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Résumé

Cette thèse a pour contexte la micromanipulation en milieu liquide. Cette thématique scien-
tifique vise à comprendre les phénomènes qui interviennent lors de la manipulation dans un
liquide de microcomposants, dont la taille peut varier entre 1 µm et quelques millimètres. Les
travaux de cette thèse se sont focalisés sur l’étude des forces de tension de surface en milieu
immergé, car elles bénéficient d’effets d’échelle favorables. L’idée poursuivie est d’utiliser
des bulles de gaz comme un moyen d’actionnement dans les milieux liquides, et nécessite
d’étudier les propriétés mécaniques de ces bulles. L’originalité de l’approche repose sur la
combinaison de deux effets : la tension de surface et la compressibilité du gaz.

La première étape a été l’étude d’un moyen efficace pour générer une unique bulle de
gaz de taille voulue. Après une analyse exhaustive, il est apparu que la génération de bulle
par le contrôle en volume était une méthode prometteuse. Nous avons alors développé un
modèle permettant de prédire la taille d’une bulle, et mis en évidence la possible existence
d’une instabilité de la croissance de ces bulles. Une étude analytique adimensionnelle nous a
permis de définir un critère pour prédire l’existence ou non de cette instabilité.

La seconde étape a porté sur la caractérisation mécanique en régime quasi statique d’une
bulle de gaz en contact avec deux solides. Le but étant de prédire la force générée par une
bulle de gaz sur les solides ainsi que sa raideur. Le modèle implémenté a permis de déduire des
propriétés intéressantes des bulles de gaz, notamment une grande compliance dont la valeur
peut être contrôlée par des paramètres fluidiques. Cette propriété de compliance étant très
recherchée en micromanipulation, un démonstrateur exploitant les bulles de gaz a été conçu.
Il s’agit d’une microtable compliante actionnée par trois bulles. Ces travaux ouvrent la voie
vers de nouveaux modes d’actionnement ou de capteur utilisant la transduction entre une
énergie fluidique et mécanique opérée par un ménisque capillaire.

Mots clef: Micromanipulation, Bulles, Compliance, Tension de surface





Abstract

The scope of this thesis is micromanipulation in liquid media. This scientific field aims
at understanding the relevant phenomena existing during the manipulation in a liquid of
microcomponents having a size between 1 µm and a few millimeters. This work focuses on
the study of surface tension forces in immersed media, because they have favorable scaling
effect. The main idea is to use gas bubbles as actuation mean in a liquid, and requires to
study the mechanical properties of these bubbles. The originality of the approach is the
combination of two effects: surface tension and gas compressibility.

The first step was the study of an efficient mean to generate a single bubble of predefined
size. After a detailed review, it appeared that volume controlled bubble generation was a
promising method. We have then developed a model to predict the size of a bubble, and
emphasized the possible existence of a growing instability. An analytic dimensionless study
allowed to define a criterion to predict the existence of this instability.

The second step aimed at the mechanical characterization in quasi static equilibrium of
a gas bubble caught between two solids. The purpose is to predict the force generated by
the bubble, together with its stiffness. The model implemented allowed to infer interesting
properties, notably a high compliance whose value is controllable by fluidic parameters. This
compliance property being very important during micromanipulation, a demonstrator making
use of gas bubbles has been designed and manufactured. It consists in a compliant microtable
actuated by three bubbles. This work opens the way to new actuation or sensing means, using
the transduction between fluidic and mechanic energy operated by a capillary bridge.

Keywords: Micromanipulation, Bubbles, Compliance, Surface Tension
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Chapter 1

Introduction

This first chapter will present the scope and the objectives of this work whose context deals with
manipulation of micro-objects whose typical size is between a microns and a millimeter. We will
briefly introduce the specificities of the behavior of these micro-objects and will focus on the mi-
cromanipulation problematic and issues. In this field, our works are focused on micromanipulation
in liquids, whose specificities compared to current approaches in the air will be presented.

Finally we will detail the objectives of this thesis and present the layout of the manuscript.

1.1 Microworld: Stakes and Challenges

All around us in our daily life, we see the results of technological miniaturization. Think of
cellular phones which are smaller and smaller while including more and more functions, or
of all the sensors present in today’s car. The prefix micro, that will be intensively used in
this work, refers to small dimensions. More specifically, we consider dimensions that are in
the range of 1µm to a few millimeters. As a reference, a human hair is around 100µm thick,
and a blood cell has a diameter around 8µm. We define the concept of microworld as all the
specificities inherent to the micro-objects and their interaction with their environment.

For a few decades, industries and researchers have shown a growing interest for mi-
croworld. Indeed microsystems are interesting for many reasons: they are more compact and
require less material to be built. But they also require less energy to run and have a smaller
inertia. The components are generally manufactured using parallel technologies, which allows
to manufacture several units simultaneously, decreasing the costs.

There are several sectors interested in components and system miniaturization. A first ex-
ample is the electronic industry. Currently, the smallest SMD components have a dimension of
.4mm× .2mm, while in the nineties, the usual size for these components was 3.2mm×1.6mm.
Miniaturization of electromechanical devices, such as sensors and actuators, has also been
studied a lot these years, with the development of MEMS: micro electromechanical systems.
Now these systems are generally at the crossing of several scientific fields. Optical MEMS for
example, combines the features of MEMS with mirrors, lenses and optic fibers [39]. Another
topic which is intensively studied is the Lab-On-Chip. By combining microfluidics, i.e. fluids
flowing in microchannels, with analysis systems, it is possible to conduct fluid analysis using
a very small amount of material. Typical application is blood analysis [37]. Microfluidics is
also studied to create heat sinks with a circulating cooling fluid. Target application is to cool
microelectronic processors for example [67]. Biomedical devices designers are generally also
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interested by microcomponents. It allows to design devices that can penetrate the human
body while creating less injuries, like for mini-invasive surgery. It also makes devices more
portable, such as automatic drug delivery systems. For example, many developments have
been made to design implantable micropump for insulin delivery. Such device could measure
glycemia and adjust the volume of insulin to deliver [81].

The most significant point about microworld is that a microsystem is not a small macrosys-
tem. Indeed, physical phenomena do not affect small and large objects in the same way. The
observation of nature. For example, the system used by birds to fly is not the same as flying
insects. Some insects are able to lift loads equivalent to several times their weight, while
larger animals are not. We can also observe the difference when throwing rocks and sand in
a river: rocks will sink, and the grains of sand will follow the river flow. These differences
are explained by scaling laws.

The fact that microsystems behave differently from macrosystems seems puzzling, but
this opens the way to new implementations of functions, or even provides opportunities not
imaginable at macroscale. This requires also new way of thinking. Indeed, tasks that seems
easy at macroscale can become tricky at microscale. For example, when small components
with a specific gravity larger than water are dropped in water, they stay on the surface of
the liquid, thanks to capillary force.

1.1.1 Scaling Laws

Scaling laws explain how the relative effect of different phenomena changes with respect to
the size of objects and therefore show the difference between microsystems and macrosystems.

Let us illustrate this by a simple example. Suppose an object has a characteristic size a.
It could be for example the diameter of a sphere or the width of a cube. Suppose a force F1
is proportional to a3, and suppose another force F2 is proportional to a2. F1 could be for
example the weight of the object, and F2 could be the force exerted by a vacuum gripper,
which is proportional to the contact surface. For high values of a, F1 is larger than F2. This
is why large objects are not lifted using a vacuum gripper. If an object is 10 times larger
than another, its weight is 1000 times larger, and the force from the gripper is only 100 times
larger. On the contrary, a vacuum gripper is very efficient for small objects.

More generally, relative effect of a force will be determined by the exponent of the char-
acteristic length in its mathematical formulation. The smaller the exponent, the more im-
portant the force becomes when the size of the object decreases. Volume forces are therefore
negligible compared to surface forces below a certain size. And surface forces become negli-
gible compared to linear forces below a certain size.

Typically, the weight of an object and the buoyancy force acting on an immersed object
are proportional to the cube of the characteristic length. The pressure, and some electrostatic
forces are proportional to the square of the characteristic length. And we will demonstrate in
Chap. 2 that hydrodynamic forces and surface tension forces are proportional to the length.

Naturally, this scale effect analysis is limited for the dimension range where the same
physics rules micro- and macrosystems. Indeed models are built on hypotheses, and the
model will be valid only as long as these hypothesis are satisfied. For example, there is
a size limitation to the use of Navier-Stokes equation to study gas flows in microchannels,
because Navier-Stokes equation is based on the hypothesis that the medium is continuous.
If the channel size is close to the mean free path of gas molecules, this hypothesis is not
correct anymore, and a statistical approach is necessary. At an air pressure of 101325Pa,
the mean free path is around 70nm [4]. As long as the hypothesis of a model are satisfied,
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the same physics apply and the scaling of the phenomenon according to the exponent of the
characteristic length is admissible.

1.2 Introduction to Micro-Assembly

Micro-assembly refers to the assembly of components having a characteristic length between
1µm and a few millimeters. Usually, it is composed of different tasks: picking a component,
moving it to the desired location, and finally releasing the component. Numerous systems
are still assembled from discrete components. For example, analog watches, optical fibers
in optoelectronic systems, wirebounding to create the connections between components or
between component and the macroscopic system,... Assembling such components has to deal
with the specificities of microworld.

The first step of the assembly consists in picking the component. For this operation, the
gripper must be able to catch a single component. Repulsive forces can prevent the gripper
of reaching the component, repelling it as the gripper approaches. Moreover, the gripper
is supposed to pick up only one component. But due to adhesion forces (Van der Waals,
capillary or electrostatic forces), different components are likely to stick to one another. To
tackle these problems, strategies can be developed to hold components at specific locations,
separated from one another.

When the gripper successfully caught a single component, the next step is to move it to
the desired location. The movement of the gripper may be very fast to ensure high production
rate. In this case, the inertia of the system must be taken into account to avoid the ejection
of the component, or oscillations of the system. The positioning of the component must
have a precision which is at least an order of magnitude below the size of the components.
Generally the issue is not the resolution or repeatability of the positioning system: commercial
positioning systems with a repeatability of a few tenth of nanometer are available. Positioning
errors arise essentially because of parasitic forces moving the component.

To ensure this positioning, vision systems are sometimes used, either to allow the operator
to view the scene in case of manual positioning, or to allow automatic shape recognition in
case of automatic positioning. But this technology presents also challenges because of the
reduced depth of view, reduced field of view and light reflections. Therefore, it is not easy
to see the surrounding materials when performing an assembly task. Sometimes micro-
assembly systems provide force feedback measurement. This is interesting to avoid breaking
the component by applying a force too large, or to control the insertion of a component in
another one.

When the component reaches finally its location, the gripper must release it. If the
component is not secured when it is placed, there is a risk that it changes its position when
the gripper releases it. Repulsion forces can indeed apply as soon as the component is not
hold anymore in the gripper. On the contrary, adhesion forces may also occur between the
gripper and the component. In that case, the gripper cannot release the object.

We give here two examples to illustrate the challenge micromanipulation.

In the case of the assembly of a watch ball bearing [53], the components are small ceramic
balls having a diameter of 500 µm. Five of these balls must be placed in the cavities of a
bearing (outer diameter of the bearing: ≈ 8 mm). In this case, the balls are delivered in bulk.
The first problem is to catch one and only one ball. Two different phenomena are competing
in this case. First, the electrostatic repulsion: if the balls and the gripper are electrically
charged (Fig. 1.2.1), by triboelectrification for example, the balls could escape when the
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gripper approaches. Second, the adhesion forces: contact forces, originated from capillary
condensation for example [14], make the different balls stick together. So it is difficult to
catch a ball, and if the gripper gets one, it is not certain that only one ball is picked up.
Finally, if the gripper catches successfully a single ball, and places it at the right location,
it must finally release the component without moving it. The solution proposed in [53] is to
use a capillary gripper, which is a single finger gripper using surface tension forces of a liquid
bridge to lift object, much like someone who would lick their finger to lift salt grains. The
release of the object is done mechanically pushing the ball against a lateral wall of its cavity,
hence shearing and finally breaking the liquid bridge.

Figure 1.2.1: View of 500 µm diameter ruby balls repelling one another because of electro-
static forces. These forces are large enough to compensate the weight of the balls

In the case of SMD components placement, the components have to be placed and oriented
precisely. Up to now, the machines used in industries generally use vacuum grippers to pick
up the components. These machines are able to place up to 36000 component per hour, with
less that 10 defects per million, and with a precision of about 40 µm and repeatability down
to 9 µm. In this case, the components are delivered in tapes, clearly separated from each
others. These machines could suffer from two problems. First, the high rate of placement
sometimes induces shock in the components when it hits the substrate, and may damage it
[78]. Second, if the size of components continues to decrease, vacuum grippers could become
inefficient, because the size of the noses would have to be very small, which could induce
problem to generate the pressure variations.

Currently, except for SMD electronic components, the automation of micro-assembly
task is difficult. Indeed, the effects of microworld forces are difficult to predict, and this is
not compatible with the requested reliability of the process. The knowledge of a model of
these forces is not always sufficient to calculate the forces, as the input parameters are not
necessarily accessible. Electrostatic forces for example are modeled by Coulomb law, but it
is based on the electrical charges in or on the objects, and these data are not easy to acquire.

Because automatic assembly could drastically reduce the total manufacturing costs, engi-
neers usually develop strategies to tackle handling problem. These strategies can be classified
in three categories. The first approach is to avoid as much as possible the parasitic forces.
One example is to use non contact handling, using pressure waves to move objects [91]. An-
other approach is to make use of these forces, using for example of gripper based on surface
tension effects. The last approach consists in taking measures to minimize these forces.
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1.3 Introduction to Micro-Assembly in Liquid Media

Working in a liquid combines two micromanipulation strategies. The basic idea was to
minimize the effect of parasitic forces [32]. Electrostatic forces are based on Coulomb law.
Therefore, the force generated by the presence of electric charges can be reduced if the working
medium has a high relative permittivity. Moreover, if the liquid contains ions in solution,
these ions can contribute to the electric charge balancing. Surface tension forces exist only if
there is an interface. When working in air, even if no liquid is poured in the system, capillary
condensation can be responsible for the creation of liquid bridges from ambient humidity.

But the presence of the liquid will also provide opportunities for new manipulation con-
cepts. One example is the design of a gripper based on the solidification of the liquid, creating
a temporary solid bridge between the component and the gripper [64]. Naturally, making
the manipulation in a liquid requires adapted manipulators, vision systems and sensors.
Figure 1.3.1 shows a picture of a micro-assembly station developed in the French National
Research Agency ANR PRONOMIA project.

Figure 1.3.1: View of the Pronomia micro-assemblia station, able to perform micro-assembly
tasks in liquid medium

However, when the operations are performed in a liquid, immersed objects are subjected
to other forces. To make efficient designs, it is essential to be conscious of these forces. This
will be presented in Chap. 2.

1.4 Objectives of the Thesis

The main objective of this thesis is to study the forces acting on immersed micro-objects.
More specifically, this work will be focused on surface tension effects, which appear when a
bubble is present in the system. We will therefore study the mechanical behavior of a bubble,
more specifically we will take an interest in studying the effect of the presence of a bubble
between two solids.

Models to describe the mechanics of surface tension already exist [52], but they are limited
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to the study of liquids, or at least they do not take the compressibility of the medium into
account. The first major contribution of this work is to couple the mechanical models for
surface tension with the compressibility of gases.

The study of the mechanical behavior of a bubble requires also a a mean to generate
these bubbles. Ideally, the generator should be able to control the size of the bubble. Usu-
ally, people developing models to predict the size of bubbles are interested in continuous
bubble generator, with applications in chemistry for example. We have therefore investi-
gated different means to generate single gas bubbles having a predefined size. One of the
underlying objective was therefore to find the most promising method to generate bubbles.
We have developed a model to predict the size of the bubble, and to validate this model
experimentally.

The second underlying objective was to model the force generated by a bubble between
two solids, to analyze the model to understand how to make use of these bubbles and to
validate it experimentally.

1.5 Manuscript Layout and Reading Suggestion

This manuscript is separated in two parts.

The first part is a review of the predominant forces acting on immersed microsystems.
Chapter 2 presents the main reason why modeling forces is so important for microsystems.
We also briefly review in this chapter the three main force families. From this review we
select the most promising force, on which we focus afterward. Chapter 3 details the origin
of surface tension, and the existing models to predict the force induced by surface tension.

The second part contains the contributions of this work: the study of surface tension
effects in liquid media, and an example of application of these effects. More specifically, the
second part presents the study of microbubble behavior. Chapter 4 presents the developments
of the bubble generator. In this chapter, we review different principles to generate bubbles,
and we compare them to select the most promising method to study microbubbles properties.
This chapter contains also the mathematical model describing the working principle of the
selected generator, and the analysis of this model. From this analysis, we demonstrate that
an instability during bubble growth may occur. We lead a numeric and then an analytic
dimensionless analysis to define a criterion able to predict the existence of the instability.
Finally, we present the experimental validation of the model. Chapter 5 presents the study
of the force generated by a microbubble between two planes, and the application chosen to
make use of these forces: an actuated table for micromanipulation. We then propose a model
for the force generated by a bubble, and we analyze this model to understand the influence
of the various parameters. From this analysis, we present some design guidelines to get the
best of microbubbles. Finally, we present the experimental validation of the model, and
deduce improvements that could be brought to the prototype. Chapter 6 presents ideas for
prospective developments and the conclusions of this thesis.

1.5.1 Reading Suggestion

For the attention of readers running out of time and wanting to go straight to the point,
we hereby propose a reading suggestion containing the essential elements to understand the
models developed in this thesis.

• Sect. 2.2.3: Why taking surface tension into account is important in microsystems?
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• Sect. 3.1: Why does surface tension exist?

• Sect. 3.2: How to model mechanical effects of surface tension?

• Sect. 4.2: How to predict the size of a bubble with the proposed generator?

• Sect. 4.3: How has been validated the model predicting the size of a bubble?

• Sect. 5.2: How to make use of microbubbles properties?

• Sect. 5.3: How to predict the force generated by a bubble?

• Sect. 5.4.4: How to efficiently perform experiments with microbubbles?

• Sect. 5.4.6: How has been validated the model predicting the force of a bubble?

• Sect. 5.5: What are the prospective developments to achieve?

1.6 Thesis Joint Supervision

This thesis has been realized under a joint supervision with the BEAMS Department of
ULB (Université libre de Bruxelles, Belgium) and the AS2M Department of the Femto-ST
institute, UFC (Université de Franche-Comté, France).

Most of the theoretical developments were made at ULB, while most of the technological
development and experimental setups were developed at UFC. Beyond this formal barrier,
this joint supervision has been an opportunity to working in two different labs, discuss with
two different teams, and discuss ideas. This was also an opportunity to see the related
projects and refine the context to this thesis.
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Review of Forces Acting on
Immersed Microsystems





Chapter 2

Microforces Modeling

In Chap. 1, we have presented the challenges of micromanipulation. The idea of performing the
manipulations in a liquid environment to address some of the problems inherent to micromanip-
ulation has also been presented.

Working in a liquid environment requires to know the forces acting on immersed micro-objects.
In this chapter, we will first remind in Sect. 2.1 the stakes of force modeling in microsystems.
Then we present in Sect. 2.2 a review of the most relevant forces acting on microcomponents in
a liquid, and compare them on basis of their controllability and scaling effect. We finally give the
example of microvalves design in Sect. 2.3 to illustrate how to make use of microworld properties.

Among the reviewed forces, surface tension force is the most promising. It will be studied
extensively in Chap. 3.

2.1 Study of Forces in Microsystems

To efficiently design a system, it necessary to understand the physics of the key phenomena.
In a mechanical system, this means notably to predict the forces acting on the components.
One way of predicting the force is to develop a mathematical model of the phenomenon.

2.1.1 Force Models

By modeling a force, we mean finding a mathematical expression that predicts the amplitude
of the force with respect to a set of parameters. The validity of a model is generally limited to
a certain domain, and the hypothesis made to develop the model should always be indicated.
The model will provide important information such as the relevant parameters playing a
role in the phenomenon, and their relative sensitivity. Let us point out that sometimes,
the knowledge of a model is not sufficient to quantitatively predict the behavior of a system,
because the inputs of the model are impossible to acquire. The mathematic relations defining
the model can also be complex and impossible to solve analytically.

Let us consider electrostatic forces as example. A well known model for these forces
is Coulomb law. This model tells that the force is proportional to the electrostatic charge
carried by the object, and to the electrostatic field. It demonstrates that the amplitude of
the force is inversely proportional to the permittivity of the medium surrounding the system,
from which we infer that working in a medium having a large permittivity is a way to reduce
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electrostatic forces. Yet it is not necessarily possible to predict exactly the electrostatic force
acting on an object, because it is difficult to know the charge acquired by an object.

If the mathematical model is too complex to be solved analytically and numerically, it is
possible to perform experiments on prototypes of the device. But manufacturing the device
can be expensive since the fixed costs such as mask development cannot be passed on a large
production batch. To tackle this problem, engineers can make use of similarity laws, but we
will demonstrate that they are of limited use in the case of microsystems.

2.1.2 Similarity Laws

Sometimes, the system is so complex that, instead of modeling it entirely, it is more efficient
to test it experimentally. However, building the device can be expensive, for example if it is
large (airplane) or if it is small (manufacturing technologies requiring to develop masks for
example).

In the case of large system, engineers generally make use of similarity laws. These are
based on Buckingham theorem and dimensionless numbers [87]. This method allows to infer
the behavior of a system based on a scaled prototype of the device. The advantage is that it
is easier and cheaper to build the scaled prototype than the real device.

One could think of using this method in the case of microsystems, and build large systems
with conventional manufacturing means to study the microsystem. Buckingham theorem
and dimensionless numbers are useful, notably because they allow to reduce the number of
parameters in a mathematical relation. But we will demonstrate that using these concepts
with similarity laws to study a scaled prototype is not always possible.

To apply this method, the first step is to detect all parameters playing a role in the
working principle. Then, from these parameters, dimensionless numbers are built. This is
generally done using the dimensional matrix, in which each line corresponds to an elementary
unit (length, mass, time, ...) and each column corresponds to a parameter. The elements of
the matrix represent the exponent of the unit in parameter dimension. For example if the
parameter is a velocity, element in the line corresponding to length is 1 and element in the
line corresponding to time is −2, the other elements in the column are 0.

The number of parameters minus the rank of the dimensional matrix corresponds to the
number m of dimensionless number πi that cannot be composed by multiplying or dividing
other dimensionless numbers together. Buckingham theorem tells that the behavior of a
system is a function of all these dimensionless numbers:

Ψ (π1, π2, . . . , πm) = 0 (2.1.1)

Therefore, if each of the dimensionless number is unchanged, the behavior of the system
will be alike. So if the scaled model of the device is built in such a way that each of the
dimensionless number is the same as for the real device, the behavior of the real system can
be inferred from the behavior of the scaled prototype. If it is not possible to keep each of the
dimensionless number constant, the similarity is not exact, and some distortion is induced
by the differences.

In [60], we have shown that increasing the size of the geometries of microsystem makes it
impossible to keep dimensionless numbers constant, because it is not possible to find materials
having adequate physical parameters, or it limits the allowed magnification. This has been
illustrated on the example of a microvalves based on a moving ball.
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For example, if the objective is to measure the flow through the valve with respect to
the pressure difference between input and output, it is possible to find this relation from
dimensionless numbers:

U2
U1

= d1 ρ1 µ2
d2 ρ2 µ1

(2.1.2)

where U is the fluid flow, d is the diameter of the input channel, ρ is the fluid density and
µ is the dynamic viscosity of the fluid. Index 1 refers to the real device, and 2 refers to the
scaled prototype.

From there, we see that if the fluid is the same in both systems, the flow in the large system
would be inversely proportional to the geometric enlargement of the system, complicating its
measurement. A solution would be to have a liquid with a larger viscosity in the large system
than in the small system. In microfluidic systems, Reynolds number is usually small, because
diameter of the channels is small. This means that viscous effects are more significant than
inertial effects. This is why the scaled model must be used with fluid having a larger viscosity.

We can see from this example that magnifying the models requires to use materials with
different parameters to take effects of microscale. But it is not always possible, since it may
sometimes require parameters values that do not exist. This is why it is not possible to use
this method for surface tension forces. Indeed, we have also studied the case of the same ball
valve, but adding the presence of a gas bubble in the system. In this case, we have to deal
also with surface tension. Because surface tension does not span over a wide range of values
(for common liquids at 20◦C, between 20 mN/m for silicone oils and 72 mN/m for water),
we suppose that surface tension remains constant. To keep predominance of surface tension
effect compared to gravity effect, this involves using a fluid with a low density in the scaled
model. The magnifying ratio is therefore limited by the smallest density available. If we
consider a density of 700kg/m3, the magnifying ratio is only 1.2.

Buckingham theorem and dimensionless numbers can be very useful to study microsys-
tems, as we will see in Sect. 4.2.6. But similarity laws show limitations to use a scaled
prototype to study a system because it is not possible to find adequate materials to avoid
distortion. In fact, it is even hazardous because using this method will give results that are
not reliable. The example of microvalve illustrates this: if the designer neglects the effect
of surface tension, it will be masked in the scaled prototype. Indeed, small bubbles will not
much influence the behavior of the large device. This is another argument urging the need
for mathematical models of these microworld major forces.

2.2 Review of Major Forces Acting in Liquid Media

In this section, we will briefly review three predominant forces of the microworld: electro-
hydrodynamic forces, hydrodynamic forces and surface tension forces. Some complements
about these forces can be found in App. E.

Usually, the three forces that are most often described in microsystems are electrostatic
force, Van der Waals force and surface tension force. Some papers also mention the magneto-
hydrodynamic force. Intentionally, we will not present the Van der Waals force nor the
magneto-hydrodynamic force.

Van der Waals force is often mentioned in the literature about microsystems. The origin
of this force is due to the presence of electric dipoles in molecules of matter. According to
Lambert [51], this force is only relevant at very small distances (around 100nm), and their
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effects are reduced because of surface roughness and because of the presence of water between
the objects. Therefore, we will not consider these forces.

Magneto-hydrodynamics (MHD) is the study of the interaction between a magnetic field
and the movement of particles carrying an electric or magnetic charge in a fluid, such as ions
dissolved in a liquid. This phenomenon will have an influence essentially on the fluid, but
not directly on the immersed solids. An example of application is proposed by Affanni [1],
who uses MHD to design a microstirring device. Stirring devices are needed in microfluidic
systems where fluids have to be mixed, to induce a chemical reaction for example. Indeed,
simply having two channels flowing into one channel is not sufficient because of large viscous
to inertial effect ratio in microsystems: both fluids flow side by side in the channel.

2.2.1 Electro-Hydrodynamic Forces

Electro-hydrodynamic forces are the forces due to the interaction between an electrostatic
field and the charged particles (ions) or charged objects immersed in a liquid. We will describe
two different phenomena: electrophoresis and dielectrophoresis.

Electrophoresis

When a solid is immersed in a polar liquid, or at least containing ions, a thermodynamic
equilibrium is established and the surface acquires electric charges. Therefore, ions carrying
an opposite charge are attracted by object surface. This creates an electrical double layer
(EDL) around the object. Far away from the object, the global charge seems to be zero,
but close to the object, the effect of the ion cloud can be significant. For example, it can be
responsible to prevent colloids1 to flocculate (form aggregates).

Generally, the model of electrophoresis is based on the existence of three different layers
around the solid. The first layer contains the electric charges carried by the solid. The
second layer, called Stern layer, contains ions from the solution which are strongly bound to
the solid. A third layer, called diffuse layer, contains the rest of the ionic cloud. The electric
potential decreases with respect to the distance from solid surface (Fig. 2.2.1).

When an external electric field is generated, the particles are exposed to an electrostatic
force due to the interaction of the electric field and the electric charges carried by the solid.
It is generally admitted that a part of the ionic cloud is moving with the particle delimiting
a shear plane. This part corresponds approximately to the second layer. An important
parameter for electrophoresis is defined from this consideration: zeta-potential (ζ-potential).
It is the electric potential at the location of the shear plane, assuming the potential is zero
in the bulk liquid.

Electrophoresis is notably used as a separation method in chemistry or biotechnology
[13]. Since the different elements present in the liquid have not the same ζ-potential, the
application of an electric field induces forces with a different amplitude for each element.

Of course, the electric field must be continuous, not alternating, otherwhise there would
be no mean effect.

Let us also mention that researches are made concerning the functionalization of surfaces.
This technology is based on chemical treatments of surfaces to change the polarity of surfaces.
This polarity can even be controlled by changing the pH of the solution, allowing for example
to change forces from attractive to repulsive [22, 23].

1small particles suspended in a liquid
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Figure 2.2.1: Schematic illustration of the different ionic layers and the corresponding electric
potential (source [30])

Let us finally mention the electro-osmosis phenomenon, which is basically the same phe-
nomenon as electrophoresis, except that the ionic cloud is generated from the wall of the flow
channel. When applying an electric field to the liquid, the cloud will acquire a velocity, and
will drag the fluid with it. This produces a flow with a uniform profile [27].

Dielectrophoresis

Dielectrophoresis (DEP) refers to the effect of a non uniform electric field on a polarizable
element.

If a polarizable solid is placed in an electric field, the electric charges of the solid will move
according to their sign and the direction of the electric field. The solid is therefore polarized,
as a dipole. If the electric field is uniform, the global effect is zero because of symmetry. But
if the field is non uniform, there is a force resulting from the interaction between the field
and the electric charges.

One advantage of DEP compared to electrophoresis is that alternative fields are used.
This is useful if the electrodes generating the field are placed in the liquid, without insulator.
The use of an alternative field allows to avoid the creation of gas bubbles by electrolysis.
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These bubbles could perturbate the behavior of the system.

Because the materials will determine if DEP force will induce a repulsive or an attractive
behavior, and the amplitude of the effect, DEP can be used to separate different particles
[63, 84, 31]. It is also used to trap particles in areas where the DEP force is minimal, which
is a function of the gradient of electric field [41, 15].

The study of DEP forces is usually studied numerically to optimize the electric field layout
for the considered application [47]. Some authors have for example designed 3D structures
to increase the field variations, and to avoid the constraint of working in a plane [84, 90].

2.2.2 Hydrodynamic Forces

Hydrodynamic forces are due to the interaction of the fluid flow with the solid. Since Reynolds
number are small in microfluidics, the effect of inertia is small compared to viscous effect.
From our macroscopic common sense, it is like using fluids with a high viscosity.

As an illustration, we will study the case of a sphere in a liquid. Any relative velocity
between the fluid and the solid will induce an hydrodynamic force.

A first approximation, valid for Re < 1, is to consider a Stokes flow. In this case, the
flow is supposed to be axisymmetric around the sphere, incompressible, and the velocity of
approach, U∞ is assumed uniform and oriented according to x axis. This approximation is
valid for a mobile sphere in a quiescent liquid, or for a static sphere in a flowing fluid.

This configuration leads to a linear variation of pressure distribution around sphere surface
[33]:

P = −U∞ µa

(
3x

2 (x2 + y2 + z2)
3
2

)
(2.2.1)

where µ is the fluid viscosity and a is the radius of the sphere. Profile of pressure distribution
along x-axis is shown in Fig. 2.2.2.

In this case, the drag force is given by [33]

FHD = 6π aµU∞ (2.2.2)

If Re ≥ 1, Stokes approximation is not valid anymore because the flow is not axisymmetric
anymore, and turbulences appear downstream [43].

Simulations are useful for complex configurations or when Re ≥ 1, since there is no
analytical solution in these cases. But numerical simulations must take into account 3D
instabilities for Re > 200.

It is important to notice that for Re ≤ 1, hydrodynamic force is proportional to the radius
of the sphere, which means that from a scaling law point of view, hydrodynamic forces are
predominant in microfluidics.

2.2.3 Surface Tension Forces

Surface tension forces arise when an interface between two materials exists in a system. This
kind of force has two advantages compared to the two other forces presented above.
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Figure 2.2.2: View of pressure distribution along flow axis in a Stokes flow. The pressure
variation is linear (source [33])

First, the scaling laws are favorable, since this force is proportional to the characteristic
dimension of the objects. This will be demonstrated in Sect. 3.2.3.

Second, the parameters governing this force are more easy to control with classic me-
chanical devices: pressure, temperature, geometry... While the other presented forces require
control of chemical composition of the liquid (pH, ionic strength), to design specific electrode
layout to control the electric field, or to study carefully the geometry of the device to optimize
liquid flow stream.

For these reasons, we have decided to focus on surface tension forces in the next sections
of this work. Chapter 3 will introduce more deeply surface tension and its effects on microsys-
tems. The major contribution of this work will be the introduction of gas compressibility
property to surface tension model.

2.3 Example of Microvalves

In this section we will study the case of microvalves, in order to illustrate the concepts
presented in the previous sections. These devices are used in microfluidic systems to stop
fluid flow in microchannels. Microvalves can be found in every microfluidic device, but
essentially in laboratories-on-chip, micro total analysis systems, and fuel cells.

The topic of microvalves has been extensively studied during the past decade, and very
innovative devices, based on the specificities of microworld, have been proposed. A review of
these designs has been proposed by Oh [74]. The purpose of this section is therefore also to
present designs making use of principles which are specific to microworld.

All microvalves can be classified according to different criteria. Are they passive or active?
If they are active, are they normally open, normally closed or bistable? Have they a moving
part or not? Are they suitable for any kind of fluid?
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In [60] we have demonstrated that devices using a moving part to close the flow channel
could suffer from the presence of bubbles, because bubbles could prevent the sealing of the
channel. Moreover, if the parts coming to contact are rigid, any geometric flaw will induce a
leakage, which could be significant compared to the nominal flow.

We will present here some of the most relevant microvalve designs.

2.3.1 Devices with a Moving Part

These devices all include a moving component having the purpose of shutting the flow chan-
nel. The different designs differentiate from each others by the actuation mean, and by the
type of moving part.

Yoshida [98] proposes a valve based on the movement of a silicon membrane, lifted by
electrostatic forces. The membrane is extended to a silicon solid part closing the inlet channel.
The membrane is used as the first electrode of a capacitor, and when a voltage is applied on
the capacitor, the electrostatic pressure lifts the membrane, and allows the fluid to flow.

The design proposed by Takao [88] is also based on the movement of a membrane. In
this case, the membrane, made of PDMS, is the sealing part. It is actuated by expansing the
gas contained in a sealed volume with an electrical heater. Luque [66], Ohori [75] and Suzuki
[86] propose to use PDMS membrane, but with a pressure controlled actuation. In this case,
the membrane is pushed on its seat by applying a pressure on its opposite side.

Selvaganapathy [82] uses a similar concept. In this case, a parylene membrane is shaped
to be a portion of the flow channel. This membrane is surrounded by a closed volume
containing solid paraffin. Electrical heaters are used to make a phase change in the paraffin,
which induce a volume increase. This pushes the membrane, and closes the channel.

Sobocinsky [83] proposes to use a steel membrane, actuated by a piezoelectric element.

Cantilever beams are also used as moving parts. They can be actuated by the fluid
flow, as in the design proposed by Koch [50]. In this case, the fluid pushes on the beam.
This pressure bends the beam when flowing forward, and pushes the beam on a seat when
flowing backwards. Ayhan [5] and Kim [49] propose a design with a cantilever actuated by a
piezoelectric element.

Finally, we can also mention Kim [48] who designed a passive microvalve based on the
use of a hydrogel part. The hydrogel part is swollen with water until it makes contact with
the seat. Then its intrinsic compliance is used: when the upstream pressure is large enough,
the hydrogel part moves and allows the fluid to flow.

2.3.2 Devices Without Moving Part

By making use of some properties of the microworld, researchers have been able to design
valves without moving part.

For example, Well [94] proposes to use phase change and to solidify the flowing fluid by
mean of a Peltier actuator. This actuator freezes the fluid, provided that the fluid solidifica-
tion is not too low (the device has been designed for water based fluids). This technology is
suitable for microworld because the volumes to freeze is small, allowing closing times down
to around 10ms.

Another example is given by Feng [29]. It this case, the working principle is based on
surface tension. It is therefore valid only where an interface exists. The idea is to create an
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energy barrier, requiring an increase of pressure in the fluid to cross the valve. Two variations
are proposed: a sudden section reduction in the flow channel, and an hydrophobic coating
placed in a region of the channel. In both cases, interface front must change its geometry
before it can move forward. And to create this change, an increase of pressure is required.
Melin [70] also makes use of surface tension in a mixing device. The device has two inputs
and one output, and the flow is blocked in the valve unless both inputs are supplied with
liquid.

Suzuki [85] makes also use of surface tension, but in a different way. In this design, bubbles
are generated electrochemically, until they fill completely a cavity in the fluidic system. The
bubble is thus used as a part obstructing the microchannel, except that the part is generated
from the fluid itself. Variations can be found in [96] where two bubbles are generated in
chambers next to the channel. Growing these bubbles allows to control the fluid flow, by
gradually reducing the channel section.

These working principles could not be used in macroscopic designs, making them innova-
tive. Moreover, they are efficient because they are somehow adapted to the microscale. For
example, both designs are very effective against leakages, or against dust contamination that
could prevent the closing of a moving part on its seat.

2.4 Conclusions

In this chapter, we have shown that it was important to dispose of mathematical models
to better understand the behavior of systems at the microscale. Even if the models are
not always suitable to efficiently predict the dynamics of a system because it is not possible
to access the input data needed, such as for electrostatic forces, models are useful to find
the relevant parameters of an effect, in order to avoid it, to minimize, or to maximize it.
Indeed, the forces of microscale should not always be considered as unwanted parasitic effects.
Original and innovative designs can make use of these effects, such as presented in the case
of microvalves.

We have shown that the similarity laws are of limited use to model effects of microscale, be-
cause there is no material with suitable properties to avoid distortion. However, dimensionless
numbers and Buckingham theorem, which are based only on mathematical considerations,
remain relevant and will be used in Chap. 4.

We have taken the example of microvalve to illustrate that microscopic devices should not
be reduced macroscopic devices. Some designs found in the literature are clearly inspired from
macroscopic designs, and could suffer from the predominance of forces specific to microworld.

We have presented three major forces of the microworld: electrohydrodynamic force,
hydrodynamic force and surface tension force. From now on, we will focus on surface tension
effects. The next chapter presents the origin of this phenomenon and its applications to
microworld.
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Chapter 3

About Surface Tension

In the previous chapters, we have introduced the micromanipulation in liquid media, and we
have underlined its advantages. Then we have urged the need for models of the predominant
forces acting on immersed micro-objects. We have briefly reviewed the most relevant forces, and
concluded that surface tension forces are of major interest because they have favorable scaling
effects and are easy to control compared to the other forces.

In this chapter, Sect. 3.1 first explains the origin of surface tension. Section 3.2 will detail
how to model surface tension and present the parameters involved. Section 3.3 presents some
devices typically used to measure the main parameter. Finally Sect. 3.4 introduces main factors
influencing the surface tension.

These results will be used in the next chapters, where we will first develop a mean to control
the generation of a gas bubble (Chap. 4), and then we will characterize the mechanical behavior
of a microbubble (Chap. 5).

3.1 Origin of Surface Tension Forces

A glass may be filled slightly above its rim without overflowing. It seems that the liquid
is confined on the top of the glass by a kind of membrane. This is a typical illustration of
surface tension effects. There are many other examples. Why a pendant drop does not fall?
How comes a liquid does not flow spontaneously through a very small hole? What makes our
hair stick together when they are wet? What allows some insects to walk on water surface?

All these examples find their origin in surface tension phenomenon. If all the enumerated
examples may be seen at human scale, they do not influence our daily life. On the contrary,
surface tension is a predominant phenomenon at smaller scale. Surface tension effects appear
when there is an interface between two materials somewhere in the system. The behavior of
the interface is a function of the surface energy of fluids and, in case of contact with a solid,
of the wettability of the liquid on the surface.

3.1.1 Surface Energy

Molecules of fluid located inside the fluid are equally attracted by the surrounding molecules.
But a molecule located at the interface of the fluid is not surrounded by the same molecules
all around (Fig.3.1.2). This induces a difference of energy for the molecules at the interface



22 Chapter 3. About Surface Tension

(a) (b)

Figure 3.1.1: Illustration of surface tension. (a) An insect, called water strider, is able to
float on the surface of water because surface tension compensates its weight. (b) It is possible
to fill a container slightly above its rim without creating an overflow, because surface tension
confine the liquid

compared to molecules inside the fluid.

Figure 3.1.2: Illustration of the origin of surface tension. Molecules in the medium are
attracted uniformly in all directions, while molecules at the interface are attracted only from
one side

This difference of energy is proportional to the number of molecules at the interface,
so basically it is proportional to the area of the interface. It is also proportional to the
cohesion energy of the molecules. The parameter characterizing the difference of energy at
the interface is called surface tension and noted γ, having the dimensions of an energy per
surface unit.

Therefore, surface tension at the interface between a fluid and another material depends
on the nature of both media. If the interface separates a liquid and a gaseous medium, like
air, γ typically ranges from 20 mNm−1 to 72 mNm−1. Values for typical liquids are found in
table 3.1.1.

These nominal values are influenced by temperature, since cohesion energy depends on
temperature [20]. Of course it is also sensitive to contamination, especially for liquids with
large cohesion energy. For example, surface tension of pure water is γ = 72 mNm−1, but
this value will decrease if the interface is contaminated by other components (see Sect. 3.4).
Hence it is important to use pure water during experimentations, or to use liquids which are
less sensitive to contamination.

If a liquid drop is not in contact with a solid, and if the effects of external forces applied on
this drop are negligible compared to surface tension, the shape of the drop will spontaneously
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tend to a sphere. In the next section, we will outline the behavior of a drop when it is in
contact with a solid.

Table 3.1.1: Value of γ for typical liquids at 25◦ [52, 20]. Other values can be found in [55, 76]

Liquid γ (mNm−1)

Mercury 485
Water 72
Glycerol 63
Water (100◦) 58
Acetone 24
Ethanol 23
Silicone oil ∼ 20

3.1.2 Wettability

Wettability is a parameter characterizing the fact that a liquid droplet spreads on a surface,
or on the contrary keeps the shape of a pearl.

Young-Dupré Relation

Suppose a drop of fluid 1 is placed on a solid in a surrounding fluid 2. Wettability depends
on the surface tension of the solid in contact with fluid 1 (γs1), the surface tension of the
solid in contact with fluid 2 (γs2), and the surface tension at the fluid 1-fluid 2 interface γ.
Young-Dupré equation:

γ cos (θ) = γs1 − γs2 (3.1.1)

is an equilibrium relation that defines the wettability of fluid 1 by mean of a contact angle θ
(Fig.3.1.3). If θ < π/2, the solid surface is wetted by fluid 1. If θ > π/2, the solid surface is
not wetted by fluid 1 [20]. If fluid 1 is water and fluid 2 is air, the surface is said hydrophilic
if θ < π/2 and hydrophobic if θ > π/2. Recently, surfaces called superhydrophobic were
developped. For these surfaces, θ ∼ π and a water drop does not wet the solid at all. These
surfaces are interesting because they avoid water to penetrate through fibers of this material
(for clothes) and because they have self cleaning properties (on windows for example, the
water drops slip taking dusts with them) [12, 18, 93].

Anchoring the Fluid

The contact angle is a function of the surface energies around the triple line, which is the
location where the three media are in contact. However, it is generally observed that the angle
will change if the fluid moves on the surface. This leads to the definition of the advancing
angle and the receding angle: the fluid will not move forward unless the contact angle reaches
the advancing angle, and it will not move backward unless the contact angle is reduced down
to the receding angle. This is illustrated on Fig. 3.1.4.

This acts as an energy barrier, and it can be used to confine a fluid on a surface. This is
for example why water droplets will not roll down a glass plate unless the plate is tilted and
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Figure 3.1.3: Illustration of Young-Dupré equilibrium equation. In the configuration shown,
fluid 1 does not wet the surface. Surface energy γs1 is larger than γs2, so θ > π/2. The
location of one point of the triple line, where the three media are in contact, is also shown

(a) (b)

Figure 3.1.4: View of a water droplet (diameter: about 5mm) on a PTFE surface. Illustration
of the difference between static contact angle (a), and advancing (on the left) and receding
(on the right) angles (b)

the drop volume is large enough to make the contact angle reach the advancing angle value.
This confinement may be improved if there is a border beyond which the contact angle has
to increase. There are two main methods used to implement such confinement: a chemical
method and a mechanical method (Fig.3.1.5).

The chemical method consists in modifying the surface tension of the substrate in some
region with a chemical treatment, which may be the deposition of an hydrophobic layer
(PTFE for example) on an hydrophilic surface (or vice versa). The mechanical method
consists in creating a shoulder (sudden variation of surface angle) where the variation of the
contact angle is henceforth much larger.

3.2 Modeling Surface Tension

Surface tension determines the shape of the interface between fluids but also induce significant
forces on a solid in contact with the interface. Indeed, from a mechanical point of view, surface
tension is an energy per surface unit (Jm−2), but also a force per length unit (Nm−1). It
acts exactly as if the interface was a stretched membrane, hence inducing a force. In this
section, we will explain how to model this force.

There are two main mechanical actions applied by surface tension: the force arising
tangent to the interface and established along the triple line, and a pressure, consequence of
the pressure drop across the interface.

It is important to notice that the descriptions hereafter are valid for one interface. In the
case of a thin film, like a soap bubble, there are two interfaces: one on each side of the thin
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Figure 3.1.5: Illustration of fluid anchoring. Suppose a drop of liquid wetting a surface. The
volume of the drop is progressively increased (a→ b). To anchor the drop, it possible either
to change surface energy (left) or to change the tilt angle of the surface (right). On the left,
the dark grey parts are treated to have larger energy at liquid-solid interface than at gas-solid
interface. The liquid does not wet the dark grey surface, so to penetrate this area (d), the
contact angle must increase (b → c). On the right, the contact angle remains constant, but
since the slope of the surface change, the angle must increase (b→ c) before the drop expand
to this area (d)

film.

3.2.1 Surface Tension Force

When an interface is in contact with an object, it creates a triple line along the points where
the three materials are in contact. If the interface is seen as a membrane, this membrane is
pulling the object.

Suppose 1̄t is the unitary vector which is normal to the triple line and tangent to the
interface. The force due to the surface tension in the interface is the integration of the
surface energy γ along this triple line (TL), directed along 1̄t:

F̄TS =
∫

TL

γ1̄tdl (3.2.1)

In case the geometry of the system is axisymmetric, (3.2.1) can be simplified. The triple
line is in this case a circle. Suppose r1 is the radius of this circle. Suppose 1̄z is the unitary
vector along the symmetry axis. The contact angle θ of a fluid on the solid is defined as the
angle between a straight line tangent to the solid and a straight line tangent to the interface,
both tangent coincident on the triple line (Fig.3.1.3). In this case, the only component of
F̄TS that does not void is the component along the symmetry axis. Equation (3.2.1) can be
simplified:

F̄TS = 2πr1γ sin (θ) 1̄z (3.2.2)

It is interesting to notice that F̄TS is always positive, i.e. the interface is always pulling
the solid.
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3.2.2 Pressure drop Across Interface

Because of tension in the interface, its curvature induces a pressure drop. Let us imagine
a box covered with a membrane. If the pressure inside the box is larger than outside, the
membrane would puff out; while if the pressure inside is lower than outside, the membrane
would become strained into the box. In a similar way, the curvature of the interface is a
consequence of a pressure drop established in the interface. However, the surface tension is
much lower than usual tension in macroscopic membrane, hence the pressure drops are lower.
The shape of the interface is highly sensitive to the pressure difference and this fact can be
exploited in order to build a high sensitivity pressure sensor (see Sect. 4.4.1).

Suppose two fluids, (1) and (2), separated by an interface. The pressure difference is
modeled by Laplace law:

∆P = P1 − P2 = 2γH (3.2.3)

which links pressure drop across interface (∆P ) to the mean curvature at a point of the
interface (H) and surface tension (γ). The mean curvature H is a geometric parameter of the
interface (Fig. 3.2.1). Suppose 1̄n is the normal vector to the surface at the considered point.
There is an infinity of planes containing 1̄n, each cutting the surface. The intersection between
a plane and the surface is a curve, for which a curvature can be calculated. Among all these
planes, one contains the curve with the largest curvature, and another, which is orthogonal
to the first one, contains the curve with the smallest curvature. The mean curvature of the
surface H is the mean of these two curvatures. Remark that the curvatures are algebraic
values that can be either positive (if the center of curvature is inside the fluid 1, or negative
(if the center of curvature is outside the fluid 1)). H could vary along the two dimensions of
the interface, while this would mean that the pressure drop ∆P also varies.

Figure 3.2.1: Geometric definition of mean curvature. At the considered point, the intersec-
tion of a plane containing the normal vector 1̄n and the surface is a curve. Among all possible
planes, two of them, orthogonal to each other, will produce the curves with the maximal and
minimal curvatures. Mean curvature is the arithmetic mean of these curvatures

Suppose Σ is the area delimited by the triple line on the solid. Suppose also that the
solid considered is completely immersed in fluid 1, the fluid outside the interface (Fig. 3.2.2).
Suppose 1̄n is the outwards unitary vector which is normal to surface of Σ. Pressure force
F̄P is then given by:

F̄P = −
∫∫

Σ
∆P 1̄ndΣ (3.2.4)
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Figure 3.2.2: Origin of the pressure force. Due to pressure drop across the interface, the
pressure inside the fluid is different (here larger) than the pressure outside. When summing
all contributions of pressure, the only component left is the amplitude of the pressure drop
integrated on the surface Σ delimited by the triple line.

Equation (3.2.3) can be simplified in the case of an axisymmetric configuration, and if ∆P
may be assumed constant. In this case, suppose the triple line is a circle having a radius r1.
Because of symmetry, F̄P will be directed along the symmetry axis. All other components
of the force will be void. Suppose 1̄z is the unitary vector along the symmetry axis. Under
these assumptions, (3.2.4) then becomes:

F̄P = −πr2
1∆P 1̄z (3.2.5)

Which, combined with (3.2.3), gives:

F̄P = −2πr2
1γH 1̄z (3.2.6)

The intensity of F̄P is proportional to surface tension γ, to the area of projected surface
of Σ, and to mean curvature of interface H. It is important to emphasize that H could be
either positive or negative, leading to a force that could have any of the two directions along
symmetry axis.

3.2.3 Capillary Force

The total force due to the surface tension and the curvature of the interface is called the
capillary force and is the vectorial sum of F̄TS and F̄P :

F̄cap = F̄TS + F̄P (3.2.7)

Bond number is a dimensionless number characterizing the ratio of gravity effect to surface
tension effect. It is generally written:

Bo = ρ g l2

γ
(3.2.8)

where ρ is the density of the fluid, g is the gravitational constant and l is the characteristic
length of the capillary bridge. The study of surface tension will be relevant for configurations
having Bo < 1, which means that surface tension effects are predominant on gravity effect.
The characteristic length to match the condition Bo = 1 is called the capillary length.
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For air-water couple at 25◦, the capillary length is 2.7 mm. Therefore if the dimension of
the capillary bridge is smaller, surface tension effect will be predominant compared to the
weight.

If the dimension of fluid volume are such that Bo < 1, the hydrostatic pressure may
be supposed uniform along the vertical dimension, hence the curvature of the interface is
constant. In the case of an axisymmetric configuration, the shape of the interface is a portion
of a sphere. From (3.2.2), (3.2.6) and (3.2.7), in the case of a half-sphere drop in contact
with a plane, the capillary force can be formulated:

Fcap = 2 γ π R+ 2π Rγ sin (θ) (3.2.9)

Equation (3.2.9) shows that the capillary force is proportional to R. This force depends
on the characteristic length of the bubble, while other forces like weight or buoyancy are
proportional to the volume of the bubble, i.e. R3. Because of this difference in the exponent
of the characteristic length, the capillary force becomes predominant when the dimensions
of the system are reduced. This is why the presence of bubbles in macroscopic systems is
generally not an issue, while in microsystems they could hinder its behavior.

A very interesting property of capillary force is that it is self-centering. Indeed, the
capillary bridge between a component and a substrate will always tend to have a minimal
energy. Any lateral deformation of the capillary bridge from its equilibrium position will
increase the surface area, and the capillary forces will tend to return the position of the
component to the most favorable position (Fig. 3.2.3).

Figure 3.2.3: Capillary forces are self-centering. If the capillary bridge (hatching) is stretched
laterally (a), the capillary forces will spontaneously tend to move the bridge back to its
position to minimize energy (b)

Micro-assembly makes use of this principle to automatically position components on sub-
strate. This is known as capillary self-assembly [68]. If the substrate is functionalized as
explained in Sect. 3.1.2, it is possible to create localized anchoring points for the compo-
nents. This method is statistical, but it is massively parallel (many components are placed
at the same moment).

3.3 Measuring Surface Tension

The measurement of surface tension is necessary for various industrial applications. For
example: to predict whether an ink will efficiently cover a surface, or for the metalization of
surfaces. It is also an important parameter to predict the size of droplets of a sprayed liquid.
There are several procedures to measure the surface tension of a liquid. We present hereafter
some of them. The reader can find more details in [28, 56, 76, 80].
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3.3.1 Capillary Rise

If a tube, opened on both ends and having a small inner radius r, is pushed into liquid
(density ρl) through a free surface, the free surface in the tube will be at a different level
than the free surface outside the tube. For example, with a glass tube in water, the water
will spontaneously rise in the tube. This phenomenon is known as the capillary rise (see
Fig.3.3.1) and is described by Jurin’s Law:

γ = rρlgh

2 cos θ (3.3.1)

where g is the gravitational constant and h is the level of fluid in the tube compared to free
surface. One can notice that the phenomenon will be more pronounced for tube having a
small diameter.

Figure 3.3.1: Illustration of liquid rise in a capillary tube. In this illustration, contact angle
θ in smaller than π/2, the liquid is wetting the surface of the tube, hence the liquid rises. If
the liquid does not wet the surface, the level of liquid would be below the free surface in the
container

Equation (3.3.1) can be easily demonstrated considering the equilibrium of the liquid
column in the tube with the surface tension force (App. A). In order to determine the
surface tension of the liquid, the radius of the tube has to be measured accurately. Moreover,
height h is function of contact angle θ, and θ is function of the tube material and the liquid.
If the liquid wets well the surface (θ = 0 ◦) or on the contrary the liquid does not wet the
surface (θ = 180 ◦), (3.3.1) may be accordingly simplified. Another option to use if contact
angle is difficult to measure is to use two tubes of the same material, but having a different
diameter.

3.3.2 Detachment Methods

Another approach consists in measuring the force needed to extract an object that has been
put in contact with the liquid surface, and then deduce surface tension from (3.2.1).

If the object is a plate immersed vertically (Fig. 3.3.2), it is known as the Wilhelmy
method. If the object is a ring, it is known as the du Noüy method. The advantage of these
detachment method is that the contact angle can often be supposed to be zero1. However, the
geometry of the object must be precisely known, and the maximum force measured is usually
reached before the detachment occurs. In a variant of Wilhelmy method, the plate may also
stay in the liquid, and the force is measured directly. In this case the force is function of

1Reference [56] specifies that detachment force is not affected by contact angles lower than 30 ◦
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surface tension but also of the contact angle, which has to be measured. Finally, a dynamic
version of Wilhelmy method, using a cylinder, allows to measure surface tension as well as
contact angle [80], using a continuous force measurement while the cylinder penetrates the
liquid. It is often necessary to calibrate these devices with a liquid of predefined surface
tension.

Figure 3.3.2: Illustration of the Wilhelmy method. A vertical plate is immersed in the
liquid. Due to surface tension, a force is applied on the plate at the liquid-gas interface. One
method consists in measuring the force at the equilibrium position. Another method consists
in measuring the force required to extract the plate for the liquid

3.3.3 Use of drops or bubbles

It is also possible to determine the surface tension of a liquid using (3.2.2), (3.2.6) and
the geometry of a pendant drop or a drop laying on a surface. The different methods are
illustrated on Fig. 3.3.3. The first method is called sessile drop method and consists in
laying a drop on a surface. The shape of the interface will be a function of the hydrostatic
pressure inside the drop, surface tension and liquid density. A variant is to use pendant drop.
The main difficulty in this case is to analyze the complete profile of the interface, in order
to determine all parameters (curvature, contact angle, height, ...). Since, once again, the
contact angle might be difficult to measure, a variant of the pendant drop technique consists
in growing drops until they break away. In this case, several drops are released, and their
weight is measured. Then it is supposed that surface tension force was equal to the weight
of the released drop. However, it is necessary to make a correction, since the volume of the
pendant drop is not equal to the volume of the released drop after breaking. This later is
smaller, and some amount of liquid stays at the extremity of the tip where the drops are
generated [56]. Another approach consists in generating bubbles of inert gas in the liquid.
If the hole from which the bubbles are generated is small enough (Bo < 1, see (3.2.8)), the
bubble can be seen as spherical caps (pressure inside the bubble is uniform if the variation
of hydrostatic pressure is low). Equation (3.2.3) reveals that the pressure is maximal when
the radius of the sphere is minimal, which occurs when the bubble is hemispherical. Surface
tension can be deduced from measuring the pressure at which bubbles begin to be released.
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(a) (b) (c)

Figure 3.3.3: Illustration of surface tension measurement methods using drops or bubbles.
(a) Sessile drop method: the contact angle and curvature of a drop lying on a surface is
analyzed. (b) Pendant drop method: several drops are generated by growing until they fall
from the tube, and surface tension is deduced from the weight of one pendant drop. (c)
Bubble generation method: the maximal pressure in the bubble is reached when its shape
is a half-sphere (for small diameters), surface tension is deduced from diameter of hole and
maximal pressure before bubbles are released

3.4 Influencing Parameters

Surface tension can be influenced by several parameters. We review here the influence of
temperature and the risk of contamination. We also present the electrowetting technique, to
show the influence of electrostatic field.

If, because of a local change of one of these parameters, surface tension in an interface is
not uniform, the gradient of surface tension will cause a deformation or even a movement of
the interface. This phenomenon is known as the Marangoni effect.

3.4.1 Temperature

One of the most important parameters is temperature. Since surface tension is linked to
cohesion energy of the molecules, and since a temperature rise gives more energy to the
molecules, making their displacement easier, surface tension usually tends to decrease when
the temperature increases [56]. Empiric relations exist to calculate the surface tension at
different temperatures. The simplest one is a linear approximation:

γ = γa + k ·T (3.4.1)

where γa is a constant, k is the partial derivative of surface tension with respect to the
temperature, and T is the absolute temperature. This simple relation is generally acceptable
for temperature variations of a few tenth of degrees around the reference temperature, which
is usually ambient temperature, or fusion temperature if this latter is higher. Parameter
values are to be found in reference tables (for example in [55]).

Another expression which has been introduced by Van Der Waals is valid between triple
point and critical point:

γ = γ0

(
1− T

Tc

)a
(3.4.2)

where Tc is the temperature at the critical point, and γ0 and a are constants for the fluid.
Once again, these parameters are to be found in reference tables.
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Figure 3.4.1: Evolution of water surface tension with respect to temperature

Other relations (Eötvos, Macleod) propose to take into account the molar density of the
fluid. For water, (3.4.2) is not accurate. A better relation is given by [17]:

γ = B

(
Tc − T
Tc

)µ(
1 + b

(
Tc − T
Tc

))
(3.4.3)

with the following constant values: B = 0.2358 N m−1, b = −0.625, µ = 1.256 and Tc =
647.15 K.

A comparison of (3.4.1) and (3.4.3) is shown in Fig.3.4.1 for temperature ranging from
triple point to critical temperature. The evolution of surface tension around ambient tem-
perature remains quite low. Indeed, from (3.4.3), we see that γ = 72.7 · 10−3 N m−1 at 20 ◦,
γ = 72.0 · 10−3 N m−1 at 25◦. The variation is lower than 1%, hence we will consider sur-
face tension of water equal to 72 · 10−3 N m−1 for the rest of this document. An exhaustive
list of surface tension for pure material, liquid mixes, inorganic compounds, molten salts or
solutions can be found in [55].

3.4.2 Contamination

The presence of another substance than the fluid at the interface can change molecular
interaction energy, hence change the value of surface tension. This is also true if the interface
is the seat of chemical reactions, changing the properties of molecules. For example, oxidation
of a liquid metal can change significantly the value of surface tension. A daily life example is
the use of detergent in water, which reduces this surface tension by disrupting the hydrogen
bonds. For the experimentations performed during this work, special care has been taken to
work with pure liquids, and to clean components before experiments.
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3.4.3 Electrowetting

If a liquid drop is only partially wetting a substrate, and if an electric field is applied on the
liquid, the shape of the drop will change. Generally, the drop will flatten when the electric
field increases. This phenomenon, known since 1875 [62], is now known under the name
electrowetting.

The experiments were generally performed by applying a voltage on the liquid and on
the substrate. The phenomenon is also true for couple of liquids, for example water and
mercury. The main problem was the apparition of an electrolysis phenomenon. This issue
has been resolved by placing on a conductive solid substrate a thin layer of dielectric material
[7], for example PTFE which is hydrophobic. This approach is known as ElectroWetting
On Dielectric (EWOD). The usual approach to model this phenomenon is to translate the
influence of the voltage on the contact angle of the interface [71]:

cos (θ) = cos (θ0) + ε0εrU
2

2dγ (3.4.4)

where θ is the contact angle, θ0 is the contact angle when no voltage is applied, U is the
voltage applied between substrate and fluid, d is the thickness of the dielectric layer, ε0εr is the
dielectric constant of the dielectric (insulating) layer. γ is the surface tension at liquid-fluid
interface (the fluid surrounding the liquid drop may be either a gas or a liquid). However,
(3.4.4) has limitations since the contact angle does not effectively go beyond a saturation
value. Moreover, it is obviously not physically possible to have the second member of the
equation larger than 1.

Jones [45] gives another approach where he proposes to distinguish the effect of electro-
static potential on contact angle from its effect on the movement of the center of mass of the
liquid, while usually both phenomena are thought to be linked. He bases his reasoning on
the fact that some authors have observed that microscopically, the contact angle does not
change when a voltage is applied: the modified angle is only apparent, some distance away
from the triple line. He proposes an approach based on the electrostatic energy and presents
the variation of the apparent contact angle as a consequence of the movement to a more
favorable energetic configuration.

An example of application has been given by Berge [8] by proposing a fluid lens whose
focal distance can be adjusted by mean of a voltage. Other applications presented frequently
are the use of electrowetting as a way to move droplets on active substrate matrices.

3.5 Implications for Microsystems

We have explained in Sect. 3.2.3 that surface tension effects becomes predominant at mi-
croscale. They appear if an interface exists in the system. In immersed microsystem, bubbles
are responsible for the existence of these effects. We will present here some examples of how
surface tension can be disruptive.

Later on, we will focus on the study of microbubbles in microsystems.

3.5.1 Crossing the Free Surface of a Liquid

Generally given as an illustration of surface tension, it is commonly known that small objects
can float on the free surface of liquids, even if their density is larger than the density of the
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liquid. In Sect.3.2.3, we have shown that capillary force becomes larger than volume force
like the weight of an object. This is why small objects float, while large objects sink.

This may be in some case disruptive, for example if fragile objects have to be put in, or
removed from liquids. In these cases, particular care should be taken when moving these
objects across the interface. When these objects cross the free surface, they are subjected to
the surface tension force generated by the interface. As a consequence, the object is hold by
the interface, which could lead to its break.

As example of such objects, let us mention an AFM2 probe which is a kind of cantilever
beam, and finger based microgrippers whose fingers are usually beam shaped.

AFM probes have a low stiffness. They are usually used close to a surface and the
measurement of deflection of the probe is used to reconstruct the shape of the scanned
surface. In micromechanics, it is common to use AFM probes to measure forces having a
range below 1 µN [26, 35, 42, 44, 57]. These AFM probes are usually made of silicon, which
is a brittle material.

The same consideration applies for microgripping devices based on fingers, as illustrated
on Fig. 3.5.1. To perform micromanipulation in a liquid environment, the gripper has to be
immersed, and the terminal organs, used as fingers, will have to withstand the crossing of
free surface.

Figure 3.5.1: View of a piezoelectrically actuated microgripper (MMOC tweezer, source: [2])

3.5.2 Statistical Self Assembly of Microcomponents

Current developments in micro-assembly try to use the assembly property of capillary forces
to make assembly of a large number of components. The main advantages are that this
assembly method is massively parallel, and operates without contact.

One method consists in using surface functionalization, i.e. change the properties of one
surface of the component in order for the component to have a more favorable energetic
configuration if the functionalized surface is in contact with the substrate (which may also

2Atomic Force Microscope
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be functionalized). Statistically, if a large number of components is dropped in the liquid, and
because the probability of a correct assembly is increased by mean of the functionalization,
the components tend to assemble as expected [69].

Unfortunately, the presence of gas bubbles inside the liquid disrupts the process by either
sticking components together, hence they do not necessarily have the opportunity to mate
the expected face to the substrate, or by preventing the contact of the component with the
substrate. This is illustrated in Fig. 3.5.2.

Figure 3.5.2: Statistical self assembly using surface functionalization. Energetic configuration
is more favorable if green faces come in contact with green faces on the substrate. But if a
bubble creates a bridge between two components, these components cannot have the right
face coming in contact with the substrate

3.5.3 Bubbles Preventing Solid Contact

A bubble in a liquid is a kind of sticking balloon. This will be detailed in Sect. 5. This means
that if a bubble is trapped between two solids, the bubble will exert a repulsive force if both
solids come to one another, and it will exert an attractive force if the two solids are moving
away from each other.

We have already presented in Chap. 2 the case of microvalves with a moving part, whose
blocking part cannot reach its seat because of a bubble. We have also presented the self-
assembly principle which could also be affected by the presence of a bubble preventing the
contact between the component and the substrate.

Finally, the manipulation of a component, i.e. the gripping, positioning and release of a
component, could be disrupted by a bubble (Fig. 3.5.3).

We see from these examples that the presence of a bubble can lead to problems in mi-
crosystems, but we will show in Chap. 5 that it may also bring benefits. It is in this case
necessary to generate these bubbles, and this is the subject of the next section.

3.6 Conclusion

Surface tension appears because of the difference of energy existing on both sides of an
interface between two materials, inducing an energy in the interface. This phenomenon
is characterized by a physical property depending mainly on the materials, called surface
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(a) (b)

Figure 3.5.3: Microbubbles can prevent the contact between two solids. (a) A bubble can
prevent the correct positioning of a component on a substrate. (b) A bubble can prevent the
correct positioning of a component in a gripper device, and hinder its release

tension and noted γ. From a mechanical point of view, it induces forces on objects that are
in contact with the interface.

We have seen that surface tension induces important effects on components of small
dimensions, typically less than 1 mm. It is clear that this property of interfaces must not be
neglected when designing a micrometric device, or when performing micro-assembly tasks.
Since this work is focused on forces acting on solids in liquid medium, it is necessary to take
into account the effect of interfaces in the system.

To better understand the physics of surface tension, we have also presented some typical
methods for measuring surface tension. These methods make use of the properties of surface
tension. We have also indicated some external factors that influence the surface tension, such
as temperature, contamination or an external energetic contribution such as with electrowet-
ting. One important results is that surface tension of water can be reasonably assumed to
be constant from 20◦C to 25◦C, with γ = 72 10−3 N m−1.

In the case of immersed microsystems, surface tension effects arise notably when small
bubbles are present in the system. We have given some illustrations of the perturbations that
microbubbles could induce in microsystems. However, we have seen in Sect. 2.3 that making
use of the specific microworld phenomena can lead to innovative designs, and gas bubbles
have promising properties. Indeed, it is possible to control the bubble and to exploit the
capillary force as actuation principle. Moreover, a bubble is intrinsically compliant, which is
an interesting property in the field of micromanipulation since it can tackle some problems
due to relative positioning error. Finally, a bubble is cheap and can be easily regenerated if
needed.

These advantages show that microbubbles could be used in microsystems. To use them,
it is of course necessary to be able to create these bubbles in a controlled way. This is the
aim of Chap. 4. Thereafter we will study the compliance of the bubble in Chap. 5.
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Chapter 4

Controlled Generation of a Gas
Bubble

In Chap. 1, we have presented the interest of performing micromanipulation tasks in a liquid
environment. Then, in Chap. 2, we have urged the need for models describing the forces acting
on immersed micro-objects. We decided to focus on surface tension forces, and we have seen
in Chap. 3 that surface tension is a predominant phenomenon at microscale. The arise of this
phenomenon in immersed microsystems is linked to the existence of an interface, such as the
surface of gas bubbles.

This phenomenon is a promising actuation mean. To study the mechanical behavior of gas
bubbles, it is necessary to dispose of a controlled bubble generator. In this chapter, we present
models and experiments to find a way to generate bubbles in a controlled way. In this case, the
purpose is to generate a single bubble with a definite geometry. We will first explain in Sect. 4.2.1
the specificities of gas bubbles, which is driven by the coupling between the gas compressibility
and the surface tension. Then we will compare in Sect. 4.1 different means to generate bubbles.
We will select the most appropriated mean for the study of microbubble effects in a microsystem,
and we will develop in Sect. 4.2 a model to predict the geometry of the generated bubble, taking
surface tension and gas compressibility into account. The experimental validation of the model
is then presented in Sect. 4.3. Finally, we present in Sect. 4.4 two potential applications of
microbubbles.

4.1 Bubble Generation Mean

To study the influence of a gas bubble on solid components immersed in a liquid, it is
necessary to have a bubble generation mean.

Many authors have studied the generation of bubbles in a liquid, but most often in the case
of chemical reactors, colloids or hydrodynamic studies. Some of them [89, 73] have studied
the continuous generation of gas bubbles in cross flow liquid (the liquid flows perpendicularly
to the axis of the orifice from which the bubbles are grown), or more generally the case of
multiphase microflows [6]. Others [95, 97] have proposed numerical methods to calculate the
shape of bubbles, but once again it concerns a continuous bubble generation.

Our goal is to generate a single bubble while controlling its size, and without releasing it
from the bubble generator (Fig. 4.1.1).
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Figure 4.1.1: Usually, bubble generators are designed to generate several bubbles of a prede-
fined size (left). Our goal is to generate a single bubble, without releasing it, and controlling
its size (right)

We will briefly review five methods to generate single bubbles: electrolysis, cavitation,
thermal growth, pressure controlled gas injection and volume controlled gas injection.

4.1.1 Electrolysis

Electrolysis uses electrical current to transform ions in a liquid phase to atoms which are in
turn going to transform to gas molecules. It is of course necessary to have a liquid containing
ions. This is not an issue for aqueous solutions since water spontaneously dissociates in H+

and OH− ions. But this method is not relevant for other liquids like oils for example.

Basics

The general principle is based on the combination of electrical charges to ions in such a way
that gas molecules can be generated. For example, for water, the reaction equations are:

2H+ + 2e− → H2

2OH− → O2 +H2 + 2e−

2H+ + 2OH− → 2H2 +O2 (4.1.1)

To model the physics, we assume that all charges injected by a current are converted to
gas molecules. Two molecules of H2 and one molecule of O2 are formed when 2 electrons are
injected in the system. The amount of gas moles n depends on the electrical charge injected
C and the Faraday constant1 Fa:

nH2 = C

Fa

n02 = C

2Fa
(4.1.2)

Parameters

Equation (4.1.2) is however not sufficient to fully describe the phenomenon. Many other
parameters, such as presence of dissolved gas, ionic strength of the liquid, electrode roughness,

1Faraday constant represents the amount of electric charge (C) of one mole of electrons: Fa =
96485 Cmol−1
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electrode wettability,. . . have also an influence [9]. The predominant, or limiting, step of the
gas generation is not easy to find, as it is function of the whole setup: in some cases reaction
kinetics is limiting the gas production, in other cases it might be the adsorption of ions at
the electrode surface, or the mass transfer to or from the electrode [19].

Another parameter is the voltage, which must be at least equal to redox potential of
water, which is 1.23 V. Practically, the minimal voltage is also function of the electrodes
used to perform the electrolysis.

The location of bubble growth is called nucleation site. It is an area favorable to gas
release, for example because there is a defect on the electrode or in the liquid, or because
the liquid is oversaturated at that place. In our case, it is important to predict where the
bubble will grow, so it is necessary to predetermine the nucleation sites. This will be clearly
a limitation of this method to control the generation of gas bubbles.

Finally, it must be mentioned that some particular phenomena linked to electrolysis have
been observed and are clarified by [65]. These phenomena are for example oscillating bubbles,
or bubbles that keep contact with the electrode even with a contact angle of almost 180 ◦.

Experimentations

From (4.1.2), it seems easy to control the amount of gas moles by controlling the electric
charge injected into the system. To control the amount of electric charge, our first idea
was to use a capacitor, loaded at a the voltage required to activate electrolysis. Thin-film
insulated copper wires having a diameter of 0.25mm were used as electrodes. We made a test
using a 100 nF capacitor, but even when loading it at 5 V, no bubble appeared. This means
that probably not all the electric charges are converted in gas, unlike supposed in (4.1.2).
We made a second test connecting the electrodes directly to a voltage source. In that case, it
was possible to generate bubbles, and the bubble growth rate was larger for higher voltages.

In order to promote the generation of a bubble at a precise location, i.e. to master
the position of the nucleation site, we tried to use patterned electrodes. The electrodes we
used were designed to have sharp tips. Because the electric field is larger around these tips,
they should be the location of bubble growth. These electrodes were manufactured by gold
deposition on a glass substrate, using the same mask as for microtweezer, called Sifit [2]. The
connection to power supply was made of the same thin-film insulated copper wires as above,
connected to the electrodes with a conductive glue (silver-filled epoxy resin - Epo-Tek R©H22
from Epoxy Technology, Inc.). They are illustrated on Fig. 4.1.2.

When the voltage U (continuous) is progressively increased, the first bubbles appear on
the conductive glue, at U = 2.5 V. Obviously, the roughness of this material creates more
favorable nucleation sites. The first bubbles at the tips appear for U = 3.2 V. If we repeat
the experiments, we observe that the nucleation site is not always the same. Sometimes, the
bubbles appear at the tip of the conductive pattern, sometimes they appear between the tips,
on the glass substrate. Moreover, the electrodes are damaged after a few experiments: the
metal does not adhere anymore on the glass substrate.

From these experiments, we concluded that it is difficult to predict the location of nucle-
ation sites. This is furthermore confirmed by [58, 92]: these authors created special microfab-
ricated designs as nucleation sites. Generally, electrolysis is used in devices where bubbles are
confined in a volume. In this case, several small bubbles coalesce to form one larger bubble,
used for example as actuator. Such devices have been used for example by [3, 10, 77].

In our setup the size of the bubble is not predictable, since we do not record the total
electric charge injected. This could be done with a current integration circuit for exam-
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Figure 4.1.2: View of the patterned electrode used for electrolysis test. The electrode is gold
patterned on a glass substrate. The wires are bounded with a silver-filled epoxy resin

ple. However one must be careful with this measure since ions could transfer some charges
while not participating to the gas production. We observed that the bubble growth was
relatively slow, making it possible to stop the power supply when the size of the bubble was
approximately acceptable.

Limitations and Advantages

To summarize the performances, we state that:

• ⊕ There is no pneumatic connection, eliminating the risk of a leak

• ⊕ The system is easy to operate

• 	 The design of an efficient generator is not easy, because several parameters must be
taken into account: type of electrodes (material, roughness, size), ionic properties of
the liquid, . . .

• 	 The nucleation sites are difficult to control, and require specific micromanufacturing

• 	 The gases produced are linked to the ions in liquid. It is not possible to use this
method with any liquid or any gas.

In this work we will not further develop an electrolytic bubble generator. However we
will use this design to perform qualitative tests of force measurement 5.4.1, where a bubble
will be generated, no matter its size or location, then its size and location are estimated in
order to perform the experiment.

4.1.2 Cavitation

Basics

When the pressure in a liquid falls beneath the vapor pressure, the liquid spontaneously
evaporates and gas bubbles are formed.

This phenomenon is not easy to control, since depression must be created locally. Gen-
erally, this happens when a fluid flow accelerates due to a smaller channel section. Bubbles
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appear in the flow where the pressure is lower. But in that case, the bubble is necessarily in
a flow, and may not be created in a quiescent liquid. Moreover, if the pressure rises further
in the flow, the bubble will collapse.

And in this case, the exact location of the bubble growth site is not precisely known.

Limitations and Advantages

To summarize the performances, we state that:

• ⊕ There is no pneumatic connection

• ⊕ There is no need to bring energy: it is included in the fluid flow

• 	 The principle of cavitation requires the creation of a depression, usually in a flow.
Bubbles are not easy to control since they must remain in the low pressure area

• 	 It is difficult to predict exactly where a bubble will grow

• 	 The gas produced is the vapor phase of the liquid. According to the fluid, the
temperature must be in accordance to the existence of a liquid-gas transition.

This method is not adequate to the study of bubble effects in microsystems. However, it
was important to remind that such gas production mechanism exists, because if it occurs in
a microfluidic circuits, the presence of bubbles may have an impact on the system behavior.

4.1.3 Thermal Growth

Basics

Like in Sect. 4.1.2, the idea is to create a phase change and to evaporate the liquid. But in
this case, the change occurs thanks to a rise of the temperature up to the boiling point.

This method can be implemented in microcircuits by creating small resistive circuits that
will use joule effect to heat the fluid [54]. It is also possible to use laser beam focused a one
point.

This method is often compared to electrolysis method decribed in Sect. 4.1.1. The major
drawbacks of thermal growth are the amount of energy needed to evaporate the fluid, which
is larger than the energy needed to dissociate the fluid, and the fact that if the temperature
goes spontaneously down, the bubble will condensate spontaneously.

The method issues the same drawback as electrolysis: it is difficult to grow one single
bubble at a predefined location. Generally, several small bubbles coalesce to form one larger
bubble.

Limitations and Advantages

To summarize the performances, we state that:

• ⊕ There is no pneumatic connection

• ⊕ The system is easy to operate



44 Chapter 4. Controlled Generation of a Gas Bubble

• ⊕ The design of an efficient generator is relatively easy, it only requires a heater, which
is usually a resistive circuit or focused laser

• 	 The nucleation sites are difficult to control, since bubbles may appear anywhere in
the heated area.

• 	 The size of the bubble is not easy to control, since it results generally from the
coalescence of several bubbles

We will not investigate further this method since the size of the bubbles is not easy to
control.

4.1.4 Pressure Controlled Gas Injection

All gas generation methods presented above have the same issue: the precise location of
bubble growth is difficult to predict. An easy solution is to inject gas directly in the liquid
at an orifice. In that case, the location of bubble growth is exactly the injection point.

The method proposed here manages the gas injection by controlling the pressure in an
infinite gas tank. It is illustrated in Fig. 4.1.3

Figure 4.1.3: Working principle of the pressure controlled bubble generator. A channel leads
to bubble growing location. An increase of pressure leads to a decrease of bubble radius.
Since the minimum radius corresponds to a half sphere, it is not possible to grow a bubble
larger than a half sphere with this generation mean

Basics

In this case, the control of the bubble size is directly linked to Laplace equation (3.2.3). We
assume the pressure in the gas circuit to be uniform. If the outlet channel is circular and
its diameter below the capillary length, the shape of the bubble is assumed to be a spherical
cap. This is because the hydrostatic pressure is approximately uniform along the bubble.
The pressure drop across the interface is henceforth also uniform. So the mean curvature of
the bubble is uniform, which means the shape is a portion of a sphere. The mean curvature of
the spherical cap is the inverse of its radius. So ∆P is maximal for a half sphere, and ∆P = 0
when the bubble is flat. If the pressure is larger than the pressure needed to get a half sphere,
the bubbles will grow infinitely, which means that they will lift off when buoyancy force is
large enough and the bubbles will be generated continuously. This is moreover the basis of
a surface tension measurement method (Sect. 3.3.3).
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If s1 is the diameter of the output channel, γ the surface tension at gas-liquid interface,
h the height of the bubble, R the radius of the spherical cap, it is possible to find a relation
between h and ∆P .

h = R−
√
R2 − s2

4 = 2γ
∆P −

√
4γ2

∆P 2 −
s2

4 (4.1.3)

We have plotted the height of the bubble with respect to pressure drop for two config-
urations in Fig. 4.1.4. On this figure, it is clear that the pressure drop is low compared to
atmospheric pressure.

Hence there are two major drawbacks for this method: it is not possible to create bubbles
larger than a half sphere, and the pressure regulation must be very accurate since the sen-
sitivity of bubble height with pressure is large. This is especially true if the outlet channel
is large. So the smaller the bubbles are, the easier it is to control their height with pressure
control.
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Figure 4.1.4: Height of a bubble function of ∆P , the pressure drop across the interface,
in this case the increase of pressure in the gas circuit with respect to pressure outside the
bubble. In this graph, γ = 72 10−3Nm−1. The pressure control is easier if outlet channel has
a small diameter

Experimentations

We made some tests to validate this theory. We used a voltage controlled industrial pres-
sure regulator (type ITV2030-31F2BS3-Q from SMC ), with a maximum output pressure of
500 kPa and a 0− 10 V command voltage (Fig. 4.1.5). This pressure regulator is supplied by
industrial quality compressed air (purity of the gas is not guaranteed). It is connected to in
vitro fertilization micropipettes, made of borosilicate glass. Three types have been used:

• MIC-50-30 Intracytoplasmic Sperm Injection (ICSI), having an inner diameter of 5 −
6 µm, having a bevel of 8− 9 µm at the tip

• MPH-XLG-0 Holding micropipette, having an inner diameter of 25 µm

• MDP-190-0 Denuding micropipette, having an inner diameter of 190 µm
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Figure 4.1.5: View of the pressure regulator used in the pressure controlled bubble generator

With MIC-50-30 micropipettes, the maximal pressure before continuous bubbling is 69 kPa.
If γ = 72 Nm−1, this would correspond to a tip diameter s = 4.17 µm (it would require 58 kPa
to exhaust bubbles from a 5 µm tip). We did not have optical resolution that allowed us to
view the bubbles growing in water. Hence we cannot confirm that the real diameter was
5 µm, or if a partial occlusion due to particles in water could be the reason of the difference
of pressure.

With MPH-XLG-0 micropipettes, the maximal pressure before continuous bubbling is
10 kPa. If γ = 72 Nm−1, this would correspond to a tip diameter s = 28.8 µm (it would
require 12 kPa to exhaust bubbles from a 25µm tip). In this case it was possible to see the
growing of a bubble, but the resolution of the pressure controller was not sufficient to have
an effective size control (10 kPa correspond to 0.2 V control voltage, i.e. 2% of the full scale).
Indeed, the controller seems to have discrete output pressures, not a continuous variation.

With MDP-190-0 micropipettes, the least pressure variation induced continuous bubbling.

These tests underline the need of a high resolution pressure regulator to efficiently control
the height of a bubble, which is difficult to achieve for technological reason.

Limitation and Advantages

To summarize the performances, we state that:

• ⊕ The pressure is easy to control with industrial pressure regulator

• ⊕ It is possible to inject any gas in any liquid

• ⊕ The location of the bubble growth area is clearly defined, since it is the outlet channel

• 	 It is not possible to grow a bubble larger than a half sphere

• 	 The bubble growth is very sensitive to pressure changes, so the control is not easy,
especially for large outlet channel (∼ 1 mm)

• 	 The pneumatic connections could be cumbersome in a microdevice

Because of the difficulty to precisely control the bubble growth and the limitation 2h ≤ s,
we will not investigate any further this bubble generator.
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4.1.5 Volume Controlled Gas Injection

This is another version of gas injection based bubble generator. In this case, the volume of
a finite gas tank is reduced, pushing the gas in the liquid and creating the bubble. This is
illustrated in Fig. 4.1.6.

Figure 4.1.6: Working principle of the volume controlled bubble generator. A finite volume
of gas is confined in a chamber. By reducing this volume, the gas is expelled trough a
channel to the bubble growing location. By this mean, it is possible to inject any gas at a
predefined location. The ability to grow any size of bubble will however be subjected to a
further condition detailed in the next section

Basics

The device is like a syringe pump. However, it is not correct to assume that the volume
swept by the piston in the syringe will be the volume of the bubble. Surface tension will play
in this case a considerable role.

In this case, control of bubble height will be based on the control of the volume in the gas
container. In the case of a syringe, it is function of the position of the piston. But a priori,
there is no limitation to the height of the bubble, unlike a pressure based control. The only
size limitation appears when the bubble is so large that the adhesion forces on the edge of
outlet channel are no longer large enough to balance the buoyancy force.

This device will be extensively developed in Sect. 4.2.

Limitation and Advantages

• ⊕ The change of volume in the gas container is easy to control, for example with a
syringe pump

• ⊕ It is possible to inject any gas in any liquid

• ⊕ The location of the bubble growth area is clearly defined, since it is the outlet channel

• 	 The gas container has a limited volume, which could be problematic in some cases,
like the generation of several bubbles, while refilling the container requires to open it

• 	 The pneumatic connections could be cumbersome in a microdevice

This device has major advantages to other solutions: the size is easy to control, and any
gas can be injected in any liquid (possible use of different liquids to vary surface tension).
Finally, the location of the bubble is precisely defined.
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We will develop extensively this method in the next sections.

4.1.6 Comparison of the Different Generation Means

Table 4.1.1 summarizes the advantages and drawbacks of the different bubble generation
means presented in this section. The most promising method to study the mechanical be-
havior of microbubbles is the volume controlled generator. With this method, the location
of the bubble is precisely known, and it should be possible to grow a bubble of any size. Its
only drawback is that this method requires pneumatic connections from the gas container to
the outlet channel. These connections could induce leaks, or increase the overall dimensions
of the device using the generator. However, these issues can be resolved using microfluidic
manufacturing technologies, as we will propose in the perspectives of this work (Sect. 5.5).

For these reasons, we will focus on this bubble generator, and we will develop in the next
section a model to predict the size of the generated bubble.
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4.2 Model of the Volume Controlled Generator

The volume controlled bubble generator seems to be the most interesting in order to study
the mechanical properties of a microbubble. But its design must take into account surface
tension effects, which will notably compress the gas. The main contribution compared to the
model exposed in Sect. 3.2.3 is that we take into account the compressibility of the gas. We
will first show an example of the relevance of the coupling between surface tension and gas
compressibility.

4.2.1 Gas Bubble in Liquid Media

The distinctiveness of gas bubbles compared to a liquid droplet is that it is a compressible
medium. This means that in the models it is not correct to assume the volume of gas to
be constant. Since surface tension is responsible for a pressure drop across the liquid-gas
interface (3.2.3), the volume of an immersed gas bubble will be smaller if γ is larger. To
model this, we will make use of the classical gas law:

P V = nRg T (4.2.1)

where n is the amount of gas moles present in the system, T is the absolute temperature,
Rg = 8.314 J mol−1 K−1 is the gas constant, P is the pressure in the gas system and V is
the volume of the gas system. The condition of constant volume is replaced by a constant
number of molecules n.

Let us consider a single bubble in a liquid. If its diameter is small, i.e. lower than the
capillary length (3.2.8), the bubble can be supposed to be spherical. Indeed, in this case the
hydrostatic pressure outside the bubble is approximately constant, hence the mean curvature
of the interface is constant (3.2.3). According to Laplace Law (3.2.3), the pressure inside the
bubble increases with an increase of H, the mean curvature, which in the case of a sphere of
radius R is equal to R−1, and with an increase of surface tension γ at the gas-liquid interface.
If P0 is the pressure outside the bubble, i.e. the sum of atmospheric pressure and hydrostatic
pressure, the combination of (4.2.1) and (3.2.3) leads to:

(
P0 + 2 γ

R

)
4π R3

3 = nRg T (4.2.2)

where n and T are assumed to be constant.

Figure (4.2.1) shows the influence of surface tension on a free immersed gas bubble. It is
clear that the impact of surface tension on the bubble radius through gas compressibility is
not negligible in the microscale. This phenomenon is thus essentially significant at microscale.
For bubbles of 10−14 mol (bubbles of a few micrometers), the relative variation of diameter
induced by a surface tension γ = 72 10−3 N m−1 is about 26%.

We will demonstrate further ahead that these variations could be even more significant
with other configurations, when the bubble is connected to a larger gas circuit for example
(Sect. 5.3.6).

To develop the model predicting the size of a bubble generated from a volume controlled
generator, we will describe the device and its parameters.
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Figure 4.2.1: Influence of surface tension and amount of gas mole on the diameter of a free
gas bubble in a liquid. The influence of surface tension is more significant for small bubbles,
and liquid-gas couples having a high surface tension (T = 293.15K, P0 = 101325Pa)

4.2.2 Device Description

The device is like a syringe pump and is schematically represented on Fig. 4.2.2. The pa-
rameters are summarized in table 4.2.1. The syringe is filled with the gas to inject, then the
syringe tip is immersed in a liquid, near the free surface so that hydrostatic pressure can be
neglected. The generation of a bubble is done by pushing the piston. The orientation of the
tip (downwards or upwards) has no influence on the gas generation, since we are working with
characteristic length below the capillary length. The gravity can henceforth be neglected,
and the orientation has no influence. The gas circuit includes the gas in the container and
the gas in the bubble. It is clear that in the configuration shown in Fig. 4.2.2, the variation
of volume ∆V in the gas circuit is given by:

∆V = δS (4.2.3)

The next developments will be done using ∆V as it is a more general formulation. The
model we will develop is to determine the height of the bubble h as a function of volume
variation ∆V . We will see that it is possible to act on other parameters to modify the height
of the bubble.

4.2.3 Model of Bubble Height

The purpose of the model developed in this section is illustrated on Fig. 4.2.3. The output
of the model is the geometry of the generated bubble, which under the assumption we make
has the shape of a portion of a sphere. Since we assume that the bubble is anchored to the
border of the outlet channel having a diameter s, the geometry of the bubble can be deduced
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Figure 4.2.2: Schematic representation of the volume controlled bubble generator. The device
is essentially a syringe pump. The various parameters used in the model are shown

from its height h.

Figure 4.2.3: Model of the volume controlled bubble generator. The output of the model is
the geometry of the bubble, which we assume to be a portion of a sphere.

Equations

To model the height of a bubble generated by a volume controlled generator, we base the
reasoning on the next equations. We assume that the number of mole in the system is
constant. Consequently, the total volume of gas is not constant due to the compressibility of
the medium which is subject to surface tension force.

Laplace equation (3.2.3) links pressure drop across bubble interface, surface tension and
the mean curvature of the interface. We assume the pressure inside the bubble to be constant,
and since we suppose that the bubble is smaller than the capillary length, the mean curvature
is constant. Finally, assuming an axisymmetric configuration, the geometry of the bubble is
a spherical cap (radius R):

2γ
R

= P − P0 (4.2.4)
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Table 4.2.1: Definition of model parameters

Parameter Description

V0 (m3) Initial volume in the syringe
V (m3) Volume of gas in the spherical cap
∆V (m3) Variation of container (positive if volume decreases)
δ (m) Displacement of the piston
γ (N m−1) Surface tension at the liquid-gas interface
P0 (N m−2) Atmospheric pressure
P (N m−2) Pressure in the gas tank
T (K) Temperature of the system
Rg (N m mol−1 K−1) Universal gas constant
n (mol) Total number of gas mole in the system
S (m2) Section of the piston
s (m) Exhaust channel diameter
R (m) Radius of the spherical cap
h (m) Height of the spherical cap

The gas law is used to take into account the volume variation induced by pressure varia-
tion:

P (V + V0 −∆V ) = nRg T (4.2.5)

It is possible to write equations linking the radius of the spherical cap R, the height of
the bubble h, the syringe tip diameter s and the volume of the spherical cap V :

R = s2

8h + h

2 (4.2.6)

V = πh

6

(
3s2

4 + h2
)

(4.2.7)

The combination of (4.2.4), (4.2.5), (4.2.6) and (4.2.7) leads to a fifth degree polynomial
(see Appendix B for the complete development).

π

12P0h
5 + π

3 γh
4 + π

12P0 s
2 h3 +

(
−1

2nRg T + 1
2P0(V0 −∆V ) + π

4 γs
2
)
h2

+
( π

64P0s
4 + 2γ(V0 −∆V )

)
h+ 1

8P0s
2(V0 −∆V )− 1

8nRg T s
2 = 0 (4.2.8)

Equation (4.2.8) is an implicit analytic function giving h = f (V0, P0, γ, T,Rg, n, s,∆V ). h
is a function of 8 parameters. n could be seen as a dependent parameter if the initial filling of
the container is made at atmospheric conditions (P0 V0 = nRg T ). We have chosen to leave
it as an independent parameter to keep the ability to modify the value independently from
the initial filling conditions, for example to consider supplementary gas injection or a gas
leak. To the best of our knowledge, there is no analytical solution to explicit a fifth degree
polynomial. However, it is easy to solve it numerically, with for example the roots function
in Matlab.
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Table 4.2.2: Sets of parameters for model interpretation

Parameters First set Second set Units

V0 2× 10−6 5× 10−9 (m3)
n 8.175× 10−5 2.044× 10−7 (mol)
s 2× 10−3 150× 10−6 (m)
∆V 0→ 2× 10−6 0→ 5× 10−9 (m3)

Our main interest is to find the height of the bubble with respect to container volume
variation, but (4.2.8) allows us to check the influence of other parameters. Since it is a fifth
order polynomial, we know there is 1, 3 or 5 real solutions h for sets of other parameters.

Shape of the Solution

To check the shape of the solution h = h (∆V ) and make it easier to interpret the multiplicity
of solutions, we propose two sets of parameters. In each case, we suppose to inject air in
water, and we assume γ = 72 10−3 N m−1. We also suppose to work at normal atmospheric
pressure P0 = 101325 Pa, and normal temperature T = 298.15 K. As a reminder, gas constant
is Rg = 8.314 J mol−1 K−1. The value for other parameters are summarized in table 4.2.2.

The first set corresponds to a larger syringe (13.3× larger outlet tip diameter and 400×
larger volume) than the second one. In this table, the values of n are calculated using the
ideal gas law. This means that we suppose the syringe is filled with air under atmospheric
conditions. In each case, we will compare the results with the height of a bubble of incom-
pressible fluid. This height is the height of a spherical cap having a volume equal to ∆V ,
the volume swept by the piston. The evolution of bubble height h with syringe tank volume
variation is shown in Fig. 4.2.4 for the first set of parameters and Fig. 4.2.5 for the second
set of parameters.

The analysis of the results for the first set of parameters shows that there is only one
solution for the whole range of ∆V . The combination of gas compressibility and surface
tension clearly has an influence and leads to a smaller gas bubble volume that what could be
expected. This phenomenon tends to disappear for large bubbles, since the effects of surface
tension decrease with the size of the bubble. A large bubble has a smaller curvature, so the
pressure drop is lower and the effect of gas compressibility disappears.

The results for the second set of parameters shows even more consequences of compress-
ibility and surface tension. In this case, there is a range of ∆V values for which there are three
solutions. If ∆V is increased progressively, the curve h (∆V ) reaches a point (I in Fig. 4.2.5)
where its slope changes sign after being infinite. If ∆V increases beyond point I, the height
of the bubble has no choice but to jump to the other solution (Arrow on Fig. 4.2.5), creating
a sudden change in the bubble size. Of course, these results are for quasi-static situation, so
the change of height is not instantaneous, but this shows an instability in the bubble growing.

This means also that it is not possible to grow a bubble of any size with the second set of
parameters. The area between point I and its corresponding solution on the upper curve is
not accessible. One should also notice that the height variation at point I is significant: in
this configuration, it increases by a factor 7. In this case, the buoyancy forces are generally
large enough to lift the bubble. It is interesting to notice that point I is located approximately
at h = s/2, i.e. when the bubble is a half sphere. The interpretation of this result is that
in some cases, there is an accumulation of energy in the form of a pressure rise in the gas
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Figure 4.2.4: Evolution of bubble height with volume variation (first set of parameters), i.e.
with the volume swept by the piston in the syringe. The incompressible fluid model represents
the height of a bubble having the same volume as ∆V , as if the fluid has a constant volume.
The influence of gas compressibility and surface tension clearly have an influence on the
volume of the bubble for small bubbles. In this configuration, there is a direct relation
between ∆V and h

system. When the bubble grows from h = 0 to h = s/2, the pressure in the gas circuit
increases, but when h > s/2, the pressure decreases. The accumulated pressure induces then
a rapid growth of volume.

It should be interesting to find a criterion on the setup parameters to predict whether
an instability is likely to occur (as for the second set of parameters) or if the growing will
be continuous (as for the first set of parameters). This is done in Sect. 4.2.6, where we will
translate our model in a dimensionless form. Before, we will first lead a sensitivity analysis of
the model parameters, in order to better understand the reaction of the system to a change
of parameter.

4.2.4 Limit of the Model

Since the pressure inside a bubble increases for small bubbles, it is interesting to check
whether the liquefaction of the gas could occur due to pressure rise.

It is important to note that it is not possible to liquefy a gas if its temperature is larger
than the critical temperature. For example, critical temperature of nitrogen is Tc = 126 K,
and for oxygen Tc = 155 K. Hence, liquefaction of air is not possible around ambient tem-
perature, no matter how large the pressure is.

However, carbon dioxide has a critical temperature of 304 K, which is a bit larger than
ambient temperature. Critical pressure of carbon dioxide is around 7.4 106 Pa. To reach such
pressure inside the bubble, their diameter has to be around 10 to 40nm at T = 293 K, which
is very small. At this level, the ideal gas law model is not correct anymore, because in this
model, gas molecules are supposed not to interact with each other.

Other gases have a critical temperature reasonably larger than ambient temperature, like
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Figure 4.2.5: Evolution of bubble height with volume variation (second set of parameters),
i.e. with the volume swept by the piston in the syringe. In this configuration, the model
gives three solutions for a range of ∆V . Physically, the bubble will grow all the way to point
I, then its height will jump suddenly to the upper curve. This growing instability means
there is a whole range of height that cannot be reached

ammonia: Tc = 405.5 K. However, the pressure to liquefy the gas at ambient temperature is
still in the range of 1 MPa, leading to bubble diameter of 90 nm to 320 nm.

To avoid model deviation due to the proximity of critical state of fluid, we shall consider
only gas bubbles with characteristic dimensions in the range of 1µm to a few mm.

4.2.5 Parameters Sensitivity

In this section, we try to understand the sensitivity of the model to each of its parameters.
With this study, the global understanding of the model will be easier, since the influence of
a variation of one parameter will be calculated.

Gradient Method

To determine the sensitivity of the model to its parameters, we will calculate the partial
derivative of the function h = f (V0, P0, γ, T,Rg, n, s,∆V ).

Since it is not possible to find the explicit form of ( f), it is not possible to find the analyt-
ical expressions of its partial derivatives. We will calculate these derivatives numerically. Of
course, it is necessary to set a working point, i.e. a realistic combination of the parameters,
prior to proceed with this calculation.

The sensitivity factors mi are defined as follow:
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mi = ∂h

∂xi
(4.2.9)

Giving:
∆h =

∑

i

∂h

∂xi
∆xi =

∑

i

mi ∆xi (4.2.10)

These sensitivity factors will help to understand how sensitive is the output of the model
to any variation of its inputs. Since the input parameters have significantly different order of
magnitude, we search for the absolute variation of the output ∆h, not for a relative variation.
Indeed, 5% variation of pressure means about 5000Pa, which is quite high, while 5% variation
of γ is about 4Nm−1, which is reasonable.

The first indication is the sign of the factor. For example, if mj is negative, an increase
of parameter j will produce a decrease of the output. A second indication is the relative
importance of the factors, showing to which parameter the model is the most sensitive.

The calculation of the partial derivatives is performed using a finite difference method.
We calculate the value h at the working point, then we increase parameter j by 10−7 and
calculate2 the corresponding output h+, then we decrease parameter j by 10−7 and calculate
the corresponding output h−. The partial derivative for parameter j is then given by:

∂h

∂xj
= h+ − h−
xj · 2 · 10−7 (4.2.11)

The factor is calculated for each parameter. Remember that n = P0 V0
Rg T

is calculated
for the working point, simulating the filling of the syringe up to volume V0 under P0 and T .
However, when we calculate for example the sensitivity factormP0 , we suppose that the outer
pressure changes while the amount of gas molecules in the system remains constant. The
calculation of mn reflects a variation of the amount of gas molecules while other parameters
are kept constant, for example if more gas is injected in the syringe from outside.

Results

We present here the results of the sensitivity calculation in the two configurations presented
in Sect. 4.2.3.

These results show the evolution of the sensitivity of the output to a variation of each
parameter: mi ∆xi, with respect to different working points represented by different ∆V , for
the first set then the second set of parameters presented in table 4.2.2. The values for ∆xi
are chosen as realistic variations, shown in Tab. 4.2.3.

To improve readability, we present the results in logarithmic scales. Because some coef-
ficients mi are negative, we present the positive results in one plot, and absolute values for
negative results in a second plot.

The results for the first set of parameters is shown in Fig. 4.2.6. The results for the second
set is shown in Fig. 4.2.7. From these results, we see that an increase of ∆V , n or T leads to
an increase of h, while an increase of V0, γ or P0 leads to a decrease of h. We also see that
∆V is an interesting actuation mean since its effect is predominant, together with an increase
of n or a decrease of P0. We also see that the sensitivity to surface tension is maximal at

2The value of the interval has been chosen small enough to ensure convergence of the derivative value
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Table 4.2.3: Parameters variation used to calculate the variation of the output ∆h

input variation

V0 +5%
P0 +10Pa
γ +5 10−3 Nm−1

T +1 K
s +5%
∆V +5% of maximal ∆V

the inflection of h (∆V ). For s, an increase of its value would increase h before the inflection
point, while it would decrease h after the inflection point. These results show that using ∆V
as actuation is a relevant choice. Another interesting choice is the use of temperature.
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Figure 4.2.6: Evolution of mi ∆xi with ∆V for first set of parameters (see table 4.2.2). (a)
positive values, (b) negative values
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4.2.6 Dimensionless Analysis and Stability Criterion

We have seen in Sect. 2.1.2 that dimensionless numbers are useful to study a scaled model of a
device, or to reduce the number of parameters in a model [87]. On the base of a dimensionless
analysis of (4.2.8), we are going to show that the growth instability can be described by a
dimensionless number.

Buckingham Theorem

It is possible to construct a set of dimensionless number using Buckingham theorem. In our
case, the model can be expressed in the form:

Ψ (V0,∆V, h, γ, P0, T,Rg, n, s) = 0 (4.2.12)

There are nine parameters and five different dimensions are used (length, mass, time, tem-
perature and mole). In the dimensional matrix hereafter, element i, j indicates the exponent
of the ith dimension in the jth parameter:

D =

mass
length
time
temperature
moles

V0 ∆V h γ P0 T n s Rg
0 0 0 1 1 0 0 0 1
3 3 1 0 −1 0 0 1 2
0 0 0 −2 −2 0 0 0 −2
0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 1 0 −1

(4.2.13)

The rank of D is 4, so according to Buckingham’s theorem, it is possible to find 9−4 = 5
linearly independent relations between the exponents of each parameters. This leads to 5
independent dimensionless numbers: none of these 5 numbers can be found by a combination
of the 4 others. To find such parameters, we only need to calculate the kern of D.

The problem of this method is that any combination of these terms will also produce a
dimensionless number. It is not possible to predict which among all these possibilities will
give the most relevant number to predict whether an instability will occur or not.

Dimensionless Equation

The solution to find the adequate dimensionless numbers is to formulate (4.2.8) in a dimen-
sionless form. The idea is to norm every parameter of this equation. We propose to norm
the parameters as follows:

Ẽ = nRg T
γ s2 ∆̃V = ∆V

s3 P̃ = P0
γ /s

h̃ = 2h
s Ṽ = V0

s3

(4.2.14)

Note that h̃ = 1 means the bubble is a half sphere. Equation (4.2.8) then becomes:

π

384 P̃ h̃
5 + π

48 h̃
4 + π

96 P̃ h̃
3 +

[
− Ẽ8 + P̃

8

(
Ṽ − ∆̃V

)
+ π

16

]
h̃2

+
[ π

128 P̃ +
(
Ṽ − ∆̃V

)]
h̃+ P̃

8

(
Ṽ − ∆̃V

)
− Ẽ

8 = 0 (4.2.15)
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As predicted by Buckingham’s theorem, h̃ = f̃
(
Ẽ, P̃ , Ṽ , ∆̃V

)
is now a function of 4

parameters instead of 8 in the dimensional formulation. We have reduced the number of
parameters by 4, which was the rank of D.

Other simplifications can also be done in (4.2.15). The form of the equation shows that
Ṽ and ∆̃V are always together. It is possible in this case to reduce even more the number
of parameters, posing:

V̂ = Ṽ − ∆̃V (4.2.16)

π

384 P̃ h̃
5 + π

48 h̃
4 + π

96 P̃ h̃
3 +

(
− Ẽ8 + P̃

8 V̂ + π

16

)
h̃2

+
( π

128 P̃ + V̂
)
h̃+ P̃

8 V̂ − Ẽ

8 = 0 (4.2.17)

V̂ represents the normalized volume of gas remaining in the container after the movement
the piston. V̂ cannot be relevant to predict any instability in the system. Indeed, this
parameter is a function of ∆V , and the existence or absence of instability cannot depend
on the position of the piston. The actual position of the piston does not have any influence
on the fact that at a certain position, the bubble will grow suddenly. From a mathematical
point of view, the function h = h (∆V ) does not depend on the abscissa point ∆V . As
the instability is defined by the shape of this function, instability is not characterized by
parameter ∆V . We can therefore state that the existence of an instability, if any, could be
influenced by two dimensionless numbers: Ẽ and P̃ .

Numerical Approximation

In order to verify the existence of a threshold value for Ẽ and P̃ beyond which an instability
would occur, we made several simulations in which we varied the input parameters value. In
each case, we checked if an instability occurs. The results are shown if Fig. 4.2.8. To identify
the existence of an instability, we check the number of real solutions for (4.2.8): if there is
more than one solution for a value of ∆V , we conclude the configuration lead to an unstable
bubble growth.

In some cases, the combinations of parameters we used led to the same dimensionless
values for P̃ and Ẽ. It is interesting to note that there is no P̃ , Ẽ couple leading to both
stable and unstable growth. This confirms that only these two parameters are relevant to
predict the existence of the instability.

There is a clear border between stable and unstable growth. This border can be approx-
imated reasonably with a line in the bilogarithmic axes:

log Ẽ = 2 log P̃ (4.2.18)

Therefore, a stability condition regarding the experimental setup is:
P̃ 2 > Ẽ (4.2.19)

In its dimensional form, this criterion is:
(
P0 s

γ

)2
>
nRg T

γs2 (4.2.20)
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This lead to a new dimensionless number, σ:

σ = P 2
0 s

4

γ nRg T
(4.2.21)

with the stability condition being simply:

σ > 1 (4.2.22)

If the gas container is filled under atmospheric conditions,

nRg T = P0 V0 (4.2.23)

and σ can be rewritten in terms of easily measurable parameters:

σ = P0 s
4

γ V0
(4.2.24)

This criterion tells us that instability is more likely to occur if the gas container is large,
the surface tension is high, the atmospheric pressure is low and the diameter of the injection
point is small. A large surface tension and a small diameter will induce large surface tension
effects, while a large gas container and a small atmospheric pressure will increase the effect
of gas compressibility.
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Analytical Approach

The results presented in Sect. 4.2.6 are only numeric. It is not possible to know if the criterion
is correct for every single couple P̃ , Ẽ other than those presented in Fig. 4.2.8. Moreover,
the line separating both regions is only approximative. Therefore we will also search for an
analytic approach.

The method is based on the study of the partial derivative ∂V̂ /∂h̃: in the case of an
instability, the curve h̃

(
∆̃V

)
has a vertical tangent corresponding to the condition:

instability⇔ ∃h̃ ∈ R, ∂V̂
∂h̃

= 0 (4.2.25)

Using the symbolic toolbox of Matlab, it is easy to find the partial derivative:

∂V̂

∂h̃
= 1

16
(
h̃2 P̃ + 8 h̃+ P̃

)2 (−π P̃ 2 h̃6 − 16π P̃ h̃5 − 3π P̃ 2 h̃4 − 64π h̃4 − 32π P̃ h̃3

−3π P̃ 2 h̃2 − 64 h̃2 π − 16 h̃ π P̃ + 128 h̃2 Ẽ − π P̃ 2 − 128 Ẽ) (4.2.26)

It is remarkable that for h̃ = 1, ∂V̂ /∂h̃ = −π/8, whatever the values of Ẽ and P̃ . This
means that an instability does not occur strictly at h = s/2 (the half-sphere configuration).

We consider a constant value of parameter P̃ . The condition (4.2.25) can be presented
in a

(
h̃, Ẽ

)
plane. Indeed, it is possible to plot the values of h̃, Ẽ for which ∂V̂ /∂h̃ = 0. An

example is shown in Fig. 4.2.9 for P̃ = 10.

The bubble growth will be stable if there is no intersection of the line Ẽ = constant with
the contour ∂V̂ /∂h̃ = 0. We see in Fig. 4.2.9 that there is a range for Ẽ where this condition
is satisfied. The limit value Ẽ∗ is where the contour ∂V̂ /∂h̃ = 0 is minimal. This value
correspond to a value h̃∗ that seems close to

√
2 ≈ 1.41. The condition (4.2.25) is equivalent

to:

∀P̃ , instability⇔ Ẽ > Ẽ∗ (4.2.27)

This new criteria enables to determine an analytic expression of the criteria.

To find the value of h̃∗, we consider the implicit equation ∂V̂ /∂h̃ = 0:

(−π P̃ 2 h̃6 − 16π P̃ h̃5 − 3π P̃ 2 h̃4 − 64π h̃4 − 32π P̃ h̃3

−3π P̃ 2 h̃2 − 64 h̃2 π − 16 h̃ π P̃ + 128 h̃2 Ẽ − π P̃ 2 − 128 Ẽ) = 0 (4.2.28)

from which we extract Ẽ0 = Ẽ0

(
h̃, P̃

)
, which is the equation of contour 0 in Fig. 4.2.9. We

look for h̃∗ such that ∂Ẽ0/∂h̃ = 0:

∂Ẽ0/∂h̃ =
π
(
h̃2 P̃ + 8 h̃+ P̃

)(
P̃ h̃5 + 4 h̃4 − P̃ h̃3 − 8 h̃2 − 2 P̃ h̃− 4

)

32
(
h̃− 1

)2 (
h̃+ 1

)2 (4.2.29)
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Ẽ
∗

h̃
∗

Figure 4.2.9: Contour plot of ∂V̂ /∂h̃ with respect to h̃ and Ẽ, in the case P̃ = 10. There
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corresponding to ∂V̂ /∂h̃ = 0. The limit value is in this case between 100 and 150, and the
corresponding h̃ value is just before 1.5. The value of the partial derivative for h̃ = 1 is
always −π/8 ≈ −0.3927

The first term of the numerator of (4.2.29) is equal to zero only for negative values of h̃
which is not an acceptable solution. The second term will give us h̃∗ with respect to P̃ . For
large values of P̃ , the second term gives an asymptotic value of h̃∗:

lim
P̃→∞

(
P̃ h̃5 + 4 h̃4 − P̃ h̃3 − 8 h̃2 − 2 P̃ h̃− 4

)
= P̃

(
h̃5 − h̃3 − 2 h̃

)

= P̃ h̃
(
h̃2 − 2

) (
h̃2 + 1

)
(4.2.30)

so the only real positive value is h̃∗ =
√

2, as expected from Fig. 4.2.9. The evolution of h̃∗
with respect to P̃ is shown in Fig. 4.2.10. The asymptotic value is reached very quickly, and
it is legitimate to assume h̃∗ =

√
2 if P̃ ≥ 10.

Now if we return to (4.2.26) and replace in this partial derivative h̃ by h̃∗ =
√

2, we find
a relation between Ẽ and P̃ :

∂V̂

∂h̃
|̃
h=h̃∗=

−384π + 128 Ẽ − 144
√

2π P̃ − 27 P̃ 2

16
(

8
√

2 + 3 P̃
)2 = 0 (4.2.31)

We can solve this equation with respect to P̃ and find the relation that links P̃ and Ẽ so
that the instability exists. We note these values P̃ ∗ and Ẽ∗. The only real positive root is:

P̃ ∗ =
8
(
−3
√

2π +
√

6πẼ∗
)

9π (4.2.32)
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√
2. It is henceforth legitimate to state

h̃∗ =
√

2 if P̃ ≥ 10

Equation (4.2.32) is an analytical expression of the stability condition between Ẽ and
P̃ . For large values of Ẽ∗, it is possible to find an asymptotic value for the relation (see
Fig. 4.2.11):

P̃lim
∗

=
8
√

6πẼlim
∗

9π (4.2.33)

We see that the criterion is close to the asymptotic value for P̃ ≥ 1000. The stability
criterion formulated from the numeric approximation is then:

P̃lim
∗2

= 128
27π Ẽlim

∗

σ = 128
27π (4.2.34)

It is slightly different from the value we found from the numerical approximation.

If we plot this criterion in Fig. 4.2.8, we see there are some values that cross the border.
This is due to the numerical search of instability: if the configuration is almost stable, the
range of h for which there are 3 solutions is short, and it is likely that the software jumps
across this range, considering an unstable configuration to be stable (Fig. 4.2.12).

Stability Criterion

We have established a criterion σ allowing to predict if a volume controlled bubble generator
will allow to grow bubbles continuously, or if the bubble will grow suddenly beyond a certain
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height.

The threshold of this criterion is constant for value of P̃ larger than 1000: σ = 128
27π .

4.3 Experimental Validation of the Volume Controlled
Bubble Generation Model

To validate the model developed in Sect. 4.2.3 (Fig. 4.2.3), we made experiments on two
different experimental setups.

4.3.1 First Experimental Setup

The first test bed is directly inspired from the syringe pump principle. It is represented
schematically in Fig. 4.3.1.

The container is a syringe, and the volume variation is induced by the displacement of
the piston. This displacement is operated manually using a micropositioning stage from PI.
We used two different types of syringe:

• Syringe type "Exmire microsyringe MS-X05 ", volume 5 µL. Piston diameter is 0.35mm
(measured with a caliper)

• Syringe type "Narishige ITO", volume 800 µL. Piston diameter is 5mm (measured with
a caliper)
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Figure 4.2.12: Illustration of the analytical threshold between stable and unstable configura-
tions. The error from numerical approximation obviously comes from the software instability
detection, which considers stable an unstable configuration close to the limit

The outlet channel is a MDP-190-0 in vitro fertilization micropipette (Denuding mi-
cropipette), made of borosilicate glass. They have a nominal inner diameter of 190 µm.

The shape of the bubble is recorded with a magnifying optic mounted on a camera. The
recorded images are analyzed on a computer with an own made Matlab code. The height of
the bubble can therefore be correlated to the setup parameters and the position of the piston
in the syringe.

A pressure sensor (PMP-1400 from Druck - GE) has also been included later on the
system, to correlate the curvature of the bubble to the pressure drop across its interface.
The connection of the sensor to the rest of the system is presented in Fig. 4.3.2. The signal
of the pressure transducer has been digitalised using a National Instrument USB acquisition
system, with a sampling rate of 1kHz. Then it has been filtered using a moving average on
25 samples.

Setup Issues

The building and use of the test bed faced several issues that deserve some explanations.

Pressure Sensor The pressure sensor measures gauge pressure and has a range of 105Pa.
It is designed to work with any fluid non corrosive to stainless steel. Special care has to be
taken because there is a quite large dead volume in the sensing area of the sensor.

To reduce this volume, we tried to fill a large volume of the gas circuit with an incom-
pressible fluid (water). However, this method was not accurate, since there is no mean to
drain gas bubble out of the pressure sensor chamber. Moreover, surface tension effect at the
interfaces of bubbles inside the gas circuit could modify the behavior of the system.
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Figure 4.3.1: Schematic representation of the first experimental setup for the validation of
the volume controlled bubble generation model

Vision System The vision system is used to determine the shape of the bubble. We
measure the bubble height and its curvature to estimate pressure inside the bubble. The
calibration of the image, i.e. the corresponding between real length and pixels, is done
using Newport micropositioning stages. The syringe is mounted on a set of three orthogonal
micropositioning stages. One is used to focus the image (axis in the direction of the vision
system). The two others allow to center the image. The calibration is done using these latter
axes: the image contains a mark which is moved along the two directions from one edge
of the image to the other, and the displacement is measured on the micropositioning axes.
Using a vision system to look at a microsystem in a liquid is not easy, because of multiple
reflections that could occur in the liquid (larger refraction index than air). The best image
is obtained when the pipette is close to the wall near the objective of the camera, so that the
optic path between the object and the camera is as short as possible in the liquid. However,
the automation of shape recognition is difficult because of these reflections (for example, the
top of the bubble is in some case dark when the bubble is small, and white when it is large).

Light Source The light is essential to have a well contrasted image. The best results were
obtained using a diascopic lighting, i.e. the light source is located in the back of the object,
and is transmitted through the object plane to the camera. It is important to have a light
source powerful enough to deal with the magnification of the optics. The smaller the object,
the more light density is needed. But it is also important to have a light source that does
not give off heat that could affect the bubble growth. A classical incandescent bulb gave off
too much heat, and a LED backlight was not powerful enough. The best result was reached
using an optical fiber with a source using a 150W quartz bulb. Since the viewing field is
small, a simple 1/8” gooseneck fiber fulfills our needs. In these conditions, the water appears
white in the image, and the gas is dark.

Fluidic System As outlet channel, we have usedMDP-190-0 micropipettes. These pipettes
should have a nominal inner diameter of 190µm. However, when we measured the diameter
with our calibrated vision system, it appears the diameter is only about 150µm (measure-
ment: s = 155+3

−3 µm). Only the measured value is used to compare the experimental results
with the model. Examples of this pipette can be seen in Fig. 4.3.2 and Fig. 4.3.3.
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Figure 4.3.2: View of the connection to the pressure sensor. This connection actually in-
creases considerably the dead volume, mainly because of the rubber parts ensuring leak
tightness with the micropipette and the flexible hose to the syringe, and because of the dead
volume in the sensor itself

The micropipettes were cleaned in absolute ethanol in an ultrasonic bath for one minute
before use.

One should care that the gas system is efficiently leak tight. Indeed, the volumes of gas
may be small and the system will be sensitive to a variation of the number of gas molecules.

Contamination of the liquid may induce problems of two types. First, it may alter the
surface tension properties. Second, any deposition of particles could jam up the gas channel.

Special care should be taken to avoid liquid contamination. In these experiments, the
liquid was changed frequently to keep it as clean as possible.

Image Analysis Software We developed a Matlab code to analyse the shape of the bubble
generated. More specifically, the code outputs the height of the bubble, to be compared to
the model.

The user indicates manually the both contact points of the bubble with the tip of the
pipette (left and right), and a third point at the liquid-gas interface. The software finds the
circle trough the three points, and uses the first two points as the base of the bubble. The
height is deduced from the radius of the circle and the distance between the two base points.
In some cases, the contrast of the image was good enough to automatically detect the edge of
the bubble, making possible the automatic detection of bubble apex. In that case, the first
two points only are needed, and the bubble height is measured directly from the distance
between the apex and the basis. Figure 4.3.3 illustrates a result.

Synchronizations Images are recorded on a computer. The displacement of the piston is
done manually. The synchronization of the displacement with the image is done by moving
the piston for a constant value (50µm) at a constant frequency which is low enough to assume
a static equilibrium of the bubble (typically 1 displacement every 5s). The synchronization of
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Pipet filled
with air

These points are 
pointed manually Apex of the bubble
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Figure 4.3.3: Illustration of the image analysis software. The bubble grows at the end of the
glass pipet. The user has to click on the two ends of the bubble basis. In some case, the
contrast is good enough to detect the apex of the bubble automatically. Otherwise, the user
selects a third point of the bubble

pressure transducer signal with the image analysis has been done using the instability of the
bubble. When the instability point is reached, the bubble explodes and lifts off, leaving the
outlet channel with an interface having a different curvature (Fig. 4.3.4). Hence, the pressure
across the interface changes suddenly when the bubble lifts off, allowing to synchronize the
movie with the pressure measurement.

Figure 4.3.4: View of a bubble growth instability. The video frame recorded the image of
bubble before and after exploding

First Setup Results

These experiments were performed with water as liquid and air as gas. We made two different
sets of measurement, according to the type of syringe used. For the first set, we used the
small syringe (Exmire MS-X05 ). For the second set, the large syringe (Narishige ITO) was
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Table 4.3.1: Sets of parameters for experiments made on the first test bed

Parameters Set 1 Set 2

V0 47.6 10−9 m3 (estimation includ-
ing connections)

809 10−9 m3 (estimation includ-
ing connections)

S 9.62 10−8 m2 1.96 10−5 m2

s 150 10−6 m 150 10−6 m
σ 1.49 10−2 1.28 10−3

used together with the pressure sensor, which makes the evaluation of the volume in the
syringe less accurate due to the dead volume in the pressure sensor.

The parameters for both experimental setups are summarized in table 4.3.1. The dif-
ference is essentially the initial volume V0 and the section of the piston S, which induce a
variation of the sensitivity of ∆V to the resolution of the positioning stage. The other param-
eters are: P0 = 101325 Pa (not measured), γ = 72 10−3 Nm−1, and the temperature which
varied between 298 K and 308 K (for theoretical curve, we used 298 K). The dimensionless
number σ is also indicated in the table, and shows that these experiments should lead to
unstable bubble growth.

In Fig. 4.3.5 we have plotted the results of the first set of experiments, in dimensionless
form. The experiment has been performed twice. The shape of the theoretical model shows
good adequacy to the experimentation points, except that there seems to be an offset. This
offset can be easily explained. The point at which we start the experimentation (∆V = 0)
should correspond to a flat bubble (h = 0). But it is very difficult during the experiment to
determine the exact zero height. An horizontal offset is henceforth acceptable.
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Figure 4.3.5: Experimental validation of the volume controlled bubble generator, first setup,
first set of parameters. The model fits well the experimentation points, except an horizontal
offset whose origin is due to the manipulation
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In Fig. 4.3.6, we have plotted the results of the second set of experiments (first setup),
in dimensionless form. The experiment has also been performed twice. In this setup, the
pressure sensor has been included. We generated several bubbles successively. When the
bubble expands due to instability, another bubble starts to grow.

To correct the offset error, we made a least squares research so that the model fits best the
experimental points. We see that the model fits indeed well the experimentation points. The
bubbles generated after the first one have similar behavior, but the results are not exactly
the same. This is due to the variation of the parameters in the system, since some gas has
been released.

0 2000 4000 6000 8000 10000 12000 14000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

∆̃V (1)

h̃
(1

)

Test 1 (offseted)
Test 2 (offseted)
Model

Figure 4.3.6: Experimental validation of the volume controlled bubble generator, first setup,
second set of parameters. For each of the two repetitions, we regenerated other bubbles after
each release due to the instability. The model fits well the experimentation points

Another result of this experimental setup is the pressure measurement. The results are
shown in Fig. 4.3.7 for the two experimentations. The pressure sensor was chosen to be used
with smaller output channels as well. In this experimental setup, and because of technological
limitations, we used only the large pipettes, and the pressure will rise only to around 2000Pa,
which is 2% of the full scale range of the sensor. The signal was rater noisy. To filter it,
we first made a moving average on 25 samples. Then we searched for the minimal and the
maximal value on a 0.5s time interval around the moment corresponding to the captured
video frame.

The vertical bars represent the range of pressure value in this time interval of 0.5s. The
crosses represent the pressure deduced from image analysis, using Laplace equation (4.2.2).
Pressure sensor measurements and image analysis measurements show good agreement for
the first step of the experimentations.

We observe however that results from the pressure sensor tend to be larger than the results
from image analysis for the next steps of the experimentations. Since the correspondence
between both measurements relies only on Laplace equation there could be four explanations
for this deviation. A modification of surface tension is possible, but the contamination of
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the liquid should lead to a lower value, which is the contrary of the measurement. Another
explanation concerns an error in geometry measurement, such as image calibration error. But
it should occur for every measurement, including the first one. Thirdly we have considered
that the pressure measurement is not localized at the same place than the image measure-
ment. Indeed the pressure sensor is connected to the gas system a few centimeters above the
micropipette tip. Between these two locations, any free surface due to liquid or gas inclusion
could modify the pressure. However in this case there is no reason why this problem should
evolve during the experiment. Therefore the most likely explanation is a drift of the pressure
sensor.

We can conclude that using an adequate pressure sensor, it is possible to measure the
pressure, and henceforth the height of the bubble, from a distant location.
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Figure 4.3.7: Comparison of pressure measurement ((a) first repetition, (b) second repeti-
tion): crosses represent the pressure deduced from image analysis together with Laplace law,
and the vertical lines show the results from pressure sensor measurement. The line stands
for the range of value in a time interval around the video frame used for image analysis. The
trend to overestimate pressure from pressure sensor measurement is most likely explained by
a drift of the sensor, which is in this case used at only 2% of its full scale
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4.3.2 Second Experimental Setup

So far we have demonstrated the validity of the volume controlled bubble generator, but only
in situations where an instability during the bubble growth occurs (i.e. σ < 1). In this case,
we will demonstrate the continuous growing of a bubble in case of a small gas container and
a larger outlet channel.

The second test bed is based on volume variation, but does not use syringe. It is schemat-
ically represented on Fig. 4.3.8. The bubble is generated from a platform made of aluminum
which is immersed in the liquid. This platform contains three through holes3 having a di-
ameter of 1.23mm, 1.26mm and 1.25mm for hole 1, 2 and 3 respectively. These holes are
each connected to a different flexible hose made of silicone and having an inner diameter of
0.5mm. At the other end, the flexible hoses are connected to a large tank filled partially with
liquid (water), partially with gas (air). The tank can be isolated with valves placed on the
hoses.

The idea is that the gas container for the bubble generator is the flexible hose. The
volume of gas is limited by pushing incompressible fluid from the large tank into the hoses
until the gas remaining between the liquid from the tank and the outlet channel on the
platform reaches the desired set point.

To vary the volume of the container and therefore push the gas out of the platform to
generate bubbles, we only have to compress the hose where it contains liquid. To compress
the hoses, we have placed them between a fixed wall and a micropositioning stage.

Figure 4.3.8: Schematic view of the second experimental setup used to validate the volume
controlled bubble generation model

Setup Issues

The second version of the syringe pump test bed has the advantage that the leakages should
be reduced because of the few connections. It has also a rather small volume compared to
some syringe, because of the low diameter of the flexible hose. However, it also has some
issues, in addition to those of the first test bed.

3Choosing the number of holes in the platform will be justified in Chap. 5.
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Because of the actuation system, the allowed volume variations are small. It depends
on the contact surface of the compression system. But of course, if we want to increase the
volume that can be pushed, the sensitivity regarding the compression system displacement
will increase. In our case, the hoses are compressed again the moving stage of a Newport
M-SDS40 micropositioning stage.

The calibration of the system is necessary since the ratio between the hose compression
and the volume variation is non linear. Consequently we have monitored the displacement
of the micropositioning stage with a Keyence LC-2440 laser displacement sensor. We have
filled the hose with an incompressible fluid (water), and we have captured image of the
liquid droplet forming at the outlet channel on the platform. Hence the volume of the drop
corresponds to the volume pushed by the compression system. To filter the results, we
made a polynomial fitting to find a function giving ∆V with respect to the movement of
the micropositioning stage. The correspondence between the table position and the volume
pushed, together with the polynomial fittings, is shown in Fig. 4.3.10 for the first hole. The
polynomials are degree 6 for first and second hole, and degree 9 for the third hole. Because
of the polynomial fitting, there are some ripples in the curves. But these ripples appear when
the flexible is completely squeezed (the volume does not increase anymore), which is beyond
the range of interest for our experiments.

Figure 4.3.9: Stable bubble growth: when the bubble becomes larger than the capillary
length, the hypothesis of spherical shape is not valid anymore. The pressure is larger at the
bottom, creating the buoyancy force. The real bubble is taller than predicted by the model

A video camera is placed above the system, and a 45◦ mirror is used to view the bubbling
area. This system is interesting if the area of interest is surrounded by other measurements
devices, such as an atomic force microscope (this will be detailed in Sect. 5.4). However in
that case, the optic path crosses the free surface of the liquid. We have seen experimentally
that the images are more clear if we place a thin glass slide floating on the surface of the
water, so that the optic path crosses no free liquid-air surface.

Second Setup Results

The experimental parameters of this setup have been summarized in table 4.3.2. The three
tests have been performed on the hole 1. The liquid we used is water and the gas is air. The
only parameter changing from one experiment to the other is the initial volume. Pressure
has been assumed to be P0 = 101325Pa, temperature to be T = 298.15K, and surface tension
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Figure 4.3.10: Calibration of the compression system for volume variation and the polynomial
fitting used during experimentations. The ripples are due to the polynomial fitting when the
pushed volume does not increase anymore (saturation because the hose is fully squeezed).
This is beyond the range of interest for our experiments

Table 4.3.2: Sets of parameters for experiments made on the second test bed

Parameters Set 1 Set 2 Set 3

V0 98.2 10−9 m3 78.5 10−9 m3 58.9 10−9 m3

s 1.23 10−3 m 1.23 10−3 m 1.23 10−3 m
σ 32.9 41.2 54.9

to be γ = 72 10−3Nm−1.

The results of the three experiments are shown on Fig. 4.3.11. It must be noted that
when the bubble reaches a certain height larger around the capillary length, the hypothesis
of part spherical shape is not correct anymore. This is why for large values of ∆V , the model
underestimates the height of the bubble (Fig. 4.3.9). These reasons explain the deviation
of the experimentation points and model for large ∆V values. For small values of ∆V , the
bubble is pushed from the hole and is not immediately anchored on the edge of the border.
This explains the deviations of the experimentation points and model for small values of ∆V .

4.3.3 Conclusion of Experimental Validation

The experiments performed on both experimental setups corroborate the model of bubble
generation based on volume control, established in Sect. 4.2.3. Besides, we have seen that
there exists, as predicted, two cases of bubble growth: one is discontinuous, as seen on
the experimentations performed on the first test bed, the second is continuous as seen on
the experimentations performed on the second test bed. Figure 4.3.12 shows a summary of
two test results, each made on a different experimental setup. The dimensionless number
established in Sect. 4.2.6 is useful to predict the continuous or discontinuous growth, based
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on the parameters of the setup. It shows, for example, that if a bubble of any size must
be generated from a small hole, the gas volume must be lower than a value predicted by
dimensionless criterion:

V0 <
27π P0 s

4

128 γ (4.3.1)

We have also demonstrated that the pressure measurement is a good indicator of the
bubble shape. This could allow to avoid the use of expensive and bulky image acquisition
system. Besides, the pressure measurement can be localized anywhere in the gas system.
This could be an advantage if for example the space around the bubble is restricted.
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Figure 4.3.11: Experimental results on the second test bed. This validates the model for the
continuous bubble generation
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Figure 4.3.12: Summary of experimental validation on both setup, allowing to validate both
stable and unstable bubble growth. This figures combines the results of parameters set
1 in table 4.3.1 and parameters set 2 in table 4.3.2. The results have been plotted in a
dimensionless form
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4.4 Examples of Application

In this section, we present two examples of useful application of micro-gas bubbles. First,
we propose to use a bubble as a pressure sensor. Second, we propose to use a bubble as a
compliant actuator.

4.4.1 Pressure Sensor

We have seen, in the description of the pressure controlled bubble generator (Fig. 4.1.4) that
the height of a bubble could be very sensitive if the diameter of the outlet channel is large.
But on the other hand, a large diameter means that the maximal pressure is low. The reason
is based, once again, on Laplace equation (4.2.4). We propose to design a gauge pressure
sensor that converts the pressure to a certain height.

In this example, we will always suppose that the gas is air and the liquid is water, so the
surface tension is γ = 72 10−3Nm−1. To design a gauge pressure sensor, we can start from
the maximal pressure to measure. Assuming the shape of the bubble to be a portion of a
sphere, and since the maximal pressure is reached when the height of the bubble is equal to
the radius of the outlet channel (half sphere, h = s/2), the size of the outlet channel is given
from (4.2.4):

smax = 4 γ
∆Pmax

(4.4.1)

From this relation, we see that the maximum pressure range decreases if the diameter
of the hole increases. Since the diameter hole should not be too close to capillary length to
avoid gravity effects to be predominant, there is a minimal value for the pressure range. If
we consider the maximal diameter to be 2.5 mm, the minimal pressure range is 115Pa. If
the pressure applied on a system with s = smax is larger than ∆Pmax, the bubble will grow
indefinitely until it lifts off, and some gas will be lost from the system.

Equation (4.1.3) gives the height of the bubble with respect to pressure and channel
diameter. Results of pressure to height conversion for 3 different values of channel diameter
s are shown in Fig. 4.4.1. If for example we need a pressure sensor to read pressure up to
200Pa, we could use any outlet channel size up to 1.44 mm. Any diameter smaller than that
will support a pressure of 200Pa, but it is clear from this figure that the height variation will
be lower if the diameter is smaller.

The height of the bubble could be measured by either a vision system, either a laser beam
using bubble interface as a reflection surface. We show in Fig. 4.4.2 the schematic diagram of
the bubble based pressure sensor using a laser beam to measure the height. The laser beam
is emitted vertically down to bubble surface, at a distance ρ s of bubble axis. If an horizontal
beam sensor is placed horizontally at a distance d of the bubble base, a variation of bubble
height h will induce a variation of the beam impact point on the sensor. If p is the distance
between bubble axis and the impact point, it is possible to find the following relation:

p = tan (2θ) (d− h+ tan (θ/2) ρ s) (4.4.2)

where:

θ = arcsin
(

ρ s
s2

8h + h
2

)
(4.4.3)
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Figure 4.4.1: Evolution of the height (h) of an air bubble in water with respect to the pressure
variation (∆P ) and the outlet channel diameter (s)

Figure 4.4.3 shows an example of the relation between beam displacement p and pressure
to measure ∆P for an outlet diameter s = 1mm. The beam sensor is supposed to be at
d = 1cm of bubble base.

Such a sensor shows good theoretically linearity and should be easy to include in a mi-
crofluidic circuit. It could be used together with the volume controlled bubble generator to
monitor the shape of the generated bubble as described in Sect. 4.3. However, there is a
limitation for systems with multiple outlet channels due to surface tension. Indeed, if the
system has two outlet channels with different diameters, the bubble from the largest channel
will always be larger. Indeed, the pressure in the gas circuit is uniform, meaning the radius
of the bubbles must be the same. If the configuration allows bubbles to growth continuously,
the bubble from the small channel will shrink beyond the half sphere configuration, while the
bubble from the large channel will continue to grow. Henceforth, the channel used as pressure
sensor should not be larger than the main channel. This issue is illustrated in Fig. 4.4.4.

4.4.2 Bubble as Compliant Actuator

A second example is the main reason of the developments presented in this chapter: using a
bubble as a compliant actuator.

We have seen that a bubble is able to generate a force that could be used to move or at
least support immersed objects. Besides, a bubble is intrinsically compliant since it is made
of compressible gas and since its borders are able to change their shape. This idea will lead us
to the developments presented in Chap. 5, where we propose a mechanical characterization
of a bubble caught between two solids in term of force and stiffness.
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Figure 4.4.2: Schematic view of a bubble based pressure sensor using a laser beam to measure
the height variation of the bubble induced by a pressure change

4.5 Conclusions

We have seen in this chapter that gas microbubbles in immersed environment induce effects
that are not negligible at microscale. Therefore, we suggest that it could be interesting to
make use of these bubbles. To achieve this, it is necessary to be able to generate these
bubbles in a controlled way. We have reviewed some bubble generation principles and we
concluded that the most adequate is a volume controlled bubble generator. We developed a
mathematical model of this generator and showed that surface tension and gas compressibility
could lead to an unstable bubble growth. A dimensionless study of this model allowed us to
find a criterion based on setup parameters that predicts the existence of the instability. This
model has been validated experimentally on two different setups. Finally, we presented some
examples of bubble based applications in microsystems.

In order to be used in microrobotic application, microbubbles must be characterized
mechanically. The idea of using bubbles as compliant actuator will be developed in the next
chapter. Bubbles as pressure sensors will not be developed in this work, and will be part of
the perspectives.
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Figure 4.4.3: Illustration of the relation between laser beam displacement and pressure to
measure. In this example, the outlet channel has a diameter s = 1mm and the beam sensor
is located at d = 1cm of bubble base
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Figure 4.4.4: Illustration of volume controlled generation with two outlet channels having a
different diameter. The parameters are those of the first configuration of table 4.2.2. The
pressure in the gas circuit being equal, the radius of the bubbles must be the same, making
the bubble from the smaller outlet channel smaller. Only the bubble from the large channel
continues its growth beyond the half sphere configuration, while the height of the other
bubble diminishes



Chapter 5

Compliance of a Gas Bubble

After having presented the interest of micromanipulation in liquid media in Chap. 1 and the
different relevant forces acting on immersed micro-objects in Chap. 2, we have focused on surface
tension forces. We have detailed surface tension in Chap. 3 and explained that microbubbles
could be the root cause of this phenomenon in immersed systems. To study the effects of such
bubbles, we have proposed and modeled in Chap. 4 a method to control the generation of a gas
bubble in a liquid media, taking account of surface tension effects and gas compressibility, based
on a volume controlled generator.

This chapter deals with the study the mechanical stiffness of a bubble. This physical property
is a first step towards designing devices making use of bubble properties. In this chapter, we
first introduce in Sect. 5.1 the purpose of compliance modeling, then we describe in Sect. 5.2
a prototype using microbubbles. Keeping this prototype as case study, we build in Sect. 5.3
the model of the force exerted by the bubble on the solids with respect to the gap between
them. We will then discuss the results of the model, and use this model to size up the prototype
of demonstrator making use of bubble properties. Finally, we use in Sect. 5.4 a manufactured
prototype of the demonstrator device to validate the model. Based on all these considerations,
we finally propose improvements of the prototype in Sect. 5.5, and present the conclusions in
Sect. 5.6

The next chapter will present the perspectives of this work and the conclusions.

5.1 Modeling the Compliance of a Gas Bubble

In this chapter, we will consider the case of a bubble caught between to solid surfaces. We
will develop a model linking the properties of the bubble (number of gas mole n, geometry of
its borders) and the distance between both solids (called the gap, u) to the force generated
by the bubble (Fig. 5.1.1). Compliance is defined as the inverse of mechanical stiffness. This
is a first step to understand the complete dynamics of the system.

The model we have developed can be applied to any structure, but as guideline of this
chapter, we will study the design of an isostatic structure lying on three bubbles which consists
in a compliant table that could be used as a support to perform microrobotic tasks. The
model is useful to design this kind of compliant device and also to determine an estimation
of the force applied on the structure.
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Figure 5.1.1: The purpose of this model is to calculate the force generated by a bubble caught
between two solids, with respect to physical and geometrical parameters, notably the gap
distance u between both solids. From a mechanical point of view, we search the stiffness of
a bubble, as if the bubble was replaced by a non linear spring

5.2 Description of the Prototype

This chapter illustrates how to make use of gas bubbles in immersed microsystems, and how
to take benefits from their properties. Even if the models presented are valid for any system
configuration, we have chosen a specific application to illustrate the models, and to validate
them.

The thread of this chapter will be the development of a 6 DOF compliant table that is
intended to be used as a support for robotic micro-assembly tasks. Among these 6 DOF, 3
can be actuated. This section describes the prototype of this device.

5.2.1 Application Context

We have already explained the advantages of working in a liquid environment (Sect. 1.3).
Additionally, the device we propose is compliant, which is a very important property for mi-
cromanipulation applications. Indeed, robotic micromanipulation can be used to manipulate
objects in the field of optoelectronics (optical fibers), MEMS components, microelectronic
systems packaging, microfluidics (Lab-On-Chip) or biologic cells manipulation. It deals with
the manipulation and assembly of components having dimensions that may be within 10−6 m
to 10−3 m range.

An important issue in micromanipulation is that the positioning of the components has
to be very accurate, due to the small dimensions. Systems with a few nanometer precision
exists [40], but they generally have a limited stroke, even if they are used with mechanical
amplifier. Moreover, the manufacturing accuracy of the components may be between 10−7 m
and 25 10−6 m [79], which is proportionally larger than those of macroworld. Finally, some
adhesion forces, that are not controllable, may also interfere with the gripping or placement
of the components [16].

The components manipulated are generally made of brittle materials, like silicon or glass,
or should not get stressed, like biological cells for example. Henceforth, any relative position
error between the component and its assembly site should be avoided. To tackle this problem,
one solution is to use compliant structures [16].

A first approach is to use a compliant gripper [21, 59]. But this approach carries some
drawbacks. The gripper is generally moving during the assembly operation. If the speed of
the gripper is high, it could induce vibrations that could hinder the correct positioning of
the component. Moreover, the structure usually used to increase the compliance is based
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on cantilever beams. These could also suffer from buckling when gripping the object, which
would then lead to its loss or at least modify its position.

We suggest that the compliance should be present in the table carrying the system being
assembled. This idea is also presented by Clévy [16]. He proposes a compliant table supported
by three mechanical springs (Fig. 5.2.1). With this configuration, the table shows a vertical
stiffness of 6.7 N m−1, and the global assembly system is improved.

Figure 5.2.1: Illustration of the spring hold compliant table proposed by Clévy, used to
perform microassembly tasks (Source [16]). The springs have a free length of 12mm and a
stiffness of 54 N m−1, and the table is made of aluminum and has a diameter of 15 mm

A common benchmark to test the efficiency of an assembly system is the "peg in hole"
test. It consists in performing the tasks of inserting a pin in a bore. This operation requires
a good alignment of the pin before insertion. Since parasitic forces may change the relative
position of the object and the gripper, this alignment is difficult to achieve. But using a
compliant table, the alignment errors are somehow corrected by the movement of the table
itself. This is illustrated in Fig.5.2.2. This demonstrates the usefulness of compliant tables
for microassembly tasks.

Hu [40] proposed another design of 6DOF compliant table. His design is based on flexible
hinge structures, actuated by piezoelectric elements. Hu does not give information about
the stiffness of the table, but since the compliant elements are connected to the piezoelectric
actuators, it is probably relatively large.

Other structures that are often used in microsystems are orthoplanar springs, also called
spiders. The stiffness of structures such as the one represented in Fig. 5.2.3 is given by [38]
(for one arm):

k = b h3E

L3 (5.2.1)

where b is the width of one arm, h is the thickness of one arm, L is the length of one arm and
E is the Young modulus. For example, with h = 0.25 10−3m, b = 0.75 10−3m, L = 15 10−3 m
and E = 190 109 Pa, the stiffness of the entire spring having 3 supports with 2 arms, is given
by:
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Figure 5.2.2: Illustration of the efficiency of a compliant table during the "peg in hole"
benchmark test. The alignment errors between pin and bore are absorbed by the movement
of the table (Images captured from a video from C. Clévy [16])

k = 3 b h
3E

2L3 ≈ 990 N m−1 (5.2.2)

Orthoplanar springs and conventional helical springs have in common that to have a
low stiffness, they have to be either large or fragile. It is moreover difficult to actuate them
directly. Bubbles can assess these issues, as it will be demonstrated by our model in Sect. 5.3.

5.2.2 Design of the Prototype

The device we propose is based on a mobile solid, called the table, supported by three
bubbles. These bubbles are generated from a second solid, called the platform. Three holes
are therefore made on the top plane of the platform, which are connected through flexible
hoses to a gas container. The volume of this gas container can be adjusted to change the
height of the bubble. The device is illustrated in Fig. 5.2.4.

Bubbles are anchored to both table and platform thanks to a sharp edge which produces
a geometric anchoring (Sect. 3.1.2). In the platform, the anchoring is realized by the gas
circuit outlet holes. In the table, the anchoring is realized by holes too. We will consider two
configurations: blind holes and through holes. Through holes are supposed to be easier to
manufacture with microfabrication technologies such as DRIE, since only a circle has to be
etched (like a core drilling), while with blind holes the entire disk must be etched.

The prototype has been realized in aluminum. To reduce the weight of the table, it
has been shaped like a clover. Because the table should be as small as possible in order to
avoid its own weight to be too large compared to bubble force, and because of the dimension
of commercially available flexible hose to make the connection to the gas circuit, we have
chosen the anchoring circle diameter in the platform to be s1 = 10−3 m, and in the table
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Figure 5.2.3: Illustration of an orthoplanar spring (Source [38]). The deflection of the beams
supporting the table provides the compliance of the table

s2 = 800 10−6 m, with centers of circles being on the vertices of an equilateral triangle, at
2.5 mm from each other.

The connections between the platform and the gas tank are made with silicone flexible
hoses. The outlet holes where the bubbles are generated are directly connected to the hoses.

The realization of the prototype was made using a CNC milling machine. Four differ-
ent tables were designed with either through or blind holes, and with improved anchoring
circles or with simple anchoring circles. The improved anchoring circle consists in making
a circular groove around the hole. The inner circle of the groove constitutes the anchoring
circle. Because of the vertical side, the contact angle is theoretically 90 ◦ larger than for the
configuration without groove (Fig. 5.2.5). The profile must therefore bend more before the
bubble can escape.

The different versions are illustrated in Fig. 5.2.6, and an actual view of two tables is
illustrated in Fig. 5.2.7. However, the milling of the groove in the case of improved anchoring
circles could not be achieved with this manufacturing technology, making this version not
usable (Fig. 5.2.8). This is only a technological issue, and the results with such anchoring
system would provide better results than with the simple anchoring circles. Solutions to
tackle this problem will be proposed in Sect. 5.5.
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Figure 5.2.4: Schematic view of the bubble supported compliant table

Figure 5.2.5: Illustration of the simple (left) and improved (right) anchoring methods. Both
are mechanical method, but the right configuration uses a circular groove forcing the profile to
travel an additional 90 ◦ compared to the simple configuration before the bubble can escape.
The same method could be used on the platform
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Figure 5.2.6: Dimensions of prototype tables. Four variant have been considered, but due
to technological issues, the variant having a groove to improve bubble anchoring where not
usable

Figure 5.2.7: Actual view of two tables
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Figure 5.2.8: View of a table with improved anchoring circle manufactured on a CNC milling
machine. The result is not usable
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5.2.3 Device Advantages

This device has several advantages compared to traditionally used compliant systems such
as springs. These advantages are listed below and will be demonstrated with the model
developed in Sect. 5.3.

• Compacity. For an equivalent stiffness, bubbles are more compact that conventional
springs.
• Strength. If a small stiffness is required, conventional springs are either large, or use
thin wires. These are therefore easy to break, and if they are broken, they need a
complete replacement. On the contrary, our system can be easily repaired. Indeed, the
main risk is that the bubble escapes its location if the table is pushed too far, or that
the bubble leave the table or splits if the table is pulled too far. But even if this occurs,
a new bubble can easily be regenerated if necessary, and the table can be simply laid
on the bubble again.
• Assembly. Thanks to self assembly properties of the capillary forces, the assembly
of the table on the bubble is very simple and do not require a precision positioning
device. If the centers of the anchoring circles on the table overlay with the centers of the
anchoring circles on the platform, the assembly of the table will accept some alignment
errors. If the bubbles touch the anchoring circles, the system will automatically tend
to minimize lateral surfaces, correcting initial positioning error.
• Actuation. On the contrary to conventional springs, bubbles are easy to actuate from
the volume controlled generator. It is possible to change their height, hence changing
the height of the support points and moving the table.
• Sensing. It is possible to use the pressure in the bubble to infer the measurement of
the force exerted by the bubble.
• Manufacturing. The design of the device is simple. Depending on the desired size of
the bubbles, it is possible to use conventional means to manufacture the device.
• Adjustable Stiffness. As it will be demonstrated in Sect. 5.3, the stiffness of a bubble
depends on the total volume of the gas system. It is therefore possible to change the
stiffness of a bubble, without changing the geometrical design of the table nor the
platform.

The 3 actuated DOF of the compliant table are shown in Fig. 5.2.9. Some of the proper-
ties, such as compliance and use as actuator, are illustrated in Fig. 5.2.10.

Figure 5.2.9: View of the three actuated DOF: (a) reference position, (b) vertical translation
(here ≈ 250 µm), (c,d) rotations (here ≈ 10◦)
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Figure 5.2.10: Illustration of the working principle of the compliant table device. First, the
table is put on the bubbles (a). Thanks to self assembly property, the table is automatically
centered above the platform. The table exerts a load on the bubbles, changing their shape
(the gap decreases, and the mean curvature increases) (b). If a supplementary load is applied
(here by pushing slightly on the table with a tweezer), the table moves because the bubbles
change their geometry to compensate the new load, giving compliance to the table (c).
Finally, if the bubble generator is actuated to increase the size of some bubbles, it is possible
to move the table. The bubbles are in this case used as actuators (d)
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5.3 Force Generated by a Gas Bubble

In this section, we will develop a model of the force generated by a bubble with respect to
several parameters such as the distance between both solid parts u, the pressure outside the
bubble P0 and mole number n, and the boundary of bubble interface. We will then present
the application of the model for the design of a compliant table lying on 3 bubbles. We will
analyze these results, give some interpretation and infer interesting properties for bubbles.

5.3.1 Hypothesis

We assume that both solids have anchoring means to maintain the bubble.

We also assume that the bubbles have an axisymmetric profile. The anchoring means
must therefore manage the triple line to be a circle, on both solids. We state s1 is the
diameter of the triple line circle on the bottom solid, and s2 is the diameter of the triple line
circle on the top solid. The symmetry axis is z, with the unitary vector 1̄z going from the
bottom solid towards the top solid (Fig. 5.3.1).

Figure 5.3.1: Geometry of bubble between two solids: view of the anchoring circles (s1 and
s2), gap (u) and symmetry axes (1̄z)

We also assume that the gap (u) between both solids is smaller than the capillary length.
Therefore we suppose that the pressure in the liquid is constant along bubble profile. More-
over, if we suppose there is not fluid displacement inside the bubble (quasi-static situation),
the pressure in all the gas circuit may be assumed uniform. From Laplace equation (3.2.3),
we assume that the mean curvature of the profile H is the same all along the gap distance.

We consider that the bottom solid is fixed, and the top solid is mobile. The bubble is
assumed to be generated from a volume controlled generator, V0 being the volume of gas in
the gas tank, and V being the volume of the bubble.

Finally, let us point out that the originality of this model is that it does not suppose a
constant volume, since gases are compressible. Nevertheless we will assume that the amount
of gas molecules is constant, i.e. that the number of mole n in constant. This hypothesis was
already stated in Chap. 4.
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5.3.2 Equations

As already mentioned in Sect. 3.2, the total force exerted by a bubble on two solids, called the
capillary force, is the sum of two forces: one arising from the pressure difference between the
inner and the outer side of the bubble, and the other arising from the tension in the bubble
interface. Figure 5.3.2 shows the free body diagram of the system. Since we suppose the top
solid is mobile, we also add his weight and the buoyancy force. The buoyancy force taking
the hydrostatic pressure effect in account, we do not represent the pressure field acting on
the surface of the solid. We only represent the supplementary pressure on the disk limited
by the triple line.

Figure 5.3.2: Free Body Diagram of the table around one bubble. To ease the interpretation,
the bubble has been cut in the bottom plane of the table. We have illustrated FTS which is
the force component from surface tension, FP which is the force component from pressure
drop, W which is the third of table weight, and B which is the third of buoyancy force

According to the hypothesis, the pressure force is given by (Sect. 3.2.2):

F̄P = −∆P π s
2
2

4 1̄z = −π s
2
2 γ H

2 1̄z (5.3.1)

and the surface tension force is given by (Sect. 3.2.1):

F̄TS = π s2 γ sin (θ2) 1̄z (5.3.2)

where θ2 is the contact angle of the profile with the top solid. It is important to notice
that the contact angles for both solids can be different. Because we suppose the triple line
is anchored, the contact angle is not constant and will depend on the gap u and the mean
curvature H.

The capillary force generated by the bubble is the sum of both contributions:

F̄ = F̄P + F̄TS =
(−π s2

2 γ H

2 + π s2 γ sin (θ2)
)

1̄z (5.3.3)

In the case of a table with through holes, we cannot consider that the pressure contribu-
tion is applied on the table. It is therefore possible to consider another free body diagram
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(Fig. 5.3.3). We consider that the anchoring circle is submitted to two different surface ten-
sion forces: one from the lateral interface, and the other from the top interface, caught in the
table hole. However, the surface tension force from the top interface is equal to the pressure
force acting on the section of the table hole. This may be seen from the equilibrium of the
bubble portion caught in the table hole, and from the demonstration that in the case of a
bubble having the shape of a portion of a sphere, the amplitude of the pressure force is equal
to the amplitude of the surface tension force (D). Therefore, the formulation of the capillary
force in this configuration is exactly the same as for a table with blind holes.

Figure 5.3.3: Free body diagram in the case of through holes. In this case, the table is
subjected to two surface tension forces: FST1 from the lateral interface, and FST2 from the
top interface. However, the amplitude of FST2 is equal to the pressure force FP , as illustrate
on the free body diagram of the bubble portion caught in the table (in the center in this
figure)

Another option is to consider the free body diagram of the following set: the table and the
part of bubble caught in the table. In this case the pressure contribution can be considered as
acting on the cut plane. The free body diagram is in this case the same as in the configuration
with blind holes.

From this equation, we see that the knowledge of γ and of the geometry of bubble interface
profile characterizes completely the force. Indeed, the curvature H and the contact angle θ2
can all be determined if the equation of the profile is known.

We can conclude that to calculate the force, we need to calculate the profile.

5.3.3 Determination of Bubble Profile

In this section, we propose a method to find the profile of the bubble under the constraint to
have a specific number of mole. We will first propose a general method based on an ordinary
differential equation. The numeric resolution of this ODE may be time consuming, which
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may be prohibitive in case the model is used in a control system. Therefore we will also
propose in Sect. 5.3.7 an approximation, less accurate but faster to calculate.

In this approach, we consider the system whose inputs are the number of gas mole n and
the gap distance u, and whose outputs are the force F and the mean curvature of the profile
H (Fig. 5.3.4).

Figure 5.3.4: View of input and output parameters of the model

From the hypothesis of constant H and axisymmetric surface, it can be demonstrated
that the equation of the profile in cylindrical coordinates r (z) is given by [52]:

∆P
γ

= 2H = −
∂2r
∂z2

(
1 +

(
∂r
∂z

)2) 3
2

+ 1

r
(

1 +
(
∂r
∂z

)2) 1
2

(5.3.4)

This ODE is a boundary value problem, because of the anchoring of the profile. Hence,
if origin of z axis is on the surface of bottom solid, the boundary conditions are:

{
r (0) = s1

2
r (u) = s2

2
(5.3.5)

The method to find bubble profile is shown in Fig. 5.3.5. We define the geometry pa-
rameters s1, s2, u, and we assume a value for H. Equation (5.3.4) is solved using the BVP4C
function of Matlab library, constrained by boundary values (5.3.5). This function enables to
determine the profile r (z). The volume of the gas bubble V is calculated from this profile
using a numeric trapezoidal integration method (function trapz of Matlab). The number
of mole in the system is then calculated considering the total volume of gas, the absolute
pressure inside the gas system and the temperature:

n = (P0 + 2 γ H) (V0 + V )
Rg T

(5.3.6)

The calculated mole number n is compared to the set point. The value of H is calculated
by a Newton method where we calculate the value of n for 2 values of H: na for Ha and nb
for Hb

1. We make a linear approximation between these points to find Hc corresponding to
the set point for n. Then the calculation of the actual nc value is made with Hc. If nc is not
equal to the n set point within a predefined tolerance, a new iteration is launched between
either Ha and Hc or Hb and Hc, depending on which value is closer to the target.

When the profile satisfying the constraints has been found, the force can be easily cal-
culated from (5.3.3). The mean curvature is calculated directly in the algorithm, and the
contact angle can be easily calculated from the derivative of the profile:

1
tan (θ2) = − dr

dz

∣∣∣∣
z=u

(5.3.7)

1Ha and Hb are initially chosen to be 1.0002× and 0.9998× the value of H
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Figure 5.3.5: View of the iterative procedure to calculate bubble profile. First, a value of H
is assumed. It is chosen with respect to the value at the previous gap value, or if the gap
corresponds to a part-spherical profile, it is calculated from the radius of this profile. Then
the ODE is solved, which allows to calculate the volume of the bubble. The pressure inside
the bubble is calculated with Laplace law. Then using the ideal gas law, the number of mole
is calculated. It is finally compared to the mole number set point. If the calculated n is
different from the set point, a new value for H is calculated using a Newton method

The resolution usually requires only 1 or 2 steps to converge to the solution with a relative
tolerance on n of 10−5. However, combined with the resolution of the ODE, the determination
of one profile can take up to a few seconds, which is prohibitively long if the model is intended
for being implemented in a controller.

One solution to this problem is to calculate in advance the results with a certain pa-
rameters resolution, and to place it in a look-up table. Another solution is presented in
Sect.5.3.7.

5.3.4 Application of the Model

We will use the model proposed above to describe a real situation. Therefore, we will in this
section present the situation and the assumptions we make. The device on which we use
the model has been introduced in Sect. 5.2. To run the simulations, we have to define the
geometry of the anchoring circles, as they constitute the boundary conditions of the ODE.
These are given by s1 and s2, the diameters of the anchoring circles on the platform and on
the table.

The method used to simulate the behavior of the compliant table is as follow. First three
bubbles are generated. We suppose that each bubble has an initial height h1. We suppose
the total volume in the gas circuit is known, which is equal to the sum of bubble volume and
container volume. With initial bubble height and s1, it is possible to find the radius R of the
bubble which is assimilated to a portion of a sphere. From this radius, the initial pressure
(P0 +∆P0) in the gas circuit can be found (4.2.4), and together with the total volume of gas,
the initial number of mole can be found (4.2.1) by:

n =
(
P0 + 2 γ

R

)
(V0 + V )

Rg T
(5.3.8)

This number of mole is assumed to be constant.

Then the table is laid on the bubbles. We suppose that when the contact is made, the
bubbles are spherical. Because of the diameter of the anchoring holes in the table, the bubble
will penetrate inside the table until a contact is established. We assume that the holes are
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deep enough to avoid contact of the top of the bubble with the end of the hole. The portion
of the bubble inside the table is at that moment a portion of a sphere. We assume that the
contact line at the edge of the holes in the table, which is the triple line of the top solid, may
be considered as a sealing joint, preventing liquid passing across it.

In the case of blind holes in the table, the liquid caught between the bubble and the
end of table hole is trapped. The amount of liquid trapped in table hole being constant,
the shape of the bubble portion in the table hole is therefore also constant, no matter the
pressure inside the gas circuit. Indeed, the pressure in the liquid trapped in the table hole
(P0 + ∆P −∆P0) is not necessarily the same as the pressure inside the liquid surrounding
the bubble.

In the case of a through hole in the table, the liquid above the bubble is in contact with
the surrounding liquid through the hole. In this case, the shape of the portion of the bubble
inside the table will change in order to have the same mean curvature as the lateral bubble
profile. However, its shape remains a portion of a sphere since it is an axisymmetric surface
with a constant mean curvature touching the symmetric axis. This is shown in Fig. 5.3.6.

Figure 5.3.6: Pressure repartition. In the case of a table with blind holes (a), the pressure
in the liquid in table hole is not equal to pressure outside bubble. In the case of a table
with through holes (b), the pressure in the liquid in the table is equal to the pressure outside
bubble

To model the force generated by a bubble, we run our model starting from the initial gap
and progressively varying the gap distance between the platform and the table.

5.3.5 Limitation of the Model

Some questions arise when considering the presented model.

The first question is to know if a solution to ODE (5.3.4) exists.

In our model, the profile is represented as a function r (z). The numerical resolution of
the equation will fail when the derivative of the profile becomes too large, i.e. when the
profile becomes parallel to the platform or the table. The question is: is the failure of the
resolution due to a bad mathematical formulation, or is there no solution? An element of
answer is that there might be no physical solution, for example if the gap becomes too large,
the amount of gas in the system may be too small and the gaseous bridge will break up.

On the contrary, when the gap becomes too small, the curvature of the bubble may in
some case reach values that induce contact angles in gas phase close to 180◦. In this case,
as mentioned above, the algorithm generally fails to converge due to a singular Jacobian.
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Table 5.3.1: Examples of receding angles (source: [52])

Liquid Solid Receding angle Standard deviation

water steel 56◦ 8.3◦
water silicon 33◦ 4.6◦
water PTFE 98◦ 3.2◦
silicone oil (R47V50) steel 16◦ 3.5◦
silicone oil (R47V50) silicon 16◦ 5.8◦
silicone oil (R47V50) PTFE 47◦ 3.1◦

However, this situation is not physically realistic since the contact angles will generally not
exceed a value, which is the receding contact angle of the liquid on the solid. Once the
angle reaches this value, the anchoring is not efficient anymore and the bubble will escape
the system. The force that a bubble will be able to generate should therefore be limited
to corresponding angles below that limit angle. Examples of receding angles are given in
Table 5.3.1 [52].

A second question is the uniqueness of the solution. There are two parts to this answer.

First we have to verify if there is only one solution to (5.3.4) for a given H and given
boundary conditions. Analytically, the uniqueness of solution for this problem is guaranteed
if the solution is a Lipschitz function2 [24]. This means that the profile must have a bounded
derivative. From a physical point of view, since the contact angles are smaller than 180◦,
this condition shall be assumed fulfilled.

Second we have to verify that there is one value for H that leads to a solution of the
problem under the constraint for constant mole number. Our algorithm is iterative and
needs an initial guess. Since we start from a known realistic configuration (a portion of a
sphere when the table is posed on the bubbles), we use the shape at the previous gap as initial
guess for the current gap. Doing this, we suppose the solution found to be realistic. However
this does not guarantee the uniqueness of the found solution. To answer the question, we
made a swept for values of H from 50% to 150% of the assumed correct value, instead of
searching a correct value by a Newton search which gives only one solution. We found only
one solution in this range.

If another solution should exist, its shape would lead to a bubble having a larger revolution
surface. This is energetically not favorable, so we consider that the solution found by our
algorithm is the only physically realistic solution.

5.3.6 Analysis of the Model

In this section we will analyze the model and deduce some design rules and some interesting
properties of bubbles.

Except if otherwise specified, we will always consider the parameters as indicated in
Table 5.3.2. The surrounding liquid is supposed to be water.

The weight of a silicon table described in Sect. 5.2 is estimated to be 102 10−6 N. The
density of silicon is 2.33. Hence, the total force applied by the table on the three bub-

2 f̄ : U ⊆ Rn × Rm → Rp is a Lipschitz function at point ȳ on U if there is a constant Λ ∈ R such as
∀ (x̄, ȳ) , (x̄, ȳ∗) ∈ U : ‖f̄ (x̄, ȳ) − f̄ (x̄, ȳ∗) ‖p ≤ Λ‖ȳ − ȳ∗‖m[24]. This means that Λ is the maximal slope
admissible for chords in the planes defined by constant x̄
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Table 5.3.2: Recurrent parameters for model analysis

Parameters Values

P0 (Pa) 101325
T (K) 293.15
γ
(
N m−1) 72 10−3

s1 (m) 10−3

s2 (m) 800 10−6

h1 (m) 400 10−6

bles is 58.4 10−6N if the surrounding liquid is water. If the table is horizontal, the force is
equally distributed on all three bubbles. Each bubble must generate a force of approximately
20 10−6 N to support the table.

Therefore, in the simulation we will focus on two particular points: the first is when the
force generated by the bubble is 20 10−6 N and the second when this force is 40 10−6 N. The
first point gives the situation when only the table is posed. The second point supposes an
additional force is applied on the table, with an amplitude equal to the effort applied by one
table.

For each simulation we will also calculate σ, the dimensionless number found in Chap. 4
to discriminate between stable and unstable bubble growing. This will first indicate if it is
possible to grow a bubble of any size, or if there is a limitation on the height of the bubble.
Since this number was relevant to see the effects of surface tension and gas compressibility,
it is also interesting to see if the output of the model will change according to this number.

We define other parameters. The initial gap u0, which is the gap when the table touches
the bubbles when laid on the bubbles, i.e. when no force is applied on the bubbles. The
initial pressure drop ∆P0, which is the pressure drop for the gap u0. The stiffness of the
bubble is calculate from the partial derivative of the force with respect to the gap: k = ∂F

∂u .
The variation of bubble volume (∆V ), which is the variation of the bubble volume without
including the volume of gas caught in table hole (Vt). Finally: V̄ is the total volume of gas
when no table is laid on the bubble, i.e. V̄ = V0 + V in the configuration without table.

We also calculate the contact angles at both end of profile: θ1 near the platform and θ2
near the table.

Generalities

The force increases when the gap distance decreases. To explain this evolution, let us have a
look at the contribution of surface tension force and pressure force.

When the table comes in contact with the bubble, the shape of the bubble is a portion
of a sphere. With this configuration, the surface tension forces exactly counterbalance the
pressure force (App. D). When the gap distance decreases, the curvature of the bubble
increases. This increases the pressure force. But it also has an effect on the contact angle,
which decreases. At the theoretical limit for which the profile becomes tangent to the contact
plane (θ = 0), the surface tension force is zero, so the capillary force is equal to the pressure
force. This is illustrated in Fig. 5.3.7, for a configuration with V̄ = 10−7 m3.
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Figure 5.3.7: Evolution of surface tension force and pressure force along symmetry axis (z)
with the gap. When the gap decreases, the contact angle on the table decreases and comes
close to zero. This means that the surface tension force along symmetry axis decreases,
making the total force come close to the pressure force component

Gas Container Size

In this set of simulation, we present results of the model for identical geometries, but for
systems having different initial gas volumes.

The different volumes and the main simulation results are summarized in Table. 5.3.3.
The plot of the interface shape at one position and the plot of the force with respect to
the gap is shown in Fig. 5.3.8. Of course, because each configuration has the same initial
geometry (s1, s2 and h1), the initial gap (u0) and the initial pressure drop across bubble
interface (∆P0) are the same for each test. In this table are shown the gap at which the force
is effectively generated by the bubble, the stiffness, the variation of bubble volume V (∆V ),
the variation of pressure drop and the contact angles.

From these results, it is interesting to notice that the stiffness of a bubble depends on
the volume. It is also interesting to notice that bubble volume variation, which conveys the
gas compressibility property, is more significant for bubbles generated from large container
volume.

The explanation comes from the comparison of the variation of bubble volume with respect
to the total volume. If the total volume is small, a decrease of bubble volume will produce
a more significant pressure variation than if the total volume is large. Hence if the total
volume of gas is small, bubble behavior will be closer to the behavior of a system with
constant volume.

When the volume of gas is large, the change in bubble curvature is smaller than when
the volume of gas is small. When the force increases on a system with a large volume, the
bubble seems to penetrate in the platform channel, while in the case of a small volume, the
bubble seems to crush instead of penetrating the channel.
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Table 5.3.3: Parameters for the simulations to compare the effect of gas system volume.
These tests differ by the volume of gas present initially in the system

Parameters Test 1 Test 2 Test 3 Test 4

V̄
(
m3) 2.5 10−9 10−8 10−7 10−6

u0 (m) 208 10−6 208 10−6 208 10−6 208 10−6

∆P0 (Pa) 281 281 281 281
σ (1) 563 141 14.1 1.41

At 20µN
u (m) 205 10−6 202 10−6 177 10−6 137 10−6

k
(
N m−1) 7.55 3.89 0.673 0.432

∆V
(
m3) 0.49% 1.91% 15.2% 34.7%

θ1-θ2 (◦) 100-48 101-48 106-46 115-43
∆ (∆P ) (Pa) 28.2 27.8 21.5 5.00

At 40µN
u (m) 203 10−6 197 10−6 149 10−6 102 10−6

k
(
N m−1) 7.82 3.88 0.774 0.715

∆V
(
m3) 0.97% 3.81% 28.6% 51.7%

θ1-θ2 (◦) 98-45 99-45 110-42 125-35
∆ (∆P ) (Pa) 55.1 54.8 40.4 7.40
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Figure 5.3.8: Illustration of the effect of total gas volume variation on the shape (a) of the
interface, and on the force vs. gap plot (b) (thick lines), on which we clearly see the attractive
and repulsive behavior. The evolution of the contact angles are also shown on (b) (thin lines),
allowing to predict the maximal force before the bubble escapes the anchoring area
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Table 5.3.4: Simulation parameters to compare blind holes (B) and through holes (T)

Parameters Test 1 (B) Test 5 (T) Test 2 (B) Test 6 (T) Test 3 (B) Test 7 (T)

V̄
(
m3) 2.5 10−9 2.5 10−9 10−8 10−8 10−7 10−7

u0 (m) 208 10−6 208 10−6 208 10−6 208 10−6 208 10−6 208 10−6

∆P0 (Pa) 281 281 281 281 281 281
σ (1) 563 563 141 141 14.1 14.1

At 20µN
u (m) 205 10−6 192 10−6 202 10−6 189 10−6 177 10−6 170 10−6

k
(
N m−1) 7.55 1.13 3.89 1.01 0.673 0.557

∆V
(
m3) 0.49% 7.53% 1.91% 8.67% 15.2% 18.6%

θ1-θ2 (◦) 100-48 103-48 101-48 103-48 106-46 107-46
∆ (∆P ) (Pa) 28.2 25.2 27.8 24.7 21.5 19.4

At 40µN
u (m) 203 10−6 171 10−6 197 10−6 168 10−6 149 10−6 137 10−6

k
(
N m−1) 7.82 0.864 3.88 0.829 0.774 0.620

∆V
(
m3) 0.97% 17.3% 3.81% 19.2% 28.6% 34.5%

θ1-θ2 (◦) 98-45 105-44 99-45 106-44 110-42 113-41
∆ (∆P ) (Pa) 55.1 48.4 54.8 47.3 40.4 34.5

Blind Holes or Through Holes

Let us now compare the configuration with a table having blind holes and the configuration
with a table having through holes. Parameters for the simulations are shown in Table 5.3.4.
They are the same as for test 1 to test 3 in Table 5.3.3.

Figure 5.3.9 represents the profiles of the bubbles for each test, compared to the profiles
obtained in the same conditions for a table with blind holes. The plot of force (F ) and
contact angles (θ1 and θ2) with respect to the gap (u) are shown in Fig. 5.3.10.

The evolution of the contact angle is more gentle compared to the one obtained with blind
holes (Fig. 5.3.8). However, this does not mean the risk of a bubble escaping is reduced. The
illustration of the profiles clearly shows that when the gap decreases, due to the pressure
rise inside the gas system, the bubble part caught in the table hole grows. Indeed, since
the pressure rises, its mean curvature increases. The theoretical limit is reached when the
bubble is a half-sphere. But practically, when the contact angle of this profile with the lateral
surfaces of the hole reaches the receding angle, the bubble will escape through the hole.

The comparison with the blind hole configuration also shows lower stiffnesses, especially
when the gas system volume is small (values of k are larger for test 1 than for test 5). The
decrease of the stiffness can be explained by a significantly larger V variation, i.e. volume of
the bubble within the lateral profile (excluding the volume caught in the table). Indeed, the
volume caught in the table (Vt) increases when the gap u decreases. But since this volume
has always the shape of a portion of a sphere, it does not generate any force of the table.
So instead of crushing and increasing its curvature, the bubble partially escapes towards the
hole in the table.

Therefore the pressure rise due to volume variation in the system is lower than in the
blind hole configuration, which means that the force generated at a same gap distance u is
lower. The effect of total gas volume is less significant for through holes configuration.
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(a) Test 1 (−) blind hole and 5 (−−) through hole
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(b) Test 2 (−) blind hole and 6 (−−) through hole
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(c) Test 3 (−) blind hole and 7 (−−) through hole

Figure 5.3.9: Comparison of bubble profiles obtained with blind holes and through holes. In
the case of through holes, the gas contained in the hole of the table changes its geometry and
grows when the gap distance decreases
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Figure 5.3.10: Evolution of the force (thick lines) and contact angles (thin lines) for different
gas volumes when using a table with through holes. The effect of the total volume of gas is
less significant than in the blind hole configuration. Tests parameters are given in Table 5.3.4
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Table 5.3.5: Parameters for the simulations to evaluate the effect of anchoring diameter s2
variation. N.S. stands for "No Solution", meaning the algorithm could not converge to a valid
solution

Parameters Test 1 Test 8 Test 2 Test 9 Test 3 Test 10

V̄
(
m3) 2.5 10−9 2.5 10−9 10−8 10−8 10−7 10−7

s2 (m) 800 10−6 400 10−6 800 10−6 400 10−6 800 10−6 400 10−6

u0 (m) 208 10−6 359 10−6 208 10−6 359 10−6 208 10−6 359 10−6

∆P0 (Pa) 281 281 281 281 281 281
σ (1) 563 563 141 141 14.1 14.1

At 20µN
u (m) 205 10−6 338 10−6 202 10−6 335 10−6 177 10−6 303 10−6

k
(
N m−1) 7.5 0.96 3.89 0.85 0.67 0.37

∆V
(
m3) 0.49% 0.38% 1.91% 1.52% 15.2% 12.53%

θ1-θ2 (◦) 100-48 98-12 101-48 99-12 106-46 104-12
∆ (∆P ) (Pa) 28.2 29.4 27.8 29.1 21.5 24.3

At 40µN
u (m) 203 10−6 N. S. 197 10−6 N. S. 149 10−6 N. S.
k
(
N m−1) 7.82 N. S. 3.88 N. S. 0.774 N. S.

∆V
(
m3) 0.97% N. S. 3.81% N. S. 28.6% N. S.

θ1-θ2 (◦) 98-45 N. S. 99-45 N. S. 110-42 N. S.
∆ (∆P ) (Pa) 55.1 N. S. 54.8 N. S. 40.4 N. S.

Effect of Anchoring Diameter

The anchoring diameter s2 on the table has been so far chosen smaller than the anchoring
diameter s1 on the platform. The purpose of this was to have a device that could be used
with any bubble. Indeed, if s2 > s1, the bubble must be larger than a half-sphere in order
for the anchoring circle on the table to touch the bubble. And we have demonstrated in
Sect. 4.2.6 that in some cases, i.e. when σ < 128/ (27π), the growth of a bubble can be
unstable beyond certain height.

However we can wonder if decreasing s2 compared to results of Table 5.3.3 would lead to
a more efficient device. Results of this simulation are shown in Table 5.3.5. Of course, the
initial gap u0 is different for both simulations since the anchoring circle touches the bubble
at a larger gap for a smaller s2.

These results brings to light that with a smaller anchoring circle in the table, the contact
angles on the table side θ2 are smaller (see Fig. 5.2.5 for definition of θ2). From a numerical
point of view, this algorithm will therefore stop to converge to a profile function r (z) for
smaller gap variation. From a practical point of view, this means that with such a config-
uration, bubbles are more likely to escape the anchoring circle since the contact angle will
sooner reach the receding angle. The stroke of the table is therefore smaller if s2 is reduced.
Because of that, it was not possible to reach a force value of 40 10−6 N in Table 5.3.5, the
algorithm failed to converge before that value.
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(a) Test 1 (−) large s2 and 8 (−−) small s2
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(b) Test 2 (−) large s2 and 9 (−−) small s2
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(c) Test 3 (−) large s2 and 10 (−−) small s2

Figure 5.3.11: Comparison of bubble profiles (left) and force (right) obtained for s2 =
800 10−6 m and s2 = 400 10−6 m. Profiles are plotted for a force of 20 10−6 N. Because
the anchoring points on the table are closer to the symmetry axis, the contact angles are
smaller. This leads to a shorter stroke for the table before the algorithm does not converge
anymore to a solution, which means in real situation that the bubble escapes the anchoring
circle. Configurations with smaller anchoring circle are henceforth less stable
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Scaling Effect

We have simulated a size reduction of the geometries by a factor of 10: s1 = 100 10−6 m,
s2 = 80 10−6 m and h1 = 40 10−6 m. In order to keep constant dimensionless number σ
constant, representing combined effects of gas compressibility and surface tension, the initial
gas volume V̄ has been reduced by a factor 104. Indeed, we suppose that the reduced setup
uses the same liquid (so surface tension γ is kept constant) and is operated at the same
pressure (so P0 is kept constant). To strictly verify the conditions for a similarity study, V0
should be decreased by 103, P0 should be increased by 102 and surface tension γ should be
increased by a factor 10. Some distortion will therefore occur since the simulations are done
without scaling pressure P0 neither surface tension γ.

To compare the results with those of Table 5.3.3, we will first examine the results of the
model at points where force levels are also reduced by a factor of 10. Then we will also
examine the results for a force of 20N. The results are shown in Table 5.3.6.

If we compare the results with those of the 10 times larger device, we see that the position
at which the force is 10 times smaller is for a gap which is 10 times smaller. This confirms
that capillary forces, which are responsible for the force developed by the bubble, are indeed
proportional to the characteristic length of the device, as predicted in Sect. 3.2.3. As expected
from dimensional analysis, the stiffness remains approximately constant after downscaling the
device.

Another interesting point is that the pressure is inversely proportional to the characteristic
length. This is obvious since pressure drop is a function of the mean curvature (3.2.3), which
is inversely proportional to the length.

The scaled comparison between reference and scaled tests is illustrated in Fig. 5.3.12.
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Table 5.3.6: Parameters for the simulations to evaluate scaling effects on the device

Parameters Test 1 Test 11 Test 2 Test 12 Test 3 Test 13

V̄
(
m3) 2.5 10−9 2.5 10−13 10−8 10−12 10−7 10−11

u0 (m) 208 10−6 20.8 10−6 208 10−6 20.8 10−6 208 10−6 20.8 10−6

∆P0 (Pa) 281 2809 281 2809 281 2809
σ (1) 563 563 141 141 14.1 14.1

At 20µN 2µN 20µN 2µN 20µN 2µN
u (m) 205 10−6 20.5 10−6 202 10−6 20.3 10−6 177 10−6 17.7 10−6

k
(
N m−1) 7.55 7.63 3.89 3.81 0.673 0.690

∆V
(
m3) 0.49% 0.48% 1.91% 1.89% 15.2% 14.9%

θ1-θ2 (◦) 100-48 100-48 101-48 101-48 106-46 106-47
∆ (∆P ) (Pa) 28.2 278 27.8 275 21.5 216

At 40µN 4µN 40µN 4µN 40µN 4µN
u (m) 203 10−6 20.3 10−6 197 10−6 19.7 10−6 149 10−6 15.0 10−6

k
(
N m−1) 7.82 7.92 3.88 3.97 0.774 0.784

∆V
(
m3) 0.97% 0.95% 3.81% 3.73% 28.6% 28.1%

θ1-θ2 (◦) 98-45 98-45 99-45 99-45 110-42 110-42
∆ (∆P ) (Pa) 55.1 552 54.8 543 40.4 408

At 20µN 20µN 20µN 20µN 20µN 20µN
u (m) 205 10−6 18.5 10−6 202 10−6 16.2 10−6 177 10−6 3.01 10−6

k
(
N m−1) 7.55 9.58 3.89 4.98 0.673 1.94

∆V
(
m3) 0.49% 4.38% 1.91% 8.67% 17.7% 85.2%

θ1-θ2 (◦) 100-48 82-23 101-48 89-24 106-46 149-1
∆ (∆P ) (Pa) 28.2 2595 27.8 2618 21.5 1244
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Figure 5.3.12: Comparison of the force with respect to gap distance for a scaled model. Curves
for original model are represented by thick lines (bottom-left axes), and curves for downscaled
model are represented by thin lines (top-right axes). If the dimensions are reduced by a factor
of 10 and the volume is reduced by a factor 104 to keep constant dimensionless number
σ, representing combined effects of compressibility and surface tension. Some distortion is
therefore introduced since pressure P0 and surface tension γ are not scaled. It is interesting to
notice that the force generated by the downscaled model is decreased by the same factor, with
curves for both models overlaying nicely, confirming that the capillary force is proportional
to the characteristic length of the device, whatever the gas system volume
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Pressure Measurement

Table 5.3.3 shows that the pressure drop across bubble interface is initially ∆P = 280 Pa.
When a bubble generates a force, its mean curvature changes, and the pressure drop conveys
the amplitude of the force. This is interesting since the pressure can be measured anywhere
in the gas circuit.

However, the amplitudes of pressure variation are relatively small, so the pressure sensor
that should be used must have a high resolution. But as seen in the results of Table 5.3.6,
the pressure levels are larger if the device is geometrically downscaled, with the same force
level.

In Sect. 4.4.1, we proposed to use bubbles as a pressure sensor. Since it is based on the
same physics, it can be adapted to the range of the pressure to measure. However the holes
from which the pressure sensing bubbles are generated have to be smaller than the actuating
bubbles.

Conclusions on Model Analysis

From the analysis of the model, we can infer some design rules to improve the design efficiency
of the compliant table (Fig. 5.3.13).

Figure 5.3.13: Design flow chart for compliant table

First the maximal force applied on a bubble must be defined, together with either the
maximal stroke or the stiffness.

From the scaling law, we conclude that the dimensions of the device should be as small
as possible to fulfill the force and stroke requirement. This allows to increase the pressure
inside the bubbles, making possible the use of a pressure sensor to infer the amplitude of the
force applied on the table.

The anchoring circle on the table should be slightly smaller than the anchoring circle on
the platform, to allow any bubble generated from platform to reach the table. But on the
other hand, the anchoring circle on the table must be as large as possible to have the largest
contact angles, and prevent bubble escape.

The configuration of a table with through holes should be avoided if possible, because the
bubbles tend to escape through the holes. This makes the device more compliant, but the
maximal force accepted is then lower than with blind holes.

Finally, an interesting property of bubbles is that the stiffness of the device can be adjusted
within some range by varying the total volume of gas in the device. If the application requires
different stiffnesses, a special design with different gas volumes that can be connected or
disconnected trough valves could be used.
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5.3.7 Parabolic Approximation

To avoid a long calculation in a time sensitive application, a solution is to approximate the
profile by a curve which is not a constant mean curvature curve. We propose to approximate
the interface geometry by a second order curve: a parabola.

r (z) = a2 z
2 + a1 z + a0 (5.3.9)

This formulation allows to consider different values for s1 and s2. The determination
of the profile is therefore limited to the calculation of the 3 parameters: a0, a1 and a2.
The constraints to satisfy are here also the boundary positions, corresponding to the bubble
anchoring circles (5.3.5) (Fig. 5.3.14) This gives the first two equations to find the parameters:

a0 =s1
2 (5.3.10)

a0 + a1 u+ a2 u
2 =s2

2 (5.3.11)

Figure 5.3.14: Illustration of parabolic approximation of bubble profile. Profile boundaries
must reach the anchoring points, and the mean curvature is set at the apex of the parabola
(z = z∗)

Since the mean curvature is not constant, we propose to calculate it at the apex of the
parabola, where dr/dz = 0 located at z = z∗ = − a1

2 a2
. The definition of the mean curvature

is:

2H = 1
r1

+ 1
r2

(5.3.12)

with:



5.3. Force Generated by a Gas Bubble 115

r1 = r

(
1 +

(
dr
dz

∣∣∣∣
z=z∗

)2
)0.5

= a0 + a1 z
∗ + a2z

∗2 = a0 − a2
1

2 a2
+ a2

1
4 a2

r2 = −

(
1 +

( dr
dz
∣∣
z=z∗

)2)1.5

d2r
dz2

∣∣
z=z∗

= − 1
2 a2

(5.3.13)

Finally:

2H = −2 a2 + 1
a0 − a2

1
4 a2

(5.3.14)

The pressure in the gas circuit is given by:

P = P0 + ∆P = P0 + γ


−2 a2 + 1

a0 − a2
1

4 a2


 (5.3.15)

The volume of the bubble is given by:

V = π

∫ u

0

(
a0 + a1 z + a2 z

2)2 dz (5.3.16)

= π

(
a2

0 u+ a0 a1 u
2 +

(
a2

1 + 2 a0 a2
) u3

3 + a1 a2
u4

2 + a2
2
u5

5

)
(5.3.17)

The third equation to find the parabola parameters is given by mole number, from ideal
gas law (4.2.1):

n =

(
P0 + γ

(
−2 a2 + 1

a0−
a2
1

4 a2

))

Rg T

·π
(
V0
π

+ a2
0 u+ a0 a1 u

2 +
(
a2

1 + 2 a0 a2
) u3

3 + a1 a2
u4

2 + a2
2
u5

5

)
(5.3.18)

The combination of (5.3.10), (5.3.11) and (5.3.18) leads to a fifth order polynomial with
a2 as dependent variable:

p5 a
5
2 + p4 a

4
2 + p3 a

3
2 + p2 a

2
2 + p1 a2 + p0 = 0 (5.3.19)

If we posit:



116 Chapter 5. Compliance of a Gas Bubble
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the coefficients of the polynomial are:
p5 =A3B2

p4 =A2B2 +A3B1

p3 =A1B2 +A2B1 +A3B0

p2 =A2B0 +A1B1 +A0B2 + u2 nRg T

π

p1 =
(
A1B0 +A0B1 − 2nRg T

π
(uK + s1)

)

p0 =
(
A0B0 + nRg T K

2

π

)
(5.3.21)

The polynomial can be solved with the root method of Matlab. However, it is necessary
to find the adequate value among the 5 potential solutions to the polynomial. We first
eliminate the complex solutions. In order to discriminate the best among the real solution,
we have defined three criteria. First we could select the curve with the minimum length.
Second we could select the curve that will produce the smallest revolution surface. But the
method giving the best results consists in selecting the curve which has the least variation of
H. For this selection, we evaluate H using (5.3.4) at both ends and midpoint of the profile.
We then select the curve having the lowest relative standard deviation.

Once the 3 parabola parameters are found, the force can be easily calculated:

F = π∆P s2
1
4 − π s1 γ cos (θ|z=u) (5.3.22)

where ∆P is found from (5.3.14) and the contact angle cosine is:

cos (θ|z=u) = 1√
1 + tan2 (θ)|z=u

= 1√
1 + (a1 + 2 a2 u)2

(5.3.23)

Comparison of Both Methods

We will now compare the results for both calculation methods: the ODE resolution and the
parabolic approximation. To do this, we have run both models with the same input param-
eters and we will compare the shape of the profile, the mean curvature and the calculated
force. The objective is to settle the limits of parabolic approximation.
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Table 5.3.7: Parameters for the comparison between parabolic approximation and ODE
calculation

Parameters Test 1 Test 2 Test 3

Vr
(
m3) 2.309 10−9 9.809 10−9 9.981 10−8

n (mol) 1.0205 10−7 4.1472 10−7 4.1667 10−6

The parameters are shown in Table 5.3.7. For each simulation, we assumed a temperature
T = 293.15 K, a pressure of P0 = 101325 Pa, and a surface tension of γ = 72 10−3 N m−1.
The geometry of the anchoring circles is s1 = 10−3 m and s2 = 800 10−6 m. These parameters
give a force that should be equal to zero for a gap distance of approximatively 208 10−6 m.

Illustration of the profiles obtained by both methods are shown in Fig. 5.3.15. We can see
that the H-based selection method seems to be efficient since it keeps the parabolic profile
which is closest to the ODE solutions.
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Figure 5.3.15: Illustration of the profiles obtained by ODE calculation (−), and parabolic
approximation (−−). The bold dashed lines are the selected solutions for parabolic approx-
imation, i.e. the curve for which the mean curvature variation is the smallest. Thin lines are
the other solutions of the parabolic approximation. The results are plotted for two different
separation distances. We see that the selected solution is indeed the closest to the ODE
solution, yet the correspondence is limited

However, the force deduced from the parabolic approximation, illustrated in Fig. 5.3.16,
presents rapidly a large deviation compared to ODE results. This can be explained by the
deviation of the contact angle and the curvature, which seem to increase when the gap
decreases. Nevertheless we notice that the force calculation performed on the side with the
larger triple line diameter circle provides better results, as ODE and parabolic profiles have
contact angles that are closest at this point.

As a consequence, the parabolic approximation should be used for configurations leading
to a small force, i.e. gap values close to zero force configuration. The comparison of H or
F at both ends of the profile does not give a clear indication of the exactness of parabolic
model, and cannot be used as a criterion to estimate the relevance of this approximation.

If the bubble is to be used with a large stroke, and the application needs fast resolution,
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Figure 5.3.16: Evolution of the mean curvature (left) and force (right) at both ends of the
parabolic approximation profile, together with the values obtained with the ODE resolution.
The force calculated at first end of the profile, which is the large anchoring circle, is always
closer to the force calculated by ODE resolution. Unfortunately, there seems to be no relevant
criterion based on the difference of H or F at both ends of the profile to predict the adequacy
of the parabolic approximation

we suggest the use of a look-up table for best results.



5.4. Validation of the Model 119

5.4 Validation of the Model

In this section we present the method used to validate the model developed in Sect. 5.3. We
present in Sect. 5.4.1 a first experimental validation, which turned out to be inconclusive but
gave interesting qualitative results. Then we present in Sect. 5.4.2 how to address this problem
by proposing a different experimental setup and a different mean to measure forces. Then we
present the test bed we used (Sect. 5.4.3), the technological issues we encountered (Sect. 5.4.4)
and the analysis procedure (Sect. 5.4.5). Finally we present the results (Sect. 5.4.6).

5.4.1 First Experimental Trials

To validate qualitatively the behavior of a gas bubble, we made a test on an atomic force
microscope (AFM) based force measurement station (AMIS station). The principle of force
measurement with an AFM is based on the deflection measurement of an AFM tip, which
can be considered as a cantilever beam [11]. The deflection is measured by mean of a laser
beam reflecting on the AFM tip and impacting a photodiode. The AFM head is mounted on
a moving vertical axis.

The methodology is as follow. First the correspondence between displacement of the tip
and position of the beam on the photodiode (measured as a voltage) is measured. To do so,
the AFM tip is moved down while it is in contact with a solid. In this case, the deflection of
the tip is equal to the displacement of the head. Then we generate a bubble, and the AFM
tip is aligned above the bubble. Then an approach and recede sequence is applied on the
head of the AFM, and the deflection of the tip is measured. Knowing the stiffness of the
tip, it is possible to infer the force applied on it. The stiffness of the tip can be measured
either by geometrical and mechanical analysis of the tip, or more accurately by measuring
its resonance frequency3. If the resonant frequency is measured, it is important to make the
measurement in air, because the viscosity of the liquid will influence the results. This results
can then be used to measure a quasi-static force in a liquid.

Since the experiment is performed in water, the laser beam could interfere with the water
free surface. To avoid this, a glass prism is placed between the tip and the rest of the AFM
system, containing the laser emitter and the photodiode. The AFM device used for this
experiment was a commercial AFM (type SMENA-B from NT-MDT ). The prism and its
functioning is illustrated in Fig. 5.4.1. The methodology is illustrated in Fig. 5.4.2.

Due to the small space available, the volume controlled bubble generator is not suitable.
We have therefore decided to generate the bubble from an electrolysis system (Sect. 4.1.1).
This system is limited, because it is not possible to set the size of the bubble nor its exact
location. Anyway, there are two cameras in the system, one giving a view from bottom and
allowing to position the laser on the tip and to position the bubble beneath the tip, and the
second giving a lateral view. From these views, the position and size of the bubble can be
measured.

Because the tip is tilted, the configuration is not axisymmetric. To correct that, we have
used an AFM tip on which a small 10 µm diameter borosilicate sphere is glued. The stiffness
of the tip is 0.330 N/m (measured). However, it is impossible to be sure that the sphere
does not penetrate in the bubble, so that the effective contact is between the bubble and the
beam. The actual setup is illustrated in Fig. 5.4.3.

Figure 5.4.4 shows some pictures from lateral and bottom view taken during the test.
Figure 5.4.5 shows the curve recorded during the approach and receding movement. Since

3resonance frequency of an oscillating mass m function of oscillator stiffness k: 1
2π

√
k
m
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Figure 5.4.1: View of the prism used to perform force measurement in water with an AFM.
The prism is placed between the AFM and the tip, at the level of water free surface. It allows
to avoid the laser beam crossing the free surface, which could interfere with its path. The
AFM tip is placed below the prism

Figure 5.4.2: Methodology of bubble force measurement using an AFM. A ball is glued at
the end of the AFM tip to ensure an axisymmetric contact with the bubble. A laser beam
is emitted through the prism, and reflected on the tip. The tip, which is fixed to the prism,
is moved down to push on the bubble. The resulting force induces the bending of the tip,
changing the direction of the reflected laser beam. The correspondence between the bending
of the tip and the movement of the laser beam is calibrated. Knowing the stiffness of the tip,
it is possible to infer the force generated by the bubble

we have no confidence in the exact contact area between the tip and the bubble, we did not
quantify precisely this results (order of magnitude of the peak compression force is 300 nN
and of bubble stiffness is 0.1 N/m) . However, the curve has a significant profile, which
confirms that the force generated by the bubble is repelling the AFM tip during the approach
movement, when the contact has been established between the bubble and the tip. Then,
during the receding movement, the force becomes attractive and the bubble pulls on the
AFM tip. This is what has been predicted by the model in Sect. 5.3.6.

5.4.2 Validation Strategy

Our purpose is to validate the model giving the force with respect to the gap, the geometry
of the table, the initial gap and the number of mole in the gas system.

We first set the volume of gas in the gas tank. Then we generate three bubbles of
approximately equal height, which will be measured. Then we lay the table on the bubbles,
and we measure the gap and the geometry of the bubble. Next, we pose objects of known
mass and density (in our case, other tables), and in turn we measure the new gap and new
bubble geometry (i.e. curvature). This is illustrated in Fig. 5.4.6.
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Figure 5.4.3: View of the actual setup for the AFM-based force measurement of a bubble

(a) Side view (b) Bottom view

Figure 5.4.4: Views of the bubble and the AFM tip used to measure the force generated by
a bubble

This strategy requires a mean to measure the gap and the curvature of the profile. The
force applied on the table is deduced from the mass and the density of the object, but
could also be deduced from the geometry of bubble profile, tanks to (5.3.3). According to
Laplace law, the curvature measurement could be replaced by a pressure measurement but
this has not been implemented in this prototype. Since the force applied by the bubbles is
deduced from the weight and density of the object, we suppose that the table is parallel to
the platform, and that each bubble applies the same force on the table. This is of course
an approximation, but since the relative angle between the table and the platform is small
(maximum tilt angle 15◦, but practically less than 3◦), the approximation is acceptable.

All these measurements have been performed using an image analysis process. It was
therefore necessary to have an image acquisition system able to take pictures of the bubbles
caught between the platform and the table.

5.4.3 Test Bed Design

A schematic view of the test bed is presented in Fig. 5.4.7, which is the same test bench as
the one used to validate the controlled volume bubble generator model. A view of the actual
test cell is shown in Fig.5.4.8.

The flexible hoses are made of silicone. They have an inner diameter of 500 10−6 m and
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Figure 5.4.5: View of an approach-recede curve to estimate qualitatively the force generated
by a bubble, using an AFM tip with a 10 µ m borosilicate sphere. First the tip is moving
towards the bubble (1), then when the contact is established between the tip and the bubble,
the force repulsing the tip increases (2). When the tip is moved backwards, the bubble pulls
the tip when the distance is larger than the zero-force position (3). Finally, the bubble and
tip separates, and the tip comes back to its normal position (4). Since the exact contact point
of the bubble with the tip is not known, we present only a qualitative result, which shows
the existence of a attractive and repulsive force depending on the gap, as predicted by the
model (order of magnitude of the peak compression force is 300 nN and of bubble stiffness is
0.1 N/m)

an outer diameter of 2.1 10−3 m.

The flexible hose constitutes the gas tank. The first step of the experiment consists in
filling these hoses with an incompressible fluid until the desired volume of gas remains in the
hose. Then the bubbles are generated from the platform by compressing the hoses where
they are filled with liquid.

The optic system is composed of aMarlin F-131B camera from Allied Vision Technologies,
having a resolution of 1280 × 960 pixels, and a Navitar optical system composed of a 3.5×
mini-adapter, an adjustable 12× zoom and a 2× objective.

The flexible hoses are glued beneath the platform. The gas tank is a 1.5L PET bottle,
and the flexible hoses have been glued in its cap. This system has the advantage that it can
be used like a medical drip system, to avoid gas inclusion in the hoses. This is illustrated in
Fig. 5.4.9.

5.4.4 Technological Issues

We present here some of the technological issues we had to face when we performed the
experimental validation of the model predicting the force generated by a bubble.
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Figure 5.4.6: Procedure of the experimental validation. First, three bubbles are generated.
Then the table is put down on the bubbles. The gap u between the platform and the table
is measured. Then other objects of known mass and density are put down on the table, and
the gap u is again measured

Figure 5.4.7: Schematic view of the second experimental setup used to validate the volume
controlled bubble generation model

Vision System and Image Acquisition

The vision system is used to capture images. These images will be used to calculate the gap
between the table and the platform, and to measure the mean curvature of a bubble profile.

The objects are immersed in a liquid. We have already mentioned in Sect. 4.3.1 some
issues for acquiring images of small parts in a liquid. For example we have mentioned that the
object should be as close as possible to the point where the optic path exits the liquid. In this
case, we have put the object as close as possible considering the volume of the surrounding
equipment.

An additional difficulty is that the bubble is caught between two planes. The parallax
effect hides a part of the bubble. When the gap becomes small, it is compulsory to have the
optic path as parallel to the platform plane as possible. Otherwise it will not be possible to
see the contact points of the profiles and the solids. However, it is possible to demonstrate
that the force developed by a bubble is constant all along its height (App. C). Therefore,
not seeing the entire profile is not a problem concerning force calculation.

Concerning the gap measurement, the parallax effect could affect the measure (Fig. 5.4.10).
To avoid this problem, we have supposed that the line joining both bottom vertices of the
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(a)

(b)

Figure 5.4.8: View of the actual test cell, comprising the platform and the optical system.
Some tables are placed on the platform (next to the holes), before bubbles are generated.
They will be superposed to increase progressively the force applied on the bubbles

table, visible on the images, crosses the center of the anchoring circle on the table. The
line crossing the center of the anchoring circle on the platform was easier to see thanks to
an adjustment of camera position and to the mirror shape of the profile reflecting on the
platform surface.

Another issue encountered during the test was the superposition of two profiles (Fig. 5.4.11).
This made the detection of the profile more difficult.

The calibration between length and image pixel has been done by moving the cell test
using PI M-161 microstages. The conversion ratio is 3.3 µm/pixel. However we did this for
the first bubble. The depth of view of the system allowed to see clearly the second bubble.
But we noticed that the second bubble was in fact slightly on the background, making the
calibration incorrect for this bubble. The third bubble was partially masked by the two other
bubbles, and the parallax effect was more pronounced since the bubble is at the back of the
table (Fig. 5.4.12).

Finally, due to bad image contrast in some cases, image analysis has been made by a mix
of automatic profile detection using least square method to approximate the best profile with
a constant mean curvature, and manual pointing for example to determine the anchoring
points. To estimate the errors made when using manual pointing, we have repeated each
image analysis five times, to estimate the dispersion of the pointing. Each repetition are
illustrated on the final graphics.
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(a) Platform (b) Bottle cork

Figure 5.4.9: View of the flexible hoses connections

Figure 5.4.10: Illustration of the parallax effect. If the platform plane and the table plane
are not parallel to optical axis, some areas are not visible

Gas Leakage

During the tests we have encountered several problems concerning the hypothesis of constant
number of mole.

First, direct leaking of the gas at connections. Indeed, we glued the hoses using cyanoacry-
late glue, which seems to be weakened after some time spent in the water. To avoid this
problem we have covered the cyanoacrylate glued connections by another layer of acryfix
glue.

Second, we know that air dissolves in water. It is very difficult to estimate this effect since
it depends on the saturation level of the water, which is not constant. To avoid this problem,
we proposed to use silicone oil instead of water. To minimize at maximum the dissolution of
air, we chosen a highly viscous oil Rhodorsil 47V5000. But this oil has two major drawbacks
that prevented the accomplishment of the experiment. First, silicone flexible hoses have
a limited compatibility with silicone oil: they swell and are permeable to the oil which is
seeping through them. Second, the chosen oil was so viscous that any movement of a tweezer
around the table was able to take the table off the bubbles. It was not possible manually to
move slowly enough to avoid that phenomenon. A third issue is the permeability of silicone
to gas. We first choose hoses made of silicone for its elastomer behavior, since the volume
variation is done by squeezing the hoses. A model of membrane permeability is given by [99]:

Pe = Vg d

A t∆P (5.4.1)

where Pe is the permeability of the material, Vg is the volume of gas permeating through the
material, A is the area of the hose wall, equal to πD l where D is the inner diameter of the
flexible and l is the length of the hose filled with gas, t is the time and ∆P is the pressure
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Figure 5.4.11: Example of image capture with two tables load. Bubble 1 (left) and bubble 3
(background) are partially superposed

difference between inner and outer side of the hose. Pe is a function of the material, but also
a function of the gas considered. For silicone, Pe = 65 10−9 cm2 s−1 cmHg for O2 molecules,
and Pe = 28 10−9 cm2 s−1 cmHg for N2 molecules. For gas mixes, partial pressures must be
used. Silicone is the elastomer with the largest permeability. It would therefore have been
necessary to use another material, such as PTFE.

For our application, if we suppose ∆P02 = 0.2 ∆P and ∆PN2 = 0.8 ∆P , we can estimate
the number of mole permeating through the hose wall.

To evaluate the decrease of mole number in the gas system, we have recorded a single
bubble at the rate of 1 frame per second in water (length of hose filled with air: 0.3 m, pressure
drop estimated from first bubble and assumed constant: 186 Pa). We represent some of the
frames in Fig. 5.4.13. The same experiment has been realized with silicone oil (length of

Figure 5.4.12: This schematic explains the calibration error due to the difference of plane
position relative to the camera for bubble 1 and 2. The superposition of bubble 1 and bubble
3 is also explained
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hose filled with air4: 0.7 m, pressure drop estimated from first bubble and assumed constant:
62 Pa). We have plotted in Fig. 5.4.14 the evolution of mole number from experiments with
water and oil, and the corresponding results due to the model of permeability. We see that the
permeability explains the gas mole number variation in the case of oil, but does account only
for a part of the variation in the case of water. With water, we suppose that the difference
between model and experiment is due to air dissolution in the water.

This phenomenon is very important because any variation of mole number will have a
significant influence on the model results (Sect. 5.4.6).

Figure 5.4.13: Experiment to illustrate gas mole decrease over time in an air-water system
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Figure 5.4.14: Comparison of permeability model of gas permeation through flexible hoses
with experiments. When the liquid is silicone oil, the permeability of the silicone hoses
explains the origin of gas mole decrease in the system. When the liquid is water, only a part
of the gas mole decrease is explained by the permeability of the silicone hose, the difference
is probably due to gas dissolution in the water

Liquid Inclusion in Hoses

The model we developed accounts for a volume of gas in the container. There is a risk, when
using the test bed, that some liquid drops remain in the hose (Fig. 5.4.15). This affects the
behavior of the system, since the continuity of the gas in the container is not realized.

4the remaining of the hose was filled with water
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Figure 5.4.15: Illustration of a liquid inclusion in a flexible hose. The behavior of the system
is modified because the volume of the gas container is limited to the portion between the
bubble and the inclusion

Table 5.4.1: Mass of the tables and the force they apply on each bubble, assuming the load
is distributed evenly on three bubbles in water

Table number Type Mass (kg) Force on a bubble (N)

1 Blind holes 14.4 10−6 29.6 10−6

2 Through holes 12.3 10−6 25.3 10−6

3 Blind holes 14.8 10−6 30.5 10−6

It is therefore important to avoid the presence of these drops. Experimentally, we have
seen that silicone oil was more likely to form these drops, probably because the liquid pene-
trates in the platform holes more easily than water, since its surface tension is lower.

5.4.5 Methodology for Results Analysis

We present here the method used to analyze the images captured to validate the model.

First, the different tables were weighted, as they will be the load applied on the bubbles.
The weight of the tables is shown in Table 5.4.1. They are all made out of aluminum,
material for which we assume the density is ρa = 2700 kg m−3. We have also indicated the
force exerted by each table on a single bubble (Fbubble), given by:

Fbubble = mg

(
1− ρw

ρa

)
1
3 (5.4.2)

wherem is the mass of the table, g = 9.81 m s−2 is the gravity constant and ρw = 1000 kg m−3

is the density of water.

For the experiments, we will alway use table 1 in contact with the bubbles. Then, to
increase the load, we lay table 2 on table 1, and finally we lay table 3 on table 2.

Measurement of the Anchoring Circle Diameter

We have measured by mean of an inverted microscope DMI3000 M from Leica with a 5×
lens the geometry of the table and the platform. The image has been acquired by a Marlin
F-131B camera from Allied Vision Technologies, and the calibration between length and pixel
has been made using a 1mm ceramic reference part from Mitutoyo.

Measurement of the table has been made by manually clicking several points of the edge
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Table 5.4.2: Measurement of the diameter of the anchoring circles (5 measurements)

Hole Mean diameter (m) Standard Deviation (m)

Table
1 916 10−6 1.19 10−6

2 874 10−6 1.40 10−6

3 878 10−6 2.43 10−6

Platform
1 1.23 10−3 1.81 10−6

2 1.26 10−3 4.32 10−6

3 1.25 10−3 4.06 10−6

(which is the anchoring circle) and searching by a least square method the circle fitting the
points. This procedures has been repeated 5 times for each hole.

The same procedure has been used for the platform. The examination of the holes with the
microscope showed that the holes have been chamfered. The nominal diameter is supposed
to be 1 mm, but due to the chamfers, the effective diameter is larger.

The results of the measurements are shown in Table 5.4.2.

Initial Bubble Height Measurement

The first step of the experimentation is to generate three bubbles. We first measure the height
of these bubbles as it will influence the initial gap when the table is laid on the bubbles.

The bubbles have been measured using the same method as for the experimental validation
of the volume controlled bubble generator. The measurement has been made five times in
order to estimate the manual point clicking errors. Figure 5.4.16 shows an example of such
image.

Figure 5.4.16: View of free bubble measurement. This image is acquired before the table is
put on the bubbles, and allows to calculate the number of gas mole
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Calculation of Number of Mole

The number of gas mole is calculated on the basis of the first image (Fig. 5.4.16 for example),
i.e. image of the bubble without table.

Knowing the volume in the gas container (level of gas in the flexible hose V0, which have
scale marks), and measuring the parameters of the first bubble (volume V and radius R), it
is possible to calculate the number of gas mole in the system:

n =
(
P0 + 2 γ

R

)
V0 + V

Rg T
(5.4.3)

Profile Measurement

Due to parallax, it is difficult to image the anchoring sites. Nevertheless, the profile of the
bubbles is supposed to be axisymmetric and have a constant mean curvature. Therefore, it
can theoretically be measured on any portion of the meniscus.

We thus first select a rectangle including a part of the profile with a good contrast. Then
a routine finding automatically the edge, i.e. a sudden transition of gray level, is run. This
returns a set of points belonging to the profile. This selection is performed on both sides of
the bubble.

Then a least square method is run to find the position of bubble symmetry axis and the
mean curvature of the profile.

An example of such analysis is shown in Fig. 5.4.17.

Figure 5.4.17: Example of profile measurement. The crosses (very close to each other, creating
a thick line) correspond to edge detection inside the rectangle manually drawn. The lines
represent the constant mean curvature curve fitting best these points. The symmetry axis is
also represented
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Gap Distance Measurement

Because of the parallax problem explained in Sect. 5.4.4, it is difficult to see the contact
points of bubble profile with the table and platform.

To measure the gap distance, we have manually detected the left and right bottom vertices
of the table, and defined a line between these two points. This line passes through the center
of the anchoring circles of the table. We have also detected manually the line passing through
the center of the anchoring circles on the platform by manually detecting the points at which
the left profile of the left bubble and the right profile of the right bubble start to appear
mirrored in the platform.

Using the position of the symmetry axis on the abscissa, calculated during the profile
measurement, we calculate the difference of ordinate of both lines. This difference is the
measurement of the gap distance between the table and the platform. This is illustrated in
Fig. 5.4.18.

Figure 5.4.18: Illustration of gap measurement. Two lines are drawn, each of these lines is
supposed to cross the center of the anchoring circles. The line on the table is drawn between
the bottom left and bottom right vertices (see the top view). The line on the platform is
drawn using the point where bubble profile starts to reflect in the platform. The gap is the
difference of ordinate for both lines, at the abscissa of the bubble symmetry axis

5.4.6 Experimental Results

We made in total four different tests in water, using always table 1 in contact with the
bubbles. We varied the volume of gas in the system, and the initial height of the bubbles.
These parameters are summarized in Table 5.4.3. Due to technological issues, we could
not perform relevant measurements in silicone oil, as this requires significant changes in the
experimental setup. We only analyzed bubble from hole 1 (on the left on the images), due
to image calibration issue.
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Table 5.4.3: Input parameters for the experimental validation of model predicting the force
developed by a gas bubble

Test Vr
(
m3) h0 (m) ∆P0 (Pa) n (mol)

1 9.82 10−8 816 10−6 239 4.051 10−6

2 9.82 10−8 903 10−6 217 4.059 10−6

3 5.89 10−8 848 10−6 229 2.445 10−6

4 1.96 10−8 733 10−6 235 8.299 10−7

For each test, the model has been run with the same parameters, assuming the number of
mole in the gas system is constant. The results are shown in Fig. 5.4.19. For each experiment,
the results of the five repetitions of the analysis procedure is shown, in order to estimate the
errors from the manual pointing. From these results, we see that the model systematically
predicts a force larger than the experimental results for a given gap u.
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Figure 5.4.19: Comparison between model and experiments. The four tests (parameters
in Table 5.4.3) are represented with the open symbols. There are five repetitions of the
analysis for each point. Test 1 has been performed with table 1 and 2 only. The model
curve corresponding to the input parameters is represented by continuous lines identified by
a filled symbol. There is a significant difference between experiment and model, that can be
explained by the disagreement about the constant mole number hypothesis

The origin of this error could be an error in the input parameters. All parameters would
require a significant change to fit the results, except the number of gas moles which turned
out to be a very sensitive parameter.

Indeed, a small variation of the number of mole in the gas system has a very significant
influence on the output of the model, assuming the volume in the gas container is constant.
We have found that assuming a linear variation of the gas mole number of 0.45% in the worst
case, it is possible to make the model fit the experiments (Fig. 5.4.20). In these corrected
simulations, we have supposed that the number of moles changes linearly with the gap. The
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Table 5.4.4: Maximal variations of n corresponding to the smallest gap (experimental results)
for each test and corresponding permeation time

Test Variation of n
at smallest ex-
perimental gap
(percent of initial
value)

Corresponding
permeation time
through flexible
hose (s)

1 0.09% 131
2 0.06% 96
3 0.13% 199
4 0.45% 682

variations are shown in Table 5.4.4, together with the time needed for this amount of gas
mole to permeate through the silicone flexible hose (Sect. 5.4.4). This time is an upper
bound of the time effectively needed for the gas to leave the system since it accounts only
for permeation, and not for dissolution for example. The linear variation of n with u is
only approximative, since the real evolution should be taken with respect to time. This may
explain for example the deviation still observed for test 1 and test 3.
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Figure 5.4.20: Comparison between experiments (open symbols) and model (continuous line)
with a linear correction of gas mole number. This shows that the model is very sensitive to
a variation of gas mole number

5.4.7 Conclusion on the Experimental Results

The experimental validation of the model shows results with a good adequacy after correction
of the mole number. Indeed, the model initially assumes that the mole of gas is constant in
the system, which is in fact not the case when we use our prototype with silicone flexible
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hoses in water. We can explain these mole number variation from the permeation of the
gas through the flexible hoses, and from the dissolution of air in water. However these
phenomena, especially the dissolution, are not easy to quantify precisely. We have tried to
isolate the dissolution phenomenon by using silicone oil instead of water. But it turns out
that silicone material of the hoses shows poor properties if used with silicone oil. Indeed, the
hoses wall swells up and becomes fragile, with oil seeping through it.

The best solution to refine the experimental validation is to use other connections to the
platform, and other actuators. We suggest to use PTFE hoses (PTFE has a permeability
150000 times lower with oxygen than silicone [99]) and syringes as actuation mean. Us-
ing syringes would allow to change the volume of the gas container over several orders of
magnitude.

To avoid dissolution of the gas in the liquid, we suggest to perform the experiments in
silicone oil. This oil should not be too viscous, to ease the manual manipulation of the table.
A viscosity of 10 mm2/s (200 Fluid 10CST from Dow Corning for example) seems to have
good properties.

Moreover, the analysis of the experimental results is not easy due to bad image contrast.
This could be improved by looking at a single and isolated bubble, to avoid overlaying
(Fig. 5.4.21). The two other bubbles could then be adjusted to ensure that the table is
parallel to the platform. Finally, to avoid parallax phenomenon, the platform should be as
small as possible.

Figure 5.4.21: To avoid the problem of bubble overlaying, we suggest to look at only one
bubble. The other bubbles could then be adjusted to ensure the parallel alignment of the
table with the platform

Finally, the measurement of the force with respect to gap could also be performed on an
AFM based system, as the one used in Sect. 5.4.1. The idea is to use the AFM tip to push
directly on the surface of the table. This would be very interesting because it would produce
a curve with a much better resolution than what we get by placing discrete components on
the table as loads. The actual test bed has been developed in order to be inserted in the
AFM device of the BEAMS Department (Fig. 5.4.22).
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Figure 5.4.22: View of the test bed placed in the AFM device of the BEAMS Department
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5.5 Improvement of the Prototype

The prototype presented in Sect. 5.2 and used for the validation of the force model has some
drawbacks, as presented through Sect. 5.4. Thanks to these experiments, we are able to
suggest improvements to design a better device.

5.5.1 Layout of the device

In the current design, there are three bubbles to support the table. These bubbles should be
as far from each other as possible, considering the size of the table. We have also seen that it
could be useful to add three other bubbles to measure the pressure (Sect. 4.4.1). Since laser
measurement of bubble height needs technological development, we suggest as a first step to
place the three sensing bubbles aligned one next to one another, in an area away from the
table position, so that their shape can be analyzed easily with an image acquisition system.

The layout we currently consider is shown in Fig. 5.5.1.

Figure 5.5.1: View of suggested improvement of the device platform layout. The crosses
represent holes, and the lines represent grooves in the material, making improved anchoring
circles and microchannels

5.5.2 Manufacturing

The manufacturing of the improved device requires another technology to manufacture pre-
cisely and without burrs on the grooves and holes. CNC milling showed some limitations in
the manufacturing of our prototype.

Another technology investigated is the excimer laser technology [72]. It is a laser ablating
method, with a small wavelength (typically 248 nm or 193 nm ) allowing to machine polymeric
materials (polycarbonate for example), with details of 1 µm. This technology seems to fit
our needs, especially in the case of downscaling the device.

Currently some prototypes have been manufactured using the excimer laser (see Ta-
ble 5.5.1 for laser parameters), but we are still investigating to find the best method to seal
the channels and make the connections with the flexible hoses to the gas container. Fig-
ure 5.5.2 shows a view of the current layout realization in a 750µm thick polycarbonate plate
using an excimer laser. The dark marks are material residues generated during the ablation
process.
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Table 5.5.1: Parameters of excimer laser used to manufacture prototypes

gases Kr F
wavelength 248 nm
pulse energy 0.3 J/burst
attenuator 94%
beam size 10 mm× 30 mm
demagnification 10×
burst number 2100 burst for 750 µm in polycarbonate

Figure 5.5.2: View of a manufacturing test of a new platform layout using excimer laser on
a 750µm thick polycarbonate plate. The dark marks come from material residues generated
during the ablation process

5.5.3 Lateral Forces

The prototype proposed in this section is laying on three bubbles. The lateral forces acting on
the table are counterbalanced by the forces resulting from the non axisymmetric configuration
of the bubbles. Those forces are responsible for the self-assembly of the tables, but they are
smaller than the vertical forces.

If the table has to withstand larger lateral forces, it is possible to add lateral bubbles
(Fig. 5.5.3), giving the device 6 actuated degrees of freedom. However this would probably
make the manufacturing of the platform more difficult, since it becomes a 3-D structure.

Figure 5.5.3: Design of a device with 6 bubbles, allowing to have 6 actuated degrees of
freedom, and therefore able to support larger lateral forces than the design based on 3
bubbles
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5.6 Conclusions

We have presented in this chapter a model to predict the force generated by a bubble. This
model is based on the coupling between surface tension and gas compressibility. It is valid for
a bubble caught between to solids, assuming an axisymmetric configuration. Its resolution
requires to solve an ODE, which may be time consuming. To reduce calculation time, we have
presented the idea of a parabolic approximation for bubble profile, but this approximation
lacks of precision. If the application is time constrained, such as a real time controller, we
therefore suggest to tabulate the results. From this model, it is easy to infer the vertical
stiffness of a bubble.

We have shown that bubbles have interesting properties, such as self-assembly, adjustable
stiffness, compactness, and their ease to be regenerated. We presented a device making use of
these properties: a compliant table laying on three bubbles that could be used in microrobotic
assembly tasks. This application indeed requires compliance to compensate positioning and
manufacturing errors, and the parasitic forces inherent to microworld (electrostatic forces
for example). The analysis of the model allowed to give some design rules to improve the
performance of the device.

A prototype of this device has been manufactured and used to validate the model. How-
ever, we discovered that the pneumatic hoses where permeable to gas, nullifying the hypoth-
esis of constant mole number. Yet the behavior of the prototype agreed with the model
prediction.

Finally, based on the analysis of the model, and on the feedback of the technological issues
encountered during the manipulation of the device, we suggested improvements for prototype
design and for the experimental validation setup.

Next chapter will present some perspective for this work, and the final conclusions.
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Perspectives and Conclusions

So far, we have presented the interest to make use of surface tension forces in immersed microsys-
tems. We have proposed in Chap. 4 a mean to generate single bubbles of predefined geometry,
and we have presented a model to predict the force and stiffness of a gas bubble caught between
two solids in Chap. 5. We have also presented a prototype of compliant microtable, based on the
use of microbubbles as actuated legs.

The model we presented in Chap. 5 was based on quasi-static situations. In this chapter, we
will first present some perspectives of further works to be achieved on this model. Then we will
conclude this document by summing up the work accomplished during this thesis.

6.1 Prospective Developments

In this section we propose two developments that could be done on the compliant table,
based on the models we have developed.

6.1.1 Controlled Microtable

The model of force generated by a bubble, such as presented in Sect. 5.3, takes the number
of gas mole n and the gap between both solids u as input parameters, and outputs the force
F and the profile mean curvature H (Fig. 6.1.1 (a)).

However, it would be more interesting to invert this model, in order to input n and H,
and to output F and u (Fig. 6.1.1 (b)). This new model is more interesting for two major
reasons.

First profile mean curvature could be easier to measure. Indeed we have seen that mea-
suring the gap u was uneasy. We used an imaging based method, which was made difficult
by parallax and bad contrast issues. Other non contact measurement techniques exist, but
they have to be efficient to measure the position of an immersed object. Besides, the mea-
suring device must generally be placed above or below the object, which is not easy in our
configuration.

Pressure measurement, on the other hand, can be made anywhere in the gas circuit.
We know that the pressure gauge in the gas circuit with relation to the pressure in the
surrounding liquid is an image of the profile mean curvature (3.2.3). The knowledge of H is
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therefore easier to get than the knowledge of u.

The knowledge of n can be measured initially, when no table is placed on the bubbles.
Or, it could be determined by a calibration if the force applied on the bubbles is known
(Fig. 6.1.1 (c)).

Figure 6.1.1: View of different variants of the force model. The model proposed in Sect. 5.3
(a) needs u as an input, which is not easy to measure. It is therefore more interesting to have
a model with H as input, which is equivalent thanks to Laplace Law to have ∆P as input
(b), because pressure is easier to measure. Finally, (c) presents the variation that could be
used to calibrate the device with a predefined force in order to determine n

The second reason of this second model is the possibility to insert it in a control loop
allowing to set the position of the table. Figure 6.1.2 shows how such control loop could be
implemented, and where the model we developed should be used.

Figure 6.1.2: Proposition of a feedback loop to control the position of the table. This structure
allows also to know the force applied on the table

In this schematic, u∗ is the table position set point. The first controller R1 takes position
error and force applied on the table as input, and outputs the pressure drop required. This
value is compared to the actual pressure which is measured in the system. In the design
presented, it is not possible to act directly on the pressure. But it is possible to use the
actuation of the bubble generator to change the pressure. So the error between actual pressure
gauge and set pressure gauge is entered in R2 controller, which outputs the bubble generator
set point x. This modifies the pressure in the gas system, which is measured by a pressure
sensor. Finally, the pressure and the number of mole in the system is entered in the model,
which outputs the force applied on the table and its position. The volume of the gas container
should also be included in the model, since it is modified to adjust the pressure. This is why
we add the parameter x to the inputs of the model.

Such kind of control principle has already been investigated in the field of fluidic flexible
actuators [34]. This implementation could greatly improve the compliant table prototype,
since it would allow to have a reading of the force exerted by the assembly system on the
table, for example to control the insertion force.

6.1.2 Dynamics of the Table

Chapter 5 gives a model for the force and for the stiffness of a bubble in a quasi-static
situation. For microrobotic applications, it is also interesting to know the dynamic response
of the system. This is interesting for example to determine the resonance frequency of the
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device, or to estimate the time needed for the table to change its position, and if it will
oscillate.

We propose to model the dynamic of the table as a mass-spring-dashpot system. The
general equations for the study of table dynamics along the actuated DOF are:

mü+ bt u̇+ kt u = Rz (6.1.1)
Ix,y ¨αx,y + br ˙αx,y + kr αx,y = Γx,y (6.1.2)

where m is the mass of the table, u is the gap between the platform and the table, bt is the
viscous friction coefficient, kt is the stiffness coefficient, Rz is the force resultant component
along the axis orthogonal to the platform (z axis), Ix,y is the moment of inertia along x and
y axes, αx,y is the rotation angle in the direction x and y, br is the viscous coefficient for
rotation movement, kr is the rotation stiffness coefficient, and Γx,y is the torque resultant
along x and y direction.

The stiffness kt can be inferred from the stiffness of a bubble, considering three bubbles
as parallel springs:

kt = 3 k (6.1.3)

The objective is to find the three other parameters. We will in the next paragraphs give
some estimations for bt and kr.

Vertical Damping

The vertical damping of the device will probably be essentially governed by the damping of
the table due to the viscosity of the surrounding liquid. Due to the proximity of the table
and the platform, a squeeze film configuration occurs.

Guyon [36] gives the value of the force exerted by the liquid on a table as a function of
the table velocity:

F = −3π η R4

2u3 u̇ (6.1.4)

where v is table velocity along z axis, η is liquid dynamic viscosity, R is platform radius
(assumed circular) and u is the distance between the table and the platform. The damping
coefficient can be deduced from this equation.

In the case of a 1 mm radius table in liquid, with a gap distance of 500 µm, the damping
coefficient is bt = 3.8e− 5 N s m−1

Rotational Stiffness

Kaneda [46] studied the dynamic of a liquid bridge for a tilt movement. The order of mag-
nitude for the rotational stiffness of a single water liquid bridge having a 2 mm diameter
anchoring circle is ' 2 10−9 N m.

This is much lower than the effect due to the distribution of the three bubbles under
the table. For example, if 2 bubbles having a vertical translation stiffness of 1 N m−1 are
at a distance of 2 mm from each other, this produces an equivalent rotational stiffness of
4 10−6 N m.
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It is therefore acceptable to assume that the rotational stiffness will be determined by the
geometry of the table and the vertical stiffness of a bubble.

Rotational Damping

Rotation damping of a single bubble has also been studied by Kaneda [46]. But it is likely
that the predominant phenomenon here will also be the damping of the hole table and not
the damping of isolated bubbles. However, this point must still be more deeply investigated.

Conclusion

The dynamic approach must still be investigated, and experimentally validated. To perform
the experimental validation, our idea is to perform an actuation step, or to apply a force step
to the table and to record the dynamic response of the system, with a high speed camera or
with a displacement sensor. From the frequency and damping of the response, it should be
possible to infer the value of the parameters.

6.1.3 Non Axisymmetric Bubbles

Another possible improvement of this work would be the modeling of non axisymmetric
bubbles.

This would allow to predict the lateral forces that the table with three bubbles can
withstand, and the corresponding stiffness. Such work can be done using numerical softwares
like Surface Evolver, which is based on surface energy minimization to find the profile of the
bubble. From there, it is once again possible to infer the force generated by a bubble.

This problem is currently investigated with liquid drops instead of gas bubble. A test
bench, based on two parallel long cantilever beams of small thickness has been developed. It
allows to move two solids in a direction parallel to their mating surfaces. The bottom solid is
moved, and the liquid bridge pulls the top solid, which is attached to the cantilever beams.
The stiffness of the cantilever beams opposes a resistance to the movement of the top solid,
and the lateral force can be deduced from the relative movement between both solids and
the stiffness of the beams.

6.2 Conclusions

This work started by the study of fluid-solid interaction in microsystems, with the purpose
of determining the most relevant forces acting on micro objects in liquid environment. This
approach would allow to find new design rules for the miniaturization of mechanical compo-
nents, such as pumps, valves, gripper,...

The interest of liquid environment was on one hand the design of fluidic systems, and on
another hand the micromanipulation in immersed environment, such as proposed in Pronomia
project. Manipulation in liquid was seen as a solution to avoid parasitic and unpredictable
forces that hinder the automation of manipulation and assembly tasks. These forces are
essentially electrostatic forces and surface tension forces.

During our investigations, we have found out that other forces exist in liquid media, and
that it is important to consider them when designing a microsystem. Electrostatic forces still
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exist, in the form of electrophoresis or dielectrophoresis. The viscosity of the liquid induces
hydrodynamic forces. And surface tension forces appear as soon as an interface exists in the
liquid, which happens when bubbles are present in the liquid phase.

Considering these forces not as parasitic forces, but as potential actuation means, allows
to create innovative designs. Indeed, simply downscaling macroscopic designs of mechanical
devices is generally not a good idea, because the relative effects of the different forces change
when the sizes are reduced. On the contrary, making use of the specificities of microworld
opens the way to new implementations of mechanical functions.

With that in mind, we have decided to investigate the surface tension forces, more pre-
cisely the force a microbubble is able to produce. This force is indeed very promising, because
scaling laws are favorable to surface tension effects, and because the study of these force de-
pends mainly on mechanical quantities.

By modeling these forces, we have discovered phenomena going against our common
"macroscopic" senses. For example, our first idea to generate bubbles was to use a simple
syringe, and to push the required volume of gas to grow a bubble. But we have seen that it
is not always possible to grow a bubble continuously from a syringe, because of the surface
tension and the compressibility of the gas. In some cases, the bubble will suddenly explode,
making the generation of a whole range of bubble sizes impossible. We have successfully
modeled this phenomenon, and the model helped us to understand the relevant parameters
and their relative importance.

The model of the force generated by a bubble between two solids brought also interesting
properties. We have for example demonstrated that a bubble could be seen as a non linear
spring, with a stiffness depending on the volume of the total gas system. We have also verified
the scaling effects, which agreed that small bubbles have more effects than large bubbles.

Among different possible bubble based prototypes, such as a gripper or a force sensor, we
have decided to make use of these interesting properties to design a novel kind of actuated
compliant micro-assembly table. We have manufactured a prototype of this table, and we
have been able to demonstrate the predicted properties.

Nevertheless, some improvements still have to be done. This first prototype allowed us
to discover technological issues. The major problem is currently the disappearance of the
gas molecules, through dissolution or permeation process. Since the volumes of gas are
small, these phenomena are not negligible and hinder the behavior of the device. From the
experience acquired with this first prototype, we have been able to suggest improvements of
the design, such as changing liquid and materials, or improving the geometry.

Other properties, such as the lateral stiffness or the dynamic behavior, must still be
investigated. The opportunity to control the position of the table must also be studied. We
have presented basic ideas to initiate such development in this last Chapter.
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Appendix A

Demonstration of Jurin’s Law

Jurin’s law describes the spontaneous rise of a liquid in a tube having a small diameter. It
is based on the equilibrium of gravity force and surface tension force.

Suppose a liquid having a density ρ. A tube of diameter d, opened on both ends, is
introduced in the free surface of the liquid. The liquid shows a surface tension γ and has
a contact angle θ with the material of the tube. If θ is smaller than 90◦, the liquid will
spontaneously rise in the tube until the difference of its level with free surface is h. The
schematic view of the system is shown in Fig. A.0.1.

Figure A.0.1: Schematic view of equilibrium in Jurin’s law. Surface tension force FTS com-
pensates the weight of the liquid comprised in the tube FP

Jurin’s law is given by the equilibrium between surface tension force FTS and the weight
of the risen liquid FP :

FTS = FP (A.0.1)

π d γ cos (θ) = π
d2

4 h ρ g (A.0.2)

where g is the gravitational constant. From this relation, we deduce that the capillary
rise is larger if the tube has a small diameter. The capillary rise is therefore:
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h = 4 γ cos (θ)
ρ g d

(A.0.3)

The relation can also be demonstrated considering the pressures and Laplace law (3.2.3).
Suppose the atmospheric pressure is P0. In Fig. A.0.2 are indicated the different pressures
in the liquid. Since the top of the liquid is higher than the free surface on the represented
situation, the pressure in the liquid at the interface is P0−ρ g h. If we assume that the mean
curvature near the triple line is 1/r, we deduce from Laplace law:

2 γ
r

= ρ g h (A.0.4)

and the relation with contact angle θ:

2 r cos (θ) = d (A.0.5)

which leads to the same relation as above.

Figure A.0.2: Schematic view of pressure distribution in Jurin’s law. The pressure on the
top of the liquid is smaller than atmospheric pressure

If the tube is closed on the opposite side to the one inserted in the free surface of the
liquid, the equilibrium must take account of the pressure rise in the gas comprised between
the liquid and the end of the tube when the liquid rises. If we assume that the pressure in
the sealed tube is equal to atmospheric pressure P0 when h = 0, the pressure force FPr due
to gas compression is:

FPr = π
d2

4 ∆P = π
d2

4 P0

(
V0

V0 − π d2 h
− 1
)

(A.0.6)

where V0 is the volume of the sealed tube.

The equilibrium is in this case:

π d γ cos (θ) = π
d2

4 h ρ g + π
d2

4 P0

(
V0

V0 − π d2 h
− 1
)

(A.0.7)

The relation allows to calculate the height of the capillary rise in the case of a sealed
tube.
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Construction of Fifth Order
Polynomial Modeling Volume
Controlled Bubble Generator

This appendix presents the detailed calculation of (4.2.8).

We first combine (4.2.4) and (4.2.7) in (4.2.5).

(
2γ
R

+ P0

)(
π h

6

(
3s2

4 + h2
)

+ V0 −∆V
)

= nRg T (B.0.1)

We develop this expression:

2γ
R

π h

6

(
3s2

4 + h2
)

+(V0 −∆V ) 2γ
R

+ P0 π h

6

(
3s2

4 + h2
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+(V0 −∆V )P0 = nRg T (B.0.2)

Since R is different from 0, we have:

γ π h s2

4 + γ π h3

3 + 2γ (V0 −∆V ) + RP0 π h s
2

8 + RP0 π h
3

6 +RP0 (V0 −∆V ) = nRRg T

(B.0.3)

The spherical cap is defined by R, s and h. But (4.2.6) shows that only two parameters
are independent. It is of course necessary to keep h as it is the output of our model. As
second variable, it is preferably to keep s as it is measurable on the device and is constant,
no matter the value of h. Hence we eliminate R from the equation:

γ π h s2
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2

)
Rg T



148
Appendix B. Construction of Fifth Order Polynomial Modeling Volume Controlled Bubble

Generator

We now have to simplify this expression. We assume h is different from 0, but we will
verify that in the final expression, ∆V = 0 means h = 0. We multiply the equation by h:

γ π h2 s2

4 + γ π h4

3 + 2γ h (V0 −∆V ) +
(
s2

8 + h2
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)
P0 π h s
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2

)
Rg T

Finally, we regroup the terms to form a polynomial with h as dependent variable:

π

12P0h
5 + π

3 γh
4 + π

12P0 s
2 h3

+
(
−1

2nRg T + 1
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Appendix C

Demonstration for Equality of
Forces Along Bubble Profile

To be at equilibrium, the sum of forces acting on any slice of the meniscus must be equal to
zero. Indeed, let us consider the meniscus depicted in figure C.0.1.

dz

r+dr

r

u

u+du

du

dz ds

dr

u

z+dz

z

Figure C.0.1: Equilibrium of a meniscus slice comprised between z and z + dz. It can be
shown that the capillary force computed at height z exactly balance the the capillary force
computed at height z + dz.

The force exerted on the bottom face of the slice is equal to:

F̄ (z) =
(
πr2∆p− 2πrγ cosu

)
1̄z (C.0.1)
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while the force acting on the top face of the slice is given by:

F̄ (z + dz) =
(−π(r + dr)2∆p+ 2π(r + dr)γ cos(u+ du)

)
1̄z

=


−πr2∆p+ 2πrγ cosu+ 2π(−rdr∆p+ rγ sin udu+ γ cosudr︸ ︷︷ ︸

I

) +O2)


 1̄z(C.0.2)

The underbraced expression I can be shown to be equal to zero by expressing the Laplace
law:

∆p = 2Hγ

=
(
− r′′

(1 + r′2)3/2 + 1
r(1 + r′2)1/2

)
γ (C.0.3)

=
(
du

ds
+ cosu

r

)
γ (C.0.4)

=
(
du

dr
sin u+ cosu

r

)
γ (C.0.5)

leading to:
I = −rdu sin uγ − dr cosuγ + rγ sin udu+ γ cosudr = 0 (C.0.6)

Consequently, the forces F̄ (z) + F̄ (z+dz) balance, and the capillary force given by F (z) can
be computed at any value of z. This means that in the case of a bubble between two solids,
the force can be computed anywhere along bubble axis.

In the case of the force calculation by image analysis, it is therefore not necessary to have
a clear view of the anchoring circle to calculate the force applied by the bubble on the table,
since the force can be evaluated on any portion of the bubble which is clearly visible.



Appendix D

Demonstration for Nullity of
Force for Part-Spherical Profiles

In this appendix, we demonstrate that the capillary force exerted by a bubble having the
shape of a portion of a sphere is zero.

Suppose the configuration represented in Fig. D.0.1. The bubble is portion of a sphere
having a radius R. Its base disk has a radius r. Surface tension force along z axis (unitary
vector 1̄z) is given by (3.2.7):

¯FTS · 1̄z = −2π r γ cos (θ) (D.0.1)

where
r = R cos (θ) (D.0.2)

Pressure force along z axis is given by:

F̄P · 1̄z = π r2 ∆P (D.0.3)

where ∆P is given by Laplace law (3.2.3):

∆P = 2 γ
R

(D.0.4)

Therefore we have:

FTS · 1̄z + FP · 1̄z = −2π r γ r

R
+ π r2 2 γ

R
= 0 (D.0.5)

which demonstrates that the capillary force exerted by a bubble having the shape of a portion
of a sphere is zero.
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Figure D.0.1: Schematic of force balance in the case of a bubble having a part spherical shape



Appendix E

Complements About Forces
Acting on Immersed
Microcomponents

E.1 Electrophoresis

ζ-potential can be expressed as follow [30]:

ζ = σ0K
−1

ε
(E.1.1)

where σ0 is the equivalent surface charge density on the solid surface, ε is the permittivity of
the liquid and K−1 is the distance between the shear plane and the solid (K is called Debye-
Hückel parameter). This distance is a function of the ionic force of the solution (between
3nm and 96nm in water at 25◦C):

K =

√
2000Fa2

εf RT

√
µ (E.1.2)

where µ is the ionic strength of the liquid:

µ = 0.5
∑

ci z
2
i (E.1.3)

where the sum is extended to all ions in the solution, ci is the concentration and zi is the
charge of the ion.

ζ-potential is measured with a zeta-meter, usually with respect to the pH of the solution.
Zeta-meter is a device with a cell containing the fluid and the particles, two electrodes to
apply an electric field, and an optical system to measure the velocity of the particles. From
the equilibrium between viscous forces and electrophoresis, the zeta potential can be inferred.
An interesting result is the pH corresponding to ζ = 0.
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E.2 Dielectrophoresis

Approximations of the dielectric force can be found in the literature, for example in the case
of a sphere [84, 15]:

FDEP = 2π εf r3Re (CM (ω))∇E2
rms (E.2.1)

where εf is the permittivity of the surrounding medium, r is the radius of the sphere, Erms
is the root mean square value for the electric field and CM is called Clausius-Mossotti factor,
taking into account the complex permittivity of the particle ε∗p and the medium ε∗m and the
frequency of the electric field:

CM =
ε∗p − ε∗m
ε∗p + 2 ε∗m

(E.2.2)

and

ε∗ = ε− iσ
ω

(E.2.3)

where σ is the conductivity and ω is the frequency of the electric field.

The sign of the real part of Clausius-Mossotti factor will determine if DEP force will
induce a repulsive or an attractive behavior.

E.3 Hydrodynamic Forces

Another approach to calculate hydrodynamic force, compared to (2.2.2) is to use the drag
coefficient CD to express the force [43]:

FHD = 0.5CD ρU2
∞ πa2 (E.3.1)

where ρ is the fluid density.

Drag coefficient is a function of Reynolds number (Re). For Re ≤ 1, comparing (2.2.2)
and (E.3.1), we can show the dependency of CD with Re:

CD = 12
Re

(E.3.2)

which is in these conditions inversely proportional to Re. We have tested this theory with
a simulation using Comsol Multiphysic FEM software. This simulation solves Navier-Stokes
equation in axisymmetric configuration (cylindrical coordinates (r, z)), with a no-slip condi-
tion at the surface of the sphere. Fluid velocity (ur, uz) is set on the outer boundaries of the
box defining the calculated area. Some captions of the velocity field are shown in Fig. E.3.1.
The force is postprocessed from the velocity and pressure field:

F =
∫

S

2π r P nz ds−
∫

S

2π r (nr τrz + nz σz) ds (E.3.3)



E.3. Hydrodynamic Forces 155

where (nr, nz) are the components of the inward normal to the surface, and:

τrz = µ

(
∂ur
∂z

+ ∂uz
∂r

)
σz = 2µ ∂uz

∂z
(E.3.4)

the integration is made along the profile of the sphere.

Figure E.3.1: View of simulation results. The velocity field around the sphere is shown for
different velocity of approach U∞

The force calculated on a 500µm sphere in water with respect to approach velocity is
shown in Fig. E.3.2.

Simulation results have been compared to the drag coefficient with respect to Reynolds
number curve found in [43]. This comparison is illustrated in Fig. E.3.3.
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Figure E.3.2: Hydrodynamic force calculated from simulation on a 500µm sphere in water

Simulation results have also been compared to the sedimentation time of small spheres
drop in a liquid. This experimental validation consists in dropping the particles in the liquid,
and to measure the time needed for the particles to travel a predefined distance [25]. We
suppose there that the steady state speed is reached instantaneously. This steady state speed
corresponds to the balance of hydrodynamic force and gravity force (minus the buoyancy
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Figure E.3.3: Comparison of drag coefficient from simulations and from literature [43]

Table E.3.1: Sedimentation velocity of a particle dropped in a liquid: comparison between
simulation (own results) and experiments [25]

Configuration Simulation (m/s) Experiment (m/s) Re (Exp. Value)

500µm ruby sphere in wa-
ter

0.116 0.121 60.5

500µm stainless steel
sphere in water

0.207 0.214 107

500µm ruby sphere in oil 0.0085 0.0074 0.074
500µm stainless steel
sphere in oil

0.0193 0.0177 0.177

300µm ruby sphere in oil 0.0031 0.0027 0.0162

force). The comparison between the simulations and the experiments is shown in table E.3.1,
showing good agreement.

We have applied fluidic simulation tools to the design of a micro-object feeder inside a
liquid [61]. As we have already mentioned, parasitic forces can prevent the gripping of an
object because the object is moving away when the gripper is approaching, or make several
components stick together (Sect. 1.2). The objective of a feeder is to place components that
are in bulk at predefined locations, and separated from each other.

The design proposed is based on the use of hydrodynamic forces to guide components
to housings, by creating streamlines heading towards these housings. When a component
reaches a housing, it is supposed to block the streamline, making the remaining components
heading towards the free housings (Fig. E.3.4). However, this design had a major flaw:
some space is managed between the object and the housing wall to ease its extraction by
the gripper. Because of this space, the streamline is not cut, and components are attracted
above a filled housing. This prototype has been developed in an applicative context of clock
assembly but show the proof of concept of feeder in submerged environment.
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Figure E.3.4: Schematic view of a component feeder based of the use of hydrodynamic
forces. The components are guided by the streamlines, heading towards the housings for
the components. When a housing is filled with a component, the streamline is cut, guiding
the remaining components to the free housings. The bottom views show a prototype of the
device, used with 500µm ruby sphere. Arrows indicate the housings filled with a sphere
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List of Publication

Journal
• Marie Blondeau, Aline De Greef, Pierre-Alexis Douxchamps, Benjamin Genêt, Marc
Haelterman, Cyrille Lenders, Erwan Leroy, Pascal Nardone, Vincent Raman, Aliénor
Richard, and Frédéric Robert. Apprentissage par projet : Réalisation d’une éolienne
urbaine en matériaux de récupération. J3EA, 8, 2009

Conference Proceedings
• Cyrille Lenders, Michaël Gauthier, and Pierre Lambert. Microbubble generation us-
ing a syringe pump. In Proceedings of the 2009 IEEE International Conference on
Intelligent Robots and Systems, Saint-Louis (Missouri), October 11-15 2009

• Cyrille Lenders, Jean-Baptiste Valsamis, Maxime Desaedeleer, Alain Delchambre, and
Pierre Lambert. Assembly of a micro ball-bearing using a capillary gripper and a mi-
crocomponent feeder. In Micro-Assembly Technologies and Applications. International
Precision Assembly Seminar (IPAS), Springer, 2008

• Patricia Van Dale, Aline De Greef, Cyrille Lenders, and Nadine Warzée. Biomedical
engineer and phlebologist: a midship frame. In International Angiology - Proceedings
of the XVI World Congress of the Union Internationale de Phlebologie (31 August - 4
September 2009), volume 28, page 138, 2009

• Marie Blondeau, Aline De Greef, Pierre-Alexis Douxchamps, Benjamin Genêt, Marc
Haelterman, Cyrille Lenders, Erwan Leroy, Pasquale Nardone, Vincent Raman, Al-
iénor Richard, and Frédéric Robert. Apprentissage par projet : Réalisation d’une
éolienne urbaine en matériaux de récupération. In Proceedings of the "7ème Colloque
sur l’Enseignement des Technologies et des Sciences de l’Information et des Systèmes
- CETSIS 08" (27-29 octobre 2008, Brussels, Belgium), October 2008

Others
• Cyrille Lenders: Study of valves used in microfluidics. DEA, Université libre de Brux-
elles, Brussels, Belgium, 2006
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A patent request has also been submitted in October 2009 and is currently under approval
process. This patent is entitled "Meniscus-Supported Compliant Table". It is about the use
of microbubbles as compliant actuators, such as described in Sect. 5.2.

In Preparation

• Cyrille Lenders, Pierre Lambert, and Michaël Gauthier. Three DOF microrobotic
platform based on capillary actuation. To be submitted to IEEE Transactions on
Robotics
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Table F.0.1: List of Symbols

Symbols SI Units Meaning

γ N m−1 surface tension at the interface of two fluids
γs1 N m−1 surface tension at the interface of a solid and fluid 1
γs2 N m−1 surface tension at the interface of a solid and fluid 2
T K absolute temperature of the (gas) system
Tc K temperature at critical point in a phase diagram
d m thickness of a geometry
h m height of a geometry
l m characteristic length of a component
R m radius of a sphere, or of a spherical cap
r1 m radius of triple line in case of an axisymmetric con-

figuration. Index 1 means the lower triple line in case
two exists

r2 m radius of triple line in case of an axisymmetric con-
figuration. Index 2 means the upper triple line in
case two exists

s m diameter of a circular hole
δ m displacement of the piston
H m−1 mean curvature of an interface
S m2 section of the piston
V0 m3 initial volume in the syringe or gas container
V m3 volume of gas in the spherical cap
∆V m3 variation of container (positive if volume decreases)
g m s−2 gravitational constant (value: 9.81)
Fa Cmol−1 Faraday constant (value: 96485)
Rg Pa m3 mol−1 K−1 ideal gas constant (value: 8.314)
θ ◦ contact angle in liquid phase. Index 1 means the

contact with bottom solid, index 2 means the contact
with top solid

Fcap N capillary force
FP N component of capillary force due to pressure drop
FTS N component of capillary force due to surface tension

along the triple line
n mol amount of gas mole
P Pa pressure inside the gas system
P0 Pa pressure outside the system, generally the sum of

atmospheric pressure and hydrodynamic pressure
∆P Pa pressure drop across interface between two fluids
ρl kg m−3 liquid density
U V voltage
Bo 1 Bond number
σ 1 dimensionless number used to predict the existence

of an instability during bubble growth
C C electric charge
k N m−1 mechanical stiffness
E Pa Young modulus
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