THESE
présentée a

L’U.F.R des Sciences et Techniques de
L’université de Franche-Comté

pour obtenir le

GRADE DE DOCTEUR DE L'UNIVERSITE
DE FRANCHE-COMTE

Spécialité: Mathématiques et Applications

MARCHES AVEC COUTS DE
TRANSACTION: APPROXIMATIONS DE
LELAND ET ARBITRAGE

EMMANUEL DENIS



i



Table des matiéres

Table des matiéres

1 Introduction 1

I Leland’s Approximations 5

2 Approximate Hedging for the Leland—Lott Hedging Strategy for General

Pay-offs 7
2.1 Introduction . . . . . . ..o 7
2.2 Main Results . . . . . . . . 8
2.3 Estimates . . . . . . . . 11

2.3.1 Explicit Formulae . . . . . .. . ... oL 11

2.3.2 Inequalities . . . . . . . . . . 13
2.4 Proof of Theorem 2.2.2 . . . . . . . . . . . . .. ... 16
2.5 Constant Coeflicient: Discrepancy . . . . . . . . . . ... ... ... ... 21

3 Mean Square Error for the Leland—Lott Hedging Strategy for General

Pay-offs 27
3.1 Theorems . . . . . . . . . e e 27
3.2 Proof of Theorem 3.1.3 . . . . . . . . . oo 28
3.2.1 Analyze of the Main Terms . . . . . . .. ... ... ... ..... 30
3.2.2  Analyse of the Residual Terms . . . . . . . . ... ... ... .... 35
3.2.3 Proof of Corollary 3.1.2. . . . . . . ... .. ... ... ... .. 50

3.3 Appendix . . ... 51
4 Functional Limit Theorem for Leland-Lott Hedging Strategy 63
4.1 Introduction and Formulation of the Main Result. . . . . . . ... ... .. 63
4.2 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . ... 64
4.2.1 Preliminaries . . . . . . . . .. 64

4.2.2 Diffusion Approximation . . . . . . . .. ... L. 64
4.2.3 Reformulation of the Problem . . . . . . ... . ... ... ..... 65
424 Tightness . . . . . . . 67
4.2.5 Limit Measure . . . . . . . . . . e 67
4.2.6 Identification of the Limit . . . . . . . . . . . . .. ... ... ... 68

4.3 Appendix . . ... 69
4.3.1 Identification Theorem . . . . . . . . . . . . . . . ... ... .... 71

il



Table des matiéres

5 Leland’s Approximations when the Volatility is not Constant
5.1 Theorems . . . . . . . . . .
5.2 The Leland Strategy . . . . . . . . . . ..
5.3 Estimation of the Derivativesof I'. . . . . . . . ... ... ... ... ...
5.3.1 The Parametrix . . . . . . . . . ... ...
5.3.2 The Parametrix for Equations with Parameters . . . . . . . . . ..
5.3.3 Construction of the Fundamental Solution; the Cauchy Problem . .
534 Conclusion . . . . . . . . ...
5.4 Estimates . . . . . . . . e
5.4.1 Explicit Formulae . . . . . ... ... 0 oL
5.4.2 Inequalities . . . . . . . ...
5.5 Proofs of Theorems 5.1.1 and 5.1.2 . . . . . . ... ... ... ... ....
5.6 Appendix . . .. ..

II Arbitrage Theory

6 Arbitrage Theory for a Continuous Time Model
6.1 Introduction . . . . . . . . ..
6.1.1 The Standard Discrete-Time Model . . . . . . . .. ... ... ...
6.1.2 The Continuous Time Model . . . . . . . . . ... ... ... ....
6.2 Generalized Arbitrage in Abstract Setting . . . . . .. ... ... ... ..
6.3 Hedging Theorem For European Options . . . . . . . . ... .. ... ...
6.4 Hedging Theorem For American Options . . . . . . . .. ... ... .. ..
6.5 Proofs . . . . . .
6.5.1 Proof of Proposition 6.2.8 . . . . . .. .. ... ... ...
6.5.2 Proofs of Theorems 6.2.3 and 6.2.4 . . . .. ... ... ... ....
6.5.3 Proof of Corollary 6.2.6 . . . . . . . . . ... .. ... ... ..., .
6.5.4 Proof of Theorem 6.2.11 . . . . . . . . ... ... ... ... ....
6.5.5 Proof of Theorem 8.1.2 . . . . . . . . . . . . .. ... .. ......
6.5.6 Proof of Theorem 6.3.4 . . . . . . . . . ... ... ... . ......
6.5.7 Proof of Corollary 6.3.6. . . . . . . . .. .. ... ... ... .
6.6 Proof of Theorem 6.4.1 . . . . . . . . . . .. ... .. ...
6.6.1 Y-Model . . . . . . .
6.6.2 Proof . . . . . . ...

7 No Free Lunch Arbitrage in the )-Model
7.1 Introduction and Formulation of the Main Results. . . . . . . . .. .. ..
7.2 Proof of Theorem 7.1.3 . . . . . . . .

8 Asymptotic Arbitrage in Large Financial Markets
8.1 Introduction . . . . . . . . ..
8.1.1 Large Financial Market of Continuous Trading . . . ... ... ..
8.1.2 Large Financial Market of Discrete Trading . . . . . .. .. .. ..
8.2 Asymptotic Arbitrage . . . . . . ...
8.3 Proofs . . . . .
8.3.1 Proof of Proposition 8.2.1 . . . . ... ... ... ... ......

v

79
79
81
36
87
88
89
99
99
99
100
102
110

117

119
119
119
120
121
124
126
127
127
127
129
130
130
132
132
133
133
135

139
139
142



Table des matiéres

8.3.2  Proof of Proposition 8.2.2 . . . . ... ... ... . 0. 150

8.3.3 Proof of Lemma 823 . . .. ... . ... ... L. 151

8.3.4 Proof of Proposition 8.2.4 . . . . . ... ... 0. 151

8.3.5  Proof of Proposition 82.5 . . . . . ... ... L. 151

84 Appendix . . ... 152

9 Bibliography 155



Table des matiéres

vi



Remerciements

Je tiens d’abord a remercier Youri Kabanov, mon directeur de thése, pour sa générosité.
Je remercie tous les membres du jury pour le temps qu’ils m’ont consacré.
Je suis reconnaissant a l’ensemble du personnel du Centre de Télé-enseignement de
mathématiques a Besangon sans qui cette thése n’aurait pas vu le jour. J’ai une pensée
pour le secrétariat de mathématiques, souriant et disponible.
Merci & Dimitri de Valliére pour sa collaboration fructueuse.
J’exprime ma gratitude & Bruno Saussereau et Christophe Stricker qui ont cru en moi.
Enfin, je remercie ma famille et mon épouse, Agnés, pour son soutien durant ces deux
années passionnantes.

vii






Résumeé

Cette thése s’est déroulée de Septembre 2006 a Mai 2008 sous la direction de Youri

Kabanov. Elle aborde plusieurs problémes qui se posent pour les marchés financiers soumis
a des cotits de transaction.
Nous revisitons d’abord la méthode d’approximation des portefeuilles de couverture des
options Européennes suggérée par Leland pour le call Européen. On met en évidence la
convergence en probabilité des portefeuilles discrétisés vers le pay-off lorsque ce dernier
est bien plus général. Dans le méme esprit, on mesure la vitesse de convergence en
estimant la moyenne de 'erreur quadratique. Cela nous conduit a formuler un théoréme
de convergence en loi de 'erreur d’approximation du type « central-limite ». Toutefois, le
modeéle de Black et Scholes utilisé est critiquable dans la pratique puisque la volatilité est
supposée constante. C’est pourquoi, nous proposons d’établir un théoréme de convergence
en probabilité analogue au précédent lorsque la volatilité ne dépend pas seulement du
temps mais aussi de lactif risqué sous-jacent.

Enfin, on s’intéresse & des marchés continus plus abstraits décrits par des cones générés
par les cotits de transactions. Nous formulons quelques notions d’arbitrage mais surtout
on propose une description duale des prix de couverture des options américaines comme
cela a déja été fait pour les marchés discrétisés.
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Abstract

This thesis has been supervised by Youri Kabanov between September 2006 and May
2008. It deals with different problems on financial markets under transaction costs. The
first part is devoted to the method of approximation suggered by Leland in order to hedge
European options. We show that we can prove the convergence in probability, conjectured
by Leland and proved by Lott with the European call, for a more general pay-off. We
estimate the rate of convergence by computing the mean square error which leads us to
establish a functional limit theorem, that is a kind of "central-limit theorem ”. The second
part is about arbitrage and hedging of American options for models in continuous time.
The main theorem extends the hedging theorem for the American options in discrete time.
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Chapitre 1

Introduction

Les mathématiques financiéres constituent un domaine des mathématiques appliquées
ayant pour objectif la modélisation des phénomeénes régissant les marchés financiers. Elles
fournissent ainsi aux traders des outils pour spéculer. Louis Bachelier (1870-1946) est
considéré comme le fondateur de la finance mathématique. Sa thése (1900) intitulée
« Théorie de la Spéculation »contient des idées novatrices pour analyser les marchés
financiers, introduisant l'utilisation du mouvement brownien, I'une des découvertes les
plus importantes du vingtiéme siécle. L’essor des mathématiques financiéres a depuis été
spectaculaire notamment grace au développement du calcul stochastique.

Dans le souci de décrire le plus vraisemblablement possible la réalité des marchés
financiers, une théorie des marchés avec cofits de transaction, prenant en compte les
différents frais inhérents a la spéculation, est en pleine expansion. De nombreux articles
paraissent sur le sujet et beaucoup de problémes restent ouverts.

Notre sujet principal (premiére partie) s’appuie sur le fameux article de Heyne Leland
[21] qui, dans le cadre du modéle de Black et Scholes, propose une méthode pour couvrir le
call Européen lorsqu’on introduit des cofits de transaction proportionnels au mouvement du
portefeuille, c’est & dire proportionnels au volume d’actions achetées ou vendues. Lorsque
le taux de transaction n’est pas constant, on suppose que ce dernier est d’autant plus faible
que le trader spécule un grand nombre de fois, ce qui traduit I'idée d’une offre commerciale
de la part de l'intermédiaire ( une banque par exemple) & qui s’adresse le propriétaire du
portefeuille pour vendre ou acheter des actions. Précisément, il est supposé que le taux est
défini par k, = kon™® ou n est le nombre de révisions et a € [0,1/2] est un parameétre
constant ainsi que kq. Leland propose une procédure efficace et simple & mettre en oeuvre
puisque sa stratégie est discrétisée; on modifie la valeur du portefeuille & des dates de
révision fixées a I'avance et on maintient son portefeuille jusqu’a la prochaine date. Sans
cotit de transaction, la stratégie de réplication & suivre est bien connue et des formules
explicites sont données. Le portefeuille correspondant est continu ( dans la pratique, on
discrétise) et réplique exactement le pay-off (S; — K)™ du call Européen . Leland propose
de suivre cette derniére stratégie en substituant la volatilité du modele considéré par une
volatilité modifiée afin de compenser les cotits de transaction.

Il a été démontré par Lott [24] puis Kabanov et Safarian [18] que cette approche
est efficace pour un grand nombre de révisions puisqu’on obtient une convergence en
probabilité du portefeuille discrétisé de Leland vers le call Européen lorsque le nombre de
révisions n converge vers +o0o0. Malheureusement, c’est faux lorsque le taux de transaction



est constant (« = 0) puisqu’apparait une erreur systématique qui cependant est fournie
explicitement dans [18] et donne ainsi aux traders une information précieuse. D’ailleurs,
Pergamenshchikov [26] s’est intéressé a ce cas. Il a évalué la vitesse de convergence (d’ordre
n'/%) et a formulé un théoréme de convergence en loi de l'erreur d’approximation. On
peut citer aussi le travail récent de Sekine et Yano qui proposent de diminuer I'erreur de
couverture lorsque la valeur terminale de 'action ( a la date d’échéance) est proche du
strike K. Enfin, Kabanov et Gamys [12] estiment la vitesse de convergence (d’ordre n'/?)
dans le cas ot a = 1/2.

Ici, commence notre travail. Il est tout naturel de se demander si I’approche de Leland
est encore valable pour des options Européennes différentes du call Européen définies
par une fonction de pay-off h autre que h(z) = (z — K)*. Le chapitre 2 apporte une
réponse positive a cette question sous la condition que h soit assez réguliére et convexe.
Il s’avére qu'une erreur d’approximation systématique apparait si h n’est pas convexe. Le
probléme de couverture approximative reste donc ouvert pour les fonctions non convexes,
pour lesquelles une bonne connaissance des EDP non linéaires semble nécessaire. Notons
que contrairement au travail initié par Leland, il n’est pas nécessaire de choisir des dates
de révision uniformes comme cela est suggéré dans I'article [14].

Afin de préciser la vitesse de convergence, un travail similaire a celui de [12] est
proposé dans le chapitre 3. La principale difficulté par rapport au cas initial du call
Européen est d’estimer les dérivées successives de la fonction C'(¢, z) générant le portefeuille
de Leland a(t, St). En effet, ces derniéres sont nécessaires car la démonstration de la
convergence en probabilité mais aussi celle de la convergence de la moyenne quadratique
de Perreur d’approximation reposent sur une utilisation intensive du calcul analytique (
approximations de Taylor) et du calcul stochastique. Il ressort que concentrer les dates de
révision autour de l’échéance semble améliorer la vitesse de convergence.

Grace a I'étude de la moyenne quadratique du chapitre 3, I'erreur d’approximation
apparait dans le cas @ = 1/2 comme composée essentiellement d’une martingale. Dans
'esprit du travail initié par Pergamenshchikov pour av = 0 [26], nous nous intéressons donc
a la convergence en loi de I'erreur d’approximation amplifiée par la vitesse de convergence
n'/2 ( n'/* lorsque o = 0 [26]). Nous énoncons ainsi dans le chapitre 4 un théoréme du type
« central-limite », utile dans la pratique puisqu’il fournit des intervalles de confiance. La
preuve du théoréme ainsi proposé s’appuie sur la théorie développée par Jacod et Shiryaev
[16].

Le chapitre 5 est consacré a 1’étude de la convergence en probabilité de l'erreur
d’approximation tout comme dans le chapitre 2 sauf qu’ici la volatilité du modéle décrivant
I’actif risqué est une fonction dépendant du temps mais aussi de la valeur de l'action. La
méthode pour prouver la convergence est sensiblement la méme. La grande difficulté est
d’estimer les dérivées successives de C' en tant que solution d’une EDP. En effet, des
estimations existent dans la littérature mais malheureusement elles ne nous satisfont pas
lorsque a < 1/2 car alors 'EDP dépend de n. C’est pourquoi, nous avons dii reprendre
les estimations faites par Friedman [11] afin de préciser 'influence de la variable n sur les
inégalités vérifiées par les dérivées. Nous avons alors réussi a prouver que la convergence en
probabilité du portefeuille de couverture selon Leland vers le pay-off est toujours vérifiée
tout au moins pour « €]1/4,1/2].

La deuxiéme partie est consacrée a la théorie de 'arbitrage. Pour un marché donné, on
veut savoir s’ il est possible de faire des profits (gains positifs non-nuls sur un ensemble non-
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négligeable ) en partant d’un capital initial nul. Un portefeuille le permettant s’appelle un
arbitrage. On s’intéresse aussi aux prix des options; a quel prix dois-je vendre a mon client
une option Européenne (respectivement Américaine ) afin d’étre en mesure de démarrer
un portefeuille dont la valeur a la date d’échéance (respectivement & tout instant) sera au
moins égale au revenu promis (on parle de sur-réplication )7 C’est un sujet de premiére
importance en finance.

Pour les modéles sans cotit de transaction, la théorie est déja tres développée. L’ab-
sence d’arbitrage est équivalente a I’existence d’une probabilité sous-laquelle le processus
(St)te[O,T] décrivant 'actif risqué est une martingale. Pour les modéles discrets, il s’agit
du fameux théoréme de Dalang-Morton-Willinger tandis que pour les modéles a temps
continu, Delbaen et Schachermayer ont introduit la condition « No Free Lunch ». Dans les
deux cas, la théorie développée s’appuie sur le théoréme de séparation de Hahn-Banach
qui a donné naissance au fameux théoréme de Kreps-Yann. De nombreux articles traitent
le sujet. Notons que des théorémes de sur-réplication existent utilisant le théoréme de
décomposition optionnelle (voir [19]).

Pour les modéles avec cotits de transaction, la théorie de I'arbitrage est bien développée
dans le cas discret. La modélisation mathématique s’appuie sur la notion de processus gé-
nérant des cones. En particulier, le cone de solvabilité K qu’on aura ’occasion d’introduire
a un role essentiel. Si un portefeuille exprimé en quantité d’actions détenues est dans ce
dernier, on peut, moyennant des transactions, se ramener a un portefeuille dont toutes les
positions sont positives. L’absence d’arbitrage (cas discret) est équivalente a 'existence
d’une martingale évoluant dans le dual positif K* du cone K. Lorsqu’il n’y a pas d’op-
portunité d’arbitrage, on sait alors définir les prix de sur-réplication aussi bien pour les
options Européennes qu’Américaines [1], [19].

Pour les mode¢les avec cofits de transaction et en temps continu, la théorie est moins
développée. Elle a été initiée par Kabanov avec son modéle X pour lequel il fournit un théo-
réeme de sur-réplication des options Européennes mais aussi par Campi et Schachermayer
qui permettent 'extension de ce dernier grace au modéle ) plus général. Ici commence
notre travail de la partie 2. Dans le cas discret, on peut observer que les théorémes de sur-
réplication sont énoncés sous des conditions de non-arbitrage. On est alors naturellement
amené a se demander si les conditions utilisées pour les théoréemes de sur-réplication des
modeéles X' ou Y sont équivalentes a I’absence d’arbitrage. Dans le chapitre 6, on propose
une notion d’arbitrage pour un modéle trés proche du modele X'. Le théoréme de sur-
réplication des options Europénnes est toujours valable. Pour les options Américaines, le
résultat de Bouchard et Temam [1]| dans le cas discret conduit & une idée de démonstration
dans la cas continu qui au premier abord s’avére inefficace pour le modéle X. Mais elle
se révéle fructueuse pour le modéle Y (voir travail commun avec De Valliére et Kabanov
[6]) permettant ainsi de conclure aussi pour le modéle X. Le chapitre 7 montre que les
conditions utilisées pour les théorémes de sur-réplication des options Européennes et Amé-
ricaines sont équivalentes a une condition de non-arbitrage dans le cas ol le marché est
défini par des processus de prix et de cofits de transaction qui sont « en escalier ». Enfin,
dans l'esprit du travail initié par Kabanov et Kramkov pour des marchés sans cotit de
transaction [17], sont proposées dans le chapitre 8, différentes notions d’arbitrage pour des
marchés dont I’horizon converge vers oo.
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Chapter 2

Approximate Hedging for the
Leland-Lott Hedging Strategy for
(General Pay-ofls

In 1985 Leland suggested an approach to pricing contingent claims under proportional
transaction costs. Its main idea is to use the classical Black—Scholes formula with a suitably
enlarged volatility for a periodically revised portfolio whose terminal value approximates
the pay-off h(Sy) = (S7— K)™ of the call-option. In subsequent studies, Lott, Kabanov and
Safarian, Gamys and Kabanov provided a rigorous mathematical analysis and established
that the hedging portfolio approximates this pay-off in the case where the transaction costs
decrease to zero as the number of revisions tends to infinity. The arguments used heavily the
explicit expressions given by the Black—Scholes formula leaving open the problem whether
the Leland approach holds for more general options and other types of price processes. In
this paper we show that for a large class of the pay-off functions Leland’s method can be
successfully applied. On the other hand, if the pay-off function h(z) is not convex, then
this method does not work.

2.1 Introduction

In his famous paper [21| Leland suggested, in the framework of a two-asset model of
financial market with proportional transaction costs, a modification of the Black—Scholes
approach to pricing contingent claims. The idea is very simple: one can use the Black-
Scholes formula but not with a true volatility parameter ¢ but with an artificially enlarged
one, 0. A theoretical justification of this approach is based on the replication principle: the
terminal value of a “real-world" self-financing portfolio, revised at sufficiently large number
n of dates t;, should approximate the terminal pay-off. Leland gave an explicit formula for
enlarged volatility ¢ which may depend on n. His pricing methodology is of great practical
importance, in particular, due to an easy implementation.

However, a mathematical validation of this “approximate replication principle" hap-
pened to be quite delicate. The first rigorous result was obtained by Lott [24] who shown
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that the convergence in probability, as it was conjectured by Leland, holds when the trans-
action costs coefficient k, = kon™® decreases to zero for a = 1/2 (in this case, o does not
depend on n). On the other hand, for the constant kg the replication principle fails to be
true. This was observed by Kabanov and Safarian [18] who calculated the limiting approx-
imation error. They also proved that the replication error tends to zero when « €]0,1/2].
Interesting limit theorems for the case a = 0 (i.e. constant k) were obtained by Granditz
and Schachinger [13] and Pergamenshchikov [26]. Results on the first-order asymptotics
of the L?*-norm of the approximation error can be found in [12]. All mentioned papers
deal with the call option, i.e. with the particular pay-off function h(z) = (z — K)*. Even
in this case the arguments need a lot of estimates. The explicit expressions given by the
Black—Scholes formula simplify calculations which are quite involved.

The limits of applicability of the Leland approach remains an open problem. In this
paper we address this issue and establish convergence results for more general pay-
off functions and non-uniform revision intervals following the methodology of [12]. In
particular, we show, for the case a €]0,1/2], that the approximation error converges to
zero for convex pay-off functions of "moderate" growth. For non-convex pay-off functions
we calculate the systematic error depending on the value of the stock price at maturity.
We find this limiting error also for & = 0 (Theorem 2.5.1).

2.2 Main Results

We consider the standard two-asset model with the time horizon 7' = 1 assuming that it
is specified under the martingale measure, the non-risky asset is the numéraire, and the
price of risky asset is given by the formula

t 1 t
Sy = Sy exp {/ o, dWy — —/ agds}
0 2 Jo

where W is a Wiener process. So, dS; = 0,5;dW;. We assume that o, is a strictly positive
and continuous function on [0, 1] verifying the Lipschitz condition

loy — oy| < Lt — u|
where L > 0 is a constant. In particular, we have o, € [¢,7] where ¢ > 0. Note that
Sy ~ Spexp{a;é — a?/2}

where o? = [) 02ds and & ~ N(0,1).
Recall that, according to Black and Scholes, the price of the contingent claim h(S;) is
the initial value of the replicating portfolio

t
V= Vo + / H,dS, = E(h(S))|F) = C(t, S)).
0

where

C(t,x) = Eh(zexp{p,&—p;/2}),

1
=2 _ 2
Pe = / O-sdsa
t

8
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and the replication strategy is H, = C,(r, S,).
In the model with proportional transaction costs and a finite number of revisions the
current value of the portfolio process at time t is described as

t
(2.2.1) V=V + / HdS, =Y kuS,,
0

t; <t

Hi\y — HY'|

)

where H™ is a piecewise-constant process with H™ = H!* on the interval |t;_1,;], t; = 7,
t < n, are the revision dates, and H]' are F;, ,-measurable random variables. Of course,
V' is the initial endowment. We assume that the transaction costs coefficient verifies

(2.2.2) k=k,=kn*,  acl0,1/2),

and the dates t; are defined by a strictly increasing function g € C'[0, 1] with g(0) = 0,
g(1) =1, so that t; = g(i/n). Let denote by f the inverse of g. The “enlarged volatility”,
in general, depending on n, is given by the formula

(2.2.3) 52 = 02 + okyn2 /)T f(1) = 02 + o ya(2).
We call the Leland strategy the process H™ with
H = Colti1, Si-1)

where the function C (t,z) is the solution of the Cauchy problem:

N 1 N R

2.2.4 Ci(t,x) + =022%CL,(t, x) = 0, C(1,z2) = h(x).
2 t

Its solution can be written as

(2.2.5) a(t,a:) = / h(:ve”ty—pzﬂ)gp(y)dy

where ¢ is the Gaussian density and p? = (p}')? = ftl o2ds; to simplify formulae we shall
omit frequently the subscript ¢ at p.
o~ 1
Note that 52 > g2 + cn2 ™ for a constant ¢ > 0 and, therefore,

p; > <g2 + cn%_a> (1—1).

We use the abbreviations ﬁ]t = é\m(t, Sy) and ﬁt = am(t, St). We define V' := 5(0, So).
We shall use the following hypothesis on the “cadence ” of revisions:
Assumption (G1): ¢’ > 0, ¢" € C[0,1] and there exists a constant A € [0, 1] such that
g"(t)(1 —t)* is bounded on [0, 1].
Assumption (G2): the function g is concave, ¢” € C[0, 1] and there exists a constant
A € [0, 1] such that ¢”(¢)(1 —t)* is bounded on [0, 1]. Moreover, we have some constants
ki > ke in]0,1/2 + af, ¢1,co > 0 and hg > 0 near to 0 such that, for n large enough:

1) er (1—gw)™ < g'(u) < e (1—g(w)™  for u near to 1,

(g (1-2) > ()", pelkl
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(iii) limp, o sup;<q - g(t(t)h) < o,

(V) |§/(S)g| < (175;120)3/27 VU < ]-7

() B <ol i —h<t <t <1, 0<h<h

o g (@)
(vu)g(x)34 < = for z near to 1

V1-g()

It is easy to see that, in this two cases, the following properties hold:
Lemma 2.2.1. Assume that (G1) or (G2) hold. Then there exists a constant v > 1 such
that for i =0,..,n — 1 and n large enough:

(226) Atz = tl - tifl = g/(’l - 1/71)77/71 + n*'yon(l),

and, moreover, for some constants dy,dy > 0

(2.2.7) At; < dyn

1—1i f(ti)

2.2.8 < dy, < dy,
229 L=t 0 )
(2.2.9) sup  f'(u)(t; —u)n < dy,

uE[ti_l,ti[
(2.2.10) 1=ty > don~ W,

Note that the assumption (G2) is verified by the functions

gu(t) =1—(1—t)" pu>1.

Our hypothesis on the pay-off function is as follows:

Assumption (H): & is a continuous function on [0, oo[ which is twice differentiable except
the points K; < --- < K, where b’ and h"” admit right and left limits; 2" is bounded and
\h"(z)| < Ma=P for x > K, where 3 > 3/2.

Let Ko = 0 and K,4; = oo. Then h” is bounded while h verifies the inequality

\h(z)| < Mi(1+4 ) with some constant M. The function C(t, z) is continuous on [0, 1] x R.
Put

bu(, S1) = % / Z (S, )y ) dy,
e = ﬁ T10,(2.8)) — 60w, S))|dz, a €]0,1/2],

51/2 = _kO\/i/ Oty\/ f/ xm t St |C$z(t7 St>|> dt.

10
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Theorem 2.2.2. Let o €]0,1/2[. Suppose that (G1) holds. Then

(2.2.11) P-lim V" = h(Sy) + €a.

Let o = 1/2. Suppose that (G1) or (G2) is fulfilled. Then
(2.2.12) P-lim V{" = h(S)) + &1 0.

If h is a convex function, then £, = 0 (for o € [0, 1/2]).

2.3 Estimates

In the following subsections we establish some properties of the solution of the Cauchy
problem (2.2.4) needed for the proof of Theorem 2.2.2.

2.3.1 Explicit Formulae
Lemma 2.3.1. Let C(t, x) is given by (2.2.5). Then

k+1 1 o0 5
= / W(ze® ) Py(y)e(y)dy, k>0,

k+1 T o kak
Oxk+ prxk [ o

where Py(y) = y* +ap_1(p)y* 1+ -+ ao(p) is a polynomial of degree k whose coefficients
a;(p) are polynomials in p of degree k — 1.
Proof. By the change of variable z = z(y, x, p) = ze”’~*"/2 with the inverse

1 xr P
p— - — = 1 _— — —_—
y=y(zz,p) p(nz 2)

we transform (2.2.5) to the form more convenient to differentiate:

&am:§4w§?WMaamMz

It follows that . - h( )
o~ zZ
@%@23/-—W@LMM@LMW
0

p Tz

because we can differentiate under the sign of the integral. Indeed, it is easily seen that for
every zo > 0 the integrand in the last formula, for x varying in a sufficiently small interval
Jzo — @, 19 + [, can be dominated by an L'-function of variable z which does not depend
of x.

Turning back to the integration with respect to y, we have the formula

@ﬁwwvi/mmaL%mmmw@.

pT ) o

Splitting the integral and integrating by parts on each interval ]gj, gjﬂ[ with

~ 1 K.
(Sj: —hl—]—f—g,
p 2

11



Estimates

j=0,.,p+1and Ky =0, Kp;1 = oo, we deduce from here, after the change of variable
Y =y — p, that

(2.3.13) Co(t, ) = /_OO W (Z(y, z, p))e(y)dy

[e9]

where Z = Z(y, z, p) = eV’ /2,
In particular, |C, (¢, z)| < ||F/|]0o-
Similar calculations give the formulae:

1 o0

(2.3.14) Coalt,z) = 5 | W CE ey,
2315 Contte) = s [ W2 )P0}y
(2.3.10) Cornalte) = =5 [ W) Pty

with

Py) = v —py—1,
Ps(y) = v —3py* + (20" = 3)y + 3p.

The general formula for the derivatives in x follows by induction. Indeed, assume that

OFC(t, x) 1 /°°

ozk k=1 ph—1 W (we™ ") P (y) o () dy,

—0o0

where P,_1(y) = v* ' + ap_2(p)y* 2 + -+ + ao(p) is a polynomial of degree k — 1 whose
coefficients a;(p) are polynomials in p of degree k—2. With the change of variable y = ¢/ —p,
we obtain

W (e~ ") Py (y — p)ely — p)dy.

—00

Ok ph—Lyk—1

O C(t,x) 1 /

By the change of variable z = z(y, z, p) = xe?¥~"/2 we write

Pk—l (y(Z,ZL‘,p) - p) ¥ (y(z,m,p) - P) dz

k =1 k—1
Ox pFlx

O*C(t, x) 1 /”M@)

N w P?

and we deduce that

OHIC(t, x 1—k [ KW(z
axk(ﬂ ) _ P /_Oo p(Z)Pk—l (y(z,2,p) — p) o (y(z, 2, p) — p) dz,
1 > (2) y(z,2,p) = p
T pk—Lgh—1 /_oo P Pe1 (y(z,2,p) — p) p—x(’p (y(z,z,p) — p)dz,

1 “h(z)1
e [ LR ) - 0 e ) — ) e
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Then,

) b 9z, 0) — 9) () — Pz,

HMHC(tx) 1 /00

Ork+1 o pFak o P2
1 [ L,
= / W (xe™ 72\ Py (y — p) oy — p)dy,

where Py(y) = (1 —k)pPi—1(y) +yPr—1(y) + P,_;(y) is a polynomial of degree k because of
the degree of P;,_;. The coefficient of the main term z* is clearly equal to unit whereas the
other coefficients are polynomials in p of degree k — 1 by induction. Then, we can conclude
using the change of variable y = v + p.

By similar reasoning we obtain, using the previous lemma and the PDE 2.2.4:
Lemma 2.3.2. Let C(t,z) is given by (2.2.5). Then

(2.3.17) Cit,z) = fj”” / :h’(xepy+p2/2)ygp(y)dy,
2315) Culti) = 25 [ Wlaem2)Qu(0)e(0)ds
23.19) Conltr) = o [ Wleen Q)
with

Qay) = —y" —py+1,

Qs(y) = —v° —py* +3y+p.

2.3.2 Inequalities

Lemma 2.3.3. There is a constant ¢ > 0 such that

~ 1 2 1 ln ( /ZE)
—p%/8 MR /L) —-p*/8
(2320) |Oarac(ta {L‘)| < Cp‘,L,S/Q6 Z exXp { 2 p + C;L'3/2€ '

Proof. We integrate by parts the integral of the formula (2.3.14) on each interval |§;, 0;41]
with

0; = %ln% — g
As
{y: K; <Z(y,z,p) < Kjia} =105, 054],
we have:

—~ 1 N AL
J ! h dy.
Pl z / P (2)e(y)

Notice that am(t, x) = 01if h is convex.

Q)
;‘
I
INg
|
?L

13



Estimates

Using the change of variable u = y + p/2 and the boundedness of h”, we have:

n(Ky/a)/p
/ 3 (2e) p(y)dy

—0o0

1 Op 2
— / péh”(i)s@(y)dy' —e

pT ) o

e P BAm ) L s

x3/2 ?

where c is a constant.
Using the assumption on the growth of A”, we get in a similar way that

1 /5 :° P31 (2)p(y)dy

— / I (2e)p(y)dy
1

pr n(Kp/x)/p

< ep2/8/ e%ﬂy*ﬂpyw*ﬁgp(y)dy <c o P
In(Kp/x)/ x

Noting that —h/(2)p(y) = 0 for y = §y and y = 6,41, we dominate the first sum by the
estimate

R .
2|0 || e %72,
e 22K

The desired inequality follows from the above bounds.

Recall the following identity (see [12]):
Lemma 2.3.4. Let n ~ N(0,1). Then for any real numbers a # 0, b and ¢

72
Eee~(@nt)® — L exp v + 02 — b2
202 + 1 202+ 1

where b =b — ¢/(2a).

It will serve to get the following:
Corollary 2.3.5. There exists a constant ¢ such that fort € [0,1]
1

e P4
Proof. By (2.3.20)

SMC2 (L, S,) <

‘wl =

p
Z et~ zzm—&—b) + Ke™? /4Sm 3

Jj=1

with ¢, = (m — 2)ay, ay = ay/p, and

Then A
exp{—-Bi}

o pV 207 + p?

14
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for some constant K and

2
S
(=302 =300-30)  (m_gm-1) ,
202 + p2 4 r

Bl =

We conclude by taking m = 4.

Similarly, we can deduce the following bounds:
Corollary 2.3.6. There exists a constant ¢ such that fort € [0,1]

p

-~ 1 U2~ 2
ES?*C? (t,S,) < ¢ ————— X {— J }+6_p /4
(51 (Z RS S T

Jj=1

where ¢ is a constant, uw = ay/p and

_ In(So/K;) —ai/2 L1

v = p.
p

J

[\]

Corollary 2.3.7. There exists a constant ¢ such that fort € [%, 1],

~ 1
ES!C? (t,8) < c (— + e_”2/4) :
p

With the same technique we can prove the following estimates:
Lemma 2.3.8. There exists a constant ¢ such that

A ce P /8
(Coaalts 2)] < p225/2 (L(x,p) +p),
|é\x$xx(t, I’)| < Ce_p2/81. 7/2P (p—l)7
2
A 0?7\267%

Con(ta)] < %P2 (o™ 4 p7°),

where P3 is a polynomial of the third order and

Loy = 3 R o, {_W10/1E)Y

2p?
Lemma 2.3.9. There exists a constant ¢ and a polynomial ) of third order such that
ESPCL(t,S) < /Q(o e /1.

Proof. It suffices to use Lemma 2.3.8 and observe that

_In*(S/K)

S
ES™In? Et exp { p2 } < c(p® + p?).

15



Proof of Theorem 2.2.2

2.4 Proof of Theorem 2.2.2
By the Ito formula we get that
(2.4.21) Co(t, ) = Cu(0,S) + M" + A7

where

t
Mo / 0 SuCion (11, Su) AWV,
ot A 1 A
Ay = /{Cxt(u,su)+§03550xm(u,5u) du.
0

The process M"™ is a square integrable martingale on [0, 1] in virtue of Corollaries 2.3.6
and 2.3.7.

Following [19] we represent the difference V;* — h(S;) in a convenient form.
Lemma 2.4.1. We have V" — h(S)) = F]' + F} + F3* where

1
0
1 1 n—1
o 5/ 0 () S2|Crat, St — b S [HY = H |,
0 i=1

~ ~

1 1
K= / om()S? (Cunlt, S1) = [Cua(t, S )

Note that F3' = 0 if h is a convex function.

Put D¢ :={(z,y) : z € [1/a,al,ze¥ €]K;, Kix1[}, a>0,i=0,....p.
Lemma 2.4.2. The mapping (x,y) — h'(xze¥) is a Lipschitz function on each set D, i.e.
there exists a constant L, such that

|1 (we?) = I'(2e")] < La(lw — 2 + ly — ul)

for all x,z € [1/a,a] and y, u such that xe¥, ze" €|K;, K;11[, i =0, ..., p.
Proof. Let us consider the representation

zeY

B (ze¥) — B (") = / B(s)ds.

Since h” is bounded, the assertion for i < p is obvious. For i = p, we use the assumption
that |1 (s)] < Ms™ for s > K, where 3 > 3/2.
Lemma 2.4.3. For any o € [0,1/2],

(2.4.23) P-lim FI" = 0.

Proof. Because the processes H™ and H™ are bounded, we obtain the convergence to
zero in L? of the stochastic integral by checking that the difference H" — H™ tends to zero.
To this end, we note that this difference for u € [t;_1, ;[ can be expressed as

=0 Li(ti—1)

JHCw Sepedy = [ K0Sy

16
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with §;(u) = piuln(Kj/Su) — 1py and Ij(u) = [6;(u),d;11(u)]. Note that |pf — pf | <
cuV/kon~/* for some constant c,. The measure of the symmetric difference of the intervals

I;(u) and I;(t;—1) tends to zero as n — oco. At last,

/ 1 (25 S p))o(y) — B G52 S rs pro s )l)dy — 0
1 ()L (ti-1)

in virtue of the previous lemma.
For the second term in (2.4.22) we note that

o0

az(tnfla Stn—l) - / h/(Stn71€py+p2/2>90(y)dy

with p = p;,_, — 0 as n — oo. We conclude using the Lebesgue theorem.
We write Fjt = 327 | L where

1 1

1 1 n—1
o= g [ oSt =g [ 3 o ni)SE ol s

n—1
~ 1
Lg = E |hti,1 ‘57522,71 <§Uti17n(ti—l)Ati — kno—ti,l n1/2 /Atzfl(tz—l)‘AWt,
=1

).

n—1
— kn Z Stifl |AMtz

=1

Y

n—1
Ly = ka Y 0n S0 e 0PV AL (G| AW,
=1

n—1 n—1
LZ = kn Z Sti—l |AMtz| - kn Z Sti—l |Ath|7
=1 1=1
n—1 N
Ly = —k,» AS,|AH,|
=1

where we use the abbreviations AW, = W;, — W,,_, etc.
Lemma 2.4.4. For any « € [0, 1/2] both terms whose difference defines L} converge almost
surely, as n — oo, to the random variable J, given by the formula

1 o0
(2.4.24) Jo = 551/ 00z, S1)|dz, @ € [0,1/2]
0
I -~
0

Therefore, LT — 0 a.s.

Proof. Let us consider first the case ov < 1/2. We shall argue for w outside the null set
Ui{S1 = K;}. Recalling the definition hy = ém(t, S;) we make the substitution z = (p}')?
in integral in the representation of L} and transform this integral to the form

1 (7% 3(t) oA
-/ aﬂA—g)sfyom(t,st)ydw.
2 Jo Ot

17



Proof of Theorem 2.2.2

There is an abuse of notation here: we should write ¢(z) or even t"(x) instead of ¢.
The function z + t(z) is the inverse of the function t +— (p')?, so it depends also
on n. It converges to unit as n — oo when a € [0,1/2[. This follows from the bound

> c(1 4+ n'/?7*)(1 — t) with some constant c¢. With the same abuse of notation, we infer
from the formula (2.3.14) that

—~ 1 o0
S2C.(t, Sy) :Stﬁ / W (SieV )y o (y)dy.

Since A’ is bounded and continuous except the points K;, we get from here Sfam (t,S;) —
S2C..(1,8)).
The bound (2.3.20) implies that

<ce BV 4 1)

O-t’yn< )SQCxw(t St)
0'

and we obtain required convergence of the integral by the Lebesgue theorem.
In a similar way, we rewrite the second term:

2 n—1

Po ~
3 e S Ot S e )

where z; := (p})?.
Making use the hypothesis (G1) we get that v, (t) — oo and

Uti—fyn(tl ) - Ut'yn(t)

~2
0y

— 0

when t €|t;_1,t], i.e. ¥ € [x;, x;_1[. Thus, oy, ,V,(t;_1)/0? — 1. The end of the reasoning
is the same as for the integral term.

In the case @ = 1/2 the convergence is obvious for the first term. Moreover, the function
7 (t) does not depend of n and L} — 0 because of convergence of the Riemann sums to
the integral.

Lemma 2.4.5. For any o € [0,1/2], we have P-lim,, L} = 0.

Proof. Taking into account the independence of increments of the Wiener process and
the equalities
E|AW| = /2/mv/ Aty
1
B (n(t)8 — by VABLT AW ) (1= 2/m)2 nf (1) (ALY

we obtain that

n—1

E(Ly)? = (1—2/m)k2Y o} (ES} C2(tioy, S ) f (tiy) n(At;)?

=1

where f’(t;_1)At; n is bounded. In virtue of Lemma 2.3.5, we have:

n—1
E(Ly)’ < en® 23 (1 —ti) AL,

i=1

and so E(LY)? — 0 as n — oc.

18
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Lemma 2.4.6. For any « € [0,1/2], we have P-lim, L} = 0.

Proof. In the case of the assumption (G'1), we can prove that

V()AL =1+,
where ¢, = 0,(n”7) and 7 > 0. We deduce that L} = C™ + D" with

n—1
"= k’nEn Z O-ti—1St2i_1 |hti—1| |AWtz|
1=1

and
n—1

D" = k'n Z |:O-ti_15t2¢71 |/th‘—1| ‘AWtz
=1

- Sti—l |AMtz

I

From Corollary 2.3.5, it follows that:

1/2—a(1 _
1C™ Iy < e n®/* 1/828"?{ A el SVIL) M

(T—t )/

Since |z|e~ ! is bounded, we deduce that

<

dt

1—
1071, < can/ <z
T

where ¢, ¢ are some constants. Then, ||C"|]s — 0 as n — oo.

In the case of the assumption (G2) and o« = 1/2 , we can establish that
n'V ()AL =14
where

At;
1— ¢

|€z'| <C

and c is a constant. Then, we deduce that

n—1 \3/2 1
. _1/2 (At;) nn
IOl < en™t2 30 2 <o

=1

The remaining part is similar to the proof in [19]:
D" < DY + Dy

where

D' = k, ZSt”

Y

/ By — Suhy)oudWy,

y -~
Ot;_1 — O—U)Sti_lh‘tifl

19



Proof of Theorem 2.2.2

We have ||D%|]; — 0 because of the assumption on ¢ whereas

1/2
ﬂU‘ckEX] &M%I—&MWQ :

By the Ito formula, we obtain that
d[Sh,] = d[S,Cha(t, S1)] = fdW; + gyt

where
~ ~ o [T, .
i = 050 (t,S;) + UtSECxxx(ta Sy) = p_;/ h (Z)(?/Q — Dep(y)dy,
gt = Sté\xxt(ta St) + Ut Sgox:m:a:(t St) +Jt S2O£J}$(t St)
Then,
R R t; ti
E(Sti—lhti—l — Stht)2 < 2/ Ef,gdu —|— 2Atz/ Egzdu
ti—1 ti—1

From Lemma 2.3.8, it follows that

n—1 n—1
At; (At;)3/2
n ~1/2 i
E|DY| < cn Zl—t n1/21/2az 1—t 3/2
i=1

=1

1/2 n~%lnn

< cn- lnn—l—cm

where ¢ is a constant. Then, E|D}| converge to zero.
Lemma 2.4.7. For any o €]0,1/2], we have P-lim,, L} = 0. For a = 0, the sequence L:
1s bounded in probability.

Proof. Using again the inequality ||a;| — |as|| < |a1 — az| we get that

n—1

’Li‘ < chy Z Stifl |AAtz|

=1
1 1
< ok, / G, S|+ ki / 0252 (u, Su)|du
0 0

where c¢ is a constant. Moreover,

IR 7N
/ 1Cor(t, S| du = / G, 5[5, %da,
0 0

where u(z) is defined by x = p?. Thus, by Lemma 2.3.8,

/|Cxtu5 )|du < / Gi(x)dx

Gi(x) == %e_m/s (2%@@ {—%} + \/E—i-x) :

20
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Since 0 < 1 —u < cxn® Y2, it follows that u — 1 as n — oo for o € [0,1/2[. We can

apply the Lebesgue theorem by dominating the function whether x < 1 or not because
r < 1 implies that u is sufficiently near from 1 independently of x for n > ng. Indeed,
outside of the null-set U;{S; = K}, we have 0 < a < |In(S,/K;)| < b for some constants
a,b (depending on w) provided that w is sufficiently near unit.

For a = 1/2, the majorant is independent of n but k, — 0. Thus,
1
k:n/ 1B, Su)|du — 0 for o €]0,1/2].
0

The reasoning is similar to analyze the second term using Lemma 2.3.8:

1 R pg
/ 0252|Crpe(u, Sy)|du < cno‘l/Q/ Go(z)dz
0 0

where

In? S K; 1,
Go(z) := 3/2Zexp{ / )}+ﬁe /8,

Thus,
1
kn/ 0252|Chae(u, Sy)|du — 0.
0

Lemma 2.4.8. For any « € [0,1/2] we have P-lim,, L? = 0.

Proof. Since max; |AS;,| — 0 as n — oo, it suffices to verify that the sequence
knd iy |AH,,| is bounded in probability. But this follows from the preceding lemmas.
Lemma 2.4.9. I3 — ¢, a.5. asn — o0.

Proof. Only the case a € [0,1/2] needs to be considered. Needed arguments are based
on the change of variables * = p? and the observation that n!/2=%/G? converges to

<01k:0\/8/_7r\/m) - for a fixed x.

Inspecting the formulations of above lemmas, we observe that all terms L7 — 0 in
probability when « €]0,1/2] and, hence, Theorem 2.2.2 is proven.

2.5 Constant Coefficient: Discrepancy

An inspection of the proof of Theorem 2.2.2 reveals that almost arguments hold also for
a = 0, i.e. when the transaction costs coefficient does not depend on the number of portfolio
revisions, but in Lemma 2.4.7, in this case, we have non-trivial limits. This observation
leads to the following result.

Theorem 2.5.1. Let k = ko > 0 (i.e. « = 0). Suppose that h is convex or concave and
the assumptions (H) and (G1) hold. Then

(2526) P-lim ‘/ln = h(Sl) + Jl — JQ(/{?()) + &9

where Jy is defined (as Lemma (2.4.4)) by the formula
Ji o= —51/ 101(51, )| dz,

his.) = = e ety
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and Jy is defined by
1 R
Jg(k?()) = 551/ jg(Sl,JI)dl’
0

where
J2(S,2) = 161(S, x)| exp {—07(S,x)/2} + ko [2® (6(S,x)) — 1] 62(S, x),
0u(Sua) = o [ WSy — oy + D)y,

0(S,z) = ko\/gZiEgg @(x)—/_x o(t)dt.

Proof. In virtue of Lemmas 2.4.4 — 2.4.6 for a = 0, the “chained" terms L}, L}, and L} are
differences of sequences of random variables converging to the common limit J;. Thus, in
our representation of L}, the first component also converges to J; and it remains to check
the convergence property for the second component, i.e.

n—1
(2.5.27) ko> Sy, [Hy, — Hy,_,| — Jo(ko).
=1

We put
YAL—

(2

Uti—l)‘isz‘/zi,1/};ti71AWti + Stiflal‘t(ti717 Sti,l)Ati

where
i = AP =02 /AL f (1) = 14 on(1),

and we represent the left-hand side of (2.5.27) as the sum I}* + I} + I} with

n—1 n—1
I{L = kO Z Sti—1|Hti - Hti—1| - k’o Z Zzn’
i=1 i=1

n—1
Iy = kg Z[Zzn — BE(Z} | R, )]s
i=1

n—1

=1

Using the inequality ||ai| — |az|| < |a1 — as| and regrouping terms, we estimate I}" as
follows:
n—1
’I{L\ < ko Z Sti—l |AMtz - Uti—1>‘isti—1hti—1AWtz‘|
i=1
+ho Y Siy |AAy = Cuyltiog, Sy At .

i=1
The first sum above coincides with the majorant for |L%| which, as it was established in
the proof of Lemma 2.4.6, converges to zero in probability. The second sum is dominated,
up to a random but fixed multiplier, by
1 n—1

1
/ ot St + / S 1ot 1) = Conlti 1, o) M (B):
0 0 =1

22
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As we have already shown in Lemma 2.4.7, the first integral converges to zero. The
convergence of the second term to zero (of course, outside the null-set where S; takes one
of the values K;) follows by our usual arguments based on the change of variables z = p?
and dominated convergence. Using the same consideration as in the proof of Lemma 2.4.5,
we can show that [} — 0 in probability. Indeed, define the sequence

j—1
M} =Y "(Z! — E(Z|F, )

J
i=1

It is a martingale and for its quadratic characteristics we have the bound

n—1 n—1
(M™, M™), < 02 NSE BEAL+Y " SE CA(tio, Si ) (AL)2.
i=1 i=1

The first sum in the right-hand side converges to zero in virtue of Lemma 2.4.5 while the
second one converges to zero in L' in virtue of Lemma 2.3.9. By the Lenglart inequality
I3 converges to zero in probability.

For £ ~ N(0,1) and constants o > 0, 3 € R, we have the formula

Emﬂwﬂ=¢§w£§+ﬁwmmm—u

implying, due to the independence of increments of the Wiener process, the representation

1 1
=k [ gl [ (o
0 0

where
n—1
fn(t) = an(ti_l)l}tiflyti](t)’
=1
n—1
gn(t) = Zgn(ti_l)]]ti—lyti}(t)
=1
with

20,  NSE . 02 ti1. S VAL
fn(tifl) = _MVHFL,J exp { — It( 1 tZ,Q ’
T AL 20—7521'—1>\z25t2i_1h2

ti—1
2@ Cxt (tif]J St¢,12 Atl _ 1 '
O'tifl)\istiflhtifl

Using the change of variables z = p? and putting z; = pfi, we have :

gn(tizy) = Sti_lamt(ti—lasti_l)

o3 3
mz%/‘ﬁmm+m/'%mm
0 0

23



Constant Coefficient: Discrepancy

where
fule) = anm_) )
gu(z) = ;gn(xm)f]x,-_l,xil(x)
and
o) = 2SS (S i) e {50 f2)

~2

gn(xifl) = %92(&1 1,1%‘71) [QQ (@(Sti,pl’i—l)) - 1} )

O'tQ IQQ(S,lL‘) Atz
20}1,71)\1‘61(5,33) ’

6:(5,2) =

Of course, there is an abuse of notation here since t;_; and ¢ are functions depending,
respectively, on z;_; and z but also on n. Note that x € [x;, x; 4] if and only if t € [t;_1,1,]
where [t; — t;_1| < an™' for some constant a. Hence, we have also |z;_; — 2;| < en™V/2.
Moreover, the equality = = p? implies that 1 —¢ < cn™'/2 where ¢ is a constant (recall that
p depends on n). Then, for each fixed x , t;_; and t converge to unit as n — oc.
Moreover, using the Taylor approximation, we can easily establish that

VALG? = o\ /At +atk0\[\/ ti-1) + 0,(1).
Then, for x fixed, /At;0? — o1ko+/8/7 due to the uniform continuity of ¢’ o f. Thus,

fulx) — LSl |01(S71, )| exp{ ko%}

as n — 00. Since ) ) 1o
Ut -1 O-ti_l(Ati) 1

52~ AR

The most delicate point is to justify the domination of f,, and g, to use the Lebesgue
theorem. In particular, we have to add the convergence of the last functions because of the
term 6, (S, z). But we can assume that 6;(S1,z) # 0. Indeed, suppose that 0;(51,x) = 0.
Then,

/ W (1™ /2) () dy = 0,

[e.e]

p 8 00
=1 SV )] T+ / Syy/eV IR (S, eV dy =

J=0
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where

1 K; e

§i— —p—2 _ V7T

NV ST 2
and, therefore, K; < SpevEyte/2 K4, if and only if y €]6;, d;41[. Thus, if A is convex or
concave then either A’ is creasing and h” > 0, or h' is decreasing and h” < 0. So, each term
above is either positive or negative. Then 6,(S;,z) = 0 leads to h/(K;_) = h'(K;;) and
h" =0 on |K;, K;i1[ (this means that h(xz) = az + b for some constants a, b and Z = 0).

Justification for f,. We have v/At; > an™"/? and 52 > bn'/? for some constants a, b

while S,(w) is bounded on [0, 1]. Otherwise, observing f,(¢) and using (2.3.20), we can
deduce that | f,(2)| < ce /% /\/x.

Justification for g,. The bounds 2 < a/n and afi _, = by/n imply that the quotient of
the two last terms is bounded. Inspecting g, (¢) and using Lemma 2.3.8, we can write

In*(S;,_, /K;)
e Ti-1/8 ™St /K;) 3/2
|gn<x)| ~N x?/Ql <Z exp{ 21‘171 } + Ti—1 + x >

for  €]z;, 2;_1]. Hence, |g,(2)| < c(z™3/2e 2/ 4272 4 1) for z > 1.

For x < 1, the relation # = p? implies that 0 < 1—¢ < cn™ Y2 and In*(S;,_,/K;) = € >0
outside of the null-set U;{S; = K;} provided that n > ny and knowing that [t —¢,_;| <
|At;| < en~!. Thus,

p
C i € 3/2
gn(x)| < —5e ™ 1/8 exp{— }‘i—l’l +x,” .
’ ( )‘ :1313121 ; 2051 1 1

Using the fact that the function ye~¥ is bounded on [0, oo, we infer that

lgn ()] < c(z™ Y2 +1) for z < 1.

Theorem 2.5.1 is proven.
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Chapter 3

Mean Square Error for the
Leland—Lott Hedging Strategy for
(General Pay-offs

In the previous chapter, we have seen that the Leland strategy produces a portfolio whose
the terminal value converges in probability to the pay-off h(S;) if h is a convex function.
For the case a = 1/2, it was shown in [12] that it converges also in L? if the pay-off is
h(S1) = (S; — K)* and for non-uniform revision intervals. In this chapter, we show that
this is always true for a more general contingent claim h(S;) and for a €]0,1/2].

3.1 Theorems

We assume that the model is the classical Black—Scholes model with transaction costs of
Chapter 2. Although, we suppose that the volatility is constant: the risky asset is defined
by the equation

dS; = 0 S;dW;

where W is a Wiener process.

Our objective is to extend the result, that we can find in [12], giving the rate of
convergence of the mean square replication error. For this, we shall assume that the
pay-off h(S;) is defined by the function h verifying the same conditions (H) as in
Chapter 2. Furthermore, we shall obtain an interesting representation for the error process
n/2(Vr —V;) ( recall that V; = C(t,S;)) as a sum of a martingale and a residual term
which uniformly tends to 0.

We note A, = EC?_(t, S;)S; and

00 0o 5 2
A(l‘) _ 1/ 620'2—(72 (/ n <€oz—%+ﬁy+§> ygo(y)dy) gO(Z)dZ.

x—OO oo

Theorem 3.1.1. a = 1/2. Let h(S1) be the contingent claim where h is a convex function
verifying the condition (H ). Suppose that the assumptions (G1) or (G2) hold. Then, the
mean square approximation error of the Leland-Lott strategy is such that:

(3.1.1) EV"=V)?=EQ1/2m ' +on™"), n— oo
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Proof of Theorem 3.1.3

with the coefficient

B(1/2): = o / IZkU@{F AT (1_5)

A, du.

Note that the convergence is uniform on [0,1] .

Corollary 3.1.2. We have the following approximation for o =1/2:
2V = V) = M+ ]

where Mi* =3, Y + Z is a martingale with

2
o ~
Y;‘n - ?nl/ZCMC(ti—bStifl)StQ,-,l [Ati - (Wtifl - Wti)2j| )

~ 2
Zzn = kOUCxx(ti—la St¢71)57f2if1 [\/; \% At; — |Wti71 - Wtz‘

Y

and E(sup,e")* — 0.
Let p(a) be such that 0 < p(a) < a for a < 1/2. Then we have:
Theorem 3.1.3. « €]0,1/2[. Let h(S1) be the contingent claim where h is a convex function

verifying the condition (H ). Then, the mean square approximation error of the Leland-Lott
strateqy is such that:

In the case where g = g, p > 1,

(3.1.2) n' 2BV — V)2 — 0.

Under the assumption (G1),

(3.1.3) P BV — V1)? — 0.

3.2 Proof of Theorem 3.1.3

We recall the representation of the hedging error that we can find in [19]:

~

Lemma 3.2.1. We have the equality V;* — C(t, S;) = FJ}, + F, where

n tint R
S / (Cultir. 51 ) = Culw.S.)) S,V

i=1 Vb1t

2 t ~
Fj = Uko\/;n1/2_a | VIISiContu 8.1
0

—]{Zon_a Z ‘(Zc(tz, Su) — é\x(ti_l, Sti_1)

ti gtAn—l (t)

S,

where t,_1(t) = maxjc,_1{t; : t; <t}
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Mean Square Error for the Leland-Lott Hedging Strategy for General Pay-offs

Inspired by the fact that
Caltion, Sry) = Ol 8u) + Coaltioy, 51, ) (Sey = Su),

we note:

Pﬁ = Z O'ht, 1 St 1 / (
ti—1 Nt
PQT;; - Z htz 1

tzgtn 1(

Let R} = F' — P for i = 1,2. We have

Sy
AW,
)5

O'\/;TZI/Q\/ f/<tl_1)Atl —

S,
— —1]f.
Stz‘—l u

V" —V, = P+ Pp + Ry, + Ry,
So, our objective is to show that
n'*OR(PL + Pp)? — E(a),
where E(«); is a coeflicient depending on ¢ and
nE(RL)* — 0 asn — oo.

From the Taylor formula, we can deduce that 6x(ti_1, St,_,) is equal to the following sum:

~ ~ ~ 1~ -  ~
Hu + hti_l(Sti_l - Su) + Ort(ti—17 Sti_l)(ti—l - u) - §szz(tz—17 Sti_l)(sti_l - Su>2

P 1~ -~  ~
(3.24) — Cuu(ti—1, S, ,)(St,, — Su)(tic1 —u) — écxtt(ti—la Si )(tiog —u)?

if u € [ti_1,t;[, where (f;_1,5,,_,) is a random variable JF, -measurable.
It follows that we have

R =0 (R?o — Ry} — R}, — R?s + 2R?4)

Ry () = Z/ axt(z 1, St )(u —t;_1)SudW,,
=1 tz 1At
1 ¢ Sy \? S.
R, = - mmc i 78 1- dWw
1o (1) 2; Y R 1>( = ) N
1 — tiNt ) Su
Ris(t) = _Z tioa Cott(ti-1, St ) (u — ti1) AW,
2 ti—1Nt Sty
1 tint o S, g
R () = = Coowt (i1, S, 1— —tiq) ——dW,.
1(t) 2 o t(tiz1, St ) ( 5, ) (u 1)5152.71
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Proof of Theorem 3.1.3

In the same way, we write:

Ry = Ry +---+ Ry,

where
2 t ~
Riy(t) = Uk’o\/jnw_a JE
T tAnfl
2 i~ ~
Rgl(t) = O-konl/Q_Oé\/j Z / Sghu\/f/(u)_sfi—1hti—l\/f/(ti—l)dua
T it Y
R;lQ(t) = kn Z Eti—l|8ti_sti—1|(sti—1_Sti)’
ti<tn—1(t)
R;L?)(t) = kn Z @Z’(Sti_stifl)’
ti<tn—1(t)
Rg4 (t) = kn Z (—)Z’Sti,1 3
tzgfn 1(t)
(325) O = hy IS, = Si | = |Calti, Su) = Caltiog, Si.,)l.

3.2.1 Analyze of the Main Terms

Lemma 3.2.2. We have the following uniform convergences :
If a €]0,1/2[, then
n** % sup E(P1)? — 0.
t

By /f’

where Ay = Eégx(t, Sy) Sy doesn’t depend on n.
Proof. By the independence of the increments of the Wiener process, we have only:

tint 2 @2
E(P})? =0 ZAtzl/ E<1—%> SS du

ti—1NE ti—1

If « =1/2, then

where:

S, \° S2 _
E (1 — K) 5271 = 0'2(16 — tifl) + (U — tlfl)O(TL 1).
It follows that:
E(P)? = Z A (A1 +0mY)) + 2 Atn (t—t, 1)’ (1 +O0(n™h))
tbgtn 1(t)

where At; = ¢'(0;)/n with 6; € [(i — 1

~—

/n,i/n]. We deduce that

Ati—l )
2 Py

tigfnfl(t)

[\3|q“>

E(Pf)* ~
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Mean Square Error for the Leland-Lott Hedging Strategy for General Pay-offs

and we can write:
Pﬂ = / fu(uw)du 4 o(1)

where

Atl )
= Y f a0 Lty a0(2)

tzgtn 1
In the case where a = 1/2, the function A doesn’t depend on n and verifies:

C
1 —

Ay <

~

where ¢ > 0 is a constant. Moreover, f’ is bounded from below. So, there exists a constant
M such that

M
O

We can conclude, applying the Lebesgue theorem, that uniformly in ¢

R /f’

_ o*(1+o(nt Atin!/
n3/? aE(pﬁ)Q = ( 2< ) Z Ay, (Atin)——— (-1 — 23) + o(1)

" Ti—1 — T4
ti<tp—1(t)

In the case where o < 1/2,

where z; = p} . So, we have:

2010 (1 +0(n™"))

. 1 /Ooofn(x)dx—ko(l)

nt* e sup E(PR)? < n
¢

where

n—1
Atml/z_a
T) = Z Ay, (Atin) ————11, 2,11 ().

Ti—1 — X4

Recall that

C C
0 < Ati 1 < e_zi‘l/‘l < —€_x/4

Ti—1 = \/E

where ¢ is a constant and x €x;, 7;_;]. For each fixed z €]x;, z;_1], © = p? = en'/?7*(1 1)
where t € [t;_1,t;[. It follows that not only ¢t — 1 but also t;,t,_1 — 1.

We have At; = ¢'(6;)n~! where 0; € [(i—1)/n,i/n]. It follows that g(§;) — 1 and 6; — 1
since f is continuous. So, At;n — ¢’(1). Furthermore, we have

Atinlﬂia o 8
Tiog—x; 1/2_a

which converges to
8
(Uko\/;v f’(1)>
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Proof of Theorem 3.1.3

Note that

1 [ o,
g [T e

21) ys@(y)dy>2-

Ti(z) = (/ W (egmz—a 3

Applying the Lebesgue theorem, we deduce that A;,_, converges to

1 [~ 2 [ [ L, s 2
A(l‘)z; / e** ( / W <6"Z 2*”*?)1/9@(?/)@) p(z)dz.

o0 oo

Ay

where

Ti—1

From now on, we can apply once again the Lebesgue theorem to conclude that

““*fm*”lanMxe ,¢F—VF/'

Alz) < —=e~o/4,

VT

where

It follows that
n*/**sup B(P)* — 0.
t

Lemma 3.2.3. For a €]0,1/2], we have the following convergences:

W/ B(Py) — %01__’¢_/

nt?reE(PR)? — 0, Vt € [0,1].

For a =1/2, the following convergence is uniform on [0, 1]:

2 t
E(P})? — k2o? (1 — —) / Ay du.
T/ Jo

Proof. We write Py’ = A" + B" where

~ 2 o/ Atz
A? = kn Z ht¢71StQi,1 0\/;”1/2 V f/(tifl)Ati -G ( 9 )

tigtAnfl(t) -
n o -~ 2 [ g Atl Sti
R S AN
tigtnfl(t) -
where G(z) = 4®(x) — 2, i.e.
G2 Sy o =T
< 2 > St1—1 ‘
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Mean Square Error for the Leland-Lott Hedging Strategy for General Pay-offs

Moreover, we have

G("\/QA_“> = a\/g\/A_tmL(Ati)on(l)

2 2
O'\/jnl/2\/ f’(tlfl)Atz = U\/j\/ Atl &
T T
where g; = n'/2\/At;\/f'(t;_1) verifies

‘51- _ 1‘ < CAtZ

1—-t

because of (G2) or (G1) according to Lemma 3.3.3. So, we can write for some constant c:
n—1
~ At-)3/2
sup |[AT| < ¢k, h; . S? (;
tp‘ | Z ti _ '

(At) 3/2 enl/41/2—a)

1—t 5/4\ 17 Inn — 0.

n1/2(1/2+a)HsupA?”2 < Cnl/4(1/2 a Z
¢ =1

We first analyze B" = B in the case @ = 1/2.

At
nEB’ =k Y A E {G (“2“) _

ti<tn—1(t)

S,

-1
St

i—1

:| 2
because of independence. But, it is easy to obtain that:

E lG (“ 2“@‘) - ’;—t —1 r - (1 - 3) o2 Ati(1 + 0,(1)).

T
It follows that, uniformly on [0, 1],

2 t
nEB} — kio® (1 — —) / Aydt.
/) Jo

If & < 1/2, we use the change of variable = p? and we obtain that

n'?**EB(B?) = (1 —l—on(l))/:o fo(z)dx

where

n At n1/2 a
fulz) = k2o (1__) ZA“ 1 (@)

Ti—1 — X4

and z; = p;, with t; < t. We have already shown that A, , — A(z) and:

At;nt/> \/g -

- For | =/ (1

$i_1_xi—>(00 T f()
So, we can conclude. Indeed, if t < 1, p? > cn'/?7%(1 — t) which implies that p? — oo,
otherwise p? = 0.
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Proof of Theorem 3.1.3

Lemma 3.2.4. For a = 1/2, we have the following uniform convergence on [0,1]:

nE(Pi; Py) —

Proof. In virtue of the previous lemma, it suffices to analyze the convergence of n ' P} B}'.
For this, we note D}’ = P, B;.

ED} = ok, AN, F 1— aw, |G L) — ——1 .

tor Z A (/ti_l ( St ) Sti { < 2 ) Sti H>

Moreover, we can easily obtain that
b8 S ti 2
E / ) P g, — / o(Wy — Wi )W, ) = (At:)on(1),
ti—1 Sti—l Stz’—l ti—1

tigtnfl
2
- 1‘ —o|W;, — Wti_1|) = 7B ] — Al < o(AL).

Then, we deduce that

ED} = —* Y Ay E(JAW, P = [AW,|AL) (1+04(n7h)),

tz gtn l(t)

o3k,
ED! = \/7 Z A, (A1 + 0p(n7h))

tzgtn 1(

where
(AL)2 = Vg (i = 1) /n)n~ 2 (1 + 0,(1)).

Using the Lebesgue theorem, we can conclude that
ko 12 [T A,
nED] — u\/j / ———du
2.V /f(u)
uniformly on [0, 1].

Corollary 3.2.5. For a < 1/2,

k o(l1—-2/m)

nY* e E(Pr 4 PR)? — 0, w € o 1].

Corollary 3.2.6. For o = 1/2,

nE(Pﬁ+P§)2 _ O_Q/Ot [2]{500'\/ 2/27}/(2;];/(u) +O‘2 —{—k(z) <]. — %)] Audu

uniformly on [0, 1].
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3.2.2 Analyse of the Residual Terms

Lemma 3.2.7. n'/?**E(sup, RY,(t))? — 0.
Proof. If t < t,,—1, R},(t) = 0. Then,

sup |Rijy(t)| = sup
t t>tn_1

/tt (@(tn,l, S ) — Clu, su)>

and the Doob inequality leads to F sup,(R,(¢))* < 4E(R7,(1))?. Then

1 - A 2
n1/2+aE(Sup R?O(t))2 < 4n1/2+a/ E (Cm(tn,b Stn—l) — CQC(t, St)> Sfdt
t th—1

Moreover, |6x(tn,1, St,_y) — @(t, St)| St is equal to

which is dominated by

o0
Rn :/ sup St
—00 tn—1<t<1

The random variable k,, converges almost surely to 0 out of the null-set S; € {K 1, K}

1 (S, eptn_lerp?n,l/?) _ h/(steptyw?/?) o(y)dy.

n—1

because of the continuity of A" and is bounded from above by k sup, S; where kisa Constant
Applying the Lebesgue theorem, we can conclude from the inequality

n*?*E(sup RY(t))? < const n® Y2 Ek?.
¢

Lemma 3.2.8. n'/?**E(sup, RY,(t))? — 0.

Proof. Using the Doob inequality, we obtain that E(sup, R}, (t))* < 4E(R%,(1))? and by
independence of the increments of the Wiener process, we deduce that

t; Su 2
1/2+aE(Rn — pl/2ta ZE iy, Sti_l)Si,l / (u _ ti—1)2E (S > du,
i1 ti—1
n—1 N
n'PHE(RY (1)) < en'PYY T EC(tia, S, )SE (M) < en” VA nn,
i=1

since Lemma 3.3.5 gives

n1/2(1/27a)f/(ti_1)
(1 —t;_1)3/2

ECZ2(ti—1, S, ,)S;  <c

and nf'(t;_1)At; is bounded.
Lemma 3.2.9. n'/?**E(sup, RY,(t))? — 0.
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Proof of Theorem 3.1.3

As previously, we have the Doob inequality F(sup, Ri,(t))? < 4E(R},(1))? and

S \*' s?
E(R}(1 Z/ ( 2 (i1, 8 )SE (1_St,t ) o )dt

where, from Lemma 3.3.15, we recall that there exists a constant ¢ such that:

7 = C
Ec;lmz(l 175ti_1) < _86((1>,

g 16
E (1 N ) < ety —ti),
Sti—l

and €(a) — 0 as @ — 1. Using the Cauchy-Schwartz inequality, we deduce that

n—1
1/2+aE(Rn (1))2 < 1/2+az (Ati)s ( )
n 12 S o n2(1/2—a)(1 _ t.)ze a
i=1 v

n1/2+04 Inn
C—_
= n21/2—a) p

which proves the convergence to 0 in the case o < 1/2 . Otherwise, we split the sum
whether t; > a or not and we use the convergence €(a) — 0 as a — 1. Then, the most
difficult part is to analyse in the case of the assumption (G2) the inequality:

”fo 1—z ) s ela fo 1—t

t;=>a
where f'(t;) = 1/¢'(f(t;)) is such that
g (f(t:)) < ea (1= g(f(t:))™ < ea(1 = t:)*™.
It follows that

Zf, 1-15 €(a><6(a)2m

and we can easily conclude.
Lemma 3.2.10. n'/?**E(sup, R7,(u))? — 0.
Proof. We have the Doob inequality E(sup, R4 (u))? < 4E(R}5(1))? and

4E(Ri5(1 Z/ Cgtt ti1, Sy )(t _ti—1)451€2> dt.
Moreover, using Lemma 3.3.14 and the Cauchy-Schwartz inequality, we deduce that

E <a§tt<’tvi*17 §t )52>

c
1—t)"
Then, we obtain that

n—1
At)S plfte
n'/ 2T B(RY (1)) < en!/? Z (i — 13)4 <c -

i=1

Inn.
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We can easily conclude in the case where a # 1/2.
If o =1/2, we first consider the sum with ¢;_; < a choosing a sufficiently near to 1: we
can easily conclude. If ¢,_1 > a, we know that

B (Cl(Ei1, 8.)S7) <

1=t

where ¢, — 0 as a — 1. So, we can conclude if the assumption (G;) holds.
Under the assumption (G3), the reasoning is the same if a < ¢;,_; < 1—1/n. Indeed, we

have to estimate:

At;)? ne, [V dt

Ne, Z i—lt)‘l < 4“ / < ce,.
aéti—lél—l( B Z) " 0

Otherwise, if t;_ > 1 — 1/n, we can write At; = ¢’(6;)n~" where ¢/(6;) < n™*2 because of
(G3). Thus, we analyse the following sum:

(At;)° Inn
2 T

ti71>1_%

Lemma 3.2.11. n'/?**E(sup, R?,(u))* — 0.
Proof. We have the Doob inequality E(sup, Ry (u))* < 4E(R},(1))* and

. - g S \? 2 57
E(RY,(1 Z St C%(ti1. S ) _St- (t —ti-1) o | dt

ti—1

From Lemma 3.3.16, we deduce that
~ Sy \? S? t—t;
E(S C?(ti, S, ) (1-= ] < —
( ti1 :r::):t< 1 tzfl) ( Sti—l St2i,1 C<1 —ti)g

n—1
ti—ti, 4 nl/?—‘rcx
wERL ) < et Y G <
i=1 ¢

Then,

lnn.

Thus, we can conclude easily if o # 1/2. Otherwise, we consider the case t;_; > a with
a near to unit and we conclude with the same reasoning as the one used in the previous
lemma, using Lemma 3.3.16.

Lemma 3.2.12. n'/?**E(sup, R5,(t))?> — 0.

First, we prove that n'/?**(sup, R3,(t))? is bounded from above by an integrable random
variable. Indeed, we have

1/2—a t 55/2 1(,\1/4
0 < RI(t) < %/ Sf W
n o fn—1(t) \ 1—u

where

t / /44
/ f( ) U < en~ V2
tAn71(t) \/1 — U
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for a constant c. Indeed, it is clear if f’ is bounded. In the case of assumption (Gs), we
choose a fixed a sufficiently near to unit. If ¢ < a, it is obvious that

t 1/4
/ f'(u ) Mdu <eon V2,
i) V1—u

If t > a, we note t,_; = t,_, where t € [t;_y,t;[. Using the change of variable z = f(u), we
have .
t f/(u)1/4du _ i/n g/(I)3/4 J
wa VI—u " Jaym /1= g()

Note that #,_1(t) = t;_1 > a — ¢/n where c is a constant since ¢ > a and At; < ¢/n. Then,
(t—1)/n > f(a — c¢/n) which implies that (i — 1)/n is also near to unit as a — 1. Because
of (G3), we deduce that

n \/ ]- - (i-1)/n \/ \/_

Then, in all cases, there exists a constant ¢ such that

n!/2*e (sup Rgy(1))* < ¢ sup S,
t u

From now on, it suffices to prove that n'/2+(sup, R%,(t))? — 0 almost surely and to apply

the Lebesgue theorem. But we can prove easily that sup, S2C,.(u, S,) < 0o out of the null
set {S1 = Kj,---, K,}. So, there exists a.s. a constant ¢(w) such that

c(w)
nl/2+a

w2 (sup Ry (1)? <
t

if f is bounded. Thus, we can conclude in the case of the assumption (G;). Otherwise, we
use the property of (Gs), ¢'(f(t)) = c¢(1 —t)* if ¢ is near to 1. It follows that if ¢ > a, with
a fixed a closed to unit, then

t dt c
V()dt < c/ EYe < k2

fn_l(t) (1

t

fn_l(t)

where we recall that k; < 1/2 + «. Indeed, it is clear if t > ¢,,_1. If t < ¢,_1, we use the
inequality f'(t) < f'(tp—1) < n* < n*. Then,

n'/ 0 (sup Rgp(1))” <

and we can conclude.
Lemma 3.2.13. n'/?**E(sup, Ry, (t))?> — 0.
Proof. Let be ¥(t,x) = xzam(t, x)\/ f'(t). The Ito formula give us

t o tow
U(t,Sy) = W(ti—1,S_,) —l—/ %(u, Su)aSuqu+/ 5 —(u, Sy)du
ti—1
1 (" 00
—l——/ o 2(u S,)o?S2du,
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where
ov,. A ST (o)
8t (t7 ) - Cxa:t(tv ) f(t)+cxx(ta )2 f’(t)]j
g‘i’(t z) = [zxém(t,x)m?@m(t,x)] 10}
82

0x2 ——(tx) = [26xx<t7 r) + 4$axxa:(ta r) + x2awxm(ta [/L’)] f'(#).

If we note X; = Sfam(t, x)+/ f'(t) then dX; = p,dt + B, dW; where

ov 10%0

He = at( St) 2 o2 (t St) 237527
ov
ﬁt = a (t St)O'St

We write n2 Gt RE () = AP + B with

AP = paategkona- \/7 > / (/ 5udw>dt,

tz gtn 1

B = n:atglna- \/7 Z / (/ MudU> dt.

tz gtn 1

From Lemma 3.3.8, there exists a constant ¢ such that:

Eft <c (Es4h2+ESGC§m(t,St)> Ft) < g(ift)((l)_t)g.

Using hypothesis (G7) or (G3) , we claim that there exists a constant ¢ such that

0 VT
HONEE

Thus, we obtain, for some constant ¢, the following inequality:

cf'(t)
3.2.6 Eu? < —— :
( ) K n§(§—a)(1 — t)g

By the stochastic Fubini Theorem, we obtain that
A} — 2t gkons— \/7 Z / (ti — u)BudW,.
tzgtn 1

Moreover, we have the Doob inequality F (sup, A?)* < 4F (A7)? where, from the bound-
edness of \/(t; —u)/(1 —u) and f'(u)(t; — u)n if u € [t;_1,t;] , we deduce the following
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estimates:

n—1 t;
PO < oty / (t; — u)? EFdu,

(t: — w)?f'(w)
n\2 3/2—a
E(A7) < en / Z/ n3/2 1/2—0) (1— U)3/2du’

Inn

2
E(A7)” < n1/2(1/2a2/ 1—u3/2 use \/__>O'

Then, we can conclude that F (sup, A7)* — 0.

Secondly, we write:

By = ol Ny / [ / >y dtdu,

ti <bn—1(
B = cpd/imo? Z / (ti — u)pydu.
ti<tn—1(
Then,
sup|B”] < en®/ O‘/QZ/ w) | o |due.

It follows that there exists a constant ¢ such that Esup, |B!|?> < en®?~*Y" where

T = (/ Z; |Mu|]]t1 1,ti] ( )du) )

s // Z _U)|qu||/’L'U|]]ti—17ti](u)ﬁtjflvtj]<v)dud/l}.

i, j=1

Using the Cauchy—Schwartz inequality and 3.2.6, we get that

1 n—1
s / / Z (ti —u)(t; =) (Euu)lm <Euv)1/21.]tz Lt (W e,y ) (v)dudo,

i, =1

1 n—1 2
s </ Zt — u) E,uu /I}tilvti](u)du> ’
=1
t \/t —1/2 2
n —'u ﬂ/ —'U
T < const( n1/4(1/2 (1 = )i/ du) ,

/A

n—1 2 n—1 2
const (Ati)‘?’/ 2 const At;
" — < :
2 (Sah) < (S

const
=7 In?n.
n3/

Tn

Then, we can deduce that E sup, |B;'|* — 0 and the result follows.
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Lemma 3.2.14. n'/>***E(sup, R3,(t))? — 0.
Proof. We write

_Rg2(t) = kn Z /ﬁti—ﬂs’i_lxi = Mn(t) + Nn(t>
tigfn—l(t)
where M" is a martingale defined by
M™(t) = ko Y he SP Ixi— Exi,

tigin—l(t)
S, )2 . (s,, )
Xi = — —1) sign — —1
(Stil Stifl

N'(t)=kn > h_,St Exi
ti<tn-1(t)
Note that there exists a constant £ > 0 such that

Exi = k(At;)*? (1+ o(n_1/4)) :

and

»
S0,

2
Indeed, <Ssi — 1) sign ( Sy _ 1) has the same law than
ti1 _

(0 {o /Bl — ?At/2} 1) (esoy/mm ~ Lecoy/ann)

where £ is the standard Gaussian variable so that £ and —¢ has the same law. It follows

that
— stgn —
Stj71 J Stj,1
is equal to

2 2 2
E [(6“’5“2/2 — 1> - (ewg*"m - 1) ] Lesus = B (€772 = 1) Ligcuyo

where u = o/At;. Moreover,
E( _“5_“2/2—1>21 <ut
€ lgl<u/2 S U

whereas, from [19], we recall that

E 6u57u2/2 -1 2 . 67u§7u2/2 -1 2 1 _ 2 3 19) 4
£2u/2 = \/%u + (u )

We can deduce that for n sufficiently large, we have 0 < Ey; < ¢(At;)*2. From the Doob
inequality, we have E (sup, M"(t))* < 4E (M™(1))>. Moreover, the independence of the
increments of the Brownian motion implies that

n—1
E (Mn(l))2 = kfz Z Ecga:(ti—b Sti—l)S;Li_lE (Xi - EXi)2 :
=1
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Then, there exists a constant ¢ such that

nl/2tep (Mn(l))2 < %4
n

At last, for n large enough , Ex; > 0. Hence, 0 < sup, N"(t) < N"(1). In order to prove
that n'/2**EN"(1)? — 0, we first analyse the following sum

n—1
n1/2+0‘]{;i Z E@?a; (ti—b Sti—l)'s;li—l (EXi)2 <

= /4
i=1
where ¢ a constant. Using the Cauchy-Schwartz inequality, we also have

n1/2 Z Ehti*lsfi—lhtijStQj_lEXiEXj < W

ti<tj<tn_1
Then, we deduce that n'/2**EN"(1)? — 0 and we conclude that
n!/#E B (sup Ry, (1) — 0.

Lemma 3.2.15. n'/?**E(sup, R5,(t))? — 0.
Proof. We observe that sup, | R5;(t)| is dominated by

Z 6 t'L?Stz aﬂf(ti—lﬁsti—1) hh 1(8 Sh 1 “Stz Sti—1|’

Applying 3.2.4 with t =t;, 1 =1,--- ,n — 1, it is sufficient to estimate the following sums
3.2.7,---,3.2.10. First, from Lemma 3.3.5, we have:

(Ati)?)n%(%—a)f/(ti_l)lﬂ

Eaﬁt(ti*b Stiﬂ)(Atiy(Sti - Sti71)2 <cC

(1 —t;)3/2

which leads to

n—1

1lig ~

(327)  n2F kY Corltion, S )(A6) (S = 8i)|| S e—g = 0.

i=1 2
Secondly, from Lemma 3.3.15, we have

C(Atl)g

ECﬁmx(z 17§ti—1>(sti - Sti—1>6 <

n20/2=0) (1 — ¢;_)?

and we deduce that

1 — Inn
(3.2.8) nz(z+e) Z voa(ti1, S (S — S )P < 7
i=1 2
Thirdly, from Lemma 3.3.16, we have
~ ~ C(Atl)4
ECaQ:a:t( i—1 Stifl)(Sti - Sti71)4<At7;)2 < (1_—751)3
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and it follows that

~1
; @) ~ Inn
(3.2.9) nz( 2t Z Lie1, St )(Stz - Stifl)QAti < CW — 0.
=1 2
Finally, from Lemma 3.3.14, we have
—~ ~ ~ C(Atz)B
EC3,(tio1, S1,1) (St — Sy )*(At)! < (1—t;)*
and
Ll — Inn
(3.2.10) 2+ Z te(ficr S ) (S = St )AL < e = 0.
i—1 2

Lemma 3.2.16. Assume that o €]0,1/2].
If the revision function is gy(t) =1 — (1 —t)°, b > 1, we have

nt/2/2+) B(sup Ry, (t))? — 0.
t
If the assumption (G1) holds, we have only

n? B (sup Ry, (1))* — 0
t

where p(a) < a.

Proof. We first suppose that the revision dates are defined by the functions g,. We can
claim that sup, |Rg4(t)| is bounded by the random variable

tl) St ( ’i—l) Sti_l) - 6$:D<ti—17 Sti_l) (Stz - Sti_l)

Sti—l
Using the Ito formula for the increments Cy(t;, S;,) — Cy(t;i_1, S, ,), we obtain that

sup|R24 | < Kk, ZStH

/ S, [Cm(uS) ém(ti_l,sti_lﬂ AW,

tL . .
(3.2.11) + / [Cm(u, S,) + EozSngm(u, Su)] du
ti—1

We deduce that
1/2 1/24a) ” sup R24( >||2 Tl + T2

where
n—1 t N 9 1/2
T} = okon!/?0/270 y ( / ES; | S: (hu — htH> du)
i=1 ti—1
and
n—1 ti R 1 R 2 1/2
T = kon'/?0/2720 Y " (AL)'? ( / ES; (Cxt(u,Su) + 50253096“(% Su)> du> :
i=1 ti1
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We shall prove that 7! — 0. Using the Taylor Formula, we deduce that am(u, Sy) —
Coru(ti—1, St,_,) is equal to

axz(ua Su) - a:r:r(ua Stifl) + 6361(”7 St¢,1> - aa:x(tiflv Stifl)
which can be written as
. 1~ - -
Ol‘:t:l?(u7 Sti_1)<Su - Sti_l) + §C$IZL‘:D(U/7 Sti_1)<Su - Sti_1>2 + Ca?:l?t(ti—la Sti_1>(u - ti—l)'
Using estimations from Appendix, we obtain that there exists a constant ¢ such that

~ ~ 2
B, 52 (Conlt, Su) = Conltir, 1))

ti—1™u
is dominated by the sum

CAtz C(Atl)Q
_ . + — Ea +
nz(1/2—a)(1 _ ti)g n3(1/2 a)(l — ti>3f’(ti)3/2

C(Atl)2
n3/20/2=a) (1 — ¢;)11/4

where ¢, — 0 as a — 1. The last estimate comes from Lemma 3.3.12. Indeed, the proof is
the same because p;, | < py,_,.

Then, we can easily deduce that T} — 0 since we assume a < 1/2.

We shall prove that 72 — 0. We have from Appendix the following inequalities:

¢ (f’(ti))l/B n1/4(1/2—a) =P,

(1=t /
c
nT/A1/2=a) (1 — ¢,)7/4

ES? C%(u,8,) <

ES? S'C2 (u,8,) <

ti—1Mu >~z

where ¢ > 0 is a constant. So, it follows that T — 0. Indeed, we have to examine the two
following sums. First,

n—1
n1/2(1/27a) Z Atl const 0
n7/8(1/2—a)(1 _ 751,)7/8 = p3/8(1/2—a) )

=1

Secondly, we have to analyze the sum

2 —enl/2—a N1/ (1,
=1 (]. — ti)7/8

We strike the latter on two parts. The first contains the terms verifying ¢; < a where a is
chosen sufficiently near to 1. The convergence to 0 is easy to check. For the second part,
since we assume that g = g,, we deduce from At; = g;(6;)/n with 0; € [(i — 1)/n,i/n| that
— 1 1
Aty < (1— 121z,
n n

Moreover,
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Then, it suffices to analyse

—_enl/2—a 1/2 i=1y\b
S = pd/8(1/2=a) Z € Fem-ss)
ne (1— ﬂ)15/16(1—b)

ti=a
verifyin
yine g n5/8(1/27o¢) 1 1
<c - —.
noes 15/16(1/2—« _i—1
nlb/16(1/ )ti2a<1 n)n

Indeed, we use the boundedness of |X|e~XI. Then, the convergence to 0 is guaranteed.

However, in the case of the assumption GG, the reasoning is the same but we can’t use the
deceleration of g.
Lemma 3.2.17. For a = 1/2, nE(sup, Ry,(t))* — 0.

Proof. We write
_nl/QRn _ Z Vi
tzgtn l(t)

where v; = |a; + 3| — || and, using the Taylor Formula,
a; = Coultin, S, )52 (Su/Sn, —1),
B = Sy Culti1, S, At + %Sg_lém(%;_l, Si ) (Su/Sh = 1) +
S Coat(io1, S 1) (Su/St = 1) Aty + Sy, Con(Ti1, S ) (AL,

Then, we get that —n!'/2R3,(t) = A™(t) + B"(t) with

Art) = Z Vi — %‘ftz 1)>

tl gtn 1 (t)

Bn(t) = Z E (fyi’fti—l) :

ti <bn—1(t)
First, we prove that E sup, (A"(t))> — 0. By the Doob inequality, we have
Esup (A"(t))* <4E (A"(1))* <4)  Ev}.
t

Recall that
a; + ﬁz - ( (tu St ) Cm( i—1y Sti_1>> Sti_l

Then, using the inequality ||a| — |b]| < |a — b| and the Ito formula for the last increment,
we deduce that E sup, (A"(t))* < const (E? + E?) where

2
o Z / 182,52 (Cou(, 5) = Cuulti1,5,,,)) o
R 1, o~ 2
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In order to prove that E7 — 0, we apply the Taylor Formula to C’m(u Su) — C'm( i—1,5%_,)
as in the previous Lemma. Using estimations from Appendix, we deduce that

~ 2
BS? 2 (OM(US) Cm(ti_l,Sti_l)>

t —17u
is dominated by:

cAt; N const (At;)? const (At;)?
Eot ——
(L—t)7 (L=t f @) (1= t)h/
where ¢, — 0 as @ — 1. The last estimate comes from Lemma 3.3.12. Indeed, the proof is

the same because p; | < py,_,. Then, we have to analyse the following sums where c is a
constant: first,

nz_i (At;)? <clnn_>0
i=1 (1_t>£\ ’I’L1/4

Secondly, we examine the sum

€a

M

1—t 3f/ 3/2

1=1

We first deal with the terms verifying ¢; < a for a fixed a chosen sufficiently near to the
unit. Thus, the convergences to 0 is ensured. For ¢; > a and o = 1/2, we have,

2.7 e < s

—_ +.)\3 \3/2
Z =) /)

in the case of (G1), which converges to 0 as @ — 1 . In the case of the assumption (Gs),
we have, with a near to 1

where 0 < ko < 1. It follows that

33
Z< (At;) - < clnn o

tiza 1= ti)gf,(ti)3/2 “= n3/2k2

Thirdly,

n—1
c(At;)? clnn
Z (1 —t;)t/4 S nii 0

At last, Ef — 0. Indeed, we have

(At)2f' () e
Ey < < — 0.
e D G <o

From now on, we shall prove that Esup, (B"(t))* — 0. For this, we note that
sup (B"(1))* < 7' + A5
t
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where

n—1

xr o= > (BE(ilF))

i=1

Xy =

[\]

Z | Bl F )| Bl Fy0)] -

1<i<j<n—1

Since EX < Y07 ' E72, it suffices to use the previous estimations in order to prove that
EXT — 0. Moreover X3 =T + T3 where, for a fixed a near to 1,

Tln = 2 Z ‘E(71|fthl)‘ ‘E<’Yj|ﬂj71)
1<i<j<n—1;t;>a

TQn = 2 Z |E(%|ft¢71>‘ ‘E<7j|ftj71)‘ :

1<i<j<n—1t;<a

Y

We shall prove that ET7" — 0. Using the Cauchy—-Schwarz Inequality, we obtain that
n—1
s ¥ enfeiee(Ser) (T
1<i<j<n—1t;>a i=1 ti>a

Moreover, y/ E~? is dominated by three terms that we can deduce from the previous analyse
of ET and EY:
E72 At f/( )1/16 (At )3/25a (Ati)g/Q .
i (1 ¢t ) (1 — ¢t )3/2f/( )3/4 (1 _ ti)ll/s

Then, it suffices to estimate the following sums.
First, the sums where the following term 3J;, verifying

(1—t,)7® ) 7/8 k16 S const,

n—1 n—1
At f' ()16 At;
Z1=ZL constz(l_t ’
i=1

appears in the development of the product dominating ET7". They correspond with:

At f/ 1/16 _
2 Z 1—t 7/8 <€(a),
tiza
(At;)3/%e,
2D < &),
= (1 — ;)32 f/(t;)3/4

(At;)3/? At;
> Z (1—¢t;)/s = S 2 Z (1—t;)7/8 < E(a)

tiza ti=a

where £(a) is a function verifying £(a) — 0 as a — 1.

Secondly, for the sums where the following term X5, verifying

At 3/2

-t 3/2]” )3/4 < const

MH
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appears, the reasoning is the same as the previous one since we obtain analogous
inequalities. Thirdly, the conclusion is the same where

-1 At 3/2
Z l—t s S < const

appears.

From now on, we shall prove that ET;" — 0. Using the Cauchy-Schwarz inequality, we
get that

ET} < const Z \/Eﬁzz \/EE(%|]'—tj_1)2

1<i<gj<n—1,t;_1<a
But, we have
aj + B;| = || = |B;1sgn(e;B;) + 2 (18;] — |ej]) La;,<0,1051<18;1

and

[E(y1Fy )] < [EBysgnag|Fiy )|+ 2E(155111512 01| F1, 1)

Note that sgna; = sgn(Si, /S, — 1) since C,o(t,z) > 0. In virtue of Lemma 3.3.18, we
obtain the following inequalities

cSl/2
|E(Bjsgnag|Fr, )| < —(1 -y S (At)*?,

c(At;)?

EF < ——2_

’ (1—1;)?

S At

E(32F, /2 < ti-17"
(ﬁj ‘f.tjfl) 1 _ t]

where ¢ is a constant. Then, using the Cauchy—Schwarz inequality, we deduce that
1/2
E(1851V5,210,1|F, ) < BB F, )PP (18] = loyl| Foy0)

Moreover, |3;| < Bj where
B =i (B + B+ 3)

is defined using Lemma 2.3.8 with
5/2
~ At; 1 S,
@ _ 14+ 24
g 1—tj+1—tj< +St5_/2>
_— 1 ) SN\ | S,
A 57
5o (1 Sua (A
J St 1—t;)
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Then,
~ 1/2
PS> losl| 7)) < P (18 > gl ) < USL)
where
() = P(ean? + el ¥~ 02+ all+ ), - L
Fal a2t > Coaltyr, e, 1))
and

C C C

T T Ay T 1P
u = oAb, ny ~ e~ N(0,1)

GG = C

with ¢ a constant. We note

C

C=4(c1+ -+ c), Cs(x) = = .
(@ S T

Note that we can assume S; € [1/m, m], Vt for m large enough because

P(Vt,S; <1/mor Sy >m)—0

as m — o0. Since we suppose that ¢;_; < a, we can assume that there exists NV, such that

C5 < Ny, . We can deduce from Lemma 3.3.19 that [(z) < L(N,,)u for x € [1/m,m].

We note
A, ={Vt,S; € [1/m,m]}.

We have the following inequality:
ETy < const (A, + B, + Ch,)

where

— 0,

At;(At;)3/? const(a)
A, = S <
" Z (1—t;)(1 —t;)2 nl/2

ti<tj<a

At AL

ti<tj<a
At;(At;)3? const(a,m)
O = Z (I—t)(1— tj)const(m) S nt/2 -
ti<t;j<a

From now on, it suffices to fix m large enough to conclude that ET} — 0 and finally

n'/? e sup, E(R3,(t))? — 0 for a = 1/2.
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3.2.3 Proof of Corollary 3.1.2

From the previous analyze, we deduce the following approximation for o = 1/2:
WAV V) = My ey
where M{" =3 ., Y + Z" is defined by

t;
Y;n = anl/QCxx(tibStil)StQil/ (1_ St) il th’
ti—1

O\/Ati . Sti 1
2 Sty

gn = koé\xm(tifhsti—l)sfifl |:G<

and E(sup, )2 — 0. Indeed, we note P(t) = >t Y and we recall that

y n—1 R tiNt St St
P (t) = n'/? Coz(tiz1, Sy )S? / 1— aw,.
1 ( ) n Zzlo- ( 1 tz_l) ti1 . Sti_l Sti_l t

i—1/\t

We observe that B
sup(Py(t) — PP (t))* < 20%(0" + &)
t

where

0" = nsup sup /ﬁ?FIS;LIR?(t),
i t€[ti—1,ti[
n

é‘?’L = — Sup Sup /]’;2715;17:71 (t - tz—l - (Wt - Wti_1)2)

tt€[ti—1,ti[

2

and

t St St t
Rz(t> = IS —1 g th - O'(Wt - Wti—l)th'
ti1 ti—1 ti—1

ti—1

In the proof of Lemma 3.2.4, we have shown that FR?(t;) < (At;)*0,(1). Using the Doob
inequality and the independence of the increments of the Wiener process, we deduce that

- 1
ny —— (At

so that K" — 0.
We write " < (&g + &')/4 with

' = nsup sup /ﬁfi_lSé_l (Ait—(Ath)z)sz

’ i teftio1,ti] A'W>KV/AE’
5{,1 = nsup - sup ﬁfi—lsfi—l (Ait - (Ath)2)2 ]ZZW<K\/H>
tt€lti—1,ti| < i

where K > 0 is a constant, At =t —t; 1, AW, = W, — W,,_, and

AW = sup ’Ath‘.

tE[ti_l,ti[
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We will show that we can make E¢] arbitrary small provided that K is large enough.
Indeed, using the independence, the Cauchy—Schwarz and Bienaymé—Tchebychev inequal-
ities, we deduce that

n _ const
A S

recalling that

t 4
E sup (/ (W — th)th) < const(At;)*
te[ti_l,ti[ i1
because of the Burkholder-Davis—-Gundy inequalities [20].
Then, with a fixed K large enough, we shall prove that E¢' — 0. For this, we observe
that a.s. £ — 0. Indeed, the Levy modulus [20] ensures that a.s.(w),

Inn

max|AWt| const(w)— YD

for n large enough. Moreover, the singularity generated by Eti—l disappears in the neighbor-
hood of the unit, out of the null-set S; € {Kj,--- , K,}. But, we also have the inequality
&' < const(K) sup, S;. Then, we can conclude applying the Lebesgue theorem. Thus, we
can replace P;* by ﬁln In a similar way, we can substitute

t.
’ S} > St
-1 dw,
/t;1 <Stz’—1 Sti—l '

for

O'Atl
5

A last, we define

At
TZ-:G(O'\/QE) ‘S_t_‘_g\f\/ t+ oW, — Wi,

In virtue of the proofs of Lemmas 3.2.3 and 3.2.4, we have ET? < ¢(At;)? for a constant
c. Moreover,

= Z koaxx(ti—].? Sti,1)527172

<t

is a martingale. Thus, E (sup, 0"(t))* < 4F (¢"(1))* with E (¢"(1))> — 0. It follows that
we can replace Z" by Z.

3.3 Appendix

We give here some necessary calculus and inequalities for the present work. Although, we

use some results that we can find in Chapter 2. In particular, we can show the next one in
a similar way.

o1
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Lemma 3.3.1. We have:

Coat(t,z) = Ué / B (ze” V2 Py (py, ) (y) dy,
2pt$ —00
/! o0
Cort(t,2) = — / B (weP Y PE2) Py (py, y) e (y)dy
Pt J o
o ™ pty+p7/2
+2—p4 W (e P =) Py(py, y)p(y) dy,
t —00
~92 00
~ _ Oy / +p2/2
Coraat(t,x) = W /OO B (e’ P2 Py(py, y) e (y)dy
where
Py(z,y) —y® —ay® + 3y + z,
Py(z,y) = —y°—ay+1,
Py(z,y) = y'— (4 +a?)y* +2zy +2° + 1,
Py(z,y) = —y*+ 22y + (6 — 2?)y* — Sxy + 2* — 3.

Moreover, we have the following inequalities:
Lemma 3.3.2.

6 pz/8A2 P

Comi(t, 3)| < T, Z 24 A4 1) e @2 g pi’) ,

~

Con(t, )| < X (t,2) + Xz(tx)

where
e ol [~ 2
X'(t,x) = ¢ A oi(@)e @@ g gt 7 |
VT pr o
2 e—pf/sax - 3 (2)2/2 -~
Vi(ta) = et | 20 (o) + gy(a) 4 S
Pt =1 j=1

and 05(2) = In(K;/2)] /o1
Lemma 3.3.3. Assume that the assumptions (G1) or (G2) hold, then there ezists a
constant ¢ such that e; = n*/2\/ANt;\/f'(ti_1), i <n—1 verifies |g; — 1| < cAt; /(1 —1t,;) for

n large enough.

Proof. First, we suppose that the assumption (G'1) holds.

We have 111 .
/l/ JR—
)=+ 59//(91)—2»

n 'n n
where 6; € [(i — 1)/n,i/n|, which implies that

Ai=g(

Ati/ti_ :1
nAtif(tia) =1+~

f(tic1)
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We deduce that:

LS ————
(1 =0, (1= f(u))*
where u; = ¢g(60;) € [ti—1,t;]. Using the fact that f’is bounded from below, we obtain:

lei — 1] <ec

At; At;

i— 1< < .
‘8 ‘ C(l — UZ‘))‘ Cl — tz

Secondly, we suppose that the assumption (G2) holds.
We have obviously
i — 1] < [nAtif'(tioa) — 1],

where At; = ¢'(0;)n~! and 6; € [(i —1)/n,i/n], which implies that h; = ¢g(6;) —;_; verifies
h; € [0, At;]. Then using (G2), we obtain that:

f'(9(6;) — hy)
f'(g(6:))

The following lemma is of first importance in order to specify some expectations with ¢
near to unit as we shall see further.

Lemma 3.3.4. Suppose thatt < u < 1, m € R, ¢ € 2N and K > 0. There exists a
constant ¢ = c¢(m, q) such that

At; At;
< const

=1 < . .
e 1] < 1— 9(6) 1—1t,

— 1‘ < const

In*(S,/K
ES)" In? éexp {—M} < cPy(pr)

K pi
where
Po(/)t) = pPu
Py(p) = pi+pi,
Pi(p:) = p}+p+ 1},
Polp) = g 4ol 4 g

Proof. We note p = ln% —c*u/2 , a = o/u and

S, In*(S,/K)
pu— m q e h—
A(q) = ES]"In exp { — 2 } .

gm oo 1
Alg) = \/;—W (p+ ay)?exp {amy —a®m/2 — p (p+ay)® — y2/2} dy,

t

Sgrett [ 1 207 2
Alq) = 0 ° /(p—l—ozy)%xp{——<1+%)y2+a(m—p—§)y}dy

V2T o 2 t t
where ) )
am p
Al - - — —2
2 Pt
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Let y = z/Ay with Ay = /1 + 2a2/p?. Then
SpeAs [ az 1
A :0—/ +—)%e {—— 22 —2(A Az+A2A2}dz
@ =B [" o+ Dyrexp { - [ 2(au/ v + 434
where A3 = a(m —2p/p?) and A, = A + A2/(2A3). After the change of variable
S pyets

y =z — A3/Ay, we obtain that
api Az ? o?p?
P 2 2 + 2 2
V p? + 202 p? + 20 P2 + 2a

Moreover, if u > ¢, then p? > o%(1 — t) implies that

A@2) =

p?+20% = 0*(1 —t) + o*u > o

We have

2 2

mao o’ p? 4p*  4dpm
A4:_ _p_2+2—pt2(m2+£_p )
2 pi  2(pi +202)

where p, o are bounded. But, the term
o’ p m2
2(pi +2a2)
is obviously bounded whereas we can establish the following inequality
2(p; +202) p} " pp

The following term

o?p? 4dpm
2(pf +202) pf

is also bounded. It follows that e is bounded and we can conclude easily for ¢ = 2. In a
similar way, we can conclude for any ¢ € 2N because we use in particular the property

/OO y*o(y)dy =0

—00

if k € 2N+ 1.
From now on, we can deduce the following results.
Corollary 3.3.5. If m € R and u > t, then there exists a constant c,, > 0 such that

~4
~ CmOr _
ESTC2(t, 8,) < Lot
Pt

Proof. Indeed, it suffices to use Lemma 2.3.8 established in Chapter 2 and apply the
previous lemma.

In a similar way, we have:
Corollary 3.3.6. If m € R and u > t, then there exists a constant ¢, > 0 such that

~8
ESTCA (1, 8,) < mTtenils,
Pt
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Corollary 3.3.7. If m € R and u > t, then there exists a constant c,, > 0 such that

ESMCA (t,5,) < “meet/t,

Pt

Corollary 3.3.8. If m € R and u > t, then there exists a constant ¢, > 0 such that

ESTC,,(1,5,) < e rtle,

TXTT
t

Corollary 3.3.9. If m € R and u > t, then there exists a constant c,, > 0 such that

—~4
(t,5,) < teeils,
Pt

Sm02

zxt

Corollary 3.3.10. If m € R and u > t, then there exists a constant c,, > 0 such that

ES™CY (t,8,) < —’; —pil8,

T
Pt

Corollary 3.3.11. If m € R and u > t, then there exists a constant c,, > 0 such that

ESTC2,,, (1, S.) < S2e v,

LTI
Pt

Corollary 3.3.12. If m € R and u > t, then there exists a constant c,, > 0 such that

=8
(t,S,) < TILehifs,
Py

SmC4

zxt

Let S, , €[S, ,,S.] and #;_1 € [t;_1,t;] be random variables. We have the following
inequalities:
Lemma 3.3.13. There exists a constant ¢ such that
cePhl4

Moreover, if a = 1/2, there exists a bounded function €(a) verifying e(a) — 0 as a — 1
such that
€(a)

Eé\;lt(ftvi—lv gti—l) <

c

ECY (1,5, ,) < W

ifti1 > a,i<n—1andn is sufficiently large.

Proof. We have g{?_l < S +57, and pg, | = py,. Furthermore, in virtue of 2.3.8, recall
that we have Ny
~ O2e Pt
|Coi(t, )] < e~
S al2p?

Then, the first result is obvious. Moreover,

- 2
5l %

o 2
|Cra(t, 2)] < e (L(z,p) +p+p?),
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where
L(I,p)_zwexp{ In’ m/K } ZLpr

On the sets '/ = {S;, | V.S, < K;/eVPi1}U{S;, , NSy, = Kjevptifl}, we have:

In(Si /55 | {_m?(ﬁm/fw} B o {_1n2<st“/f<j>}
2 h 207 _,

c ln<£%i71/}{3>

Pii s 207 Pti s
b |mOSu/K) exp _IHQ(Sgi/Kj)
pti71 2pti,1

Indeed, p;  /p; is bounded because of the boundedness of At;/(1 — t;). Secondly, the

mapping © — L/(z,p;,_,) is respectively increasing and decreasing on the intervals
10, K;/evPii-1] and [KjevP" -1, 0o]. Then, we deduce that

4
2
PT. 9/2
1 t._ L~ 15 pti/l 1/2

1—1
B e 5 DS o) | Lo < 5t < gor
52 P it ps pt T opith

if i <n—1and a = 1/2. Indeed, it suffices to use the Cauchy-Schwartz inequality and
Lemma 3.3.4 with ¢ = 8. Moreover, if & = 1/2, p; does not depend on n and it is easy to
show that p;, — 0 as t; — 1 even if the assumption (G2) holds.

Finally, it suffices to note that Esup, S™ < oo and P(2\I'*7) converges to 0 as t;_; > a
converges to unit. Indeed, we have a.s. 51 < K; or S; > K and S, is near to S; if u > a
whereas p;, — 0 provided that a is sufficiently close to unit. It follows that we can apply
the Lebesgue theorem in order to have for t;,_1 > a

4
2
1 _pfi71 ] ~ C
E Sz 5, ¢ ° (S, 1,05 ) | lowrs < g€

b1,y

where €, — 0 as a — 1. So, we can conclude about the lemma because the difficult part is
solved.

In the same way, we can prove the following results:
Lemma 3.3.14. There exists a constant ¢ such that

cePh/4
(1—t:)%

Moreover, if a = 1/2, there exists a bounded function €(a) verifying e(a) — 0 as a — 1
such that
€(a)

EC;lttc 1aSt )

C

ECH,(fi1, 8, ) < SOz

ifti1 > a,i<n—1andn is sufficiently large.

Note that, in the case of the assumption (Gs), we also use the inequality:

q" (u) Cy
Fw? S 1= g(w)P?

26
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in order to have
ho e
pe — (L—1)?
Lemma 3.3.15. There exists a constant ¢ such that

)
ce pti/4

Ecimz(ﬂ; 1 gti_l) <

8
Pt;

Moreover, if a = 1/2, there exists a bounded function €(a) verifying e(a) — 0 as a — 1

such that c
e(a)

EC* (11,5, ) < W

ifticy > a, 1 <n—1 andn is sufficiently large.

Lemma 3.3.16. There exists a constant ¢ such that

o cePh/4
EC,(ti1, S ) < n2(/2=) (1 — ;)6 f/(t;)

Moreover, if a = 1/2, there exists a bounded function €(a) verifying e(a) — 0 as a — 1

such that c
e(a)

4 —
EC A=)

xmt(’vl 1 Stiq) <

iftic1 > a, 1 <n—1 andn is sufficiently large.

Lemma 3.3.17. There exists a constant ¢ such that

Ecimmz( i—1, Sti—1) < 12
Pt;
Moreover, if a = 1/2, there exists a bounded function e(a) verifying e(a) — 0 as a — 1

such that
1
e(a)

frt)?(1 =)

iftic1 > a, 1 <n—1 andn is sufficiently large.

EC4 (Nifla §ti71) <

TXXTT

In order to conclude about the main theorem of this chapter, we add the two following
lemmas, valid for & = 1/2 and used in Lemma 3.2.17.
Lemma 3.3.18. We have the following inequalities for j <n — 1:

1/2
(1 = )
Stj—1(Atj)2
(1—1;)?

|E(Bsgna;|Fy; )| < 5 (At)72,

E(67|F,_,) <

Proof. First, we prove that

1/2

|E(8js9n05]Fr; )| < 5 (At;)°2.

=17

For this, we note that
|E(Bjsgnoy|Fe; )| < X1+ Xy
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where

Xl == ’E (Stj_lazt(stj_l,tj_l)AthgTL(Oéj)'Ej_l)

)

Xy = )E <)?1 + X2 +‘5&/3|‘/th71>’7

o1 lws A (3 7 St i
X = §Stj,1cl“$w<5tj—17tj*1) -1 Sgn(aJ')?

~ ~ o~ ~ S
A = Si_lcxmt(stj-ntj—l)( k —1) At;sgn(a;),

X = 8, Con(Si, 1, E51)(AL)sgn(ay).

E S, 1
sgn Stj,l_ .

St 1
E — — 1| = ——=VAt; + O(At;).
sgn (Stj_1 ) o J (At)

By independence, we get that

-~

czt(stj,l,tj_l)‘ At

Xl - Stj,1

We recall that, from [12], we have

Then, we deduce that

const Stl_/Ql (At;)3/?

j—

1-— tj—l

(3.3.12) X1 <

We write B B B B
Xt=x'+x+x!

where, using the Taylor approximation, we get that

vl ls A Stj ’
X = §Stj710xm(5tjfl,tj,1) — 1) sgn(ay),

N 1 - Sy 2 ~
B = g a5 (1) somie) (S 5,0).

j—1

1 ol * * Stj ? ny
X = QSfj,lCmt(Stj,utjq) (? - 1) sgn(a;)(tj-1 —tj-1)

Jj—1

where t7_; € [tj_1,¢;-1] and 57| €[Sy, 4, §tj_1] are random variables. Recall the following
approximation from [12]:

E (Sfti — 1) sgn(o;j) = \/LQ_W(AQ)?’/2 + O((At)?).

Then, by independence, we easily deduce that

1/2
_ const Stj/_l(Atj)3/2

1-— tj—l

(3.3.13) )E(fﬂftj_l)

o8
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Since Sy | € [St;_,, 5], we deduce, from Appendix, that

< const 1 n 1
A= \sE s

j—1

‘me:m:(S* 17t; 1)

~ const 1 1
‘ -1 ] 1 (1 _ t]’)2 Sf/? 55/2

i1 tj

Then, using the independence of S, /.S, _, relatively to F;,_,, the Cauchy-Schwarz inequal-

ity and the property

j—17

E (Stj/Stj,l — 1)2m < const (At;)™, m € N,

we deduce that

3.3.14 B L AF )| < o 8,7 (At
(~~ ) ‘ ( b_l_ c| tjfl) =X (1—tj71)2

In a similar way, knowing that

(Stj/Stj_l — ) sgn Oé] |St /St

’ -~ ~ ~

Cz:l?t(St]'_17 tj—l)

we have

’E(f%]‘}]._l) < E é\mxt<5t] 19 J 1)

(Su/5,-0 = 1) Aty sgnlay)|F, )

< const 1 1

(1 — t.)3/2 3/2 + 3/2 | -
(1—¢y) S S
tj, tj

1

where

It follows that,

~, const Stlj/i (At;)3/?
(3.3.15) )E(X 7| S =

Finally, with the same argument, since we have

< const 1 n 1
ST-6r \s2 ")

1

Cotn(S, 1 1)

we deduce that

const S;_/_zl (At;)?

3.3.16 ’E )F )| <

( ) ( | t]—l) (l—tj_1)2

Then, from the inequalities 3.3.12,---,3.3.16 we can conclude about the first assertion of
the lemma.

For the second assertion, we follow the same reasoning. We get that
(ﬁ2|}} < const Z X;
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where:

Xo= S CQ(5117] 1)(At)?,

Xy = Sg 105:535(5% 17 ) (Stj/Stjq - 1)47
X3 = SS C:za:a:x(S: 1 ;k 1) (Stj/Stj—l - 1)67
Xy = Sf_lczzmt<5*7 1 ;k 1) (Stj/Stj—l - 1)4(Atj)27

X o= 8 C2(S, . ti)E(S, /S, , — 1)*(Aty)?,
XG = Sfilcgtt(st t] 1)(Atj)4'

j—17

From estimations of the successives derivatives of C, we obtain a constant ¢ such that:

S, (At:)?
X+ A& < el 2l t]_l( s)

(1=t °
CSt._ (At)?’
X+ Xs < a? e St
3+ A5 a—t,p
CSt._ (At)4
Xi+ X < e e St
1 (1—t;)*
Since we have for j <n —1,
At; At;
< const < const,
1— tj 1-— tj_l

we can easily conclude about the second assertion.

We consider
Hz) = P( 4 (L4 7272) (0 — 1% + ea(L 4+ n2)lm, — 1u?
Fer(L 4 ns Yt > Conltyy, )2, — 1\),

where 7, = e*~%*/2 ¢ ~ N(0,1) and
C = 4(Cl+"'—|—04),

Cilz) = <
i - é\xx(tj_l,l’)‘f?’/?'

We have the following result :
Lemma 3.3.19. There exists a continuous function F on RT such that

[(z) < F(N)ulgy@<n + los@sn

Proof. We can easily establish that [(z) is less than the probability
P@%@“%H%ﬁWm—W+O+mmeJW+(+mm)ﬂ>%%ww40
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It follows that I(z) < W + X +Y + Z where

W = (|77u—1|\05u)

X = P(n—1<C1+n")(n.—1)?%),
YV = P(In.—1 <Cs(1+n.5?)n, — 1ju?),
Z = P(ln.—1] <Cs(1+n,u).

We note that
2
e — 1 =™ -1 6 &> u/2

and
2 1K Nu? s €< %ln(]\fu2 +1) +u/2.
In a similar way,
1—e“ 2N e €2 %ln(—Nu2 +1) +u/2.
It suffices to analyse the case C5 < N. Then,
W< P(ln, - 1] < Nu?),
W < P(g <EL %ln(NuQJrl)—l—u/Z) +P<%1n(—Nu2+1)—l—u/2<§<u/2>,

In(—Nu?+1
W < Nu+’n( u—i—)\

We note
~ |In(1 — x)|

2€[0,1/2) T

In the case where u? > 1/2N, it is obvious that W < v2Nu whereas, if Nu? < 1/2, we
have (- Nu? 4 1),
n(—Nu”+1 ~
< K.
Nu?
So, W < Fi(N)u where Fy(N) = (1+ K)N 4+ v2N.
Always for C5 < N,

X
X

< P(LLCs(1+n,7)n, — 1),
< (|77u_1|/1/2N)+P(|7]u_1|27]15/2/2]\])'

Moreover, from the Bienaymé-Tchebychev inequality, we deduce a constant a such that
P(|n.— 1] > 1/2N) < aNu
whereas

22 /2N, m, = 1) + P (1 —n, = n2/%/2N,n, < 1),

P(n—1=n?/2N) = P(|n,— 1]
| > 1/2N) + P (1 —ny/? = /% /2N)

P(ln,—1=n/2N) < P(n.— 1

VoWV

WhereP(l % > 5/2/2N> P(n;5/2 >1/2N).
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But 772/2 ~ 635u2/87]5u/2 because & =" —£. So, we have

P(n*—1>1/2N) < P <635“2/8(775u/2 1) > 1/4N> 4P (635“2/8 1> 1/2N> a1 Nu
provided that u is bounded. Then, we can conclude that there exists a continuous function
F2 such that X < FQ(N)U if C5 < N.

It is easy to find a continuous function Fj such that Y < F3(N)u if Cs
Finally,

P (|0, — 1| < 2Nu*) + P (|, — 1] < 2Nu*n,/?),
Fi(2Nu? )u+P (|me — 1] < 2Nu*,m, > 1) + P (1 —n,

A
Z
Z 2F (2Nu*)u+ P (n2 — ny + 2Nu* > 0,7, < 1).

INCIN N

< 2Nuln i < 1),

In the case where v/ 2v2Nu > 1, we have

P (773 — Ny + 2Nut > 0,7, < 1) < \V/2V2Nu.
Otherwise 22 — 2 + 2Nu* = 0 holds if and only if

€Tr =

1++v1—8Nu?
5 .

So, we estimate:

_ — 7
P(nu<1 V1 8Nu><

5 P(n.— 1 >1/2) < asu

where ay is a constant. We have also

1++1—8Nu* 1 1+\/1—8Nu4
P nu/ 2 < P —111
Uu

— 1
P(%> 1++v1 8Nu) <

u

<
+2£

N

Uu
9 )

11 1+\/1—8Nu4
—1In
2 U
where
. 1 1++v1-8z?
K= max |—In
z€[0,1/v8] | T 2

Then, we have found a continuous function F}y such that Y <

Fy(N)u if C5 < N. We can
conclude about the lemma considering F' = F| 4 - - - + F}.
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Chapter 4

Functional Limit Theorem for
Leland—Lott Hedging Strategy

Leland’s approach to the hedging of derivatives under proportional transaction costs is
based on an approximate replication of the contingent claim using the classical Black—
Scholes formulae with a suitably enlarged volatility. The formal mathematical framework
is a scheme of series, i.e. a sequence of models with the transaction costs coefficients
k, = kon~® where o € [0,1/2] and n is the number of the revision intervals. The enlarged
volatility &, in general, depends on n except the case o = 1/2. If the parameter is oo = 0,
the approximation errors V' — Vp converge to a non-trivial random variable £. For the
case of call option where Vp = (Spr — K)7, it was shown by Pergamenshchikov that the
sequence of random variables n'/4(V* — Vi — £) converges in law to a mixture of Gaussian
distributions. In this chapter, we treat the case @ = 1/2 with non-uniform revision intervals
and a more general pay-off h(Sy). We show that the sequence n'/2(V? — V) converges in
law and calculate the limit. Our main result is an application of the theory of diffusion
approximation.

4.1 Introduction and Formulation of the Main Result.

We assume that the model is the classical Black—Scholes model under transaction costs
defined in Chapter 3 where the volatility is constant. The study of convergence happens
to be a mathematically interesting issue. The only limit theorem (in narrow sense, i.e.
dealing with the convergence of distributions) is the Pergamenchtikov theorem: for o = 0
and h(z) = (z — K)7T, the sequence n'/4(V]* — V; — &) converges in law to a mixture of
Gaussian distributions, [26] (see also [13]). The known exact rate (Chapter 3) for the L*-

convergence if & = 1/2 indicates that in this case the approximation errors multiplied by
the amplifying factor growing as n'/? also should converge in law. The aim of this chapter
is to show this property: for o = 1/2 the sequence of random variables X := n'/2(V;* —1})
converges in law. In fact, we prove a more general result on the diffusion approximation
which claims that the whole process X" := n!/?(V" — V') converges in law (in the Skorohod
space), and calculate the limit. We do this for the model with non-uniform revision intervals
and a general pay-off in the setting of Chapter 3 using heavily its results.
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Proof of Theorem 4.1.1

Put p? = ftl o2ds and V, = C(t, ).
Theorem 4.1.1. Suppose that the conditions (G1) or (Gs) and (H) hold. Then, the
distribution of the process X" = n'/2(V™ — V) in the Shorohod space D[0,1] converges
weakly to the distribution of the process

t
(4.1.1) X, = / F(t, S)dW!
0

where W' is a Wiener process and

Fltz) = [2f’t \[\/f/_m“( —%)

Note that the limiting process X is not a diffusion but only the second component of
the diffusion process (5, X).

1/2

Coult, z)2?.

4.2 Proof of Theorem 4.1.1

4.2.1 Preliminaries

First of all, we recall Corollary 3.1.2 established in Chapter 3.
Corollary 4.2.1. We have the following approximation for oo =1/2:

PV = V) = M+ e
where Mi* =3, Y + Z7 is a martingale with

2 —~
yr o= %nl/QCM(ti,l,s&,l)s@?l (At — (Wi, — W),

K3 7

~ 2
Zln = kOO-C:m:(tiflv Sti,1)51271 [\/;\/ At@ - |Wt¢71 - Wti

and E(sup,e?)* — 0.
In virtue of Lemma 3.31 p 316 in [16], it is sufficient to establish the functional limit
theorem for the process M".

4.2.2 Diffusion Approximation

For the reader convenience, we formulate a theorem on identification of the limit process
which is deduced from Theorem 4.3.5.

Let (Q,F,F) = (D[0,T],D,D = (D;):<r, @) be the natural stochastic basis constructed
on the Shorohod space of d-dimensional cadlag functions on [0,7] and let C[0,T] be its
subspace formed by continuous functions. We suppose that X = (X;)c[o,r] is the canonical
process X («) = a defined on D[0, T]. On this basis, we also consider:

(i) C = (C"); j<a a continuous adapted process with Cy = 0 and

C; — C is a symmetric nonnegative matrix for all s < ¢,
(77) the stopping time S,(a) = inf{t > 0: |a(t)| > a or |a(t—)| > a},
(i3i) C(a) = C.
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Let X" = (X}')i<r be a d-dimensional semimartingale defined on a stochastic basis
(Qr, Fr F™ P"). Let pu™ and (B™,C™,v™) be the jump measure and the triplet of pre-
dictable characteristics of X™.

H is a fixed continuous truncation function and we define

Cm’i’j _ Cm,i,j + (HZHJ) " — Esg,AB?iAB?’j.

We consider S” = S, 0 X", B(a)" = (B™)%, C(a)" = (C")% and v(a)" = (1")%.
Finally, we say that an increasing cadlag process B strong majorizes an increasing cadlag
process A , and we note A < Bif Ay, — A, < By — B,, Vs < t.

Theorem 4.2.2. Suppose that the sequence L(X™) weakly converges to a limit P, a
probability measure on B(D[0,T]) which only charges C[0,T]. Assume that for t € [0, 1],
a>0 and g € C1(R?)", we have:

(i) a) Bla)f —p0,
b) Ca)! — Cla) o X" —p 0,
) gxv

c v(a)i —p 0.
(17) P —a.s., ZC )" < F(a)
1,j<d

where s +— F(a)s is an increasing and continuous determinist function.
(7ii) the function a — Cy(«) is P-a.s. Shorohod-continuous on D[0,T].
Then, X s a continuous P-local martingale and its quadratic characteristic is given by

(X, X) =C.

4.2.3 Reformulation of the Problem

To apply the above limit theorem we need to reformulate our problem in terms of
semimartingales. To this end we consider the two-dimensional process X" = (X X?")
with

thn = Zstil[ti,thLl[(t)? X%n thnnl’

X = Z i <n—1

<t

where

Ur =Y+ 2

2
o ~
Y;n = 7”1/QCII(ti*1? Sti—l)StQi,1 [Atl - (Wtz - Wti71)2:|

and

~ 2 —
Zzn - kOUCmt(ti—la Sti—l)StQi—l [\/; At; — |Wt1 - Wtz’—1|

1C1(RY) is a set of positive and bounded functions vanishing in a neighborhood of the origin.
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We view the process X" as defined on the stochastic basis (2, F,F" = (F"), P) with
Fit = Fn  fort € [t} ,,t}[. We consider a fixed truncation function H(z) = z6(z) where
d(z) is a continuous function verifying 0 < d(z) < 1, 0(z) = 1if || < 1 and d(z) = 0
if |#| > 2. Then, H is clearly bounded and [6(z) — 1] < [jz>1. It is easily seen that the

triplet of predictable characteristics of X™ associated with the truncation function H is
(B™,0,v") where
Btn - Z E(H(Astﬂ Ui)|fti71)> 1<n—1

t; <t

v'([0,4] xT) =Y E(Ir(AS,, U F,,), i<n-—1

t; <t

The components of the matrix-valued process C? are as follows:

Crtt = 3T E((AS,)*(AX|F, ) — (B(AS,S(AXD)|F, )"

t; <t

Cil? = O = B(AS UGS (AX])|F, )
t; <t

—E(AS,0(AX])|Fi ) E(US (AXT)|Fi,_y),
Crt = 3 BURHAXDIFRL) — (BUSAXDIF, ), i<n—1

t; <t

We define the matrix process

t
C=Cta) = / c(s,as)ds, o= (o, )
0

where:

c(t,z) = (o)
(t,x) = H(t,r)=0,
A(tx) = F*(t,z).

We can observe that ¢ = ¢(t, ) is continuous in « for any t < 1.
For each T' < 1, we note YT the process which is the restriction of Y on the interval [0, 7]
and PT the unique solution-measure of the following sde:

dX} =  oX}dW,,
() dX2= F(t,X})dB,,
Xo= (1,0),t€[0,T].

where (W, B) is a standard brownian motion.
We describe the steps which lead us to prove Theorem 4.1.1:

Step 1: The sequence X™* is C-tight for all T € [0, 1].
Step 2 : The sequence X™! converges weakly to P* for all T' € [0, 1] .
Step 3 : The sequence X™! converges weakly to P = P

66



Functional Limit Theorem for Leland-Lott Hedging Strategy

4.2.4 Tightness

The process X" is a locally square integrable locale martingale. In virtue of Theorem 4.13 p
322 in [16], it suffices to show that the sequence of processes G™ = (X", X1n) 4 (X1 X?21)
defined on [0,77] is C-tight to conclude that the sequence X™ is tight. But Lemma 4.3.1
claims that G™ converges in probability to

G =(S,8) + / F2(t, S,)dt

0

uniformly on [0, 7. We can deduce that G", as a random variable from Q" to D[0, ], not
only converges in probability to G according to the Shorohod topology but also converges
weakly to G. So, the sequence G™ is tight.

Moreover, the continuity of G implies that the sequence G" is C-tight. Finally, because
of Lemma 4.3.2, we have P(sup, |AX]'| > €¢) — 0, Ve > 0 which implies, according to
Proposition 3.26 p 315 in [16], that the sequence X™ is C-tight.

4.2.5 Limit Measure
We choose the R% -norm defined by

2| = [(21, 22)| = Max(|z1], |22]).

For more convenience, we note X™? = X" where T' < 1. We shall apply Theorem 4.2.2.
From the previous step, we can assume that a subsequence of £(X™) weakly converges to
a limit P which only charges C[0,T].

The condition (i)a) is verified. Indeed, from Lemma 4.3.3, we have the convergence
P(sup, |B}'| =€) — 0.

In virtue of Lemma 4.3.4, we have:

¢
P (sup ‘C’f —/ c(s, X)ds
t 0

)

and we deduce that (i)b) is also verified.

Note that if g € C7(R?) then g is bounded and there exists a constant r such that
g(x) =0 for || < r ( see definition p 354 in [16]). Moreover, from Chapter 3, there exists
a constant ¢ such that

Aty)?
E(AS)*+ EU} < c (At) 5 < er(At)?.

(1= ty 1)

Using the Bienaymé-Tchebychev inequality, we deduce that (i)c) is verified.

We have P- a.s., S,(a) = inf{t : |a(t)] = a}. It follows that, P- a.s., |a(s)| < a if
s € [0, S,(a)]. It suffices to consider

d
F = o202 + ——
(a)s (aa —|—1_Ta)3
where d is a constant to conclude that (i7) is verified.
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Proof of Theorem 4.1.1

Recall that a sequence o, — a € C]0,T] according to the Shorohod topology if and
only if o, — « locally uniformly. Then, we can easily conclude that o — Cy(a) is P-a.s.
continuous and (i7i) holds.

From now on, we can conclude from Theorem 4.2.2 that X has for characteristic (0, C,0)
and it is a continuous local martingale. We consider the two-dimensional process (W, B)
defined as follows :

t
W = [ o,
Ot
B, = /F—l(u,X;)de
0

It is easy to prove that (W, B) is a standard Brownian motion in virtue of the Levy
characterization. Thus, X verifies the sde (S) and P = P7.

4.2.6 Identification of the Limit

We consider the mapping Ur : a — o from D|0,1] to D[0, T| where o’ is the restriction
of @ on D[0,T]. It is a continuous function according to the Shorohod topology (see
1.14 p 292 in [16]). We also define for any probability p on B(D[0,1]), the probability
pur(A) = u(r € A) on B(D[0,T]). We note Ar = 1 (A).

Then, it is easy to deduce that P} = PT. Furthermore, we have the following lemma:
Lemma 4.2.3. Assume that p is a probability on B(D|0,1]) which only charges C|0,1].
Then, for any compact subset according to the Shorohod Topology which is included in
C([0,1), we have:

n(A) = }Flgll pr(Ar).

Proof. We have pip(Ar) = E, lyrea, and p(A) = E,lyea.

If « € A it is obvious that a” € Ay. Hence 1,rca, — laca as T /7 1.

Suppose that a ¢ A and o € Az for an infinite family of 7' < 1. Since p only charges
C[0,1], we can assume that « is continuous. For each T', there exists &y € A such that
a{T) = o Since A is a compact subset, we can assume that limp 1 &) = & € A where @
is continuous. It follows that oy — o uniformly on [0, 1]. We can deduce that a(u) = o(u)
for any u € [0, 1[. We also have oy (T) — a(T)] — 0 as T' — 1 whereas a(7) — (1) and
am(T) = a(T) — «a(1) since a € C[0,1]. Finally, we have o = @ € A which leads to a
contradiction. Then, 1,7¢ 4, — laca i -a.s. and pp(Ar) — p(A).

We shall conclude about our main theorem. Assume that a subsequence of £(X™) weakly
converges to a limit (), a probability measure on B(D|0,1]) which only charges C[0,1]
since X" is C-tight. We deduce that £(X™7) weakly converges to the limit Q7, which is
a probability measure on B(D[0,T]) for any 7' < 1. From the second step, it follows that
Qr = PT = P} where Q and P = P! only charges C[0,1]. Lemma 4.2.3 implies that for
any compact subset of D|0, 1], we have the following equalities:

Q4) =QANC,1]) = lim @r {ANC0, 1]}7)
= lim PL{ANCI0,1]}7) = PHANC[0,1]) = P'(A).
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Recall that, for any o-finite measure defined on the borels of a polish space, we have
n(B) = sup {u(K) : K C B}
KeK

where K is the set of compacts. Then, we deduce that Q = P! and our main theorem is
proved.

Note that we can follow an other method to establish the proof of Theorem 4.1.1 [7].
For this, it suffices to use Theorem IX.3.39 in [16] where local uniqueness property holds
in virtue of Lemma 1X.4.4.

4.3 Appendix

Lemma 4.3.1. G converges in probability to the process
G =(5,8) + / F2(t,S,)dt
0

uniformly on [0,T].

Proof. Note that:

(X" X", =Y E((AS,)*|F,), i<n—1
t; <t

Using the independence of the increments of the Wiener process we have

<X1n Xln t_ZStQ Stl/Stz .= —O’ Z ti_ lAt + op 1)

ti<t ti<t
where 0,(1) is a sequence of random variables converging to zero almost surely uniformly
on [0,1]. Tt follows that (X' X'") — (S S) in probability uniformly on [0, T].
We have
(X°, X", =Y E(UF|F, ), k<n-—1
te<t

where the independence of the increments of the Wiener process gives us:
(4.3.2) E(U|Fi_ ) = F2(tp_1, S, ) Aty

Here, there is an abuse of notation since the conditional expectation gives a similar
expression to F' whose the only difference is the multiplier where t,_; is replaced by
tr 4 € [tk—1,tx]. We note

n—1

Fz(tv S) = Z Fz(tiflv Stifl)l]tiflyti](t)'

i=1
Then, we have

t
up \<X2”,X2“>t - [ Pssis

t 0

1
g/ |F2(t, X[™) — F2(t, Sy)| dt
0

which converges to 0, using the Lebesgue theorem. Indeed, it suffices to argue out of the
null-set S; € {Kj,---, K,} where a.s., we have C,,(s,5;)S? < const(w).
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Lemma 4.3.2. P (sup, |AX}'| >¢€) — 0, Ve> 0.

Proof. The mapping t — S; is a.s. uniformly continuous in [0, 1] whereas, almost surely,
there exists some constant ¢(w) such that

max Wy, — Wi, | < c(w)In(n)n /2

for n sufficiently large (see [20] ). Moreover, recall that a.s. Cly(t;_1, Si,_1)S;_ is bounded,
so the result follows.

Lemma 4.3.3. P(sup, |B}'| > ¢€) — 0.
Proof. Recall that 0(z) := 1 — §(x) verifies 0 < §(z) < I|z/>1. Moreover, we have

Bt = = E(AS,6(AX])|F, ),
tp <t

Bl = = E(US(AX])|F, )
tp <t

Then, in order to prove convergence in L', it suffices to estimate the following sum:

sup > E(JAS, |l s1y) < Y E(IAS, | URlgus1p)
tp<t tp<1

n—1

< S (B(As,)Y) ' (BUHY.

k=1
Moreover, we know (see Chapter 3) that there exists a constant ¢ such that

(Aty)?

2 4
E(ASy,)” < cAty,  EU; < A=t 1)

So, we can conclude that

sup Z E(A[Sy, | 1i,>13) — 0.

<t
The reasoning is the same for the other terms.

Lemma 4.3.4. P (supt cr — fo s, X™) ds‘ > > — 0.

Proof. If we note 8(z) := 1 — 62(x), we have also 0 < 6(z) < I;z>1. Then, we have

Gt = ST E((AS)AFL) — B ((AS,)5(AXD)|F, )

t; <t

— (B(AS,0(AXM)F. ), i<n—1
where we have already proved that

Z E ((ASy,)?1F,_,) — [S, S]; uniformly in probability .

i<t
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Furthermore, we can use the arguments of the previous lemma and the Jensen inequality
to prove the uniform convergence in L' to 0 of the other terms. In a similar way, we have

C~’1tn’272 = Z E(UE’Ftifl) - E(UZQS/(AXIZ)’ftzfl)

t; <t

— (BUS(AXD)|F, ) i<n—1

where

t
ZMWWJH/W@HW
0

t; <t

uniformly on [0, 1] according to Lemma 4.3.1. The other terms converges uniformly to 0 in
L' as previously.

4.3.1 Identification Theorem

We formulate a theorem on identification of the limit process suggested in [16] which is a
little more general but adapted to our purposes.

Let (Q,F,F) = (D|[0,T],D,D = (D;)i<r, Q) be the natural stochastic basis constructed
on the Shorohod space of d-dimensional cadlag functions on [0,7] and let C[0,T] be its
subspace formed by continuous functions. We suppose that X = (X;)¢cjo,r] is the canonical
process X («) = a defined on D[0, T]. On this basis, we also consider:

(i) B = (B");<q a predictable process with finite variation, over finite
intervals and By = 0,

(ii) C = (C");;<a a continuous adapted process with Cy = 0 and
C; — C is a symmetric nonnegative matrix for all s < ¢,

(iii) v a predictable random measure on R x R? which charges neither
[0, 7] x 0 nor 0 x R such that(1 A |2?]) * v,(w) < oo,

/V(w,t x dr)H(z) = ABy(w) and v(w,t x R?) < 1 identically,
(17v) the stopping time S,(a) = inf{t > 0: |a(t)] > a or |a(t—)| > a},
(vi) B(a) = B, C(a) = C% and v(a) = v°.
H is a fixed continuous truncation function and we define
C™ = CW 4+ (H'H?) % v — X« ABIABY,

Let X" = (X}')i<r be a d-dimensional semimartingale defined on a stochastic basis
(Q*, F* F" P") such that X = X is a constant. Let ™ and (B"™,C",v") be the jump
measure and the triplet of predictable characteristics of X™.
We consider S” = S, 0 X", B(a)" = (B™)%, C(a)" = (C™)% and v(a)" = (v")%.

Finally, we say that an increasing cadlag process B strong majorizes an increasing cadlag
process A , and we note A < Bif Vs <t, A, — Ay, < B; — B,.
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Theorem 4.3.5. Suppose that the sequence L(X™) weakly converges to a limit P, a
probability measure on B(D[0,T]). Let D be a dense subset of [0, which is contained
in J(X)¢ where

J(X)={t>0:P(AX; #0) > 0}.

Moreover, assume that for eacht € D, a > 0 and g € C1(RY), we have:

(i) a)Bla)i = Bla)io X" —p 0,
b)é(a ( )tOX —p 0,
C)g*’/() (Q*V())OX —p 0.
(i1) —a.s., Z VarB(a)' 4+ C(a)™ + g * v(a) < F(a)
ij<d

where s +— F(a)s is an increasing and continuous determinist function.
(i33) the function a — By(a),a — Cy(a), and

a — g* () are P-a.s. Shorohod-continuous on D|0,T].

Then, X is a P-semimartingale with characteristics (B,C,v).

Proof. According to [16], we introduce necessary ( but sophisticated) notations in order
to apply Theorem 2.21 page 80:

X, = X,— ) [AX, - H(AX,)],
s<t
Vi = X|— B, — X,

/

X" = X[ =) [AXY - H(AXD),

s<t

Vo= X" - B — X[

Note that X™ = X’ o X™. Recall that Cy(R?) is defined page 354 in [16] as a subclass of
all continuous bounded functions from R? to R vanishing in a neighborhood of the origin
and having a limit at infinity. Moreover, C}(R?) is defined as a subclass of Cy(R?) having
only nonnegative functions which contains all functions g,(z) = (a|z| — 1) A 1 for all
positive rationals a, and with the following property: let 7,, n be positive measures on R?
which do not charge {0} and are finite on the complement of any neighborhood of 0; then
() = n(f) for all f € Cy(R) implies 7, (f) — n(f) for all f € Cy(RY).

For a fixed g € C,(R?), we define:

ZW = ViVi- (Y,
th = ZQ<AXS)_9*V157
s<t
A I, v 0 Ve 5n,i,j’
N = > g(AXT) =g
s<t

We can claim that V™ is a local martingale. Indeed, since X™ has (B",C™,v™) for triplet
of predictable characteristics, we use Theorem 2.21 page 80 in [16] where, in virtue of 2.4
page 76, we have

X"(H)=X"—X"(H)=X"
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We deduce that
MM(H)=X"(H)—-B"— Xl =X"-B"—X"=V"

Note that the jumps of X”(H) are bounded. Hence, X' is a special semi-martingale. In a
similar way, because of Theorem 2.21, M"(H)'M"™(H)’ — (' is a local martingale. Then,
Z" is a local martingale.

Taking C*(RY) = C;(R?) where C*(R?) is defined by 2.20 page 80, we deduce that for
any g € C1(R?), g u*" — g ™ is a local martingale. But, recall that

P (w,dt, dx) = " Iaxpzo0saxy(dt, dz).

Hence,
gt (w) = [ g @it de) = Y g(AX)
[0,t] xR s<t

and N™Y is a local martingale.

In order to prove that X is a P-semimartingale with characteristics (B, C, v), it suffices,
in virtue of Theorem 2.21 page 80, to verify the following conditions:

(a)V is a local martingale,
(b) Z is a local martingale,

(c) N9 is a local martingale.

Condition(a). Since we can choose a sequence T™ € D converging to oo, it suffices to
prove that for any 7' € D, V7 is a local martingale. But, since we also have S,(a) — oo

as a — oo, we shall prove that My = V}},7,5., 2 =1, -+ ,d are local martingales.

From (i7), we deduce that there exists K > 0 such that P-a.s., é%iASa(a)(a) < K. Let
define the stopping time

We shall apply Proposition 1.12 p 484, which is a corollary of Theorem 1.4 p 482, with
Yr=X" M= V:f\% asnarns Y = X and M. The needed conditions are fulfilled. Indeed,
Y™ is cadlag, and 1.4(i7) is verified: £(Y™) = £(X") — P = £(X) = L(Y). We shall prove
that M™ is a uniformly integrable martingale, i.e. 1.12(i’) holds. First, we recall that M"
is a local martingale. Moreover, from 2.4 page 76, V" = M™(H) comes from the canonical
decomposition of the semi-martingale X" (H) whose the jumps are bounded. It follows from
Theorem 4.24 page 44 that V" has bounded jumps ( as B"(H)) and is a locally square
integrable martingale: there exists a sequence of stopping times RP increasing to co such
that V™ € H,. We can choose RP such that Z"#" is a uniformly integrable martingale.
Then, from

2
TL,’L’L RP _ n774' RP TL,ZZ RP
ZT/\SZ,}/\T” - (VT/\SQ/\T"> - CT/\SQ/\T”
we deduce that
n,i RP 2 ~n,ii RP
E VTASgATn = ECT/\S(TLL/\TTL < K + 1+ const.
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The latter inequality comes from the definition of the stopping time 7™ and the fact that
the jumps of C* are bounded by a constant which only depends on H. Indeed, recall that:

én7i’j — Crn,i,j + (H’LH]) * " — ZsSABgﬂAB?J

where C™%/ is continuous, B” = B"(H) has bounded jumps, as already shown, whereas:

IA(H'H)) x| = lim / H'(z)H’ (z)v"(w,ds, dx)
2t | J)p ) xRd

< Ov'(w, {t} xRY) < C

where C' is a constant ( see 1.17 page 76). From now on, using the Doob inequality, we
deduce that

2 . 2
E (sup Mt") < 4F (V;/’\ZSIZLPAT”) < const

t<RP

and finally, as p — o0,

2
E (sup Mt”) < const.
¢

Then, M is a uniformly integrable martingale: (1.4(7)) replaced by (1.12(i')) holds.

We shall prove that (1.4(ii¢)) holds. First, we prove that the mapping o — X, 7,5, (@)
is continuous where

XI; = Xt - Z [AXS - H(AXS)] :

s<t

Recall that x — h(z) = 0 on a neighborhood of 0. Using Theorem 2.8 p 305 we deduce that
the mapping

QHZAX H(AX,(a))

is continuous. Moreover,

Xinso () (@) = a(t A Sy(a)) = a®(t) = Xy(a™).

It follows that X/, g (@) = X/!(a®). According to the proof of Proposition 1.17 page 485,
the following sets

vV o= {a>0:P(a:a€V(a)) >0},
Vo= {a>0:P(a:aeV'(a))>0}

are at most countable, and we recall that:

V(a) = {a>0:8.(a) < Sur(@)},
V(@) = fa>0:Aa(S.(a)) # 0 and |[Aa(S,(@)-)| = a}.

Then, we choose a out of V UV’ in order to have for each fixed a:
Pla:aeV(a)uV'(a))=0

74



Functional Limit Theorem for Leland-Lott Hedging Strategy

and we apply Proposition 2.12 page 305 which claims that the mapping @ — o is

continuous at each point « such that a ¢ V(a) U V'(a). We deduce that, P-a.s., the
mapping

/ . Sa / Sa
Xt/\T/\Sa ra—a — X p(a™)

is continuous. Indeed, from what precedes, it suffices to note that ¢t AT € D where
D C RT\J(X). It follows that, P-a.s.(a), Aa(t AT) = 0 and using Theorem 2.3 page
303, we deduce that the mapping o — «a(t) = X;(«) is P-a.s. continuous.

In a similar way, we can claim that the mapping o — Bjaras, (@) is P-a.s. continuous.
For this, it suffices to apply Theorem 3.42 page 511 and Proposition 2.11 page 305. From
all what precedes, we can conclude that for any t € D, & — M;(«) is P-a.s. continuous
and (1.4(¢ii)) holds.

We shall prove that (1.4(iv)) holds. In virtue of the hypothesis (4)b,

;’/Z\ZsaoXn - Cii“i/\sa o X" —pn 0.
Moreover, recall that P-a.s., 5%\511(&)(04) < K. Then,
P <~;’/iisaoxn > K+ 1) — 0

as n — o00. In virtue of Proposition 2.17 page 79, O™ is an increasing process. It follows
that lim,, P*(T" < T) = 0.
Moreover, on the set {T™ > T}, we have:

n o o 7 n n,i n,i
M = Viaras,oxr = X, (X )_Bt/\T/\s;; - Xo",

Myo X" = Viprps, 0 X" = g/i\:r/\sa (X") — Z/\T/\SQ(Xn) - X;.
It follows that,
M — Mo X" = BZ/\T/\SG o X" — B:XiT/\Sg + X — X(;L7i'

Recall that, by convention (see page 3), AXy, = X; — Xo_ = 0, AX)" = 0. Then
0 € R"\J(X) and, according to Proposition 3.14 page 313, we can assume that X — Xy
where X is the canonical process (by hypothesis, we also have noted X = Xj). Finally,
using hypothesis (i)a, we can claim that (1.4(iv)) holds. Then, applying Theorem 1.4 page
482, we conclude that M oY is a martingale, i.e. Vi \;rg, © X is a martingale. Since X is
the identity process, it follows that Vi ;.. s, 1s also a martingale and finally, we deduce that
V' is a local martingale.

J,T'ANSq

Condition(b). In a similar way, we shall prove that Z* is a local martingale. We

consider a constant K such that P-a.s. (a),

inTAS, () + CtZ;\T/\Sa () <K
and the stopping time
T = inf{t: CM%, 4+ CM9, > K +1}.
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Appendix

We shall apply Proposition 1.12 p 484 with Y™ = X", M} = Z&iT’];lATASn,Y = X and
M, = ZZ’AjTASa. First, we prove that (1.12(i’)) holds. We note that, as for (a), we have

uN AM,iJ
Ct/\T/\Tn/\Sg; + C, it arma Sn < const

and we recall that ' ' o

My = Vt%“"ATAS;; ‘/tY/L\’TJ’"/\T/\Sg - C[X?’/\T"/\Sg'
Moreover, in virtue of Lemma 3.34 page 382, there exists two constants K; and K, such
that

. 4 ~ .. 2
ESlip ( tr/l\’;’"/\T/\Sg> < (Ky + K) \/E < t/(T/\Tn/\Sg)

where

7 = sup AV TrnTass (w))
W

is bounded (see previous remark for (a)) and

M, _ ng 1/n
IATAT™ASE — <V vV >t/\Tn/\T/\Sgo

We deduce that

4
n,i
Esgp ( t/\TW\T/\S:;) < const

and using the Cauchy—Schwarz inequality:
nﬂ: 2 Tl,j 2
E Slip Vinranrasn | \Vinrnarasy | < const.

It follows that
Esup (M]")? < const
¢

and M is a uniform integrable martingale, i.e. (1.4(7)) replaced by (1.12(i")) holds.
We shall prove that (1.4(ii7)) holds. Recall that

My = tZ/\T/\SaV;]/\T/\Sa - ZXT/\SG
where we have already shown that the mapping a — V.5, Vo s, (@) is P-a.s. continuous
(see (a)). But, in virtue of Theorem 3.42 page 511, we can claim that the mapping

NZXTASa(a) is also continuous. Then, (1.4(44i)) holds.

We shall prove that (1.4(iv)) holds. We also have lim,, P*(T™ < T') = 0. Moreover, we
have

o —

M — Myo X" = tT/L\fF/\Tn/\Sg < t?\%/\T”/\S{; - Vti\T/\& © Xn)
+‘/;Z\TASG o X" ( tT/L\bi“/\TnASg - V?/\T/\Sa °© Xn)
+5Z}{T/\Sa o X" — 6’&%@"/\53'
We have already shown that (VZL\} ATTA Sg)t is uniformly integrable and

n7j J n
( tATATPAS? Vinras, © X ) —pn 0.
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Functional Limit Theorem for Leland-Lott Hedging Strategy

It follows that

TL,Z’ n?j J n
tAT AT AST < tATATPASE Vinras, © X ) —pn 0.

Moreover, on the set {T™ > T}, we have P-a.s.
n,t i n __ % n n,i
tATATAST Vinras, © X" = Biapps, © X" — Bt/\T/\Sg

which converges to 0 in probability according to the hypothesis (i)a). Always on {T" > T'},
we have:

j n __ ] n n7j nvj
Virras, © X" = <V;t/\T/\Sa o X" — tATASg) + V;t/\T/\Tn/\S{;

where the first term of the right hand side converges to 0 in probability, whereas the second
term is uniformly integrable. Then, we deduce that

J n n,1 i n
Vinras, © X <Vt/\T/\T"/\Sg — Vinrns, © X ) —pn 0

Finally, using the hypothesis (i)b), we deduce that M} — M; o X™ —pa 0 and the condition
(1.4(v)) holds. We can conclude that Z* is a local martingale.

Condition(c). We shall prove that M; = N/,;,.s. is a local martingale. Recall that
there exists a constant K such that g * vp,g, < K. We consider
™ = inf{t:gxv)q > K +1},
y" = X" Y=X, M'=N}}

tANTASDAT™

We can write

n o __ n n
M = E g(AX]) — g * VinTASE AT
SSEATASE AT
X" n
= g*(p* —v )tAT/\SgAT"»

n

= QI[O,T"/\T/\SZ}] * (,UX - Vn)t

where gljo rnprasy) 18 P-measurable. Then, according to Lemma 4.3.6, we have
C(g[[o,TnAT/\Sg})t < gQI[O,T"/\T/\Sg] * U < 92 * VZLATn/\T/\Sg

where C'is defined in 4.3.6. Moreover, g**1], . xypsn is bounded on [0, 7"[ whereas, because
of the bound of g, we have:

G AV — G F V= / G ()" (w, {T™(w)} x dx) < const.
Rd

It follows that C(gljormarasn)e < const and using 1.33 p 73, we have
(M™, M™), = C(gliornarasn))e < const.

We can conclude that E(M")? = E(M", M"),, < const and (1.4(i)) replaced by (1.12(:"))
p 484 in Proposition 1.12 of [16] holds.
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Condition (1.4(77)) is naturally verified. In a similar way as for (b), (1.4(i7i)) holds.
Moreover, on the set {T™ > T}, we have

n n _ n,g g n
M = Mo X" = Nt/\T/\S{; — Niaras, © X

= g*UViaTnS, © X" — g * Vipras,
which converges, by hypothesis, to 0 in probability. Then, (1.4(iv)) holds and we can

conclude, using Proposition 1.4 p 482 in [16] that N is a local-martingale. Finally, we can
conclude about Theorem 4.3.5.

Recall that, if W is P-measurable, we define C'(1) by the formula 1.31 p 73 in [16]:

CW)e = (W = W) xv+ > (1 - a,)(W,)?

s<t

where a, = v (w, {s} x RY) € {0,1}.

Lemma 4.3.6. If W is P-measurable, then C(W) is also given by the formula

CW)e=W?aw — Y W2

s<t
Proof. According to Proposition 1.14 p 68,
D = {(w,t) : v (w{t} xRY) =1} = {(w,t) : a(w) > 0}
is a random set. Then, for each fixed w, the set {t : (w,t) € D} is countable and according

to 1.14,
W => W(s,B)In(s) =Y W(s,B)as

s<t s<t
where (3 is an R%valued optional process. Moreover, we can write
CW)y=W?suy, —2WW sy + W2y, + E W2 — E asW?2
s<t s<t
where

W2 sy (w) = / W\Q(w,s)u(w,ds,dx),
[0,t] xR

/W(w, s) = W(w, s, z)v(w,{s} x dx).
Rd
Since /W(w, s) = 0 if ag = 0, we deduce that

W2 « (w) = Z/V[?fas

s<t

and in a similar way, we have
WW sy, =Y W2
s<t

So, we can conclude about the lemma.
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Chapter 5

Leland’s Approximations when
the Volatility 1s not Constant

In the previous chapters, we have applied the Leland method to pricing contingent claims
under proportional transaction costs in the case where the volatility parameter, for the
better, depends on ¢, the current time. From now on, we take interest in the model where
the volatility varies also according to the price of the risky asset and we prove that the
convergence in probability always holds if « €]1/4,1/2] under reasonable assumptions.

5.1 Theorems

We consider the standard two-asset model with the time horizon 7' = 1 assuming that it
is specified under the martingale measure. The non-risky asset is the numéraire, and the
price of the risky asset is given by the stochastic equation

dSt = StO'(t, St)th

where W is a Wiener process. Note that S is a strictly positive and continuous martingale
verifying, in virtue of Theorem 2.3 p 107 in [10],

E sup S?™ < 0o, ¥m€R.
te[0,1]

We assume that o(t, x) is a strictly positive and continuous function on [0, 1] x R* verifying
O<o<o(t,r) <o

where g, @ are two constants.
In the model with proportional transaction costs and a finite number of revisions, the
current value of the portfolio process at time t is described as

t
(5.1.1) V=V / H2dS, = kaSy, |HYy, — HY'|
0

i<t
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Theorems

where H™ is a piecewise-constant process with H™ = H!* on the interval |t; 1, t;], t; = t7,
t < n, are the revision dates, and H are F;, -measurable random variables. We assume
that the transaction costs coefficient is

(5.1.2) k=ky=kon ™, a€]l/4,1/2],

and the dates t; are defined by a strictly increasing function g € C?[0, 1] with g(0) = 0,
g(1) = 1 so that t; = g(i/n). Let denote by f the inverse of g. The “enlarged volatility”, in
general depending on n, is given by the formula

(5.1.3) G (t,x) = o*(t, ) + o(t, 2)Ya(t)

where

() = ka2 /87 F(0).
We shall use the following hypothesis on the "cadence" of revisions:
Assumption (G): ¢’ > 0 and f” is bounded.

We use the abbreviations ﬁt = @(t, S;) and ﬁt = am(t, S;) where C is the "Leland
Strategy" defined later by the PDE

() = { Cilt,x) + 562t 2)a*Con(t,x) =0, (x,1) €]0,00[®[0, 1]
C(l,z) = h(z), z€]0,00].

Of course, we define H]" := ﬁti—l'
Our hypothesis on the pay-off function is as follows:

Assumption (f[ ): h is a continuous function on [0, co[ which is once differentiable except
the points Ky < --- < K, < --- where b’ admits right and left limits. Moreover, h verifies
the Lipschitz condition |h(z) — h(y)| < L|x — y| (A’ is bounded).

Now, we give some hypotheses on ¢ in order to ensure the existence of a solution for
the following PDE (e) (ko = 4 is sufficient for our needs).

Assumption (E): There exists some positive constant K such that for 1 < k < kg

a) |o(t,x) —o(t',2")| < K (Jz — 2| + [t =1']),

) 2 ot 2), Lo(t, x) are contin
50 (1:2), 5.0(t,x) are continuous
k 2 2
k
O [t gzotta| + | ot + |5t < &

d) o(t,x)+ xo.(t,x) = const >0

We shall prove later the following results:

Theorem 5.1.1. Assume that o €]1/4,1/2] and the conditions (E), (G), (H) hold.
Moreover, suppose that Cy, = 0. Then, V" converges in probability to h(S).

Theorem 5.1.2. Assume that « = 1/2 and the conditions (E), (G), (H) hold. Then, V"
converges in probability to

h(Sl)+% /0 o(t, S)y(t)S?2 (am(t, S) — |Cualt, st)y) dt

where (t) = ko\/8/m\/f(1).
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Remark 5.1.3. In the case where o =1/2, C does not depend on n.

Remark 5.1.4. In the case where h is conver and o does not depend on t, we can prove
that Cp >0 (Lemma 5.6.7).

5.2 The Leland Strategy

In the Black—Scholes model, the hedging portfolio is C'(¢, S;) where C' is the solution of the

PDE
f Gitx) + 0%t a)aCu(t,z) =0, (2,1) €]0,00[x[0,1]
(e")‘{cu,x) — h@). @ €l0,]

It exactly replicates the contingent claim h(S;) and verifies:
t
C(t,Sy) = Fh(S1) —|—/ Cr(u, Sy)dS,.
0

Under transaction costs, Leland suggested in his famous paper [21] to substitute the
volatility o by an artificially enlarged one, o. The idea is to consider the following PDE

(o) = { w(t,z) + 0%t @) 2ug,(t,z) =0, (x,t) €]0,00[®[0,1]
w(l,z) = h(x), z€]0,00]

and to define & in order to take transaction costs into account. Precisely, the Ito Formula
implies that the possible smooth solution C' of (e) verifies

¢ ¢
C(t,S;) = C(0,5) +/ Cy(u, S,)dS, + %/ [02(u, S,) — 72(u, Su)} S2C.(u, Sy)du.
0 0

Then, C may be a portfolio process as defined above provided that the last term of the
right hand side of the previous formula corresponds to the transaction costs, i.e. we want
to make equal the two following increments :

% (02, Su) — 321, Su)] S2Cra (s Su) At = — ko |Gt + At Sup ) — Cotts 82)| St e

For this, we write

Co( 4 Aty Suynn) = Col, Su) = Corltt, Su) Ay + Co (U, S4) (Sucy au — Sa)
= aa:x(ua Su) (Surau — Su)
where
Sutnu = Su = 0 (1, Su) S Wt auw — W) -
Assuming that ém > 0, we deduce the equality

1 u+Au
5 [0'2(’11,, Su) — (/7\2(u, Su)] Au = —koniao_(ua Su) ’WquAu - Wu’ ng_A :

Then, considering the conditional expectation knowing F,, the fact that
2
E‘WAU| = \/AU\/j,
s
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and
Su+Au

Su

we obtain, considering only the main terms, that

=1+ o(u,Sy) Wyraw — Wa)

1

2 ~2 —a 2
3 [0 (u,Sy) —7*(u, Su)} Au = —kon U(“)Su)\/A_u\/;.

But, from u = ¢(t) we deduce that Au = ¢'(t)At = ¢'(f(u))At where At = 1/n. So, we
can conclude that

2 (u, Sy) = o*(u, S,) + kon'/?— \/ga(u, SOV f(u).

Proposition 5.2.1. Under the assumptions (E) and (H), the PDE (e) has a unique
solution.

Proof. Note that we can’t immediately conclude about the existence of a solution for (e)
because our operator is not uniformly parabolic on |0, co[®][0, 1[. That’s why, we shall bring
the problem back to one for which the domaine verifies the needed uniform parabolicity .

In virtue of Lemma 5.6.1, we consider the unique solution §x,s(t) of the stochastic
equation defined on [s, 1] for all s € [0, 1] by :

{d@,s(t) = 5t Sp(1)S,s(t)dW,
Sys(s) = =

verifying
E sup SZ,(t) < C*(1+2?)

ERA

where C* is a constant. We define g(z,t) = Eh(@c,t(l)) which verifies

const (1 + E\S’\M(l)o < const (1 + (Egit(l)ﬁh)

l9(z,t)] <
< const (1 + |z|).

Since h’ is bounded, we obtain, using the Cauchy-Schwarz inequality and the Lipschitz
condition verified by h, that

lg(x,t) — gy, u)| < L\/E <§x,t(1) - §y,u(1))2.

From Lemma 3.3 p 112 with Condition (A’) p 113 [10], we deduce the existence of a
constant C'g such that

lg(z,t) — g(y,u)| < Cr/(z — y)? + |t — ul

if |z|, |y| < R. It follows that g is continuous.
Using the notations of page 138 [10], written for ¢ replaced by 1 — ¢, we consider the
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following sets for m € N*:

Qu = |- mlx]0,1],

B = | mlx{1}

To = | mlx{0},
1

Sn = {—m}x [0,1]

For each y € dQ, it is easy to observe that there exists a closed ball K" such that
KN Qm =0 and K" N Qn = {y}. Then, the function W, proposed p 134 [10] defines
a barrier for each y € S,, C 0Q,,. At last, we have g(z,t) = Eh(@c,l(l)) = h(z) if
(z,t) € By NS,,. We can deduce that, under the assumptions (E) and (H), the Dirichlet
problem

w(t,z) + 30%(t, )2 um,(t,z) =0 (z,t) € Qm U T,
(Dm) { w(T,z) = h((x) x € By,

u(t,z) = g(x,t) (x,t) € Sy,

has a unique solution u,, according to Theorem 3.6 p 138 [10]. Indeed, g and h are
continuous whereas, (),,, being bounded, the following condition holds:

5°(t, x)2” — 3°(t,T)7°| < const(m)|z — 7.

We note that u,, is assumed continuous on (),,, whereas the derivatives are continuous on
Q. UT,,. Moreover, we also have

|5°(t, x)2” — (1, 7)7°| < c(m) (lo — T + |t — 7).
Then, Theorem 5.2 p 147 [10] asserts that u,, has the representation
um(xvt) = Eg(é\x,t(T)vT)[‘r<1 + Eh(§ ( )) =1,

where h(z) = g(x,1) and 7 is a stopping time. It follows that u,,(x,t) = Eg(gm(r), 7).
But we have

~

9(Sup(7),7) = Eh (§§z,t(7),7(1)>

where we have clearly §§M(T)’T(1) = §x7t(1). It follows that u,,(x,t) = g(z,t). Finally, we
can deduce that we have a unique solution u(z,t) = g(z,t) to the PDE

(o) = { u(t,r) + 16%(t x)2 ug(t,r) =0, (z,t) €]0,00[x][0,1]
uw(l,z) = () x €]0, 00|

l\DIl—\

Indeed, from what precedes, it is easy to show that g verifies (e). Moreover, if we consider

v(t,y) = u(t,e?), then we deduce easily that v verifies the following uniformly parabolic
PDE

{ v(t,y) + % 2(t, e¥)uy,(t, y) —%Eg(t,ey)vy(t,y) =0, (z,t)eRx[0,1]
v(l,y) = h(e¥), z€eR.
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It suffices to apply Corollary 4.2 page 140 [10] to conclude to the uniqueness of the solution
v. Hence, u is also unique.

From now on, we define the Leland Strategy as the unique solution C(¢, z) of (e) given
by:

(5.2.4) C(t,z) = Eh(S,,(1)).

Let define

~

A(t,z) :== (0(t,x) + 20,(t,x)) o (t, x)

and, in virtue of Lemma 5.6.2, we consider the solution §m,t of the sde:

{éig)i

(4, Spg (1)) S0 (W) AWy + A, Sy (1)) Sy ()l

8 Q)

Then, we have:
Lemma 5.2.2. C,(t,z) = EI (%(1)) .
Proof. We write:

C(t,z) — Ct,xg) = FEh(S,,(1)) — Eh(Sy,.(1)),
d

Cltor) = Cltaan) = B [ o (Seoal1) + n(50a(1) = Suoa(1)) di

Since h' exists out of a countable set, we can claim that

~ ~

C(t,z) — C(t,xq)

T — 2o

dp.

'l - - Se(1) = Sy (1
= [0 (Bagu0) + (Bea(1) = Sy (1)) ZA =Bl
0 T — o
Under the assumption (E), we apply Theorem 5.12 p120 [10] and we deduce that

0S.+(1)/0x exists in the L* sense, i.e.:

Sea(1) = Suga(1)  9Supa(1)

in L2
T — Xo ox

Indeed, it suffices to verify that Condition (A) page 108 [10] holds for the sde of Lemma
5.6.1. First, we have |o(t, z)z| < const |z| and secondly:

lo(t,x)r —a(t,2)z| < |o(t,z)| |z —Z| +|T (6(t,x) — o (t,T))|

where
o(t,x) —o(t,T) = 0.(t,x0)(x —T), w0 € [x,T].

Then, we write:
[z (@(t, ) —o(t,7)| < [o(t,x) =5 (t,T)| [T — x| + [200a(t, o) |2 — 7|

where, from
20,(t,x)o(t,x) = 20,(t, x)o(t, z) + Y (t)ou(t, )
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we deduce that |z¢0,(t, x¢)| is bounded. It follows that there exists a constant ¢ such that
forall z, =
lo(t,z)r —a(t, )| < c|lx —T|.

Since o, is continuous, Condition (A) is well verified.
Furthermore, we have:

85,4 (u) /
or L ¢

)

=)

(s, x,t(5>) 8§z,t(3)

5 (s, §m(s)) ox

which is a strictly positive martingale ( see Lemma 5.6.3). Note that, as in the proof of
the next lemma, we claim that the distribution of §x0,t(1) is of density relatively to the
Lebesgue measure. It follows that, out of the null-set S’\IO,t(l) € {K, : p € N}, we have
almost surely:

/0 W (§x0,t(1) + (S e(1) — §x0,t(1)) d — 1(S,y4(1))

provided that x,, is sufficiently near to xy and x,, is a subsequence such that

~ ~

Spnt(1) = Segi(1) _ 08uga(1)

7

a.s.
T — X ox

Since A’ is bounded, it follows that

93,,(1)

Calt,x) = BN (Se0(1) =5

Finally, we note dP = %dP in order to have

Co(t,z) = EN(S5(1)).

The Girsanov theorem ((5.1) p 190 [20]) asserts that the process

P / A (5.8:4(9) N

t o (s, §xt(s)>

~

is a standard Brownian motion under P. Moreover, S, ; verifies the sde

-~ ~ ~

dS, 4 (u) = G (u, Sy (1)) Sy o (w)dBy + A(t, Sy (1)) Sys(u)du.

)

Since & and A are bounded, the sde admits a unique strong solution, hence a unique weak
solution. We can conclude that C,(t,x) = ER/(S,4(1)).

Lemma 5.2.3. We have:

Co(t, x) :/ h'(e)T*(Inx,t, z,1)dz

(e 9]
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where T*(x,t, z,7T) is the fundamental solution of the operator:

1 (t )8_2+ (t )24_2
9 %a\l g 2 T O TG T 5y

with

~ 1
Git,r) = A(te”) = 55°(t€").

Proof. We define 7, ¢(u) = In S +(u) which verifies the following sde:

{dﬁz,t<u) = a\a<u>ﬁx,t(u>>qu+a\b(uaﬁx,t(u))du
ﬁm,t(t = T

Indeed, it suffices to apply the Ito formula to exp(7,.) where 7, is the solution of the
previous sde. According to Lemma 5.6.4, 7,.; is a Markov process of transition density
function I'*(z, ¢, z, 1), the fundamental solution of the operator:

Loat o) 16y 0) 2 +
2“ x(?? b x@m

a.
This means that:
P(Mpi(u) € dz) =17 (x,t, z,u)dz

and it follows that
Co(t, z) :/ B (e’ )T*(Inx,t, 2,1)dz.

—00

5.3 Estimation of the Derivatives of [™.

In all this section, we suppose that the assumptions (E), (G) and (H) hold. Let define for
0<7<t< 1, I'(z,t,2,7) =T"(x,1 —t, 2,1 — 7) which is the fundamental solution of the
operator:

1,\2 0? g 0
2a(l t,x >82+0b(1_tx)8x pre

By definition, I' is the function such that, for every continuous function f, we have:

%82<1 - t,ac)aa—;F(x,t,z,T) + a-\b(l - t,$>%F<$,t,Z,T) - %F(I,t,,&T) - 07

ffooo D(x,t,z,7)f(2)dz — f(x) ast | 7.

There exists some estimations of the derivatives of I' [11] but, unfortunately, they are too
imprecise for our needs because of & depends on n. That’s why, we propose to repeat the
calculus of Chapter 9 [11] in the case where av < 1/2. In order to be clear, we shall specify
with brackets the indexation of [11] if necessary.
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5.3.1 The Parametrix

For more convenience, we note >(1 — t,x) = 02(t,z) and 7,(1 — t,2) = 03(t,x) which
won’t have impact on the result. We first construct a fundamental solution Z(z,t,&, ) for
the parabolic system:

w1y, 0% 0
[21] . E = 50'(1(25)@ + O'b(t)a—x

We associate the following linear ordinary differential equation:

2.2] : % = (—%Ag(t)Cz + 8;;(15)(@') v
v(T) = 1.

Obviously, we have

o(t, ¢, ) = exp { [ —53ee+ a,<s><z'ds} .

From the hypotheses, we deduce some strictly positive constants m and M such that for
n sufficiently large:

mn'/?7 < o2 < Mn'/2e,
mn'/?=* < G, < Mn'/?®

We deduce that for g > 0,

, mp; Mp7
Iv(t,a+zﬁ,7)|<e><p{— PLa 4 ptﬁQ—mplﬁ}
and for 6 <0,

T M T
[u(t, a+i8,7)| < exp {—%oﬂ + 2 - Mpm} .

where p] = n'/2=%(t — 7). We define the fundamental solution as follows:

1 [ .
24]: Z(zt.67) =5 / e 9y(t,a, 7)do
™

From [11], we have for all 3

1 oo )
Z(x,t,&,7) = %/ e OFB @y (¢t o 4 i3, 7) da.

oo

It follows that there exists a constant ¢ such that for 3 < 0,

|Z(x,t,6,7)| < ——e PO+ MoT 8 -Mpi5

Pt

So, choosing
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we deduce that

1 . 2
|Z(x,1,€,7)| < &exp{—g(jM_;mﬁMpz) }

In the case where =1+ ]3\34 > 0, we write x — & = Mp] 3 — Mp; and we deduce that:

Z(.t,6.7)] <~ exp {%Mp: (—5% +2(1 - m/M)ﬁ)} |

c
Vo7
Moreover, for 5 > 4(1 — m/M), we have

32 +2(1 =m/M)B < =5°/2.

So, in all cases, we can deduce that

4Mp]
(5.3.5) |Z(2,t,6,7)] < ceﬁ exp {——Mp ﬁQ}
t
ce*Mri 1/ ax—¢ 2
Zlx. t < —— — | —= M pT .
| (J}, 7577—)| \/p—z— exp{ 4( Mpz- + pt)

In a similar way, if £ > 0, there exists a constant ¢, such that

o _ 2
(5.3.6) [2.5]: |DEZ(x,t.6,7)| < C’“ejfﬂ exp{—1 ( it Mpz) }

(o7 5 \vMp;
Indeed,
1 o0 . .
D’;Z(x, t,&,7) = Py / [i(a + Zﬁ)]k gilatif) (=), (t, (o +106),7)da
7T —Oo
and
ol edMp] 1 c2etMpi 1
Dz e < B gt exp {——Mpw} € exp {——MW}
\/'0_ 4 (Pt) ER 4

5.3.2 The Parametrix for Equations with Parameters

We consider the fundamental solution Z(x — &, t,y,7) for the parabolic system (with y
fixed):
ou 1 0?

2.1] 5% 2 CH( ?J)a—+0b(t y)aa

From the previous section, we deduce the following inequalities:

(5.3.7) [3.3]: D" Z(x — &, t 7‘)|<Ck64MpteX L (28 | g 2
.O. . . z ) 7y7 X (pz—)kJrl p 5 \/M—p[ pt

where ¢, is independent of y. In a same way, we have:
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Lemma 5.3.1.

DFZ(x — &t o Gee =& i)
’ Y (‘T 57 7y77—)’ ~ (pT)% exp 5 \/W + Pt
t

Proof. First, we can easily show that for p > 1, there exists a constant ¢(p) such that

p

<ep) 3 (o7 (a2 + B2+ o] +18))) v(y, t, 0 + i, 7).

=1

or ,
(538) a_ygjll](yv t,a+ 7’67 T)

Moreover,

1

o0 , ok
27T / 62(a+lﬁ)(m_€)a_yk’v(y’ t, o + Zﬁ7 T)dOé

Then, taking 5 =1+ (M -, we deduce that

DiZ(x — &ty 7) =

1
|D§ (x =& ty,7)| < < const e*MPi exp{—ZMptTBQ}E(k)

where

N(k) = Z [( (s;)tl/z + ()[;32)“/2 + (pt2>1ﬂ/2 + (pt)wl/ﬁz‘ ] :

Pl (o7 (p7 (i

Using the fact that |X le=XI'is bounded, we can conclude about the lemma.

5.3.3 Construction of the Fundamental Solution; the Cauchy

Problem
We note I'(x,t, £, 7) the fundamental solution of
0 1 0? 9,
1.6]: — —
[1.6] 8tu(t r) = 5 o2(t, 95)8 5+ 0u(t, x)&zc

From [11], we have

[4.4] : T(z,t,&,7) :Z(x—f,t,f,T)—l—/ /OO Z(x —y,t,y,0)P(y, 0, 7)dydo

where, for ¢ = a + i3, we define

O(x,t,&,1) = X2, Ki(x,t,&,7),
1 0? 0 0
Kl(a:at?gaT) = |:2 a(t l‘)%‘i‘@'b(t x)ax §:| Z(I_£7t7£77>7
Kk($,t,£,7—> = / / Kl(x7t7y7J)Kk—1<y70-7€7T)dydo-'
Note that
Kl(x7t7£ 7— = __/ Zc(z t I) -0, (t 5)} §2U (€7t7§77—) do

+27r - ezc(:c 3) [o‘b(t .l’) - O'b(t g)] v (f t, ¢, T )d .

We have the following inequalities:
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Lemma 5.3.2. There exists some constants c;, for 0 < k < ko such that

ok Cknl/z—aegmpg 1 ( x—¢ >2
—— s &Xp —= +/ Mp] .
' () * 6 \vM t

Ok
Proof. We have, with ¢ = o + i3,

Ky(x,t,&,1)| <

o k-1 < ak—p )
- kK (r,t,€,7) = ZC / P2 gis(e—¢ Waa(t,x)v(f,t,gﬁ)da
p=0 -
k—1 oo 8k—p
+ZC / P gis(@—) 8xk7p8b(t,x)v(§,t,g,7')da
p=0 e

o0

+c c’“” o (G2t x) — 52 (L, €)) v Ly s, T)dor
+d / @O (G, (1, x) — Gy (t, €)) (€, t 6, T)dar

where ¢, d are constants whereas C%, 5,’; are some constants depending on p and k. From
the hypotheses, we deduce that there exists a constant ¢ such that

G2t ) = Ta(t, &) < en'* 0w g,
[Gy(t,2) = Gy(t,€)] < en'P e —&l.

Furthermore, we have

o 52 1
3. G 25 < /2o
(5.3.9) P “(t,x)| + ppC op(t,x)| < c(k)n

‘ k

where c(k) is a constant. Indeed, recall that z* -2 " o(t, ) is assumed bounded. Always using

—&
ﬁ =1 + P
M pj
it follows that:
ak o —1 T T
‘%Klﬂr,t,&m) < (k) n!/Pmoems MAFHAMA (53(p) 4 ©y)
where
k—1
1 p+1 pt+2
Ep) = [ ez e T WT' 2 T WJ 7z |
p=0 (p7) (p7) (p7) (7)
1 1
Or = T i T B+ 1852,

7\ (k T
(/)t )( o (Pt)

Indeed, in order to dominate the last two terms of the previous sums (for p = k), we use
the inequality
|X|e_b(%+“)2 < const (b) (a + a?)
with X = z—¢ and a = /M p]. From now on, it is easy to conclude using the boundedness
of | X e~ X1,
Moreover, we have:
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Lemma 5.3.3. There exists a constant ¢, such that:

5MpT 2

cpe’M P 1 Y

< HE B (S Mpr ) 4.
— eXp{ 6( N pt)}

Proof. First, we deduce easily from the hypothesis, that

k

‘@Kl(‘raty_’_va)

v(y,t,a+1iB,7)| < cpf (& + B° + |a| + |8]) [v(y, t,a + i3, 7)]

0
dy
and we can estimate the successive derivatives in a similar way. Indeed, it suffices to use
5.3.9 in order to obtain 5.3.8. Moreover, we can find a constant c¢(k) such that
A 2
Oulh2,y) = 5 [F2(t,) = 32(t, 2 + )]
verifies |04 (k, z,y)| < en'/2~%|y|, and analogously,

k

Gb(kwxay) or a9k [

O'b(t l‘) b(t,:c—i—y)]

is such that |©,(k, z,y)| < cn'/?%|y|. Secondly,

P = - o
Sty +a,7) = EZ%/'ﬂmknwk@Mﬂﬂﬂﬂ
p=0 e
- .
L - CP fiqy@ k 2 ap
+%Z k € b( —p,ilf,y)g a_ypv(y—i_x7t7g77—)da
p=0 >

where ¢ = a + 3. We deduce that

'—Kl(x ty+x,7)

«xW%WﬂmZ/ a+m+m+mﬁ oly + 2.1, + i6, 7)| dav

Then, if 5 < 0 ( the case § > 0 is similar ), we deduce that

k kE p
‘@Kl (@, t,y +2,7)| < c(k) P aMoP Mo 120y N TN o0, 308, 7)
p=0 I=1
where
Y A 141
p(n, B,1,t,7) = (/)t)l/ (@ + 6% +lal +[8])" ly + z,t,5,7)| da.
We choose (= Y and we can deduce that:

Mpj

ak T T
lﬁiKmLty+%T)<cw”2ﬂmeiM”2“M”E%)
T
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where

P 7! 7! 2042 3|+l
S (k) = Z ) i (r?) ( t) B 4 (p7) 1B

T l Tl T
el 0779 RN 07/ Kl (18 (o7)"?

Since | X|e~¥l is bounded, we can replace 3 by 1/1/p7. Finally, we use the inequality
lyle P FD* < const (b) (a + a?)
with a = /M p] in order to conclude about the lemma.

We write now Ks(x,t,&,7) = Koy (2,t,&,7) + Koo(x,t, &, 7) with:

T+ 5 o]
K21<:U7 ta 5? T) = / / Kl('xa t? Y, U)Kl(ya g, 57 T)dydO',
t o)
K22<x7t7€77—) = / / Kl(x7t7y+x7o-)Kl<y+x707€77—)dlyd07

after a change of variable in the second integral. Using the two previous lemmas, we obtain
the following inequality:.
Lemma 5.3.4.

1/2—a , TMp] 1 _ 2

cEn e x—E& —

( )*’“31 P {_? (\/M_pT + Mpt) }
i t

Koo (x,t,€,7) is equal to

‘—Kg.l?tf, )

Proof. First, 2 5

@k P op
/ / K1 (x,t,y + x, O')a pKl(y+x,a,£,T)dydU.
t—7 7' T

Using the function f of Lemma 5.6.6 with a = v Mn!/2= we obtain that K22 (x,t,&,7)

is bounded by
k 1/2 «a 5Mﬂt f(tomz,2+y,£)/6
k)z (nl/2-) (p+2) /2/ t— T/ (t—o) )(p+2)/2dyd0'

p:0

Note that o > 7+ (t — 7)/2 implies that ¢ — 7 > (¢ — 7)/2. Then, we use the change of

variable
-y

v Mpi

and we deduce, using the first assertion of Lemma 5.6.6 , that

k 1/2 abMp] 1 x_é‘ 2
W)Y e o (e Mp7>
(p7)* Y { 7(VMpt t

p=0

z= +/ Mp?

ak
a—KQQ(x t f,

since

! d
 _d
rtst VE—oyVo =T Y
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is bounded.

We obtain a similar inequality for %Kgl(:v, t,&,7) but in this case, it’s not necessary
to use a change of variable. Then, we can conclude about the lemma.

Following the same scheme, we shall obtain inductively some constants u,; > 6 such
that:

Lemma 5.3.5.
o Cr n1/2_ae“p,kMPZ 1 T — "S 2
— K (x,t,&,7) < =2 — exp ——( + M T) .
‘595’“ 2 ) ()" ups \vVMpj 4

Proof. We know that the lemma holds for p = 1,2. Assume that it holds for any £ and

1,---,p—1 where p— 1 > 2. We note
Ky(x,t,&,7) = Kl (x,t,&,7) + K)(%,t,£,7)

where

ak T+ 00 ak
%KS(Z}@&,T} :/7— 8—K1($,t,y,O')Kpfl(y,O',f,T)dydO'.

In virtue of the previous lemmas and the first assertion of Lemma 5.6.6, we obtain some
constants c(k,p) and u,; such that ‘ P K5 (r,t, &, 7‘)‘ is bounded by the product of the

two following terms:

T 1 Xr — 5 2
c(k, p)etrMet (pl/2—e 2exp e ( + MpT)
(hepetr T ) e = g+ VA

/T+/OO exp { a7 (0= ©)/v/ Moy + /Mp3)"}

(nl/2=a(t — 0))(k+2)/2 (nl/2=o(g — 7_))(4 p)/

and

Sdydo.

In the present case, we use the property

1 < const
(ni/2=a(t — o)) B2 = (p12-a(s — 7))E+D/2

After the change of variable
y—¢
MpT

(e

+ v/ Mpg,

it suffices to estimate

T+ 55—
/ 2 do E— < const (n1/2*a)(17—3)/2 (t — 7_>(p,1)/2_
T (n1/2=a(g — 1)) "

It follows that ‘ F K5 (1,1, &, 7')‘ verifies the inequality of the lemma. In a similar way,
Z Kb(x t,&,7) is equal to

5kj o7
ZC’J/ . / P Ki(x,t,y+ , U)ax K, 1(y+x,0,& 7)dydo.
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Choosing a constant
§=0,"k

using the induction hypothesis and the first assertion of Lemma 5.6.6, we deduce that
Kb(x t,&,7)| is bounded by the product of the

there is a constant c¢(k,p) such that

837’“
two following terms:

S 1 — 2
il (i)

Up \vVMp;
and
k 1 (o] 5 2
b e exp{—m((fc—y)/\/Mpt +V/Mp7) }
(53.10) ) / a / e i dydo.
pEniiaRs 0 (t—o)(n (0 —71))

From now on, we take in consideration the fact that

1 < const
(n1/27a<0. _ T))(j+3—p)/2 = (nl/Q*O‘(t B 7_))(j+3—p)/2

and we use the change of variable

in order to dominate 5.3.10 by

k
const 5 - .
a +3—p)/2
= n1/2 _ ) ) (§+3-p)/

Then, from the boundedness of | X |e~*|, we deduce that %Kg (x,t,&, 1) also verifies the
needed inequality and we can conclude about the lemma.
In particular, we can easily find an increasing sequence a; > 6 such that:

2
1/2-a (ax— ) Mp] 1 ( r—& T)
CkM e 2 exp{ —— + /M .
k { ar \/Mp7 P

We deduce inductively that there exists a constant Bj, such that:

Kiys(w,t,6,7)| <

ak
o

Lemma 5.3.6. %ngﬂ(x,t,fﬂ')‘ is bounded by
(Bk)p+1n1/2_o‘ (ptr)p/Z e(arz%)MPZ 1 x—¢ iR 2
exp —— .
T(1+p/2) P 7w \VTpp pi

Proof. We shall argue by applying a double induction, i.e., we assume that the result is
true for 1,--- ;& — 1 and for any p, and we show it for k. For this, we know from the last
remark that the lemma holds for p = 0. Then, by induction, we assume that it’s true for
1,---,p and we shall prove it for p + 1.
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: 1 2 Hhe
We split Kiy3ipr1 as Kz, + Kiysyp,y g withe

8k T+5— ak
@K11+3+p+1<x7t7€>7—) = / / %Kl(xat7yaO-)Kk+3+p(yao-7£a7—)dydg'

From the previous inequalities and the induction hypothesis, it follows that there exists
is bounded by

a common constant ¢, independent of p such that ‘%K&+3+p+l(a§, t,&,7)
the product of the two following terms:

(B k+p+1e(ar§k)Mp{ nl/2—o)? 1 _ 2
(Bo) ( ) exp __(x f—i— Mp{)

I'(1+ &) ar \v/Mp]

and

iz (A=) (=) M7+ /3077 -
[ e (67)"+ dydo.
(p7) 2

Moreover, we have t — o > (t — 7)/2 and ¢ — 7 < (t — 7)/2. Then, we obtain from
the last integral, after a change of variable, a constant d; independent of p such that

gk Kg+3+p+1(:v, t,&, 7')‘ is bounded by the product of the two following terms:

dka(BO)kerHe(akaik)Mpg (nl/Qfa)lJr%
(1 + k2 exp
2

1 [ x—¢& 2
—— + M

ay (VMpt pt) }
and

! . . 1 1
/ (0 = M)t~ 0) o = (¢ )T+ Dyr)ma+ 210,
We use Lemma 5.6.5 and we choose B), such that

B, > max{?ckdkBg, By}.

It follows that ‘%K}i+3+p+1(])7 t,&,7)

Brti,1/2-a L 1 _ 2
BT % ) exp 4§ —— ( T8 + Mpt) .
F(l -+ PT Qg \/Mpt

is dominated by

k .
Furthermore, %Klz-l—?ﬂ—p-i-l(x? t,&,7) is equal to

k—m

-
ZC‘“ / - / Kz t’?”$’U>WKk+3+p(y+$,0,5,T)dyda-

In order to use the induction hypothesis, we write

k+3+p=(k—-m)+3+p+m
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if m # 0. So, we deduce a constant ¢ independent of p such that

Ok Kk+3+p+1 (z,t,€,7)

is bounded by

k
S ereun 2 (B P (o)™ e M (n2) "2 00k, p)©F (m)

where

7% (x—y)/~/ Mp§+ ) v
“k,p) = /tT/ - (0 —71)2dydo
e Mpi 1 (o€ 2
Q'(m) = ————— —— Mp7
" r<1+p—zm>eXp{ o (e ”)}

and @, = 1/6 — 1/a;. Using the boundedness of |z|™e ** | we deduce a constant f
independent of p such that (ptT)m/2 exp {—Mp[/Zk} < fr- So,

’ a k Kk+3+p+1 (.1', ta 67 T)

is dominated by

K
p+1
Z crdper [xn'/ 2™ (Bl )P (n1/27Y) 2 e —w MG 0°(k,p)0° (k)

m=0

where

ya
2

¢

~ (o0 —1) e

0%k = d
<7p) /.,-+t27' ,—t—o' JF(l—}—p—'—Tm)

So 1 (x—¢ -\
©°(k) = eXp{_a_k(\/M_p[+ Mpt> }

Thus, it is enough to choose By, verifying

k
By, > max {4 Z crdier fr(Br—m)™; 4cpdrer fi; Bo, - - 7Bkl}

m=1

in order to obtain that ‘ o i K s (2,16, 7')‘ is bounded by

B, )P+2 1/2 e p+1 (ak—ik)MPtT 1 _ 2
(B e L L (2ot ),

I(1+ 2 ar \vVMpj{

We conclude that the recurrence is well verified for p and finally for k. Indeed, we can
initiate it by reproducing the last reasoning when k& = 0.
Henceforth, we can deduce the following result:
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Lemma 5.3.7. There exists some constants Ay, > a;, and C), > 0 such that:

3’“ C’knl/Q*O‘eAkMptT 1 x—¢ 2
R e N AR Y

(p7) *

Proof. Recall that
(z,t,&,7) ZK (x,t,&,7)

So, we write:

8k
al‘k (CL’ t § T) <21+22
where
k+2 ok
21 = ; %Ki(l',tg,T) s
ak
¥y = pe o Kiaip(2,1,6,7)]
p=

Using Lemma 5.3.5 we deduce that

k+ 1/2—a quMp _ 2
CkiM t 1 xr—£
Z = exp{—m,k (e +v7) }

Then, it is easy to find some constants Ay, C} such that
1 C’knl/Q_O‘eAkM”tT i £ 2
Y1 < = — Mp? :
o i (g VA
Finally, in virtue of Lemma 5.3.6, we have, up to a multiplier constant c(k),

nl/QfaeakMp[ 1 T _5 o0 P/2
NP =
2N T ()R eXp{ ar, ( Mpj ) Z I 1+ p/2

p=

N

because .
(o7) 4972 exp { M } const ().

Moreover, using the Stirling formula

[(1+x)~ (g) 2rx, T — 00

and splitting the sum in the right hand side of the last inequality in two parts ( p € 2N or
not), we deduce a constant ¢ such that

0 10/2 .
< Brpy
> U < cosplBign)

and we can conclude about the lemma.
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Lemma 5.3.8. We have some constant A, such that
CeeMet 1 [z—¢& 2
< NS exXp _A_ o -+ M,Oz- .
(p7) 2 k P
Proof. Recall that:

[4.4] :T(x, t,6,7)=Z(x — & t,&,7) + T(x,t,&,7)

‘ k

@F(Q?, t, 5, 7')

where
t o]
T(xutvé-uT) = / / Z(:C - y7t7y70-)¢(y70-7€77—)dyd07
= THa,t,& 1)+ T, 8,6, 7).

We have
k T+% 00 ak
—Tl(.T,t’é,T) = / / WZ<$ _y7t7y70-)(1)(y70-7£77—)dyd0-'
T —o00 0T

Using 5.3.7 and the function of Lemma 6.2.11 with a = vV Mn!/2-* we deduce the existence
of a constant O} such that ’—Tl(x, t,&,7)

is bounded by:

T (, A
O AMPT 12~ a/ z / exp{—f( U;xyg)/ o}
p7) 2 Py
and finally

k
‘ ozk

CreoMpi
Tl(a’:7 t’ 67 7—) < k

T+2 1
er )

From now on, it suffices to use Lemma 5.6.6 and the boundedness of | X |e~1¥I to conclude
that there is a constant Aj; such that:

CeAxMe} 1 ( x—¢§ 2
—T (x,t,&, ‘ ———————expR —— +/Mp} :
‘ K { A \VIIF t

Using the change of variable x — y = 2z, we deduce that T2(x t,&,7) is equal to:

Ia(l/AO)dU

k—p

ZC’P/ / B Z(z t,x—z,a)%q)(x—z,a,g,T)dyda.
t—7 T y T

Applying again the last change of variable and Lemma 5.3.1, we obtain that TQ(QE t,&,7)
is bounded by

c(k)eAkMpz—nl/? a / / eXp{ f t 0, 7,2, Y, £>/Ak}dyd0'
Ti5T

)(k p+2)/2

O'
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Then, we use the change of variable

y—2¢§
MpT

g

+ v Mpj
and the first assertion of Lemma 5.6.6 in order to have
AR Mo} 1 x—& 2
<ol - _T( + /A ) |

From the two previous inequalities and 5.3.6, we can conclude about the lemma.

’—TQZ'tf, )

Since we have:

2
D(0,1,6,7) = 530025 5T (0 1.6, 7) 4 Bt ) T

at axQ ax ('1.7t7 577-)7

we easily deduce from the previous inequalities the following lemma.

Corollary 5.3.9. There exists some constants Cy and Dy, such that:

g Gy /20D 1 (o—¢ ;
—TI'(x,t < - Mp? .
axkat ('x? ’577_> (p{)% €xXp Dk ( + pt)

5.3.4 Conclusion

We note:
pr(t) =n'*(r = 1)

where t € [0, 7[. From the previous inequalities, we get the following
Lemma 5.3.10. There exists some constants Cy, and Ay such that

2
3k CeeMpr(t) 1 x—£
r,t,¢, S— g &Py~ | ———+ VMp(t ;
ZER pr(t) A\ /M. (1) "

2
ak_H Ckn1/2—a€AkMpT(t) 1 T _f
x,t, &, T < expy —— | ———+/ Mp,(t
'6‘ rgrt (e P ()% "1 A \Varm e

5.4 Estimates

5.4.1 Explicit Formulae

Recall that, in virtue of Lemma 5.2.2, we have :

[e.9]

(5.4.11) Co(t,z) = / B ()T (Inx, t,y, 1)dy

—0o0
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and by the change of variable z = e¥, we obtain:

e o0 h/
(5.4.12) Cult,x) = / Ej) [M(lnz,t,1nz, 1)dz,
0

~ 1 R (2) 0,
(5.4.13)  Cuult,z) = ;/o 7£F (Inz,t,Inz, 1)dz,
oo hI(Z) 82

z 0%z

~ 1A 1
(5.4.14) Crpu(t,z) = —=Cuolt,z) + —2/ Moz, t,Inz, 1)dz,
T z? J,

(5.4.15)  Cu(t,z) = / MéF*(ln z,t,Inz, 1)dz,
0 z Ot
. oo 1/ 2
(5.4.16) Cou(t,x) = /o hiz) %F*(lnx,t,ln z,1)dz.

5.4.2 Inequalities

For all the sequence, we note
pi=n'?0 (1= 1).

Lemma 5.4.1. There exists some constants A, C' > 0 such that:

R CeAr?
5.4.17 Cxw t7x < M
( ) (t,2) o
~ CleArt
L= Py
~ CeAri
(5.4.19) Cult2)] < ——
N C 1/2—a Ap?
TPy
R Cnl/Q—aeApf
5.4.21) waat (8, 0)| < ——5 5
( : z2pf

Proof. From Lemma 5.3.10, it follows that there exists some constants C', A such that

~ Apt oo 1 /1 2
me(tv ZL‘)) < Ce / —CXPy — n(x/Z) + P dz.
zpi Jo 2 A\ p

Considering the change of variable

In(x/2) N

y=———+n

Pt
verifying dz = —p,zdy, we obtain that

~ eApt 0 y2
Cm(t,x)) < const / e Ady
Trpe J_

[e.9]

and the result follows. The same reasoning gives us similar inequalities for the other
derivatives.
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Leland’s Approximations when the Volatility is not Constant

Note that the exponential term in the previous formulae is embarrassing if o < 1/2.
That’s why, for o # 1/2, we put together revision dates in intervals whose the breadth is
comparable to 1/n'/27% We fix: j_; := jo := n, and for 1 < p < p,, we define inductively

o s 1
Jpi=Jy =mini: i =t — e
until the last term tj,. verifies:

1 2

nl/2—a < by, < nl/2—a’

Moreover, we define t;, ., :=t; _, := 0. We consider the number N(n) of sub-intervals
of [0, 1] generated by the sequence (t;,)p—0,... p,- Since there exists a constant c such that

At; < en~!, we deduce that for n > ng large enough, we have

1

tjp B tjp+1 > W'

It follows that N(n) < 2n'/2-,

Lemma 5.4.2. Assume that o # 1/2. There exists a constant C independent of n and p
such that for allp=0,--- | p,, we have:

Gt )| < C o+ 1A+ o).

Proof. We shall argue inductively. The result is true by hypothesis with p = 0. So, we
suppose that ‘a(tjp, $)‘ < C(p+1)(1+||) and we prove it for p+ 1. It is obvious that C
is the solution of the following PDE:

(eP) — { Cit,x) + 36%(t,0)a*Cn(t, ) =0, (x,1) €]0,00[x[0, ;[
C(t;,,x) = hy(z), x€]0,00]

where h,(z) = a(tjp, ) verifies |hy,(2)| < ||7'|| because of Lemma 5.2.2.
From 5.2.4, we have

~

a(t]'p-Q—l’ x) = Ehp(sxijp_‘_l (t.jp))

and

~ ~

Cltiyr2) = Cltyo2)| < I |3

m’tijrl (tjp) — T|.

Moreover,

is such that:

~

2
t
s, <t><2x2+2< / a(u,sz,tw<u>>sx,tjpﬂ<u>qu)-

Jp+1
P+ tn

It follows that there is a constant ¢ such that:

t
(t) < 22° + 20n1/2°‘/ ES?

Tty 4
t p+

(u)du.

Ip+1
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Proofs of Theorems 5.1.1 and 5.1.2

The Gronwall lemma implies that:

ES2, (1) <22 (14"t}

Tlip i1

We deduce the inequality
Cltyy) = Bty )| < Bl
where C is a judicious constant. It follows that
Oty )] < Clp+2)(1 + Ja)).

Since C is the solution of the PDE (eP), with the essential inequality
1 (@) ] < 1A oo,

we deduce from Lemmas 5.3.10 and 5.4.1 the following result.

Corollary 5.4.3. Assume that o # 1/2. There exists a constant C such that for any
p=0,--,py, and t € [t;, ,,.t; [, we have:

(5.4.22) Coe(t, )] < ¢ ,
x\/nl/%a(tjp —t)
~ C
4.2 t < ,
(5.4.23) Caas(t, 7) it/ (t; —t)
~ C
(5.4.24) Cu(t,z)] < ;
t;, —t
~ C
5.4.25 Corat (2, < )
( ) i(t, ) a1, — 1)
~ C

x2nl/2-a (tj — t)zi

p

5.5 Proofs of Theorems 5.1.1 and 5.1.2

We essentially present the proof for o < 1/2 because for a = 1/2, the latter is similar but
more easy since we don’t need to introduce the sequence (t;,)p—o,.. p, and use Corollary
5.4.3.

We recall a classical result, representing the difference V" — h(S;) in a convenient form.
Lemma 5.5.1. We have V" — h(Sy) = F]" + F} + F3* where

1

(5.5.27) F' = / (HP — F,)dS, — klHY — H |5,
1 1 n—1
(5.5.28) FI' .= 5/ o (t, S) () S7|Coa(t, Sp)ldt — k> |H — H}' | |Sy,,
0 =1
n 1 ~ ~
(5.5.20) FI = 5/ o (t, St (C’m(t,St)—|Cm(t,St)|) dt.
0
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Leland’s Approximations when the Volatility is not Constant

Our objective is to prove that Fi, F, converge to zero in probability.
Lemma 5.5.2. We have P — lim F' = 0.
Proof. 1t is obvious that k,|H]' — H]' |S;, — 0. So, we note

F' = / — H,)dS,,
0

. 1

Fln - / Ht dSt

with:
tp—1 T R R 2
/ ZEJ (t,S,)82 (Cx(ti_l,StH)—Cx(t, St)> L,y e (t)dt
and

~ tn—1 ™ ~ ~
E (Fln)2 < const /0 ; ES? (Cm(ti,l, S, ) — Cult, St))2 L,y 0 (B)dt.

Note that for a < 1/2

tn—1 T R R 1
/t Z Eﬁ‘s’t2 (Cx(ti—h Stifl) - Cz(ta St)) l]tl 15t }( )dt < const W — 0.
=1

J1

Otherwise, since |6x(t, Sy)| < ||B']], it suffices to prove that for each fixed t < ¢,
respectively ¢ < t,_1 if a = 1/2,

~ ~ 2
ES? (Coltion, Si)) = Calt, ) — 0
and apply the Lebesgue theorem. Using again this latter, it suffices to prove that a.s.(w),
Coltior, S y) = Calt, S1) — 0

since sup, S7 is integrable. The case a = 1/2 is obvious because C does not depend on n.
Otherwise, we have:

~

Co(tir, Si ) — Colt, S0) = Cor(0;, Sp, ) (tis — £) 4 Cag(t, ) (S, — Si)

where 91 € [tifl,t] and §t € [Sti—u St]

From the condition ¢, < t < t; < t;,, we deduce that there exists m, verifying
the inequality ¢;, ., < t;-1 <t < t; < t;, < t;, . Indeed, it suffices to choose
my, = max{k > 0 : t;, > t;}. Then, from Corollary 5 43 we deduce some constants
c1, ¢y such that:

k

~ At;
|Cmt(9iasti_1)(ti—l - t)| < A 0
Jmp 1 g
with )
2
bima o =012 i
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Proofs of Theorems 5.1.1 and 5.1.2

It follows that:
n1/2—o¢

— 0.

|a$t(6i7 Su_)(tici —t)] < e

In a same way, there exists a constant ¢(w) depending on w € 2 such that:

n

- ~ S, -8
Coalt, 5 (Sh, — S1)] < c(w) 7 ‘/ i 25 )i, — S,
e, 1)

But, from [10] page 112, there exists a constant ¢ such that

nt?re RS, | —S8)? < ent?TAt < en®”V?2 0.

~\2 . \2
Then, we can conclude that £ (Ff) — 0 whereas it is simpler to prove that E (Ff) — 0.

By the Ito Formula, we get that
Co(t, S1) = Cu(0, So) + M + AP

where

t

M = [ o(u,8,)S,Cos(u, Sy )dW,

t

S— —

A= [@t(u,suH%02(%5“)53@”(%5”) du.

We write Fjt = 327 | L; where

1 1 1n 1 N
L= g [ oSSl = [73 ot S S 04
0
n—1
1
£y = Y o(ti, S )| t“<2%<z DAL — ko 2/ AL (G| AW, )
=1
n—1 n—1
Lg = kn U( 1— 175151 1) t; 1|htz 1|n1/2\/ Atf 1— 1|AWt1 knzsti—1|AMti|’

i=1
n—1
LZ = kn Sti—1|AMti|_knzsti—l|AHti|7

i=1

1=

—_

-1
Lt = —k, Z AS,|AH, |

Lemma 5.5.3. We have P —lim L} = 0.
Proof. We note L} = 22:1 L7, and we prove that P —lim L}, = 0.

1

1n
= / o(t, 1) — 0(tir, S V(OS2 Pl T (1)l
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Leland’s Approximations when the Volatility is not Constant

Using the hypothesis on o, and Lemma 5.4.3, we deduce a constant c,, depending on w € €2
such that:

L] S co——

Vnl/2—a Z dt w/nl/QfaN(n) 1
n jp — n w/nl/Qfa'

p=0 Y lipt1

It follows that P — |L},| — 0.

1 n 1
B = | D2 [ot01:80 = ot S OS2 Rl 0
In a same way, we deduce a constant ¢, depending on w € €2 such that |L},| < ch?Q where

i Sy — S, |
Ir, = Vni/2-o / | PPl ()t
" 3 B s

But, since E|S; — S, ,| < v/t — t;_1, we obtain that

E’Z’fQ < const

fr1/2—a Pn tip—ti .y d 1/2—«
n P P+ u n
—_— E / N < const — 0.

nl/2

It follows that P — |L%,| — 0.

1 1 n—1 N
Lrll3 = 5/0 Z h/n(t) - 'Yn(ti—l)] J<ti—1> Sti—1)5152|ht|]}ti71,ti] (t)dt
i=1

Using the hypothesis on f we deduce that
7 (t) — Yn(tiz1)| < const nt/>~*At;.
So, there exists a constant ¢, such that:

_1/2 a Pn tjpftjp_‘_l du 2o

n
| Lis| < =S Gn

e Va

— 0.

1 n—1
m:/Z§$MWMm&mwmw
A reasoning similar to the one used for L}, leads to P — |L},| — 0.
1 n—1
L = / Z |Coa(t, S1)| = |Cra(t, S, 1)@ Yaltic)o(tior, St ) St ey v (£)dlt

Using ||a|] — |b|| < |a — b| and
é;tz(t7 St) - é\zx(ty Sti_l) - axxa:(tv gz) (St - Sti_l)
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Proofs of Theorems 5.1.1 and 5.1.2

where S; € [St, St,_,], we deduce that there exists a constant ¢, such that: |L};| < cwz%

where
P ptiphinet 2018, — S,

L = Z / H’]]tMM (t)dt.

t; ,—t
p=0 V' tipt1 i=1 Jp=1

But we have:

t t; /\tn 1
g L?5 cons Z / — o

bipt1

tj, Ntn—1 1 Ap 1 A
/ ’ —dt = / ~du =1In (—f) < constlnn,
ts tjp—l - t Ap Uu Ap

Ip+1
Ap = tjp71 — tijrl? A; == t]’p71 — tjp /\ tnfl

where

because A, < 3/n'/*~* and t;, , —t;, At,_1 > ¢/n. It follows that

~ constnt’?~*Inn
EL™ < )

vn

1 n—1
=1t /Z Gt S ) — 1ot So ] A (ti )0 (s Su )2 Ty (E)dt

In a same way, we write:
Cx:l:(t7 Sti_1) - Oxw(ti—lu Sti_l) = met(%\;a Sti_1)<t - ti—l)

where #; € [t;_1,t;]. Note that, if t € [t;_1,¢;] N [t;,,,,t;,], we have t; > t; and t; < t,

implies that
t .

— i t; — 1t cn
Spo T REl g L 0 T < const
tjp,1 — tz 75jp71 — tl n
So, there exists a constant ¢, such that:
2n o ftipAtn— At;
|L%| < cont/* Z . dt.

tipt1 v n1/2_a<tjp71 - t>3/2

For p = 0, the term of the previous sum verifies

At nl/2—c
pl/?-« : dt < const Inn — 0
/] Vnll2=a(1 — ¢)3/2 = n

whereas, for p > 1,

const
tjpfl T F nl/2—a’
It follows that it is sufficient to estimate
n1/27a Pn tip dt n2(1/27a)
—— L const ——— — (.
n " t: n
p=0 Ylipy1 Jp—1

Then P — |Lis| — 0.
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Leland’s Approximations when the Volatility is not Constant

Lemma 5.5.4. We have P —lim Ly = 0.
Proof. Recall that we have a constant ¢ such that At; > en~!. We have:

n—1
Lg = Z ‘Cxl‘(tif]ﬂ Sti71> 81521'71&
i=1

where

1
& = ’Vn(z 1 At —kn nt/ \/ Atf i—1 |AWt

2
is independent of F;, , and verifies E§; = 0, and

It follows that
= > ECL(t1, S, )S),  EE

and
—2a Pn tjpNtn—1 dt

n n
FE (L ) const m Z

; < constn**1nn.
p=0 Y tipy1 Jp—1

Then, we deduce that P — |L3| — 0.
Lemma 5.5.5. We have P —lim Ly = 0.

Proof. Since ¢” is supposed bounded, we deduce that

1/2\/ Atlf/(tz_l) =1+ En

where €, = O(n™!). Then, we write L§ = A" + B" with

n—1
A" = kngnza(tiflvStiﬂ)StQi,l’htileAWtiL

i=1

n—1
B" = kn»_ o(tii, S0 )SE e JIAW,] = S, |AM,|.
=1

By independence, we deduce a constant ¢ such that

n—1
Z t; /\tn 1 /
E|A,] < eVnl2ee, / _\cn” “en =0
Jp+1 ]F

Moreover, |B,| < D} + D3 + D} where D}, i = 1,2, 3 are defined as follows.

Dy = (t)dW;
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Proofs of Theorems 5.1.1 and 5.1.2

with R
f’b(t) - 51521-_1 [U(ti—la Stifl) - J(ti—la St):| O:c:c(ti—la Stifl)'

Then, there exists a constant ¢ such that

n—1 t;
1D} < en Y ( / E&?(t)dt)
i=1 \Wti-1

We note I} = I, := [t;,,,,t;, A tn_1]. Using the hypothesis on o and the Cauchy-Scwharz
inequality, we obtain that

) . i At,dt 12
DYl < Z Z </ nt/2=e(t; —t;_ 1)) 7

p= Otz 1t€["

1/2

n n_“
103l < W—Z Z ]p_tzl
n - S /\tn '
1DVl < CWZ \/T “ =0
We have
Dy = t)dW;
where

gl(t) = 81521'_1 [U(ti—17 St) - U(t’ St)] aﬂm(ti—la Sti—l)'

Following the previous reasoning, we also obtain that || D% || — 0. From now on, we deal
with

n __

where

(1) = [ S, Coultion, Si ) = $iCoult 50| (1,50,

In a similar way, we have

n—1 t;
1Dyl < en™) (/ Exf(t)dt)
i=1 \ti-1

where, using the Ito formula in the similar way as in the proof of Lemma 2.4.6, Chapter
2, we obtain a constant ¢ such that

1/2

cAt; N c(At;)?
n2(1/2—a) (tjp,l _ ti)2 nl/2— a(t _ ti)g

EXA(t) <

Jp—1
under the condition ¢; , <t;-1 <t <t <tj, A1

Recall that if ¢ € [t;_1, 4] N [t),,,,15,], there is a constant ¢ such that

t-

IJp—1

t:

Jp—1

— i1 .
—t N
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Leland’s Approximations when the Volatility is not Constant

Then, it suffices to analyse the two following sums:

S, = _“Z Z ni/2=a(t _i_tl )’

p= Otl 1, tleln

At;
2 %
Sn - 1/2n1/2(1/2 a) Z Z _ti_1)3/2'

p=0t;_1,t;€In JP 1

First, we have

N &N [teiteer gy
S}lng/ ﬁgconstn*alnnﬁo.

p=0 Y tipt1 p—1
Secondly, we have for p = 0,

const

tjy —tic1 2 -

It follows that the first term of the sum S? is less than
tn—1 dt
const n_a/ T < constn “Inn — 0.
. _

J1
Otherwise, for p > 1, we use the inequality

const

tjyr =t 2 nl/2—a

and it suffices to estimate

Inn — 0.

— p . _ _

n=% — /t”/\t"1 dt < const n~pl/2-«
1/2 4 1/2

" p=1 “lip41 g1 1t n

Finally, we can claim that P —lim L§ =
Lemma 5.5.6. We have P —lim L} = 0.
Proof. Using again the inequality ||a| — |b|| < |a — b] we get that

n—1

LA < ka0 S, |0 < elw) (L + )

i=1

where

1
I = k. / G, S, |du,

0

1
Jo = ky / 0252 Crza (1, Sy)| du.
0

We have

Pn /\tn 1
n= ¢ Z/ —t <en 2 Inn —0

Lipt1
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and

n= & [Nt gy
Jn<C(w)m2/ _tgcn_"‘lnn—>0.
t

p=0 " “ip+1 Lips
Then, we can conclude that P —lim L} = 0.
Lemma 5.5.7. We have P —lim L} = 0.

Proof. We use the Taylor expansion

Coltiz1, Si, ) — Colti, i) = Car(0:, S )(tis — ti) + Caa(ti, S0) (S, — i)

(3

where 0, € [t;i_y,t;] and S, € [S,,_,,S]. Then, |L?| < ¢(w)(A, + B,) with

L (ASy)?

1/n1/2 e ;tl 127&;6]" /T —t,L 1

p=0t;_1, ;€D JP 1

A, =

We deduce a constant ¢ such that

—« Pn ti Atn_1
n Ip dt
< c—— < —«
EFA, <c o / N <en*—0

p=0 tjp+l Jp

—a bn ti Atn—1
n i dt —og

p=0 “lipt1 Lip-1

Then, we can conclude that P —lim L7 = 0.

and

5.6 Appendix

Lemma 5.6.1. The stochastic equation defined on [s, 1] for all s €]0,1] by

{d@x,s(t) = 5(t, Sy5 (1) S, (t)dW,
Sx,s(s) = x

has a unique solution verifying, for a constant C*,

E sup 5’2 () <CF(1+27).

s<t<1

Proof. Tt suffices to apply Theorem 2.2 pl04 [10]|. For this, we verify the following
conditions with &(¢,z) = (¢, z)x (depending on n).
Since f’ is bounded, there exists a constant ¢, such that

o (t, )] < enll.
Moreover, if |z|, |Z| < N,

lo(t,z) —a(t,7)| < |o(t,x)| |z —T| + N |o(t,z) — o (t,T)|.
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Leland’s Approximations when the Volatility is not Constant

Since o (t, x) is bounded from below by a strictly positive constant, we have
5(t,z) — 5(t,7)| < const |5*(t,z) — 3(t,T)]
where
2(t,x) — 32(t,T) = o (t, ) — o*(t, ) + Yu(t) (o(t, ) — (L, 7)) .

From the hypothesis on o we deduce a constant K,,(N) such that for |z|, |Z| < N,
|5(t,$) - E(taf” < Kn(N)’x - f’

Then, we can conclude about the lemma.

Lemma 5.6.2. Assume that t € [0,1]. Then, the stochastic equation:

{dsx,t(m = G (u, Syt (1) Sy (w)dW, + Au, Sy (1)) Sy 4 (u)du

has a unique solution on [t,1].

Proof. It suffices to apply Theorem 2.2 pl104 [10|. For this, we verify the needed
conditions with:

From
2(t,x) = o (t, ) + vu(t)o(t, x)

we deduce that
20, (t,x)o(t,x) = 20,(t,x)o(t, x) + Y (t)ou(t, x).

Recall that R
A(t,x) = 3%(t,x) + 0.(t, 2)5(t, 7).

Then, from the boundedness of |zo,(t, x)|, it is easy to deduce that there exists a constant
¢ such that |b(¢, )| < c¢|z|. Furthermore, it is clear that there exists a constant ¢ such that
3(t,2)| < 2lal.

Finally, we suppose that |z, |Z| < N. We have

b(t.x) = b(t.7)| < |A(t.2)| | 7] + |7 [A(t,2) - At )
where ‘K(t,x}‘ is bounded and |Z| < N, whereas

At z) — At T) = 52(t, 1) — 02(L, T) + 20, (t, )5 (t, ) — To,(t, T)5 (¢, T).

But, from the hypotheses on ¢ and f, we deduce a constant ¢ such that the following
inequality [6%(¢,x) — 02(t,T)| < c¢|r — 7| holds. Moreover

20, (t, x)o(t,x) = xo.(t,x)o(t, ) + %%(t)xax(t, x).

111



Appendix

Since the next expression is bounded, we first write z = (x — %) +7 and finally, we estimate
0ot )0 (t,7) — 0u (L)L T) = ot,7) (.t ) — 02(t, 7)) + 0a(t, T) (ot ) — o(1,7))
where

lo.(t,z) —0,.(t,T)] < const|x —T|,
lo(t,x) —o(t,T)| < const|r—T|.
because 0., (¢, z) is bounded. Then, we can conclude that for |z|, |Z| < N,
|b(t,z) — b(t,T)| < const(N) |z —Z|.
In a similar way, it is easy to prove that

lo(t,x) —a(t,T)| < const(N) |x — Z|.

Lemma 5.6.3. The local martingale

83\33’,5(16) 1 n /u
t

=)
—
w
)
©
~
o))
e

ox

s a strictly positive martingale.
Proof. The Doleans—Dade formula give us

85,4 (u) Lo 1 L A
5 —exp{/t A (v,vat(v)> dWU_Q/t A (v,Sm(v)) dv

where A* = A /7. Since A s bounded, we deduce that there exists a constant ¢ such that

~ 2
8Sm’t(U) < CN
Oz S u

N, = exp {/u 20N* <v, §xt(v)) dW, — %/1 4AN*? (v, :9\“(11)) dv}
t t

is a strictly positive locale martingale verifying

where

AN, = 2NA" (1, 80(w)) AWV,

Using the Fatou lemma, we deduce that the latter is integrable and finally

N 2
sup £/ (an’t(U)) < 00.

ox

So, we can conclude about the lemma.
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Lemma 5.6.4. The process 7., is a Markov process of transition density function
[*(z,t,2,7), the fundamental solution of the operator:

L) 4yl S O
27\ g2 TN TG bt

Proof. In virtue of Theorem 5.4 p 149 [10], it suffices to verify the needed conditions.

Condition (A;) is well verified since 72 (t x) = const > 0.

Let verify Condition (B;)(i). First, 02(t,z) = 0%(t,z) and 0y(t,z) are bounded.
Secondly, suppose |z, |Z| < N. Then

‘82(t7 ex) - /O-\Q(t/a ef)} < }82(t7 em) - aQ(t,7 ex)‘ + |/0-\2(t,7 ex) - 82(t/7 65)|
where, as already shown, |52(t, e*) — 02(t, €¥)| < c|x — T| whereas
5°(t, e") — 3(t', e")| < |o°(t, €) — o*(t, e ‘4—‘\/ o(t,e”) f(#o(t',e™)|.

Since f’ > 0 and f” are bounded, there exists a constant ¢ such that

VF® - V)

<t =t

It follows that if |z|, |Z] < N
[52(t,¢) — B2, < ON) (Jt — ] + [ — 7).
In a similar way, since we suppose that 7, is bounded, we have
Gu(t, €") — Tu(t', €")| < const(N) (|t —t'| + |z — =) .

Finally, since o, (¢, x) is bounded, we deduce that Condition (Bj)(ii) holds, i.e. for any
.CE’ f?
[Fa(te) = Fat )| < C (Jr = 7).
Lemma 5.6.5. For any n,p € N, we have
L1+ 3)I(3)
—np)

< 2.
T(1+

Proof. From the formula I'(1 + 2z) = 2I'(2), it is easy to prove that

ra+ 2P
>
).

) =>T(1+ g) if p is even.

Otherwise, ['(1 + “32) > I'(1 + 2£1). Tt suffices to use the Bessel function

1
Bmmz/ﬁ%uw“w
0

verifying

I'(p)T'(q)
B(p,q) = To+q)

provided that Re(p), Re(q) > 0 with p =1+ n/2 and ¢ = 1/2 to conclude.
Now, we propose a lemma similar to Lemma 6 p 252 [11]:
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Lemma 5.6.6. Let consider

_ 2 _ 2
fltor,z,y,8) = (a\m/T—ya —l—a\/t—a) + <% +a\/ﬁ)

where a > 0 and

e 1
]a = —k tavv)a dy.
B = v = L

Then

2
e (3 o)

and for all € €]0, 1],

V2a
Vi—T1Vke

Loj < exp {—’“(1 ~e) (a% " QMY}

Proof. For the first assertion, it suffices to use Lemma 6 p 252 [11]. Indeed, we have:

(z=y? =8 (z=¢°

t—o co—17 = t—1

Secondly, we deduce that

x—¢ 2 < exp{—kef(t,o,7,2,y,&)}
Ia’kgexp{—k(l—a) (am—l—a\/t—T) }/_OO Ji—ovo =7 dy.

lfr<o<7+(t—7)/2, we have t — o > (t — 7)/2. So, it suffices to use the inequality

2
f(tom2y,&) > (ay— % + a\/ﬁ)

to conclude. The case 7 + (t — 7)/2 < o < ¢ is similar.

Theorem 5.1.1 holds provided that ém > 0. The convexity propagation is a subject of
first importance (|25], [22]). We prove that this condition is guaranteed if h is a convex

function and 7 (¢, x) = o (x).

Lemma 5.6.7. Assume that h is a convex function verifying the condition (ﬁ) If o does
not depend on t, then C,, > 0.

In virtue of the Tanaka—Meyer formula, we have:

B (8eal1)) = hlx) + / i (Sealw)) aw, + % / Lt p(du)

where A’ is the left derivative and

= h"(u)du + Z[h;u(i) — I (K;)]0k,,
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dk, is the Dirac measure. Moreover, (LY)c,1) is a continuous and positive semi-martingale
verifying

/g(u)[fs‘du = / g (S\m(u)) d<§$7t>u, s €[t 1]
R t
for any positive and bounded measurable functions g. It follows that
1
. . 1 ‘
P(Se() = @)+ /t W (Sealu) ) dWa + 5 DI () — H(K))LE
1t ~ RN .
(5.6.30) +5 /t % (Sm(u)) 5 (sm(m) 52, (u)du.
Recall that
~ + n b ~ 1k
(Seelw) = K) " = (@ = K)* + I, c@Sis) + 5 L
Then,
1

éELfQ =Ci(t,2) — (z — K;)*

where C'(t, z) is the solution of (e) with h(z) = (z— K;)*. Having computed expectations,
we deduce from 5.6.30 that

. N 1 . S .
(5.631) Cilt.r) = Y aiCilt.a) = 5B (0 (54(1)) 8 (S.a(1)) 52,(1))
where o; = W, (K;) — W, (K;) > 0. Indeed, to obtain derivatives, we note that we have
Syi(u) = S, o(u—t) where S, verifies
d§$,0<v) =0 (?x,o(v)) gx’(] (U)de, v E [O, 1-— t]
and we use the change of variable v = u — t.

We first prove the lemma for h(z) = (¢ — K)* where K is a constant. For this, we

define:
hp(x) = 0, r €0, K —1/n]
= n(x—K+1/n)2/4, r€|[K—-1/n, K+ 1/n]
= r— K, r €K+ 1/n,00.
This latter is a continuous and convex function and verifies
1
0< hn(x) - h(x) < Ea
|7 (@) = W(2)| < Tirc—1/m 1/ (2)-

It follows that C™(t,x) — C,(t,2) where C™,C are the solutions of (e) respectively with
terminal conditions h,, and h(z) = (x— K)™. Indeed, it suffices to recall Lemma 5.2.2. Since

h, is a C'-function, we deduce from 5.6.31 ( with o; = 0 and h! > 0) that 6§x(t, x) =0
and x — C7 is increasing. Then, x — C), is also increasing and finally C,, > 0.

In the general case, since h” > 0 and
. 1. .
Ci(t,x) = —éaz(t,az)xQC’m(t,x),

it suffices to apply 5.6.31 where, as already shown with h(z) = (z — K;)*, Ci(t,z) < 0.
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Chapter 6

Arbitrage Theory for a
Continuous Time Model

We consider the continuous-time model developed in [19] for markets with transaction
costs. In the latter, the strategies generating the value processes are expressed in physical
units of assets. The ones which are bounded from below in sense of partial ordering
generated by the solvency cone are considered as admissible. Here, by a slightly different
approach of the admissibility condition, we can suggest and characterize a “ No Generalized
Arbitrage 7 (NGA) criteria. Moreover, we give a version of hedging theorem for European
options but also a dual description of the set of initial endowments from which we can
start a portfolio process hedging a given American option. The latter is deduced from our
joint work with Dimitri De Valliére and Yuri Kabanov [6] about the hedging of American
options !. Finally, we propose to define hedging “ minimal prices ”.

6.1 Introduction

6.1.1 The Standard Discrete-Time Model

All processes are given on a fixed stochastic basis (Q, Fr, (F;)i<r, P) satisfying the usual
conditions and ¢ = 0,1,--- ,7T. A finite time horizon T is fixed and the initial o-algebra
is trivial. We suppose that the agent portfolio contains d assets. Their quotes are given in
units of a fixed numéraire which not be a traded security. At time t, they are expressed by

the vector of prices S; = (S}, .-+, S9); its components are strictly positive and adapted.
The agent’s positions can be described either by the vector of "physical" quantities
V, = (V},---, VA or by the vector V; = (V2,---, Vi) of values invested in each asset;

they are related as follows:

=V//Si, i<d.

In the considered market, any asset can be exchanged to any other. At time ¢, the increase
of the value of the ith position in one unit of the numéraire by changing the value of the
jth position requires diminishing the value of the latter in 1 + AJ* units of the numéraire.

!Bruno Bouchard and Jean-Frangois Chassagneux, by an other approach, produce a similar result [2].
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We assume that the matrix of transaction cost coefficients is adapted and has positive
components whereas the diagonal is zero.

The portfolio evolution can be described by the initial condition V_y = v and the
increments at dates ¢t > O:

(6.1.1) AV; = Vi, AS+AB,
d d

(6.1.2) ABj = Y ALY =Y (14 N)ALY,
=1 i=1

where L7 € L°(R,,F,;) represents the accumulated net amount transferred from the
position i to the position j at the date t. The first term in the right-hand side of 6.1.1 is
due to the price increments while the second corresponds to the agent’s own actions at the
date t after knowledge of the new prices.

Note that any AL; € LO(Ri, F:) defines the F;-measurable random variable AB; with
values in the set —M,; where

d
M, = {x € R?: Ja € RY such that z = Z[(l + A)a — a?),i < d} .

=1

Reciprocally, a measurable selection argument shows that any portfolio increment AB; €
LO(—M,, F;) is generated by a certain AL, € LO(R%, F;). So, we can decide to choose B
as the control strategy.

It is convenient to consider the dynamics of the portfolio in "physical units". Indeed, it
is given by the following formula:

AV, = AB,, AB, € —M,

where, for a set A;, we note A, = {Z: z € A} with ? = 27/S!, i = 1,--- ,d. An important
concept in the above setting is the solvency cone

Ky = M, +R?%,

i.e. the set of portfolios which can be converted at time ¢, paying transaction costs, to
portfolios without short position.

For this model, an arbitrage theory is already developed in [19] as well as hedging
theorems for European and American options [1].

6.1.2 The Continuous Time Model

The continuous-time model with efficient market friction suggested in [19] is inspired by
the previous one. It requires the continuity of the price processes and transaction cost
coefficients. Of course, theses conditions are fulfilled in the traditional case of Brownian
motion and constant transaction coefficients.

All processes are given on a fixed stochastic basis (2, Fr, (Fi)i<r, P) satisfying the
usual conditions. A finite time horizon T is fixed and the initial o-algebra is trivial. In a
financial context, the continuous-time model is defined by a continuous semi-martingale
S = (S ,8% € ntR% with Sp =1 = (1,---,1) considered as the price process. The
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transaction costs are represented by an adapted and continuous matrix-valued process
A = (A™) verifying A% > 0 and A% = (0. We shall assume that at each instant at least
one A% # 0 in order to have K; = M, where the solvency cone K and the cone M are
defined as in the discrete-time model (see [19]).

The portfolio processes are controlled by the class of strategies B, the set of all
right-continuous d-dimensional adapted processes B of bounded variations such that
dB; = Byd|B||; where B, € —L°(K,, F;) and ||B|| is the total variation. The choice of
the norm is of no importance since all norms are equivalent in a finite-dimensional space.
Recall that B € B is such that AB; represents the variation of the portfolio expressed in
numéraire at date t due to the trader. R R

So, it is easy to deduce that the dynamic of the process V = V%8B, value of a self-
financing portfolio defined by the strategy B and the initial endowment v, is given by:

SN dB
oo [ 2
' 104 St

u

It follows that the portfolio processes V are of bounded variations, right-continuous and
verifies dV /d||V]| € —K a.s.

The last properties lead us to consider the arbitrage not only for the cone G = K but
for more general C-valued process G = (Gt);>o as defined later.

We note G = {y € RL : yz > 0, Vo € G;} and M (G*) is the set of all martingales
(Zt)teo,r) such that Z, € Gy a.s.

6.2 Generalized Arbitrage in Abstract Setting

We consider a C-valued process G = (Gy)iejo,r) defined by a countable sequence of adapted
d-dimensional processes £¥ = (£F) such that for every ¢ and w only a finite but non-zero
number of £F(w) are different from zero and Gi(w) = cone{&f(w), k € N}, i.e. Gi(w) is a
polyhedral cone generated by the finite set {£F(w), k € N}.

We suppose that G dominates the constant process Ri, all cones GGy are proper, i.e.
G N (—=Gy) = {0} or, equivalently, int G} # O.

We assume that the generators of G' are continuous processes and we add the following
assumption about the generators of Gj:

Assumption (G):There is a countable family of continuous adapted processes (¢*)
such that for each w only a finite number of vectors (¥ are different from zero and
G = cone{(F : k € N} for every t.

The next hypothesis, used for hedging theorems, is a requirement that the set M%(G*)
is rich enough (see [19]) and is fulfilled for the model with constant transaction costs
admitting an equivalent martingale measure:

Assumption (B): Let £ € LY(RY, F,). If the scalar product Z;£ > 0 for all Z € M%(G*),
then £ € LY(Gy, F).

Let X = X2 be the set of all cadlag processes X of bounded variations with Xy = 0
such that dX = Xd||X| with X; € LO(=Gy, F,) for all t € [0,T] and let X* = z + X,
z € R?. We denote by &) = X, where A, is the subset of X formed by the processes X
on [0,¢] such that X, +rkx1 € L°(G,, F,), with kx > 0, and X; +rx1 € LO(R?’L?.?’-}). Such
processes X € A&7 are called admissible. Our admissibility condition is more restrictive

121



Generalized Arbitrage in Abstract Setting

than the one proposed in [19] where it is only assumed that X, + kx1 € LGy, Fs)
but legitimate. Indeed, we can cite [8] in which short sales are ruled out. Finally, we put
XE(t) = {X; : X € AF} and AF(t) = {X; : X € A}, }. It is easy to show the following
property:
Lemma 6.2.1. We have: X(t) C X(T) and X,(t) C X, (T') for allt € [0,T].

Proof. Let £ = X; € A,(t) where X € Xp;. .

We define the stopped process Y = X* such that ||[Y]| = || X||*. Then, dY; = Y.d||Y ||,
where Y, = X, I, verifies Yy € LO(—G,, F;) for all s and Y, +kx1 € LO(RYL, F;) for s > ¢.
It follows that £ € X,(T).

We shall propose an arbitrage theory inspired by [3|. For this, we introduce some
notations.

If z € R%, we note z > 0.

Let be Ry C X(T) verifying L>*°(—G:,F:) € Ryr, Vt € [0,7]. We define the set
A:=Ry — L°(R%) and

F; = {5 =lim&"a.s. : " € Ry and there exists £ > 0 such that £" + k1 > O}.
If C e T%?, we note T(C') =1+ C — essinf C' where essinf C' is a constant defined by
(essinf O)" = essinf C*, i=1,---,d.

Observe that for C' € E;, there exists £ > 0 such that C' > —k1. So, essinf C'is well defined
and T(C) > 1 a.s. We note, for a,b € R? a/b and a x b the vectors whose components are

respectively a;/b; and a;b;. Finally, we define for C' € }_33}; :

An(C) = {X/Y(0): X € A},
AR(C) = An(C)NL*,
AZE(C) A%(O) closure in o(L®, LY,
R {Z e MY(G\{0}) : E(ZrX)” > E(ZrX)*,VX € Rr},
R(C) = {Z e MHG\{0}): E|ZrX| < 00 and EZ7X <0

if X € Ry verifies X > —aC' — 31 where o, 3 > 0}.
Définition 6.1. We say that G satisfies the No General Arbitrage property NGA if for all
CeRy, L
A" (C) N LR = {0},
We shall prove later the following results:
Theorem 6.2.2. Suppose that Rr = X,(T'), then

AFT(0) N LORY) = {0} & M(GM\{0}) # 0.

Theorem 6.2.3. Assume that AY (C) N LY(R%) = {0}. Then R(C) # 0.
Theorem 6.2.4. Assume that R # @ then the NGA condition holds.
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Corollary 6.2.5. Assume that there exists Cy € E; such that R(Cy) = R. Then
(NGA) < R # 0.
Corollary 6.2.6. Suppose that Ry = X,(T), then we have
(NGA) & Mp(G\{0}) # 0.
Remark 6.2.7. We can partially follow the proof of Corollary 6.2.5 in order to have for

Ry = X(T),
AXT(0) N LO(RY) = {0} & MG(G\{0}) # &.

In the case where Ry = AX,(T'), we can extend to the continuous time the concept

introduced in the discrete model. We say that G satisfies :

Weak No Arbitrage property NA" if for all ¢ € [0, T,

Xy (t) N LY(Gy, F) € L°(0Gy, F).

Proposition 6.2.8. Assume that Ry = X,(T), then:
NAY & X,(T)N L°(RL, 7) = {0}.

Remark 6.2.9. (NGA) = (NAY).

For the following definition inspired from |[3], we consider a random variable F,
considered as the contingent claim expressed in physical units, verifying —kpl < F < kpl
for some constants kg, kr > 0 . In a financial context, such a pay-off exits: we can cite for
example F(S;) = (S, — K)™/S..

Définition 6.2. A real number x is a fair price of F' if the extended model
(Q,f,P,RT +{h(F —2x):he R})

satisfies the NGA condition.

Note that there exists new cones
G, =G+ {h(F —z):heR}My_my
corresponding to the extended model. Indeed, if we note
Ry = Ry +{h(F —z):heR},

we have the following inclusion.

Lemma 6.2.10. We have R, C X(G')(T).
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Proof. We consider X7, = X1 + h(F — z) where X € X. It suffices to define
Y; = Xs + h(F - x)[{s:T}
which verifies:

Yl = X0+ (JAXr + h(F — )| — [ AXe]) I,
AXT+h(F—x) 7 ;
|AX + h(F —2)|| {s=THAX7+h(F—z)#0-

Y:e = X51{8<T}+

It follows that Y, € —G’ as. and X, € X(G')(T). Moreover, if we suppose that
Ry = X,(T), then there exists kx > 0 such that X7 + kx1 > 0 and X; + kx1 € G; .
But we also have —kpl < F' < kpl,so Y € &, r(G') and X7, € X,(G')(T).

We define I the set of all fair prices for F' verifying —k;1 < F' < krl.

Theorem 6.2.11. Assume that there exists Cy € F? such that R(Cy) = R and the NGA
condition holds. Then, we have:

Ir = {zx € R*: 37 € R such that Zox = EZpF}.
For Z € ME(G*\{0}), we define

z)_ %o

— 2 EZ.F.
1Zo2 "

T

This latter is such that EZ7F = Zox® and z(9) < Vdkrl. So, in virtue of Theorem
6.2.11, we deduce that z(¥) € I. Moreover, for € I, we note Z% € MY (G*) verifying
EZiF = ZFx and |Z§| = 1. Finally, we give the following definition, in order to propose
minimal prices for European options as we shall see later.

Définition 6.3. Assume that there exists Cy € E}; such that R(Cy) = R and the NGA
condition holds. If —k;1 < F < kpl, we define:

ar = sup{EZrF : Z € M{(G*) and |Zo| = 1},
M, = {Zy: Zy =lim Zy™ with Zi"z, — as}.

Note that we have clearly

ar=sup{Ziz:x € Ip} = sup {Zpz'¥ : Z € ME(G*) and |Z,| = 1} .

6.3 Hedging Theorem For European Options

In this section, we only consider the case Ry = X,(T).

Let LY be the cone in L°(R?) formed by random variables £ verifying € + k1 > 0 a.s. for
some k > 0. We are given a non-null random variable F' € LY considered as a contingent
claim. We define the convex set

Ip={zeR: FeXx/ T}
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and the closed convex set
Dr={z€R": Zoyx > EZrF NZ € M{(G")}.

We denote by D = D(G) the subset of M{(G*) formed by martingales Z such that not only
Z, € L°(int G*) for any stopping times 7 but also Z,_ € L°(int G*_) for any predictable
times 7 € [0, 7.

Note that D # O implies the (NGA) condition. We shall recall the following version of
hedging theorem (the only difference from [19] is the model):

Theorem 6.3.1. Assume D # O, (G) and (B) hold, then I'r = Dp.
Remark 6.3.2. It is easy to show that if the NGA condition holds then

Dp={ze€R: Zoyx > EZrF NZ e M{(G\{0})}.

Indeed, for Z € ME(G*), it suffices to consider Z™ = Z + %Z where Z € MT(G*\{0}).
We define minimal prices for the European option defined by a contingent claim F"
Lemma 6.3.3. Assume that D # O, (G) and (B) hold. If x1 € I'r # O, we can define

minimal prices pr € {x < x1: x € T} according to the partial ordering generated by RY.

Proof. Let consider z; € I'p. Suppose that for all p € N, there exists z,, € I'p verifying
z, < o1 and ), < —p where i € {1, ,d}. Then for Z € M{(G*\{0}),

Zox, < —p miin Z5 + dm?x Z max |z} ].

Moreover, we have Zyx, > EZrF > —kpZyl. This leads to a contradiction if we get p
converged to 0o. So, there exists p € N such that x < x; and x € I'p implies that x > —p1.
Using the Zorn lemma, it follows that the set {x < z; : © € I'r} has, at least, a minimal
element pp.

From the definition, it is clear that pr € I'r and we have the following characterization:
Theorem 6.3.4. Assume that D # O, (G) and (B) hold. If x1 € T'r # O, then the two

following conditions are equivalent:

a) pr€{x <z :x€lr} is a minimal price.
b) There exists a sequence Z" € M (G*\{0}) verifying Z§ — Zy
where | Zo| =1 and EZ}F — Zypr.

_ For the sequence, we suppose that —kpl < F < kr1. In this case, we have obviously
krl € I'r and it is natural to define minimal prices as minimal elements

pr€{r<kpl:zecTp}

according to the Zorn lemma. We note that for all x € I'r and Zy € M;, we have Zyx > aj.
From 6.3.4, we deduce easily the following corollaries.

Corollary 6.3.5. Assume that D # O, (G) and (B) hold. Suppose that —kpl < F < krl
and pp € {x < kpl : x € Tp} verifies Zopr = oy where Zg € M. Then pr is a minimal
price of I'p.

Corollary 6.3.6. Assume that D # O, (G) and (B) hold. Suppose that —kpl < F < krl
and e = lim /" x,, where x, € Ip. If e ¢ Ir, then e is a minimal price of I'g.
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6.4 Hedging Theorem For American Options

In this section, we only consider the case Ry = X,(T).

We are given a cadlag process F' considered as a contingent claim, defined on (Qr, O)
where Qr = Q x [0, T], O is the optional o-field . We assume that F > F and there exists
kr > 0 such that F; + krl > 0 for all ¢. We define the convex set

'Y= {x e R%:3X € &, such that x + X, > F. for all stopping time T}
and the closed convex set
Dy = {x e RY: E,nF < xE,n, Vn € Py (G*, ),V € vr}

where
Py (G ) = {n € L' (Qr, P® pu,RL) : ZM" € Gi, Yu > 0}

and vp is the set of all positive finite measures on [0,7]. Moreover, E, means the
expectation on {27 under the measure P ® p whereas

T
Zt=E ( / mdu(t)lfu)
u+
is a cadlag version.

We shall prove the following version of hedging theorem:
Theorem 6.4.1. Assume that D # O, (G) and (B) hold, then I', = DY

Note that we can also produce an analogous theorem for the initial X-model introduced
in [19], following the same reasoning [6.

It is easy to show the following lemma.
Lemma 6.4.2. Assume that D # O, (G) and (B) hold, then

re = {x e R?: EnF <zEm, Vn e PIH (G p), Yu € VT}

where
PG, p) = Pa(G*, 1) N L (Qp, P @ p, int RY).
Note that MZ(G*\{0}) C P{ T (G*, ).
Since F' > —kpl, v € ', = D¢ implies that * > —kpl and we can define, using the
Zorn lemma, minimal prices p% € I'¢.
Theorem 6.4.3. Assume that D # O, (G) and (B) hold. Then, the two following
conditions are equivalent:

a) The price p%. is a minimal price of I'G.

b) There exists a sequence p™ € vy, n* € PLH(G*, u")
verifying E,nn™ — Zy where |Zg| =1 and Enn"F — Zop.
Proof. This is similar to Theorem 6.3.4. Indeed, E,»n" € Gj.

With the hypothesis —kpl < F' < EFI, we define:
a, = sup{EnF :pcvp,ne P (G},
M, = {Zy:Zy=lmE;~n" and Enn"F — a,}
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where

PG ) ={nePyt (G pn): |Em =1}.

Note that for all x € I'} and Zy € M,, we have Zyx > «,. From 6.4.3, we deduce easily
the following corollary.

Corollary 6.4.4. Assume that D # O, (G) and (B) hold.

Suppose that —kpl < F < kpl. If p% € T'% verifies Zop% = o where Zy € M,, then pl is
a minimal price of I'%.

6.5 Proofs

6.5.1 Proof of Proposition 6.2.8

First we assume that the condition NA* holds and we consider £ € X,(T) N LY(R%).

Then ¢ € X,(T)NLY(Gr, Fr) C LY%(0Gr, Fr). So, if £ € R\ {0} on a non-null set , then
¢ € int Gy on the latter because the domination of RY by G means that R% \ {0} C int G7.
This contradicts the hypothesis £ € 0Gr a.s.

Suppose that X,(T) N L°(R%) = {0}. Then, X,(t) N L°(R%, F,) = {0} for all ¢. Let
¢ € X(t) N LY(Gy, F;) and suppose that & € int G; on a non-null set. By a measurable
selection argument, we deduce the existence of X* € L*(R%,F) \ {0} such that
Zy=¢(— Xt e LG, F).

We first suppose that & € L. Then, —Z;, € L>*(—G; F;) and we deduce that
Xt e X(t)n LR, F;) = {0} which leads to a contradiction. So, we have

X, (t) N L=(Gy, Fr) C LGy, F).

Otherwise, we define {" = {1)¢<» and we show that {" € A;(t). Indeed, let the process be
X! =Xy — &ljg>nds= where X € Xy, It is such that X; = §. We have

1X™ s = |1 X 1ls + (|AX; = ELjgyonll — |AX]]) Lozt
and

AXy = Ejggon
[AX: — ELjgpnll

Xg = XSIS<t + ]{Athf].H&“>n7$0}1S:t S LO(_Gsva)'

Furthermore, we can easily verify that there exists x, > 0 such that X! + x,1 €
LGy, Fy) and X' + k,1 € LY(R%, F;) since we have X7 = " € L. Tt follows that
& € X,(t) N L>=(Gy, Fy) C LY(0Gy, F;) and we deduce that £ € LY(0Gy, F;) as n — oc.

6.5.2 Proofs of Theorems 6.2.3 and 6.2.4

We need some auxiliary results.
Let recall the following lemma that we can find in [19]:

Lemma 6.5.1. Let G be a family of measurable sets such that any non-null set I" has the
non-null intersection with an element of G. Then, there is at most countable subfamily of
sets {I';} of full measure.

We can deduce the following theorem:
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Theorem 6.5.2. Let C be a convex cone in L™ closed in o(L>®, L) containing L>=(R%)
and such that C N L>®(R%) = {0}. Then, there exists p € LO(int RY) verifying EpX < 0
for all X € C and E|p| < cc.

Proof. From the Hahn-Banach theorem, we deduce that for any element x € L>(R%) \
{0}, there exists Z, € L' such that £Z,£ < EZ,x, for all £ € C. We note e’ the vector whose
only the ¢th component is non-null and equal to unit. Taking & = aeiZil_M<Z;<0 e C, for
all a, M > 0, we deduce that Z, > 0. Moreover, Z, # 0. So, we can assume that FZ, <1
and EZ,x > 0. Let define

Gt = {{2; # 0}, v € L=(R}) \ {0} }.

Then, for all T" such that P(T") # 0, we have P(I'N{Z* # 0}) # 0 where z = 1. Indeed,
EZ,.x > 0. We deduce from the previous lemma a countable family Z,, , such that

p(ufzs, #0}) =1

Defining p =37, ,27%7°Z,, ,, it is obvious that E|p| < co and we can easily verify that for

7 Lk,i?

any k, we have p* > 0 on the set

N¢ = ﬁ U {Zg’jk ] 0}

k=1 1

of full measure. So p € int Ri a.s. and, from what precedes , we have Ep¢ < 0 for any

EecC.
Lemma 6.5.3. For all C € Rl; , we have R C R(C).

Proof. Let consider C € E; and Z € R. We have C = limX,, where X,, € Rr
verifies X,, > —k1 with & > 0. Since Z € R, we have E(Z7X,)” > E(ZrX,)" whereas
Zr X, =2 —kZr1 implies that E(ZrX,)” < kE|Zr1| < oo. Thus E|ZrX,| < 2kE|Zr1|
and E|ZpC| < oo by the Fatou Lemma.

From now on, we suppose that X € Ry verifies X > —aC — 1 where o, 3 > 0. Then
ZrX > —aZyC — [Z7r1 and it follows that F(Z7X)” < oo. So, Z € R implies that
E(ZrX)" < E(Z7X)” < oo and EZrX < 0. We can conclude that Z € R(C).

Lemma 6.5.4. Let consider Cy € E; such that there exists p € L°(intR%) wverifying

Elp| < oo and EpX < 0 for all X € A¥"(Cy). Assume that X € Ry verifies
X/Y(Cy) = —al where a > 0. Then we have:

X

< 0.
T(Co)

< oo, Ep

E‘p

T(Co)

Proof. For all ¢ € Ry, we define (X — ¢1)* and X A c1 the random variables whose
components are respectively (X — ¢)* and X* A c.

Then, X Acl = X — (X —c1)" € A. Tt follows that (. = X A c1/T(Cy) € An(Co).
Moreover, —al < (. < cl. It follows that (. € W(Co) and Fp(. < 0. But we have

pCe = ZPZC(Z; P —aZpi

where Ep' < oo. Then, we can apply the Fatou lemma as ¢ — oo to conclude about the
lemma.
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Corollary 6.5.5. Assume that A (Cp) N LO(RY) = {0}. Then R(Cy) # 0.

Proof. First, we claim that L®(R%Y) C A" (Cp). Indeed, if X € L®(R%), we have
T(Cy) x X € L(RY) C A. Tt follows that X € A¥"(Cy). In virtue of Theorem 6.5.2,
we deduce the existence of p € LO(intR%) such that E|p| < oo and EpX < 0 for all
X € AR (Co).

Let define the cadlag version martingale Z by Zr = p/Y(Cp) € intRL and Z, =
E(Z7|F;) verifying E|Zr| < oco. We shall prove that Z € MY (G*\{0}). Suppose that
Z; ¢ Gf on a non-null set. By a measurable selection argument, we can find X; € G; a.s.
verifying | X| < 1, Z;X; < 0 and Z;X; < 0 on a non-null set. Thus —X; € Ry and verifies
—X;/Y(Cy) = —1. From Lemma 6.5.4, it follows that £Z,X; > 0 in contradiction with
the inequality EZ;X; < 0. We can conclude that Z € MI(G*\{0}).

Let show that Z € R(Cy). If X € Ry verifies X > —aCy — 1 where a, § > 0, we have:

X < a+a(1—essznf00)—ﬁ>_a

T(Co) = T (Co)!

provided that a(1 — essinfC}) — 3 > 0 and otherwise

a(l —essinfCl) — 8
T(Co)

> a1 — essinfCy) — B.

It follows that there exists a > 0 such that X/T(Cy) > —al. In virtue of Lemma 6.5.4, we
deduce that E|ZrX| < oo and EZrX < 0. Thus, Z € R(Ch).

Corollary 6.5.6. Assume that R # (. Then the NGA condition holds.
Proof. Suppose that R # () and consider Z € R C R(C) for some C' € E; :
If Y € A" (C) N LO(RY), we have Y = limY,, in o(L*°, L') where

X, —¢
Yn: = nv
T(C)

Xn € RT7 En 20

We deduce that X, > —||Y,|lY(C). So, Z € R(C) implies that E|ZrX,| < oo and
EZrX, < 0. From the proof of Lemma 6.5.3, we know that E|Z;C| < co. Moreover, the
components of Zr x Y(C) verify 0 < Z:Y(C)' < ZpY(C).

So, Zp x T(C) € L' and EZp x Y(C)Y,, — EZy x T(C)Y < 0. We deduce that Y = 0
and the (NGA) condition holds.

6.5.3 Proof of Corollary 6.2.6

From [19], we recall the following lemma.
Lemma 6.5.7. If Z € MI(G*) and X € X7, then ZX is a supermartingale and

E(—ZX).|| Xz < Zox — EZr X7
So, we easily deduce that in the case where Ry = A,(T'), we have
M7 (G*\{0}) =R =R(C)

for all C' € ﬁi . Thus, we can conclude about Corollary 6.2.6.
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6.5.4 Proof of Theorem 6.2.11

If we define, for the extended model, C{ = Cy + F' — x, we have obviously C{ € R;’ :
Since x € Ir implies that the NGA condition holds for the extended model, we deduce,
from Theorem 6.5.2, the existence of a random variable p € L%(int R%) verifying E|p| < oo
and EpX < 0 for all X € AY"(C4, G"). From Lemma 6.5.4, we deduce that if X € A
verifies X/I'(C{) > —al where a > 0, then we have EpX/I'(C)) < 0. We define the

martingale
p
Zy=F | =—~ .
=5 ()

L*(=Gy, Ft) € Rr C Ry,

and it is easy to see that Z € R(C)) in virtue of Lemma 6.5.4. Moreover, since we assume
that F' is bounded, we finally have from what precedes EZr(F — z) = 0 because F — x
and = — F belong to A’..

Reciprocally, suppose that Zgpx = EZrF for some Z € R. First, we consider an element
Y = X+ h(F —x) € Ry verifying Y > —al for some constant o > 0. We deduce easily
that E(ZprX)~ < oo and finally, Z € 72 implies that EZ7X < 0. So, E|Z7Y| < oo and
EZpY < 0. It follows that for all ¢’ € RT , we have E|ZpC’'| < oo and EZpC" < 0 because
of the Fatou lemma.

From now on, we define Zp = Y(C’) x Zp. From what precedes, we have E|Z| < oo.
We deduce that if Y = X + h(F — x) € R/ verifies the inequality Y/Y(C’) > —al, then
using the previous reasoning we obtain that

From the hypothesis

Y Y
E|Z EZ < 0.
Zrxien! = P
Finally,
Y -V
EZ <0
()
provided that
Y-v. 4
Ty~

and V' > 0. It follows that E?TX < Oforall X € AF(C”) and finally for all X € AT (.
But, if we consider X € AY" (C")NLY(RZ), we have obviously Z7X > 0. So, ZrX = 0 and
X = 0 since Z7 € int Ri. It follows that the NGA condition is verified for the extended
model and z € IF.

6.5.5 Proof of Theorem 8.1.2

From [19], we recall the following result.
Lemma 6.5.8. Assume that D # O and (G) holds. Let R be a subset of X,. Suppose

that there exists a constant k such that Xt + k1 = 0 for all X € R. Then there exists a
probability measure () ~ P with bounded density such that

sup Eg||X||r < oc.
X€R
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We also recall the following Komlés theorem [19]:
Theorem 6.5.9. Let (£,) be a sequence of random variables on (0, F, P) bounded in L',
i.e. with sup,, E|&,| < co. Then, there exists a random variable £ € L' and a subsequence
(&) Césaro convergent to & a.s., that is k™1 Zle &n, — € a.s. Moreover, the subsequence
(&n,,) can be chosen in such way that any its further subsequence is also Césaro convergent
to & a.s.

We note vr the space of positive finite measures on [0,7] with the topology of weak
convergence in probabilistic sense. An optional measure is a vp-valued random variable
such that the process p(w) = p(w,[0,¢]) is adapted. Then, we get the following lemma
[19].

Lemma 6.5.10. Let p" be optional random measures with sup, Euf. < oo. Then, there
exists an optional random measure pi such that pp € L* and a subsequence " such that
all its further subsequences are Césaro convergent in vy to p a.s.

We define T
Qr =14k = 5,

The following result can be found in [19]. We recall the proof. For more details, we refer
the reader to Lemma 6.6.1 where similar arguments are used.
Lemma 6.5.11. Assume D # O, (B) and (G) hold. Let consider a sequence X™ € X;F
verifying X™(T) + k1 > 0 a.s. for a constant k > 0 and X"(T) converges almost surely.
Then, there exists X € X7, a subsequence X" such that X™ (T') are Césaro convergent to
X(T).

Proof. Let X™ € &;" be a sequence with X7 + 1 > 0 converging to U a.s.

We note, for each component:

k< 2" k,n €N}

i _ 3 i
where X, and X, are two increasing processes such that

d
IXall = D N0 11Xl =X, + X,
=1

Applying Lemmas 6.5.8 and 6.5.10, we may assume that there exists a subsequence n’
such that, for all subsequences, each components of X, and X, are Césaro-convergent
a.s. in vy to increasing processes X and X'. It follows that X,,/(T') is Césaro-convergent to
X(T) = X7 — X, as. Otherwise, we can assume that X, (t) is Césaro-convergent to X (t),
for all points of Q7 and we note X; = limy\ 4. seq, )N(s . Since all the processes (¥ X" are
decreasing, we deduce from the continuity of (¥ that the process ¢(*X is also decreasing.
Thus, X € X”.

It remains to check that, for all ¢, X; + k1 € G, for some £ > 0. For this, we
consider Z € M9 (G*). In virtue of Lemma 8.1.1, the prelimit processes Z(X™ + k1)
are supermartingales, positive at the terminal date. It follows that

Therefore, Z;(X]* + k1) > 0. Condition B implies that X' + k1 € G;. It follows that
X; + k1 € Gy, at least for t € Qr but, by continuity, for all points of [0, T]. Moreover, we
have obviously X7 4+ k1 > 0. So, we can deduce that X € X} .
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We deduce easily from the previous lemma, the following corollary.
Corollary 6.5.12. Assume D # O, (B) and (G) hold. Then, X,(T) is Fatou-closed.

From [19], we recall the following result:
Lemma 6.5.13. The set X7(T) N L>™ is Fatou-dense in XF(T).

In virtue of the Bipolar Theorem ([19]), the previous lemma and Corollary 6.5.12, we
deduce a dual description of X7(T).
Lemma 6.5.14. Assume that D # O, (B) and (G) hold, then

XE(T) = {5 €L):Eén< sup EXn Vne Ll(Ri)} :

XeXF(T)

Corollary 6.5.15. Assume that D # O, (B) and (G) hold, then I'r = Dp.

Proof. In virtue of Lemma 8.1.1, it is easy to deduce that I'r C Dp.

Assume that © € Dp and suppose that « ¢ I'r. This means that F' —x ¢ X,(T). Then,
from Lemma 6.5.14, we deduce the existence of n € L'(R?%) verifying: EnX < E(F —
x)n, VX € Xy(T). Since L>®(—Gy, F;) C X(T), we have EZ,X < 0,VX € L>®(—Gy, F)
where Z, = E(n|F;). It follows that Z belongs to M{(G*) and verifies in particular
Zox < EZrF. So, x ¢ Dp which leads to a contradiction.

6.5.6 Proof of Theorem 6.3.4

Assume that pr € I'p is a minimal price. Thus, pr — %1 ¢ I'r which implies that there
exists Z" € M%(G*\{0}) verifying |Z}| = 1 and

1
Zg(pp — El> < EZ%F < ngp

Since there exists a subsequence such that Z] — Z,, we deduce easily that EZ}.F converges
to Z(]pF.

Reciprocally, if x verifies * < pp and © € I'p, then Zipr > Zix > EZ}F and as
n — 00, we obtain that Zy(pr — ) = 0. Moreover, pyr — 2 > 0 and Z, € G3\{0} C int R%
since G dominates Ri. It follows that x = pr and pr is a minimal price.

6.5.7 Proof of Corollary 6.3.6

We consider he extended model defined in Definition 6.2 for e and we shall prove that
e€ Ipife ¢ I'r . Note that R' = R'(0). So, it suffices to prove that

AFT(0) N LRY) = {0}

in order to have R’ # ) and prove the NGA condition for the extended model.

Let be &€ € A (0) N LO(R%). We have £ = Um(r — &™) where €™ > 0 and 7 has
the representation rf# = X% + h,,(F —e) € R% (*) with X7 € X,(T) . Considering
" = X% + hy(F — x,) € R, we can assume that ¢ = lim(r}’ — &™) where
i = X0+ h,(F —x,,) € RF™ and x,, /" e. In the case where there exists a subsequence

ZWe note by R’¢ the set of the terminal values of portfolios in the extended model for e
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such that h,, > 0, we have the inequality 7" < X7 + h,(F — xp,) for m > myg. Since
ZoZmy = EZpF for some Z € M%(G*\{0}), we deduce from Lemma 8.1.1 that Er* Zy < 0
and EZTﬁ < 0asn— oo. Thus £ = 0.

Otherwise, assume that h,, < 0.

If there exists Z € M%(G*\{0}) such that Zye < EZrF, we deduce that

hin EZp(F — ) < hiy EZp(F — €) < 0.

So, we also have £ =0 and e € Ip.
Finally, we can suppose that e € I'r. Since there exists some Z" € M3.(G*\{0}) such that
EZYF = Zjx, — Zye with Z' — Z, and |Z§| = 1, it suffices to apply Theorem 6.3.4 to
conclude that e is a minimal price.

6.6 Proof of Theorem 6.4.1

In this section, we only consider the case Ry = A,(T'). We recall the Campi-Schachermayer
model Y defined as follows (see [19]).

6.6.1 )Y-Model

We are given on the interval [0,7] two set-valued processes G = (G;) and G* = (G7)
where G; = cone{&F : k € N} and G} = cone{¢F : k € N}. It is assumed that the
generating processes are cadlag, adapted, and for each w only a finite number of & (w),
& (w), ¢F(w) and ¢ (w) are different from zero, i.e. all cones are polyhedral. We put
Gr_ =cone{¢F : ke N}

We define the portfolio processes following the paper [6].

Let Y be a d-dimensional predictable process of bounded variation starting from zero
and having trajectories with left and right limits (French abbreviation: ladlag). Put
AY =Y —Y_ | as usual, and ATY := Y, — Y where Y, = (Y;;). Define the right-

continuous processes
VISYAv, VoY at

s<t s<t

(the first is predictable while the second is only adapted) and, at last, the continuous one:
Yo=Y —Y4-y*

Let Y be the set of such processes Y satisfying the following conditions:

1) Y€ —G dPd||Y*|-a.e.;

2) A1Y, € —G, a.s. whatever is a stopping time 7 < T

3) AY, € —G,_ a.s. whatever is a predictable time o < T.

Let V* .=z + ), x € R%. We denote by Yy the subset of V* formed by the processes Y’
such that Y; + ky1 € LY(Gy, F;), t < T, for some ky € R. In the financial context (where
G=K ) the elements of V) are the admissible portfolio processes.

We associate with Y the following right-continuous adapted process of bounded varia-
tion:

YV i=Y°+Y?4+ Y%
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ie. Y =Y 4+ AtY =Y, . Since the generators are right-continuous, the process Y inherits
the boundedness from below of Y (by the same constant process xy1).

We formulate for our needs, the following lemma
Lemma 6.6.1. Let A" be a sequence of predictable and increasing ladlag processes on [0, T
such that sup,, EA%. < oo. Then, there exists a predictable and increasing ladlag process A
and a subsequence A™ such that all its further subsequences Af’“ are Césaro convergent to
Ay for any t € [0,T).

Proof. We note Qr = {t, k € N\{0}}. It is clear that sup, EA} < oo. From Theorem

6.5.9, we deduce a subsequence n(!) such that, for all its subsequences, we have the
(1)

—n ~
convergence A,* — A; on aset A\ of full measure where

NG (D
At1 = E(Atl + + A )

(1)
In a similar way, since we also have sup,, EA:Q’“ < 00, we deduce from n(!) a subsequence
(2) ~
n® such that the convergence ZZ’C — A, holds on a set A, of full measure for all its

subsequences. Following this scheme, we inductively construct a sequence n® extracted
@

from n~Y such that the convergence A b A} holds on a set A, of full measure

for all its subsequences Then, we deduce that the subsequence m, = nép ) verifies the

convergence A, — A, for any ¢ € QT on the set A = ), A\, of full measure for all
its subsequences. Indeed, let n, = nk ) be a subsequence of m, and t = t;, € Qr. By

—_, (ko)
hypothesis, the convergence A “ — A, holds not only for the sequence n*o) but also

for its subsequences. Moreover if p > ko, then k, > p > k. It follows that nkr) is a
subsequence extracted from n*0) and finally 7 too. We can conclude that A, A, At

We shall prove that the mapping s — A is a.s. increasing on Q7. For this, it suffices
to argue on the set A of full measure. If t; < ¢y, then AJ"" < A for i < p by hypothesis
on A. It follows that A < A:;p and Atl < ZtQ as p — 00.We define the process

Ay = lim, ¢, e, A, on [O, T| and we prove that the mapping s — A; is a.s. increasing.
It suffices to argue on the set /\ of full measure and use the increase of A. Indeed, if
51 < t; < S9 < ty where s1, s9 € Qr, then gsl < /LQ and we get that A, < Ay, as
i — 1y, i=1,2.

Moreover, A is a.s. left-continuous. Indeed, for ¢, fixed and any arbitrary small ¢ > 0,
we have A;, — ¢ < A < A, provided that s € Qp verifies tg —r < s < tg where r > 0
is near to 0. It follows that to —r/2 <t < tp implies that Ay = limg 65401 A, Then, it
is clear that A;, — e < A; < Ay, and finally A, — A;, as t /" to. Note that A is clearly
predictable.

We shall prove that X;;‘” — Ay, provided that A is continuous at ¢y. Note that A;, < ;Lg
and by continuity at ty, for any € > 0 arbitrary small, we have A;, < gto <A <A +e¢
provided that ¢ €]tg, to + r[ where r > 0 is near to 0. Furthermore, ]Z;Zp — Ayl <eforp
large enough. It follows that |sz — A4, | < 2e and we can conclude.

0

Note that A = lime; Ay is right-continuous and has the same jumps as A. Then,
we can claim that there exists stopping times 75, exhausting the jumps of A. By similar
arguments, that is a diagonal procedure, we deduce from the sequence m, a subsequence
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n, such that A" — A, at each point ¢ of continuity for A and ZZ: — A, on aset A of full
mesure where A, = A, at each point ¢ of continuity for A. Clearly, A"* — A and finally
we can claim that A is a predictable and increasing process. We can conclude about the
lemma. This latter serves to get the following (see [6]).

Lemma 6.6.2. Let Y" be a sequence of )V, such that there is a threshold k at time T, i.e.
Y+ k1 € LYGr, Fr). Suppose that D(G) # @ and B holds. Then, there exists Y € Y,

and a subsequence ny such that a.s.(w), Y,"* is Césaro convergent to Yy for all t € [0,T].

We observe that the conditions of this model are verified by the C-valued process
G = (Gi)iejo,r of our X-model. We can deduce that Y € ) = Y € X. Indeed, X =Y is

such that a version of its density X is given by the following formula

SftkHJr B Sfthr I] |
thtbit]:
=Yl

X = limsup,
D T

Then, we can conclude using the next lemma from [6].
Let G 4(w) denotes the closure of cone {G,(w): s <r <t} and let

Gs,t—i—(w) = ﬂ€>OGs,t+s(W)7 Gs—,t(w) = m5>0C7Ys—s,t(W)

with an obvious change when s = 0.
We assume ? in all this chapter that G;;, = G; and Gy = Gy
Lemma 6.6.3. Let Y be a predictable process of bounded variation. Then

YeYy & Y,-Y,e€L%G,,) for all stopping times 0,7, 0 <7 < T.

6.6.2 Proof

First, we give an obvious result for more convenience.
Lemma 6.6.4. We have

I's = {x eR?:.3IX € Xy r such that x + X, > F. for all stopping time 7 and x + Xp = FT}.

Proof. Let consider X € A}, ¢ verifying z + X, > F; for all stopping times 7. We have
z + X7 = Fr+ Yr with Y7 > 0. It suffices to consider

X, =X, = YrIp(t)

in order to have X' € A r with 2 + X/, = Fr and v + X > F.
Lemma 6.6.5. We have I't, C Dg.

Proof. Suppose that X € X, 1 verifies z + X; > F; for all ¢ and consider n € P (G*, ).
We have chosen a cadlag version of the martingale

M, = E ( / ' mdu(sm)

3The property Gi;+ = Gy is considered as obvious in [19] and [9] but the proof is not produced and
seems to be an open problem.
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such that the process
t
Y;ﬁ - Mt - / nsdﬂ(s)
0

is a semi-martingale verifying by hypothesis ¥; € L°(G}) and Y7 = 0. We recall that the
formula of integration by parts is:

[(X,Y] :XY—/X_dY—/Y_dX.
So, we obtain for all stopping times 7,

/ Xt_ntd,u(t) = / Xt—th + / Ytht — XT"YTn
0 0 0
where 7, is chosen such that the process X_.M™ is a martingale. Recall that Y verifies
Y, € G}. So, we have
E/ Y,dX, = E/ Y X, d|| X, <0
0 0

It follows that .
E/ Xe-mdu(t) < —EX,, YT,.
0

Since I verifies F; < F;_ we have Fyn; < xn + Xy_n and

E/ Fymdp(t) < HTE/ mdp(t) — EX. YT,
0 0

Note that there is a constant c such that —E X, Y7, < —cEY, 1 where
EY, 1 =Enh,, 1 — 0.

Moreover, F' being bounded from below, it suffices to use the Fatou lemma to conclude.
We note
Ly() = {& € L°(Q) : Fke > 0 such that £ + k1 >0} .

With .
= o
k=0

we define the following sets of L(Qr, P ® u™, R?):

Al = {g &g € Fgp, Y € Yy such that Yy > £, VA < 2"}.

Lemma 6.6.6. Assume that D # O, (B) and (G) hold, then A} is Fatou-closed.

Proof. We assume that ™ — & P ® u" a.s. (w,t) with ™ € Af verifying ™ + pl > 0
P @ p™ as. (w,t) for some constant p > 0. Then, we deduce that (G — &g P a.s.(w) for
all k < 2" and {7 + pl > 0 a.s.(w). It follows that §n € Fon.

By hypothesis, there exists Y™ € ) such that Yjw' > £ as. (w) and Y7 + pl 2 0.
From now on, it suffices to apply Lemma 6.6.2 to conclude that there exists Y € ), and a

subsequence m,, such that for all ¢, ¥, is Césaro convergent to ;.
It follows that Yy > {pn as. (w).

136



Arbitrage Theory for a Continuous Time Model

Lemma 6.6.7. Aj N L is Fatou-dense in Af.

Proof. Let consider £ € A verifying & + p1 > 0 for some constant p > 0. There exists
Y € Yy such that Yyn > §n a.s. (w) for all k. It suffices to consider Y™ =Y and {™ = {Am
in order to have ™ € Af, with "™ — & P® u" a.s. (w,t).

In virtue of the Bipolar Theorem ([19]) and the previous lemma, we deduce a dual
description of Aj.
Corollary 6.6.8. If D # O, (B) and (G) hold, then

Af = {5 € Ly: Emén < sup EpwXn, ¥ne L' (Qr, P® M"Ri)} :

XeAy

Finally, we can prove Theorem 6.4.1.

Corollary 6.6.9. Assume that D # O, (B) and (G) hold. Then,
D CT'¢.

Proof. We consider = € D¢, and we first suppose that there exists n € N such that F'—x ¢
Ap. Then, we deduce from the previous corollary the existence of n" € L'(Qp, P ® p",R%)
such that:

T T
B [ (- (t)> B [ eapdu(y
0 0
for all £ € Aj. We deduce that for all £ € Af,

T
B [ it <o
0

Considering, for any u > 0 and N* € L>(—G,,), the process {(t) = N*L,7(t) € AG N Db,
we deduce that " € PZ(G*, u™). This leads to a contradiction since 0 € A7 implies that

T T
E / Fapd(t) > 2 / irdun(t)
0 0

whereas z € D% and 0" € PL(G*, u™).

From now on, we can assume that F'—x € Aj for all n € N. It follows that for all n € N,
there exists Y € ), such that z +Y;]% > Fqg a.s.(w) for all £ < 2" and Y;* 4+ pl > 0 where
p = 0. Then, it suffices to use again Lemma 6.6.2 to conclude that there exists Y € )}
such that a subsequence of Y;" is Césaro-convergent to Y; for all ¢ € Q7. Moreover, for
each fixed t € Qr, there exists n;, k; such that

kT onm, T
—W,n/ntét—Q—n.
Then, n > n; implies that z +Y,” > F; a.s. (w) because F' — x € Aj. We deduce that
x+Y; > F, as. (w), for each t € Q7.

Furthermore, if we consider any stopping time 7, we have 7 = lim \, 7" everywhere on

) with:

t

2"—1

. kE+1)T
"= 3 g
=0
Obviously, we have x + Y;» > F.n a.s. (w) and we deduce, from the fact that F' is cadlag,
that +Y,, > F; a.s. (w) for all stopping times 7 where Y, € &;. Indeed, we have already
observe that Y =Y, € X. Moreover, because of F, it is clear that Y, is bounded from
below.

137



Proof of Theorem 6.4.1

138



Chapter 7

No Free Lunch Arbitrage in the
Y-Model

We consider the continuous-time model Y of financial market with proportional transaction
costs. In a recent paper [6], a dual description of the set of initial endowments of self-
financing portfolios super-replicating American-type contingent claim is proved under some
assumptions. The hypotheses used in order to show the hedging theorem of European
options are the same. We suggest to link these conditions with the absence of arbitrage
when the market verifies an hypothesis fulfilled if transaction costs and risky assets are
jump processes.

7.1 Introduction and Formulation of the Main Results.

In the present paper, we investigate the problem of no-arbitrage using the approach of
Campi and Schachermayer. The model (see [6]) is the following:

We shall work in a general “abstract" setting where we are given on the interval [0, T
two set-valued processes G = (G;) and G* = (G}) where G; = cone{¢F : k € N} and
Gy = cone {¢F : k € N}. It is assumed that the generating processes are cadlag, adapted,
and for each w only a finite number of & (w), & (w), ¢F(w) and ¢F (w) are different from
zero, i.e. all cones are polyhedral. We put G;_ = cone {¢* : k € N}.

Standing hypotheses. Throughout the paper we shall assume that all cones G; contain
R% and are proper, i.e. Gy N (—Gy) = {0} or, equivalently, int G; # @. In the financial

setting, the cones G; are the solvency cones [A(t provided that the portfolio positions are
expressed in physical units:

K, = cone{r}’e; — ej, €, 1 < i,j < d}

where
T = (L+\7)S1/S;

and S! are the risky assets whereas \j are the transaction costs.
This hypothesis means that we are working assuming efficient friction.
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We denote D(G) the subset of MZ(G*) formed by martingales Z such that not only
Z, € L(int G*) for any stopping time 7 € [0,7] but also Z,_ € L°(intG:_) for any
predictable time 7 € [0, T7.

In a similar way, if I is a countable set of stopping times, we note D!(G) the subset of
MT(G*) formed by martingales Z such that not only Z, € L°(int G*) for any stopping time
7 € I but also Z,_ € L°(int G¥_) for any predictable time 7 € I. For more convenience,
we note IP the subset of all predictable times of I.

Moreover, we assume the following condition:
D’. If DI(G) # O for any countable set I of stopping times , then D(G) # @.

In a financial context, where the cones are defined as above, we can observe that this
assumption is verified in the following case:
Lemma 7.1.1. Assume that the risky asset S = (Si)i:L...’d and the transaction costs
A= (N“); j—1... a are jump processes having the form

Xi = XoIignpos|

where T™ are stopping times totally inaccessible and X, are random variables Fpn-
measurable. Moreover, suppose that there exists g > 0 such that 7"t — 77 > gy where
(™), 1s the set of all stopping times exhausting the jumps of the processes S and \. Then,
the condition D’ holds.

Proof. We consider the countable set I of all stopping times
T =1"4+¢€ €€Qy

where 7" exhaust the jumps of the processes defining the risky asset and transaction costs.
We can suppose that 0, T € I. Then, assuming the required hypothesis for D’, we can
define Z := Z! and we prove that Z belongs to D(G). In the contrary case, suppose that
there exists a stopping time 7 € [0, 7] such that Z, N, = 0 where N, € L*(G,, F,)\{0}.
We can assume that 7 # 7" because of Z. We deduce that Z. N, [.n,ne = 0 for any n and
e €]0, €. It follows that FZ.neN,Lineremne = 0 where Zone € int G5, and G, = G,
whereas N, € G,»\{0} on theset 7" < 7 < 7™¢ < 71, We deduce that g, necrmts =0
for any n, e which leads to a contradiction. The reasoning is similar if we assume that
Z._N,_ = 0 since we suppose in this case that 7 is predictable. Indeed, the stopping times
7" are assumed totally inaccessible and we can assume that 7 # 7". It follows that we can
repeat the previous reasoning.

We define the portfolio processes following the paper [9].

Let Y be a d-dimensional predictable process of bounded variation starting from zero
and having trajectories with left and right limits (French abbreviation: ladlag). Put
AY =Y —Y_, as usual, and ATY := Y, — Y where Y, = (Y;;). Define the right-

continuous processes
VYA v oyan,

s<t s<t

(the first is predictable while the second is only adapted) and, at last, the continuous one:
Yo=Y - Y4y,

Let Y be the set of such process Y satisfying the following conditions:
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1) Y¢ e -G dPd||Y°|-a.e.;
2) ATY, € —G, a.s. whatever is a stopping time 7 < T
3) AY, € —G,_ a.s. whatever is a predictable time o < T.

Let Y* .=z + ), x € R We denote by Vi the subset of Y* formed by the processes Y’
such that Y; + ky1 € L°(Gy, F), t < T, for some xy € R. In the financial context (where
G = K) the elements of Y7 are the admissible portfolio processes. We note

YV(T):={Yr:Y €)Y'}.

We associate with Y the following right-continuous adapted process of bounded varia-
tion:
Y =Y°4Yi4Yrt
ie.Y =Y 4+ AtY =Y, . Since the generators are right-continuous, the process Y inherits
the boundedness from below of Y (by the same constant process xy1).
Fix ¢ € LO(R?, Fr) with € + k1 € L°(Grp, Fr) where & is constant and define the convex
set

I'={zeR’: (€ Y/(T)}

and the closed convex set
D:={zecR?: Zy>FEZ¢& Y7 € ME(GY)}.

The next hypothesis is a requirement that the set M (G*) is rich enough.

B. Let £ € LR F,). If the scalar product Z,£ > 0 for all Z € MI(G*), then
e LG, F).

Then, recall the hedging theorem of European options for the considered model.
Theorem 7.1.2. Assume that D(G) # @ and B holds. Then I" = D.

Our objective is to prove that the hypotheses of this theorem are equivalent to the
conditions of No Free Lunch Arbitrage (NFL) ( in the literature, the notion of No Free
Lunch Arbitrage is usually defined using a closure of the set of incomes). For this, we define
the following sets

W(B) ={£ e L°(R", 7)) : Z£ <0,VZ € MJ(G)}, te0,T]

and we say that the model satisfies the (VF'L) condition if the following statements hold:
(@) V(T)=" N LG, Fr) = {0},
(i1) YY(T)>" N LG, F,_) = {0},
(i) VY(T)>" m%(B) C LY(=Gy, F)
where Y (T )OO means the closure in o(L>, L') of the set P (T)NL*>, T is any stopping

time 7 € [0,7], assumed predictable for (ii). Then, we can establish that the (NFL)
condition is equivalent to the hypotheses used for hedging theorems.

Theorem 7.1.3. Assume that the assumption D' holds. Then, the following conditions
are equivalent:

(a) (NFL) condition holds.
(b) D(G) # O and the condition B holds.
() VAUT) is Fatou-closed and (NFL) condition holds.
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Proof of Theorem 7.1.3

7.2 Proof of Theorem 7.1.3

First, the implication (b) = (c) is obvious. Indeed, the Fatou-closure under (b) was shown
in [6]. Moreover, if we consider Y, € yE(T)"Ow N L%(G,, F,), choosing a fixed Z € D(G),
we have Z,Yr > 0 since Z, € L°(int G%, F,). But, recall from [6], the following lemma:
Lemma 7.2.1. If Z € MI(G*) and Y € Y, then both processes ZY and ZY are
supermartingale and

(7.2.1) B(—ZV) - |[Ylr < Zow — EZy ¥y

Then, we write Yy = lim,, Y} and from EZpY}' < 0, we deduce that EZ;Y7r < 0 which
implies that Z.Yy = 0 and Y7y = 0. From the condition B |, we can easily deduce (ii7).
Obviously, (¢) implies (a). So, it remains to prove the implication (a) = (b). For this, we
need some preliminary lemmas:

Lemma 7.2.2. Assume that (i) holds. We consider a fized constant k > 0 and a countable
set I of stopping times. Then, for any cadlag process ¢ verifying ¢, € L°(G,,F;) for any
stopping time T, there exists a martingale Z¢ such that

(1) Z5€ >0 for any t < T, € € LO(Gy, F),

(2) CT[{chT:O} =0 forany T €,

(3) 1 Z¢ 1l < K

Lemma 7.2.3. Assume that (ii) holds. We consider a fized constant k > 0 and a countable
set I of stopping times. Then, for any cadlag process ¢ verifying ¢ € LY(Gy, Fy), Vt and
(- € LO(GT , F-_) for any predictable time T, there exists a martingale Z°~ such that

(1) Z; 2 0 foranyt <T, e LG, Fi),
(2)Z; €20 foranyt < T, € € LYGy, Fr),
(3) ¢r {Zc B :OforanyTEIp,
4112~ H1 <

Proofs. Proofs of the previous lemmas are similar. That’s why we only give the second.
We define
Zr = {ne L'RY) : Byg <0, V6 € T)="}.
For each n € Zr, we consider the martingale Z;) = E(n|F;) and we first show that it
verifies (1). In the contrary case, there exists t < T, § € L*(Gy—, ;) such that ZrE<0
on a non-null set. We define £ = —&Ir where I' = {Z} { < 0}. So, £ e (T T)>" . Moreover,
EZ {’ > (0 which implies that Enf > 0 in contradiction with the fact that n € Z7. We

can prove (2) in a similar way. In order to prove (3), we define, for each predictable time
TeIP,

¢, = sup P(Z' (- >0).

neZr

There exists a sequence 7" € Zp such that P(Zfig_ > 0) increases to ¢,. Obviously, we
can choose [|n"||; < k. We note

e}
= Z 27" € L'
n=1
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We prove easily that *(7) € Z7 and, since 7 is predictable,

AR i 2 "
n=1

It follows that
P(ZV ¢ >0) < P(Z7T¢ - >0) < ¢

and ¢; = P(Z" ¢, > 0). We note I? = {7 : m € N*} and we define
77* _ Z 2—mn*(7_m)
m=1

verifying |||y < k. We still have n* € Zp. Moreover, for any 7 € I?, ¢, = P(Z" (,— > 0).

We shall prove that Z7 verifies (3). In the contrary case, there exists 7 € I? and
a >0 such that 77 = G-Iy w10 oy 7 0- But, 77 € L>*(G,—,F.-) and (i7) implies
that ¢ ¢ yl?(T)Oow. Thanks to the Hahn-Banach theorem, we deduce the existence of
n € L*(Fr) such that

EnY < Eny?, VY € Y)(T)>
which implies that EnY < 0 for all Y and n € Zp. Moreover, Ev2n > 0 and finally
EZ} ~% > 0 since it is easy to show that Z7 € MJ.(G*). It follows that Z!_ v* > 0 on a
non-null set I'. From now on, we define Z = Z"7 + Z". We observe that F' = {ZfiCT_ >0}
verifies FFUT' C G where G = {Z,_(,— > 0}. Moreover, it is obvious that F N T' = 0. It
follows that
¢, =P(F) < P(FUT) < P(G) <e¢,

which leads to a contradiction. It suffices to consider Z¢ = Z"" to conclude.

Corollary 7.2.4. Assume that the conditions (i) and (ii) hold. We consider a fized constant
k > 0 and a countable set I of stopping times. Then, there exists a martingale Z' such
that:

() ZL >0, Vt<T, € LG, F ),

(2) 2/ 20, Vi< T, €€ LGy, F),

(3) g’FI{Z_,I_CTZO} =0, VT € I, C = Zn angn’ a:—L € L(-)i—(fT);
A) G-Izt ¢,y =0, Y7 €I?, (=3, ™, ar € LY(F-),
(

T—"

Proof. It suffices to apply the two previous lemmas for each cone generator £ in order
to respectively obtain Z&" and Z¢"~. Then, we consider:

I._ - —k—1 rygk = —k—1 rpgk—
Zh:=Y 27178 £y oty
k=1 k=1

and it is easy to prove that Z verifies conditions (1) and (2). Let prove (4). First, we choose
a fixed generator ¢, = & . Then, the equality Z! (,_ = 0 implies that Zfi_f'f_ =0 and
finally £ = 0 by hypothesis on Z¢"~. Secondly, if ;- = o™ _£" we have, by the same
reasoning, Z5 ? =0on ol # 0 and we can conclude. Finally, if (,- = > o &,
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we obtain that for any £, ng__CT_ = 0 which implies that Zfi_aﬁfﬁ;[ = 0 and we can
conclude as previously. We can similarly prove (3).

It is easy to deduce the following lemma:
Corollary 7.2.5. If the conditions (i), (ii) and D’ hold, then D(G) # O.

Proof. Indeed, for any countable family I of stopping times, it suffices to consider the
martingale Z! produced by the previous lemma in order to ensure the required condition
for D’.

Thanks to the last corollary, it remains to prove that the condition (B) holds. For this,
we consider for any F' € L™,

fp::{xeRd:F Scéyb( )°°}
and the closed convex set
Dp:={x € R: Zyz > EZrF VZ € M{(G")}.

It is easy to prove that I'p C Dp. Indeed, it suffices to use Lemma 7.2.1. For the converse, we
consider x € D and we suppose that F'—x ¢ y,?(T)OOw. Using the Hahn-Banach theorem,
we deduce (see proof of Lemma 7.2.3) the existence of a martingale Z7 € M (G*) such
that EZ"(F —x) > 0 and we can conclude that = ¢ T implies that = ¢ Dp. It follows that
T'r = Dp. From now on, suppose that ¢ € LO(R?, F;) verifies Z,& > 0 for any Z € MI(G™).
We can assume that £ € L*°. It follows that 0 € D_¢ and finally —¢§ € yg(T)oo“’. We deduce
that

—¢£ € V(1) N(B) C L(=Gy, Fy)

and we can conclude.
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Chapter 8

Asymptotic Arbitrage in Large
Financial Markets

Yu. Kabanov and D.O. Kramkov have defined several notions of asymptotic arbitrage for a
large financial market described by a sequence of standard general models without friction
of continuous trading [17]. Moreover, they link the absence of asymptotic arbitrage to the
notion of contiguity. Here, we propose analogous results when the market is subjected to
transaction costs. We deal with the traditional model of discret trading [19] but also with
the continuous model of Chapter 6.

8.1 Introduction

We fix a sequence T™ of positive numbers. We define a large financial market as a sequence
of markets whose the time horizons are 7", the dimensions are d(n) and all described by
the same model among the two following.

In the two cases, for each n, we assume that we are given a stochastic basis B" =
(Q, F", F™ = (F}'), P"). The latter satisfies the usual conditions and the initial o-algebra
is trivial (up to P™-null sets).

8.1.1 Large Financial Market of Continuous Trading

We consider a C-valued process G = (Gy)o<i<r defined by a countable sequence of adapted
d-dimensional processes £¥ = (£F) such that for every ¢ and w only a finite but non-zero
number of £f(w) are different from zero and Gi(w) = cone{&F(w), k € N}, i.e. Gy(w) is a
polyhedral cone generated by the finite set {£F(w), k € N}.

We suppose that G dominates the constant process R?, all cones G, are proper, i.e.

Gy N (—Gy) = {0} or, equivalently, int G} # O.

We assume that the generators of G are continuous processes and we add the following
assumption about the generators of Gf:

Assumption (G):There is a countable family of continuous adapted processes (¢*)
such that for each w only a finite number of vectors (* are different from zero and
Gt = cone{CF : k € N} for every t.

Recall the following hypothesis:
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Assumption (B): Let £ € LY(RY, F,). If the scalar product Z;£ > 0 for all Z € M%(G*),
then & € LGy, F).

Let X = X2 be the set of all cadlag processes X of bounded variations with Xy = 0
such that dX = Xd||X| with X, € LO(=Gy, F,) for all t € [0,T] and let X* = z + X,
z € R%. We denote by & = X the subset of X formed by the processes X such that
X + kx1 € L°(Gy, F;) where kx > 0. Finally, we put X*(¢t) = {X, : X € X"} and
Xr(t) = {X; : X € &}

For the following, A}" is interpreted as the set of incomes, i.e. terminal values at date 1™
of portfolios starting from . In order to make definitions uniform between the two models
of this chapter, we note Ry = X.

We recall the main results for our needs:
Lemma 8.1.1. If Z € MY(G*) and X € X7, then ZX is a supermartingale and

E(—ZX).||X||lr < Zox — EZr X7

Let LY be the cone in L°(R?) formed by random variables & verifying £ + k1 > 0 a.s. for
some k > 0. We are given a non-null random variable F' € LY considered as a contingent
claim. We define the convex set

Ip={zeR: FeXxiT)}
and the closed convex set
Dp={zeR?: Zox > EZrF NZ € M (G*)}.

We denote by D = D(G) the subset of M (int G*) formed by martingales Z such that not
only Z, € L°(int G*) for any stopping time 7 but also Z,_ € L%(int G*_) for all predictable
times 7 € [0, 7.

We recall the following version of hedging theorem:

Theorem 8.1.2. Assume D # O, (G) and (B) hold, then I'r = Dp.

8.1.2 Large Financial Market of Discrete Trading

For each T" > 0, we consider a sequence of C-valued process G = (Gy)i—o.... v defined
by a countable sequence of adapted d-dimensional processes ¥ = (£F) such that for
every t and w only a finite but non-zero number of £¥(w) are different from zero and
Gi(w) = cone{€F(w), k € N}, i.e. G¢(w) is a polyhedral cone generated by the finite set
{€(w), k € N}

The set of incomes expressed in physical units and starting from zero is defined by:

T
Rr =) L(=G,, F).
t=0

We assume that G dominates R, i.e., R1\{0} C int G. For the sequence, we give the main

results, that we can find in [19], which require the notion of No Robust Arbitrage related
to the existence of a martingale evolving in the interior of G* :
Theorem 8.1.3. Assume that G dominates ]Ri. Then,

NA" & ME(iG*) # 0.
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For a fix d-dimensional random variable F' considered as a contingent claim expressed
in physical units, we define the set

Tp={ceRl  FeatRr}.

Let Z be the set of martingales from MZ (ri G*) such that E(ZrF)~ < oo. We recall the
following lemma:

Lemma 8.1.4. Let Z an R%-valued martingale and let Xp = Zp Zz:o & where & €
LY(R®, Fy) are such that Z&s < 0. If EX < oo, then all products Z&, are integrable, Yr
18 1ntegrable and EYr < 0.

We put
Dp = {x € RY :sup E(ZrF — Zyz) < 0}

ZeZ
and finally we give the following version of hedging theorem [1]:

Theorem 8.1.5. Suppose that ML (viG*) # 0. Then T'r = Dp.

8.2 Asymptotic Arbitrage

We fix a sequence T" of positive numbers which are interpreted as time horizons.

Définition 8.1. A sequence of incomes ‘7’1"71 realizes an asymptotic arbitrage of first kind
if there exists a subsequence n' and positive numbers (x ey such that:

81 a) Tn’ 6 x + RTn
8.1.5) Vi > 0,
8.1.c) max;cdm o} "0,

8.1.d) lim,_.c P" (?Tn, > 1) > 0.

Note that 2" is an initial endowment for \7Tn and this latter is not necessary unique. We
add an assumption verified for each market belonging to either of large financial market
defined above:

Assumption (H): For the large financial market of continuous trading, we suppose that
for all n, the cones (G})i<rn verify the hypotheses (B) and D(G") # Q.

For the large financial market of discrete trading, we suppose that for all n, the cones
(G)i<pn verify the (N A™)-property, i.e. MZ" (ri G™) # Q.

In the case of continuous trading , we define the convex set:

dQ

{Q ~ P" - dP =Jml, Z € Mg”(Gn*\{()}) with Zy1 = 1} ,

whereas for the discrete model we consider:

dQ
dpP"

= {QNP": = Zl, Z € ML (xi G™) with 201:1}.
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For the sequence, Q" designates Q7 or Q) according to the foreseen model. We define the
upper and lower envelopes of the measures of Q" as follows:

Q"(A) = sup Q(4), Q"(A) = Jnf Q(A)

QeQ"

and we recall the definition of contiguity:

Définition 8.2. The sequence (P") is contiguous with respect to (Q') and we note
(P") <1 (Q") when the implication

lim Q" (A") =0 = lim P"(A") =0

n—oo n—oo

holds for any sequence A" € F" = Fiu, n > 1.
Now, we give the first result of this section:

Proposition 8.2.1. Assume that (H) holds. Then, for the two models described above, the
following conditions are equivalent:

(a) There is no asymptotic arbitrage of first kind (NAA1).

(b) P <1 (Q").

(¢) There exists a sequence R™ € Q™ such that (P") < (R").
Définition 8.3. A sequence of incomes ‘/}Tn realizes an asymptotic arbitrage of second kind
if there exists a subsequence such that:

8.3.a) Vi, <1,
8.3.b) lim,_o P" (?Tn £ 51) =0, Ve €]0, 1],

8.3.¢) for all sequence of prices (x™)peny < 1 such that VT cx"+ RTn
we have limy, o max;cqem) ;' > 0.

To formulate the next result, we give the following definition:
Définition 8.4. The sequence (Q) is said to be weakly contiguous with respect to (P™)
and we note (Q") <y, (P™) if for any subsequence n' and any € > 0, there exists § > 0 such

that for all nj, € N, there is n' > nj, verifying @n/(A"/) < € for any sequence AY € F"
with the property limsup,, P™ (A™) < 6.
Proposition 8.2.2. Assume that (H) holds. Then, for the two models described above, the
following conditions are equivalent:

(a) There is no asymptotic arbitrage of second kind (NAA2).

(b)(Q") < (P).
(€)(Q") < (PT).
(d) limg o0 limy, inf supgegn @ (W > K) =0.
Définition 8.5. A sequence of incomes VTn realizes a strong asymptotic arbitrage of first
kind if there exists a subsequence of positive numbers (x™),en such that:

8.5. )VT exMﬁTn,

8.5. b)

5.c)

max;<dm) Ty — 0,

8.5.d) im,, P (VTn > ) =1.
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Définition 8.6. A sequence of incomes ‘7Tn realizes a strong asymptotic arbitrage of second
kind (SAA2) if there exists a subsequence such that:

86@) ‘7Tn < ].,
8.6.) lim P" (?Tn £ g1) — 0, Ve €)0, 1],

8.6.¢) for all sequence of prices (2™)nen < 1 verifying YA/T,I €+ ﬁTn,
we have lim, o max;cqm) ;' = 1.

Lemma 8.2.3. Assume that (H) holds. If there exists a strong asymptotic arbitrage of
first kind, then there is a strong asymptotic arbitrage of second kind.

Proposition 8.2.4. Assume that (H) holds. Then, for the two models described above, the
following conditions are equivalent:

(a) There is a strong asymptotic arbitrage of first kind (SAA1).

(b) (PM)A(QY).

(c) (@")A(P™).
Proposition 8.2.5. Assume that (H) holds. Then, for the two models described above, the
following conditions are equivalent:

(a) There is a strong asymptotic arbitrage of second kind.

(0) (@) A(P™).

8.3 Proofs

8.3.1 Proof of Proposition 8.2.1

We first assume that the model is of continuous trading.
For the equivalence (b) < (c), it suffices to consult [17].

__Assume (a) and let prove (b). Suppose that there exists a sequence (A4,) € F" such that
Qn(An_) — 0 and P"(A,) — a > 0. We consider F" = 114, as a contingent claim and
2, = Q (A,)1. For any Z € MI"(G™\{0}) with Zy1 = 1, we have obviously

which also holds for any Z € ME"(G™\{0}). In virtue of Theorem 8.1.2, it follows that
™ € 2™ + Ry and realizes an asymptotic arbitrage of first kind.

Assume (b) and let prove (a). We suppose that there exists an asymptotic arbitrage
V™ of first kind and we consider a sequence Q" € Q" such that dQ" = Zr-1dP". Then,
applying Lemma 8.1.1, we deduce that 0 < EZp V], < ZJ2" < max; x'. Moreover,

EZpn Vi 2 EZpn Vil oy 2 B2y, oy > Q (Vi 2 1),

It follows that Q" (V2 > 1) < max;2? and Q' (V% > 1) — 0 which implies that
P*(VE, > 1) — 0 in contradiction with 8.1.d).
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In the case of discrete trading, the proof is the same. Indeed, if F* > 0, it is obvious that
Z(F) = MZ(xi G*). Moreover, if V= x”+V79n > 0 with VTn € Ry», we have EZTnVTn <0
for any Z € M7 (ri G*). Indeed, we can write ngn = Zt:o V¢ where a.s. vy, € —G. It follows

that Z,vs < 0 and from Zp» ‘A/qgn > —Zpma", we deduce that E (ZTn\A/:Pn)_ < 00. From now
on, it suffices to apply Lemma 8.1.4 to conclude.

8.3.2 Proof of Proposition 8.2.2

We first assume that the model is of continuous trading.

Prove that (a) = (b). Suppose that there exists a sequence A, € F" such that
P"(A,) — 0 and Q"(A,) — a > 0. We define the contingent claim F™ = 11, and we
consider a price 2" < 1 for F™. For any Z € ME"(G™\{0}) with Zy1 = 1, we deduce from
Theorem 8.1.2 the inequality Zox" > EZp.114, which implies that max; z > Q" (An).
It follows that there exists a subsequence such that max;z} — a €]0,1] and F™ is an
asymptotic arbitrage of second kind.

Prove that (b) = (a). Suppose that there exists an asymptotic arbitrage Vyn of second

kind. Then, for any Z € MI"(G™\{0}) with Zy1 = 1, and ¢ > 0, we have obviously for
dQ" = ZyndP",

Z (@"(?Tn < 51)1> > Q"(Vpn < 21).
It follows that for any Z € MI"(G™\{0}),
2y (Q"(Ven <)1) > EpnZplly,, o
In a similar way, we have
2y (Q" (Ve £ 21)1) > EpnZplly,,

So, we deduce that

—_n

Y= Q" (Vi <e)1+ Q" (Vin £ e1)1

verifies

Zoyn 2 EPnZTng]'I‘,}Tngsl + EPTLZT”]'I‘,}Tniég].’
Zoyn 2 EZT" ‘7Tn1‘7Tn <81 + EZTﬂ ‘7Tn[‘7Tn %51 2 EZT”‘/}TW

We deduce that there exists a price y"(e) € 'y, for any arbitrary e. Let €" ™\, 0 be a
sequence of |0, 1[. By hypothesis,

P (Vpm & €"1) — 0,
as m — 0o. So, we deduce k,, such that

P (Vpkn & €™1)

zl'—
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But, from what precedes, there exists a price y*» verifying
_kn ~
Q" (Vipkn £ €™1) + €™ > maxy)™.
(2

It follows that
Q" (Vi £e"l)—a>0

whereas

P (Vi £ €"1) — 0.

We deduce that (Q") < (P") fails.

In the case of discrete trading, the proof is the same because of 8.1.5. The end of the
proof is deduced from Theorem 8.4.1.

8.3.3 Proof of Lemma 8.2.3

From a strong asymptotic arbitrage VTn of first kind, We deduce a_strong asymptotic
arbitrage of second kind. Indeed, it suffices to consider VTn = 1 — Vpn. It is clear that

‘77(“") < 1and
n ({7(2) _ n (2) . i
P (VTn ¢51>_1 P (VTn )<1 P(VTn>1>—>0.

Flnally, if y” < 1 is a price for ‘A/ﬁ), then there exists Xﬁ) € }AETn such that y™ + X @ =
1-— VTn Where VTn " + Xpn, Xpn € }AETn. We deduce that y™ + 2™ + X (i) + X =1
and applying Lemmas 8.1.1 or 8.1.4, we obtain that max; y' < 1 < max;y;' + max; z}". It
follows that max; y' — 1.

8.3.4 Proof of Proposition 8.2.4

First, we assume that there exists a strong asymptotic arbitrage ‘/}Tn of first kind. Using
the implication (b) = (a) in the proof 8.3.1, we deduce that P*(A,) — 1 and Q" (A4,) — 0

where A, = {Vn > 1}. So, (PM)A(Q").

Reciprocally, if we suppose that (P")A(Q"), then it suffices to use the implication
(a) = (b) with @ = 1 in the proof 8.3.1 in order to obtain a strong asymptotic arbitrage
of first kind.

Note that we have obviously (b) < (c).

8.3.5 Proof of Proposition 8.2.5

We first assume that there exists a strong asymptotic arbitrage ‘7Tn of second kind. From
the implication (b) = (a) in the proof 8.3.2, with a = 1, we deduce that (Q")A(P™).

Reciprocally, if (Q")A(P™), it suffices to use the implication (a) = (b) in the proof 8.3.2
with = 1 in order to obtain a strong asymptotic arbitrage of second kind.

151



Appendix

8.4 Appendix

We shall prove the following result:
Theorem 8.4.1. The following conditions are equivalent:
()(Q") < (P).
(0) (Q7) <w (P7).
(¢) limgn o lim, supinfgeon H (o, P, Q) = 1.
(d) limg oo lim,, inf supgegn @ (% > K) =0.
Proof. We first prove that (Q") <1 (P™) holds if and only if for any subsequence ',

limlimsup sup sup Egg =0
N0 n gEB”/"s QEQ”/

where
B™ ={g:Epg<6,0<g<1}

is a closed convex in o (L>®(P™), L'(P"™)).

For this, we assume that (Q") <1 (P") holds and we suppose that there exists a strictly
positive constant ¢ such that

limlimsup sup sup Egg > c.
N0 n QGB”/"s QEQ”/

We deduce a subsequence (ng)g, gr € B™% and Q% € Q™ such that Egrgr = ¢ and
8 < 1/k. But, on an other hand, g, € B™% implies that

1 1
P (g > —) < —.
(> 7)<
Then, we deduce that limy P (A™) = 0 where A™ = {gk > 1/\/%} . Otherwise,
lim Q*(A™) > 0. Indeed, from Egrgr > ¢, we deduce that

%‘FQk (%2%) = C.

Then, from what precedes, we have a contradiction.

From now on, we assume that the second assertion of our claim holds and we suppose
that (Q")<1(P™) fails. Then, we deduce a subsequence (), a sequence (A™ ), and 6, 5y > 0
such that

Q™ (A™) > const >0, P"™(A™) < § < d

where dq is chosen such that

const

limsup sup sup Egg <
Nk gEB"k"S Qegnk 2

provided that 6§ < dy. Since ¢* = I4ne € B™°, we deduce that

sup sup Fgg > sup Q(A™) = Q" (A™) > const
gEB™k:® QEQ™k QEQ™k
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and
limsup sup sup FEgg > const
ng geB™k® QEQ™k

which leads to a contradiction.

From what precedes, it suffices to prove that (Q") <1, (P") holds if and only if for any

subsequence n/,

limlimsup sup sup Egg =0.

SN0 n’ QEB”/‘SQEQ",
Assume that the second assertion holds and the property (b) fails. Then, there exists € > 0
such that for any k € N*, there is a sequence (Ay), verifying limsup,, P"(A}) < 1/2k and
Q" (A}) > e provided that n > ng(k). We can choose ng(k) such that P"(A?) < 1/k for
n = no(k). We deduce that Iyn € B™"/* and for n > no(k),

sup sup Eqg = sup Eqglay 2

QEQ” gGB"71/k QEQ
Then,
limsup sup sup Egg=>c¢
n QEQ" gepn1/k
and

lim limsup sup sup Fgg >
N0 n QeQn geBn:s

which leads to a contradiction.

From now on, we suppose that the condition (@n) <y (P™) holds and there exists a
constant ¢ > 0 such that

lim hm sup sup sup LEgg > c.
\ n' gGB"/ é QEQ"

It follows that there exists a subsequence (ng)r, Ox < 1/k, QF € Q™ and gF € B
verifying Eng"C > ¢ where ¢ > 0. Moreover, from hypothesis, there exists § > 0
such that for any sequence (A™), which verifies limy sup P(A™) < (5, we have for any
ko € N the existence of k > ko verifying @ " (A™) < ¢/2. But, g* € B™% implies
that P™(A™) < 1/vVEk where A™ = {¢*¢ > 1/Vk} verifies hmk sup P (A™) = 0.
From hypothe31s we can deduce a subsequence (n})y such that 9 *(A™) < ¢/2 whereas
EQk g* > c implies that

1 ng ng
ﬁﬂLQ (A™) = ¢

Then, as kK — oo, we obtain a contradiction and we can conclude that (a) < (b).

We shall prove that (b) = (d). For this, we consider £ > 0. We have

dQ 1
" = < =
" (dP”/K)\K

because of the Bienaymé—Tchebychev inequality. Then,

dQ )
sup P" > K| —0,
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as K — oo, which implies, in virtue of (b), that for any ny € N, there exists n > ng such

that 10
su >K)<e
Qer” < <dP" >

provided that K is large enough. Then, we obtain (d).

We shall prove that (d) = (¢). For this, we recall from [17] the following inequality:

d
d3 (o, P", Q) < 8aK + 4 SupQ( ¢ >K).
Qeon dPm

We deduce that

lim lim inf sup d3(a, P",Q) = 0.
aN\0 n Qeon

Since d% (o, P",Q) =1 — H(a, P",Q), we obtain (c).

We shall prove that (¢) = (d). For this, we recall from [17], that for any « €]0,1/2],
there exists K > 4 such that

sup Q ( 4@ > K) < 8 sup dz(a, P".Q).

QE Q'IL

Hence,

d
lim liminf sup Q( ¢ K) < 8liminf sup d (o, P", Q)
K—oco n Qeon dPm n Qeon

and, as a — 0, we obtain (d).

Finally, we prove that (d) = (b). We write for Q € 9",

n dQ) dQ
0 = B (%11 B (1),
Then,
d
Q(A™) < KP"(A™) + sup @( 9 - K)
Qecon dPm
and

0" (A") < KP"(A") + sup Q ( 19 K) .
Qecon dPm

From now on, for any ¢ > 0, it suffice to fix K large enough in order to have

. dQ )
lim inf su <e/d

and the result follows from Definition 8.4.
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Résumé

Cette thése aborde plusieurs problémes qui se posent pour les marchés financiers soumis a
des cofits de transaction.

Nous revisitons d’abord la méthode d’approximation des portefeuilles de couverture des
options Européennes suggérée par Leland pour le call Européen. On met en évidence la
convergence en probabilité des portefeuilles discrétisés vers le pay-off lorsque ce dernier
est bien plus général. Dans le méme esprit, on mesure la vitesse de convergence en
estimant la moyenne de l'erreur quadratique. Cela nous conduit a formuler un théoréeme
de convergence en loi de 'erreur d’approximation du type “central-limite”. Toutefois, le
modeéle de Black et Scholes utilisé est critiquable dans la pratique puisque la volatilité est
supposée constante. C’est pourquoi, nous proposons d’établir un théoréme de convergence
en probabilité analogue au précédent lorsque la volatilité ne dépend pas seulement du
temps mais aussi de I'actif risqué sous-jacent.

Enfin, on s’intéresse & des marchés continus plus abstraits décrits par des cones générés
par les cotits de transactions. Nous formulons quelques notions d’arbitrage mais surtout
on propose une description duale des prix de couverture des options américaines comme
cela a déja été fait pour les marchés discrétisés.

Mots-clés:

Cotits de transaction, approximations de Leland, couverture d’un portefeuille, théoréme
limite fonctionnel, options européennes et américaines, arbitrage.
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