P (G) 6 cτ

which leads to a contradiction. It suffices to consider Zζ = Zη∗ to conclude.
Corollary 7.2.4. Assume that the conditions (i) and (ii) hold. We consider a fixed constant
k > 0 and a countable set I of stopping times. Then, there exists a martingale ZI such
that:

(1)ZI
t−ξ > 0, ∀t 6 T , ξ ∈ L0(Gt−,Ft−),

(2)ZI
t ξ > 0, ∀t 6 T , ξ ∈ L0(Gt,Ft),

(3) ζτI{ZIτ ζτ=0} = 0, ∀τ ∈ I, ζ =
∑

n α
nξn, αnτ ∈ L0

+(Fτ ),
(4) ζτ−I{ZIτ−ζτ−=0} = 0, ∀τ ∈ Ip, ζτ− =

∑
n α

nξnτ−, αnτ ∈ L0
+(Fτ−),

(5) ‖ZI‖1 6 k.
Proof. It suffices to apply the two previous lemmas for each cone generator ξk in order

to respectively obtain Zξk and Zξk−. Then, we consider:

ZI :=
∞∑
k=1

2−k−1Zξk +
∞∑
k=1

2−k−1Zξk−

and it is easy to prove that Z verifies conditions (1) and (2). Let prove (4). First, we choose
a fixed generator ζτ− = ξnτ−. Then, the equality ZI

τ−ζτ− = 0 implies that Zξn−
τ− ξnτ− = 0 and

finally ξnτ− = 0 by hypothesis on Zξn−. Secondly, if ζτ− = αnτ−ξ
n
τ− we have, by the same

reasoning, Zξn−
τ− ξnτ− = 0 on αnτ− 6= 0 and we can conclude. Finally, if ζτ− =

∑
n α

n
τ−ξ

n
τ−,
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we obtain that for any k, Zξk−
τ− ζτ− = 0 which implies that Zξn−

τ− αnτ−ξ
n
τ− = 0 and we can

conclude as previously. We can similarly prove (3).
It is easy to deduce the following lemma:

Corollary 7.2.5. If the conditions (i), (ii) and D’ hold, then D(G) 6= Ø.
Proof. Indeed, for any countable family I of stopping times, it suffices to consider the

martingale ZI produced by the previous lemma in order to ensure the required condition
for D′.

Thanks to the last corollary, it remains to prove that the condition (B) holds. For this,
we consider for any F ∈ L∞,

ΓF := {x ∈ Rd : F − x ∈ Y0
b (T )∞

w
}

and the closed convex set

DF := {x ∈ Rd : Z0x > EZTF ∀Z ∈MT
0 (G∗)}.

It is easy to prove that ΓF ⊂ DF . Indeed, it suffices to use Lemma 7.2.1. For the converse, we
consider x ∈ DF and we suppose that F−x /∈ Y0

b (T )∞
w
. Using the Hahn–Banach theorem,

we deduce (see proof of Lemma 7.2.3) the existence of a martingale Zη ∈ MT
0 (G∗) such

that EZη(F−x) > 0 and we can conclude that x /∈ ΓF implies that x /∈ DF . It follows that
ΓF = DF . From now on, suppose that ξ ∈ L0(Rd,Ft) verifies Ztξ > 0 for any Z ∈MT

0 (G∗).
We can assume that ξ ∈ L∞. It follows that 0 ∈ D−ξ and finally −ξ ∈ Yxb (T )∞

w
. We deduce

that
−ξ ∈ Yxb (T )∞

w
∩ γt(B) ⊂ L0(−Gt,Ft)

and we can conclude.
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Chapter 8

Asymptotic Arbitrage in Large
Financial Markets

Yu. Kabanov and D.O. Kramkov have defined several notions of asymptotic arbitrage for a
large financial market described by a sequence of standard general models without friction
of continuous trading [17]. Moreover, they link the absence of asymptotic arbitrage to the
notion of contiguity. Here, we propose analogous results when the market is subjected to
transaction costs. We deal with the traditional model of discret trading [19] but also with
the continuous model of Chapter 6.

8.1 Introduction
We fix a sequence T n of positive numbers. We define a large financial market as a sequence
of markets whose the time horizons are T n, the dimensions are d(n) and all described by
the same model among the two following.

In the two cases, for each n, we assume that we are given a stochastic basis Bn =
(Ω,Fn, F n = (Fnt ), P n). The latter satisfies the usual conditions and the initial σ-algebra
is trivial (up to P n-null sets).

8.1.1 Large Financial Market of Continuous Trading

We consider a C-valued process G = (Gt)06t6T defined by a countable sequence of adapted
d-dimensional processes ξk = (ξkt ) such that for every t and ω only a finite but non-zero
number of ξkt (ω) are different from zero and Gt(ω) = cone{ξkt (ω), k ∈ N}, i.e. Gt(ω) is a
polyhedral cone generated by the finite set {ξkt (ω), k ∈ N}.
We suppose that G dominates the constant process Rd+, all cones Gt are proper, i.e.
Gt ∩ (−Gt) = {0} or, equivalently, intG∗t 6= Ø.
We assume that the generators of G are continuous processes and we add the following
assumption about the generators of G∗t :
Assumption (G):There is a countable family of continuous adapted processes (ζk)
such that for each ω only a finite number of vectors ζk are different from zero and
G∗t = cone{ζkt : k ∈ N} for every t.

Recall the following hypothesis:
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Assumption (B): Let ξ ∈ L0(Rd,Ft). If the scalar product Ztξ > 0 for all Z ∈M0
T (G∗),

then ξ ∈ L0(Gt,Ft).
Let X = X 0

T be the set of all càdlàg processes X of bounded variations with X0 = 0
such that dX = Ẋd‖X‖ with Ẋt ∈ L0(−Gt,Ft) for all t ∈ [0, T ] and let X x = x + X ,
x ∈ Rd. We denote by X x

b = X x
b,T the subset of X x formed by the processes X such that

Xt + κX1 ∈ L0(Gt,Ft) where κX > 0. Finally, we put X x(t) = {Xt : X ∈ X x
t } and

X x
b (t) = {Xt : X ∈ X x

b,t}.
For the following, X x

b is interpreted as the set of incomes, i.e. terminal values at date T n
of portfolios starting from x. In order to make definitions uniform between the two models
of this chapter, we note R̂T = X 0

b .
We recall the main results for our needs:
Lemma 8.1.1. If Z ∈MT

0 (G∗) and X ∈ X x
b , then ZX is a supermartingale and

E(−ZẊ).‖X‖T 6 Z0x− EZTXT .

Let L0
b be the cone in L0(Rd) formed by random variables ξ verifying ξ+ k1 > 0 a.s. for

some k > 0. We are given a non-null random variable F ∈ L0
b considered as a contingent

claim. We define the convex set

ΓF =
{
x ∈ Rd : F ∈ X x

b (T )
}

and the closed convex set

DF =
{
x ∈ Rd : Z0x > EZTF ∀Z ∈MT

0 (G∗)
}
.

We denote by D = D(G) the subset ofMT
0 (intG∗) formed by martingales Z such that not

only Zτ ∈ L0(intG∗τ ) for any stopping time τ but also Zτ− ∈ L0(intG∗τ−) for all predictable
times τ ∈ [0, T ].

We recall the following version of hedging theorem:
Theorem 8.1.2. Assume D 6= Ø, (G) and (B) hold, then ΓF = DF .

8.1.2 Large Financial Market of Discrete Trading

For each T > 0, we consider a sequence of C-valued process G = (Gt)t=0,··· ,T defined
by a countable sequence of adapted d-dimensional processes ξk = (ξkt ) such that for
every t and ω only a finite but non-zero number of ξkt (ω) are different from zero and
Gt(ω) = cone{ξkt (ω), k ∈ N}, i.e. Gt(ω) is a polyhedral cone generated by the finite set
{ξkt (ω), k ∈ N}.

The set of incomes expressed in physical units and starting from zero is defined by:

R̂T =
T∑
t=0

L0(−Gt,Ft).

We assume that G dominates Rd+, i.e., Rd+\{0} ⊆ intG. For the sequence, we give the main
results, that we can find in [19], which require the notion of No Robust Arbitrage related
to the existence of a martingale evolving in the interior of G∗ :
Theorem 8.1.3. Assume that G dominates Rd+. Then,

NAr ⇔MT
0 (riG∗) 6= Ø.
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For a fix d-dimensional random variable F considered as a contingent claim expressed
in physical units, we define the set

ΓF =
{
x ∈ Rd+ : F ∈ x+ R̂T

}
.

Let Z be the set of martingales fromMT
0 (riG∗) such that E(ZTF )− < ∞. We recall the

following lemma:
Lemma 8.1.4. Let Z an Rd-valued martingale and let ΣT := ZT

∑T
s=0 ξs where ξs ∈

L0(Rd,Fs) are such that Zsξs 6 0. If EΣ−T <∞, then all products Zsξs are integrable, ΣT

is integrable and EΣT 6 0.
We put

DF =

{
x ∈ Rd+ : sup

Z∈Z
E(ZTF − Z0x) 6 0

}
and finally we give the following version of hedging theorem [1]:

Theorem 8.1.5. Suppose thatMT
0 (riG∗) 6= Ø. Then ΓF = DF .

8.2 Asymptotic Arbitrage

We fix a sequence T n of positive numbers which are interpreted as time horizons.
Définition 8.1. A sequence of incomes V̂Tn realizes an asymptotic arbitrage of first kind
if there exists a subsequence n′ and positive numbers (xn

′
)n′∈N such that:

8.1.a) V̂Tn′ ∈ xn
′
+ R̂Tn′ ,

8.1.b) V̂Tn′ > 0,

8.1.c) maxi6d(n′) x
n′
i → 0,

8.1.d) limn→∞ P
n′
(
V̂Tn′ > 1

)
> 0.

Note that xn is an initial endowment for V̂Tn and this latter is not necessary unique. We
add an assumption verified for each market belonging to either of large financial market
defined above:

Assumption (H): For the large financial market of continuous trading, we suppose that
for all n, the cones (Gn

t )t6Tn verify the hypotheses (B) and D(Gn) 6= Ø.
For the large financial market of discrete trading, we suppose that for all n, the cones

(Gn
t )t6Tn verify the (NAr)-property, i.e.MTn

0 (riGn∗) 6= Ø.

In the case of continuous trading , we define the convex set:

Qnc =

{
Q ∼ P n :

dQ

dP n
= ZTn1, Z ∈MTn

0 (Gn∗\{0}) with Z01 = 1

}
,

whereas for the discrete model we consider:

Qnd =

{
Q ∼ P n :

dQ

dP n
= ZTn1, Z ∈MTn

0 (riGn∗) with Z01 = 1

}
.
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For the sequence, Qn designates Qnc or Qnd according to the foreseen model. We define the
upper and lower envelopes of the measures of Qn as follows:

Qn(A) = sup
Q∈Qn

Q(A), Qn(A) = inf
Q∈Qn

Q(A)

and we recall the definition of contiguity:
Définition 8.2. The sequence (P n) is contiguous with respect to (Qn) and we note
(P n) � (Qn) when the implication

lim
n→∞

Qn(An) = 0⇒ lim
n→∞

P n(An) = 0

holds for any sequence An ∈ Fn = FnTn , n > 1.
Now, we give the first result of this section:

Proposition 8.2.1. Assume that (H) holds. Then, for the two models described above, the
following conditions are equivalent:

(a)There is no asymptotic arbitrage of first kind (NAA1).
(b)P n � (Qn).

(c)There exists a sequence Rn ∈ Qn such that (P n) � (Rn).

Définition 8.3. A sequence of incomes V̂Tn realizes an asymptotic arbitrage of second kind
if there exists a subsequence such that:

8.3.a) V̂Tn 6 1,

8.3.b) limn→∞ P
n
(
V̂Tn � ε1

)
= 0, ∀ε ∈]0, 1[,

8.3.c) for all sequence of prices (xn)n∈N 6 1 such that V̂Tn ∈ xn + R̂Tn ,
we have limn→∞maxi6d(n) x

n
i > 0.

To formulate the next result, we give the following definition:
Définition 8.4. The sequence (Qn) is said to be weakly contiguous with respect to (P n)
and we note (Qn) �w (P n) if for any subsequence n′ and any ε > 0, there exists δ > 0 such
that for all n′0 ∈ N, there is n′ > n′0 verifying Qn

′

(An
′
) 6 ε for any sequence An′ ∈ Fn

with the property lim supn′ P
n′(An

′
) < δ.

Proposition 8.2.2. Assume that (H) holds. Then, for the two models described above, the
following conditions are equivalent:

(a)There is no asymptotic arbitrage of second kind (NAA2).
(b) (Qn) � (P n).

(c) (Qn) �w (P n).

(d) limK→∞ limn inf supQ∈Qn Q
(
dQ
dPn

> K
)

= 0.

Définition 8.5. A sequence of incomes V̂Tn realizes a strong asymptotic arbitrage of first
kind if there exists a subsequence of positive numbers (xn)n∈N such that:

8.5.a) V̂Tn ∈ xn + R̂Tn ,

8.5.b) V̂Tn > 0,

8.5.c) maxi6d(n) x
n
i → 0,

8.5.d) limn P
n
(
V̂Tn > 1

)
= 1.

148



Asymptotic Arbitrage in Large Financial Markets

Définition 8.6. A sequence of incomes V̂Tn realizes a strong asymptotic arbitrage of second
kind (SAA2) if there exists a subsequence such that:

8.6.a) V̂Tn 6 1,

8.6.b) limP n
(
V̂Tn � ε1

)
= 0, ∀ε ∈]0, 1[,

8.6.c) for all sequence of prices (xn)n∈N 6 1 verifying V̂Tn ∈ xn + R̂Tn ,
we have limn→∞maxi6d(n) x

n
i = 1.

Lemma 8.2.3. Assume that (H) holds. If there exists a strong asymptotic arbitrage of
first kind, then there is a strong asymptotic arbitrage of second kind.

Proposition 8.2.4. Assume that (H) holds. Then, for the two models described above, the
following conditions are equivalent:

(a)There is a strong asymptotic arbitrage of first kind (SAA1).
(b) (P n)4(Qn).

(c) (Qn)4(P n).

Proposition 8.2.5. Assume that (H) holds. Then, for the two models described above, the
following conditions are equivalent:

(a)There is a strong asymptotic arbitrage of second kind.
(b) (Qn)4(P n).

8.3 Proofs

8.3.1 Proof of Proposition 8.2.1

We first assume that the model is of continuous trading.
For the equivalence (b)⇔ (c), it suffices to consult [17].

Assume (a) and let prove (b). Suppose that there exists a sequence (An) ∈ Fn such that
Qn(An) → 0 and P n(An) → α > 0. We consider F n = 1IAn as a contingent claim and
xn = Qn(An)1. For any Z ∈MTn

0 (Gn∗\{0}) with Z01 = 1, we have obviously

Z0xn > EZTnF
n

which also holds for any Z ∈ MTn

0 (Gn∗\{0}). In virtue of Theorem 8.1.2, it follows that
F n ∈ xn + R̂Tn and realizes an asymptotic arbitrage of first kind.

Assume (b) and let prove (a). We suppose that there exists an asymptotic arbitrage
V̂ n of first kind and we consider a sequence Qn ∈ Qn such that dQn = ZTn1dP

n. Then,
applying Lemma 8.1.1, we deduce that 0 6 EZTnV̂

n
Tn 6 Zn

0 x
n 6 maxi x

n
i . Moreover,

EZTnV̂
n
Tn > EZTnV̂

n
TnIV̂ nTn>1 > EZTn1IV̂ nTn>1 > Qn(V̂ n

Tn > 1).

It follows that Qn(V̂ n
Tn > 1) 6 maxi x

n
i and Qn(V̂ n

Tn > 1) → 0 which implies that
P n(V̂ n

Tn > 1)→ 0 in contradiction with 8.1.d).
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In the case of discrete trading, the proof is the same. Indeed, if F > 0, it is obvious that
Z(F ) =MT

0 (riG∗). Moreover, if V̂ n = xn+V̂ 0
Tn > 0 with V̂ 0

Tn ∈ R̂Tn , we have EZTnV̂ 0
Tn 6 0

for any Z ∈MT
0 (riG∗). Indeed, we can write V̂ 0

Tn =
∑Tn

t=0 γt where a.s. γt ∈ −Gt. It follows
that Zsγs 6 0 and from ZTnV̂

0
Tn > −ZTnxn, we deduce that E(ZTnV̂

0
Tn)− <∞. From now

on, it suffices to apply Lemma 8.1.4 to conclude.

8.3.2 Proof of Proposition 8.2.2

We first assume that the model is of continuous trading.
Prove that (a) ⇒ (b). Suppose that there exists a sequence An ∈ Fn such that

P n(An) → 0 and Qn(An) → α > 0. We define the contingent claim F n = 1IAn and we
consider a price xn 6 1 for F n. For any Z ∈MTn

0 (Gn∗\{0}) with Z01 = 1, we deduce from
Theorem 8.1.2 the inequality Z0x

n > EZTn1IAn which implies that maxi x
n
i > Qn(An).

It follows that there exists a subsequence such that maxi x
n
i → a ∈]0, 1] and F n is an

asymptotic arbitrage of second kind.

Prove that (b)⇒ (a). Suppose that there exists an asymptotic arbitrage V̂Tn of second
kind. Then, for any Z ∈ MTn

0 (Gn∗\{0}) with Z01 = 1, and ε > 0, we have obviously for
dQn = ZTndP

n,
Z0

(
Qn(V̂Tn 6 ε1)1

)
> Qn(V̂Tn 6 ε1).

It follows that for any Z ∈MTn

0 (Gn∗\{0}),

Z0

(
Qn(V̂Tn 6 ε1)1

)
> EPnZTn1IV̂Tn6ε1.

In a similar way, we have

Z0

(
Qn(V̂Tn 
 ε1)1

)
> EPnZTn1IV̂Tn
ε1.

So, we deduce that
yn = εQn(V̂Tn 6 ε1)1 +Qn(V̂Tn 
 ε1)1

verifies

Z0y
n > EPnZTnε1IV̂Tn6ε1 + EPnZTn1IV̂Tn
ε1,

Z0y
n > EZTnV̂TnIV̂Tn6ε1 + EZTnV̂TnIV̂Tn
ε1 > EZTnV̂Tn .

We deduce that there exists a price yn(ε) ∈ ΓV̂Tn for any arbitrary ε. Let εn ↘ 0 be a
sequence of ]0, 1[. By hypothesis,

Pm(V̂Tm 
 εn1)→ 0,

as m→∞. So, we deduce kn such that

P kn(V̂Tkn 
 εn1) 6
1

n
.
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But, from what precedes, there exists a price ykn verifying

Qkn(V̂Tkn 
 εn1) + εn > max
i
ykni .

It follows that
Qkn(V̂Tkn 
 εn1)→ α > 0

whereas
P kn(V̂Tkn 
 εn1)→ 0.

We deduce that (Qn) � (P n) fails.

In the case of discrete trading, the proof is the same because of 8.1.5. The end of the
proof is deduced from Theorem 8.4.1.

8.3.3 Proof of Lemma 8.2.3

From a strong asymptotic arbitrage V̂Tn of first kind, we deduce a strong asymptotic
arbitrage of second kind. Indeed, it suffices to consider V̂ (2)

Tn = 1 − V̂Tn . It is clear that
V̂

(2)
Tn 6 1 and

P n
(
V̂

(2)
Tn 
 ε1

)
= 1− P n

(
V̂

(2)
Tn 6 ε1

)
6 1− P

(
V̂Tn > 1

)
→ 0.

Finally, if yn 6 1 is a price for V̂ (2)
Tn , then there exists X (2)

Tn ∈ R̂Tn such that yn + X (2)
Tn =

1 − V̂Tn where V̂Tn = xn + XTn , XTn ∈ R̂Tn . We deduce that yn + xn + X (2)
Tn + XTn = 1

and applying Lemmas 8.1.1 or 8.1.4, we obtain that maxi y
n
i 6 1 6 maxi y

n
i + maxi x

n
i . It

follows that maxi y
n
i → 1.

8.3.4 Proof of Proposition 8.2.4

First, we assume that there exists a strong asymptotic arbitrage V̂Tn of first kind. Using
the implication (b)⇒ (a) in the proof 8.3.1, we deduce that P n(An)→ 1 and Qn(An)→ 0

where An = {V̂Tn > 1}. So, (P n)4(Qn).
Reciprocally, if we suppose that (P n)4(Qn), then it suffices to use the implication

(a) ⇒ (b) with α = 1 in the proof 8.3.1 in order to obtain a strong asymptotic arbitrage
of first kind.

Note that we have obviously (b)⇔ (c).

8.3.5 Proof of Proposition 8.2.5

We first assume that there exists a strong asymptotic arbitrage V̂Tn of second kind. From
the implication (b)⇒ (a) in the proof 8.3.2, with α = 1, we deduce that (Qn)4(P n).

Reciprocally, if (Qn)4(P n), it suffices to use the implication (a)⇒ (b) in the proof 8.3.2
with α = 1 in order to obtain a strong asymptotic arbitrage of second kind.

151



Appendix

8.4 Appendix
We shall prove the following result:
Theorem 8.4.1. The following conditions are equivalent:

(a) (Qn) � (P n).

(b) (Qn) �w (P n).

(c) limα↘0 limn sup infQ∈Qn H(α, P n, Q) = 1.

(d) limK→∞ limn inf supQ∈Qn Q
(
dQ
dPn

> K
)

= 0.

Proof. We first prove that (Qn) � (P n) holds if and only if for any subsequence n′,

lim
δ↘0

lim
n′

sup sup
g∈Bn′,δ

sup
Q∈Qn′

EQg = 0

where
Bn,δ = {g : EPng 6 δ, 0 6 g 6 1}

is a closed convex in σ (L∞(P n), L1(P n)).

For this, we assume that (Qn) � (P n) holds and we suppose that there exists a strictly
positive constant c such that

lim
δ↘0

lim
n′

sup sup
g∈Bn′,δ

sup
Q∈Qn′

EQg > c.

We deduce a subsequence (nk)k, gk ∈ Bnk,δk and Qk ∈ Qnk such that EQkgk > c and
δk 6 1/k. But, on an other hand, gk ∈ Bnk,δk implies that

P nk

(
gk >

1√
k

)
6

1√
k
.

Then, we deduce that limk P
nk(Ank) = 0 where Ank =

{
gk > 1/

√
k
}
. Otherwise,

limkQ
k(Ank) > 0. Indeed, from EQkgk > c, we deduce that

1√
k

+Qk

(
gk >

1√
k

)
> c.

Then, from what precedes, we have a contradiction.

From now on, we assume that the second assertion of our claim holds and we suppose
that (Qn)�(P n) fails. Then, we deduce a subsequence (nk)k, a sequence (Ank)k and δ, δ0 > 0
such that

Qnk(Ank) > const > 0, P nk(Ank) < δ < δ0

where δ0 is chosen such that

lim
nk

sup sup
g∈Bnk,δ

sup
Q∈Qnk

EQg 6
const

2

provided that δ < δ0. Since gk = IAnk ∈ Bnk,δ, we deduce that

sup
g∈Bnk,δ

sup
Q∈Qnk

EQg > sup
Q∈Qnk

Q(Ank) = Qnk(Ank) > const
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and
lim
nk

sup sup
g∈Bnk,δ

sup
Q∈Qnk

EQg > const

which leads to a contradiction.

From what precedes, it suffices to prove that (Qn) �w (P n) holds if and only if for any
subsequence n′,

lim
δ↘0

lim
n′

sup sup
g∈Bn′,δ

sup
Q∈Qn′

EQg = 0.

Assume that the second assertion holds and the property (b) fails. Then, there exists ε > 0
such that for any k ∈ N∗, there is a sequence (Ank)n verifying lim supn P

n(Ank) < 1/2k and
Qn(Ank) > ε provided that n > n0(k). We can choose n0(k) such that P n(Ank) < 1/k for
n > n0(k). We deduce that IAnk ∈ B

n,1/k and for n > n0(k),

sup
Q∈Qn

sup
g∈Bn,1/k

EQ g > sup
Q∈Qn

EQIAnk > ε.

Then,
lim
n

sup sup
Q∈Qn

sup
g∈Bn,1/k

EQ g > ε

and
lim
δ↘0

lim
n

sup sup
Q∈Qn

sup
g∈Bn,δ

EQ g > ε

which leads to a contradiction.

From now on, we suppose that the condition (Qn) �w (P n) holds and there exists a
constant c > 0 such that

lim
δ↘0

lim
n′

sup sup
g∈Bn′,δ

sup
Q∈Qn′

EQg > c.

It follows that there exists a subsequence (nk)k, δk 6 1/k, Qk ∈ Qnk and gk ∈ Bnk,δk

verifying EQkg
k > c where c > 0. Moreover, from hypothesis, there exists δ > 0

such that for any sequence (Ank)k which verifies limk supP (Ank) < δ, we have for any
k0 ∈ N the existence of k > k0 verifying Qnk(Ank) < c/2. But, gk ∈ Bnk,δk implies
that P nk(Ank) 6 1/

√
k where Ank = {gk > 1/

√
k} verifies limk supP nk(Ank) = 0.

From hypothesis, we can deduce a subsequence (n′k)k such that Qn
′
k(An

′
k) < c/2 whereas

EQkg
k > c implies that

1√
k

+Qnk(Ank) > c.

Then, as k →∞, we obtain a contradiction and we can conclude that (a)⇔ (b).

We shall prove that (b)⇒ (d). For this, we consider ε > 0. We have

P n

(
dQ

dP n
> K

)
6

1

K

because of the Bienaymé–Tchebychev inequality. Then,

sup
Q∈Qn

P n

(
dQ

dP n
> K

)
→ 0,
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as K → ∞, which implies, in virtue of (b), that for any n0 ∈ N, there exists n > n0 such
that

sup
Q∈Qn

Q

(
dQ

dP n
> K

)
6 ε

provided that K is large enough. Then, we obtain (d).

We shall prove that (d)⇒ (c). For this, we recall from [17] the following inequality:

d2
H(α, P n, Q) 6 8αK + 4 sup

Q∈Qn
Q

(
dQ

dP n
> K

)
.

We deduce that
lim
α↘0

lim
n

inf sup
Q∈Qn

d2
H(α, P n, Q) = 0.

Since d2
H(α, P n, Q) = 1−H(α, P n, Q), we obtain (c).

We shall prove that (c) ⇒ (d). For this, we recall from [17], that for any α ∈]0, 1/2],
there exists K > 4 such that

sup
Q∈Qn

Q

(
dQ

dP n
> K

)
6 8 sup

Q∈Qn
d2
H(α, P n, Q).

Hence,

lim
K→∞

lim
n

inf sup
Q∈Qn

Q

(
dQ

dP n
> K

)
6 8 lim

n
inf sup

Q∈Qn
d2
H(α, P n, Q)

and, as α→ 0, we obtain (d).

Finally, we prove that (d)⇒ (b). We write for Q ∈ Qn,

Q(An) = EPn

(
dQ

dP n
I{ dQ

dPn
6K}IAn

)
+ EPn

(
dQ

dP n
I{ dQ

dPn
>K}IAn

)
.

Then,

Q(An) 6 KP n(An) + sup
Q∈Qn

Q

(
dQ

dP n
> K

)
and

Qn(An) 6 KP n(An) + sup
Q∈Qn

Q

(
dQ

dP n
> K

)
.

From now on, for any ε > 0, it suffice to fix K large enough in order to have

lim
n

inf sup
Q∈Qn

Q

(
dQ

dP n
> K

)
6 ε/4

and the result follows from Definition 8.4.
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Résumé

Cette thèse aborde plusieurs problèmes qui se posent pour les marchés financiers soumis à
des coûts de transaction.
Nous revisitons d’abord la méthode d’approximation des portefeuilles de couverture des
options Européennes suggérée par Leland pour le call Européen. On met en évidence la
convergence en probabilité des portefeuilles discrétisés vers le pay-off lorsque ce dernier
est bien plus général. Dans le même esprit, on mesure la vitesse de convergence en
estimant la moyenne de l’erreur quadratique. Cela nous conduit à formuler un théorème
de convergence en loi de l’erreur d’approximation du type “central-limite”. Toutefois, le
modèle de Black et Scholes utilisé est critiquable dans la pratique puisque la volatilité est
supposée constante. C’est pourquoi, nous proposons d’établir un théorème de convergence
en probabilité analogue au précédent lorsque la volatilité ne dépend pas seulement du
temps mais aussi de l’actif risqué sous-jacent.
Enfin, on s’intéresse à des marchés continus plus abstraits décrits par des cônes générés
par les coûts de transactions. Nous formulons quelques notions d’arbitrage mais surtout
on propose une description duale des prix de couverture des options américaines comme
cela a déjà été fait pour les marchés discrétisés.

Mots-clés:
Coûts de transaction, approximations de Leland, couverture d’un portefeuille, théorème
limite fonctionnel, options européennes et américaines, arbitrage.
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