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INTRODUCTION GENERALE

Depuis plusieurs années, de nombreux chercheurs et industriels notent que la complexité des

produits ne cesse d’augmenter, pour satisfaire au mieux les exigences croissantes provenant
des différents acteurs du cycle de vie du produit (dont les clients, les organismes de
normalisation, le service maintenance ...). Pour maitriser cette complexité et améliorer les
performances en conception, de nombreux modeles, méthodes et outils ont été¢ développés
pour aider les concepteurs dans leurs activités. Les outils de calcul et de simulation prennent
une place de plus en plus importante pour accroitre la compétitivité des produits industriels,

sur les trois criteres : Qualité, Cofits et Délai de mise sur le marché.

Les organisations industrielles ont évolué afin de répondre a ces impératifs. Aux organisations
séquentielles, cloisonnées par une hiérarchie professionnelle et culturelle, ont succédé les
plateaux projets, 1’ingénierie concourante ou simultanée, le travail collaboratif et le
co-développement avec des partenaires extérieurs, modifiant ainsi les frontieres du processus
de conception. Ces nouvelles organisations permettent de mettre en ceuvre des processus de
conception plus courts par la parallélisation des taches, aboutissant a des produits innovants
de meilleure qualité et moins chers, tout en intégrant les acteurs de tout le cycle de vie du
produit (de la conception a son démantelement) au plus tot dans le processus de conception.
Depuis quelques années, les concepteurs doivent aussi faire face au défi du développement

durable. Il s’agit d’intégrer des valeurs et des contraintes environnementales et sociales.

Offrir aux concepteurs des modeles, méthodes et outils qui supportent de fagon efficace et
efficiente leur travail dans un contexte de conception intégrée releve donc d’une

problématique stratégique pour les entreprises.

Cependant, un travail de thése ne saurait prétendre y répondre dans sa globalité. C’est
pourquoi nous préciserons le sujet et les enjeux de notre travail de recherche. Nos travaux
s’appuient sur des relations avec des entreprises qui mettent en ceuvre la conception
modulaire. Cette notion de modularité est liée au besoin de diversification des produits et a la
conception de familles de produits. En effet, des combinaisons et architectures appropriées de
modules peuvent créer potentiellement un grand nombre de produits différents du point de
vue du client, appartenant a ce qu’on appelle une famille de produits. Cette approche donne la

possibilité aux concepteurs de raisonner en termes de famille de produits avec des modules

1
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communs pour limiter les colts et des modules distinctifs pour personnaliser le produit selon
les attentes des clients. La conception modulaire dans le contexte de 1’Ingénierie Systéme
introduit une étape importante dans le processus de conception, a savoir la conception de
I’architecture du produit. Se réalisant avant la conception détaillée des constituants du produit,
la conception de I’architecture, passant par une vue fonctionnelle et une vue organique,
permet de spécifier les exigences pour chaque constituant et de figer progressivement leurs

interfaces physiques et ainsi de surmonter la complexité liée au produit.

Ces besoins industriels ont été approfondis dans le cadre d’un projet de recherche, impliquant
d’une part, des chercheurs du LAB et de RECITS', d’autre part, une Direction du Groupe
PSA Peugeot Citroén, chargée de la conception des GMP et des LAS®. Notre travail a
nécessité de nombreux entretiens’ avec des architectes du systéme GMP, pour comprendre
leurs activités et leurs besoins. Nous avons recueilli des données dans le cadre de projets de
développement d’un nouveau moteur et de différentes boites de vitesse. Les architectes ont

ensuite collaboré lors de I’interprétation de nos résultats de simulation.

D’une fagon générale, lorsqu’une entreprise prend la décision stratégique de lancer une
nouvelle famille de produits ou de reconcevoir un produit existant (par exemple, dans
I’automobile, des moteurs diesel ou hybride pour répondre a un durcissement des normes
anti-pollution, Euro V), I’architecte systeéme doit concevoir ou faire évoluer 1’architecture.
Mais il joue aussi le role de chef de projet et doit concevoir ou faire évoluer en méme temps,
I’organisation du projet (nouveau découpage du projet en équipes) pour la rendre plus

performante.

Notre problématique a consisté a développer des modeles et méthodes permettant d’aider les
architectes systeme dans cette double activité. Ce contexte se retrouve dans toutes les
entreprises dont la complexité des produits nécessite des architectures complexes du produit
et de D'organisation de projet (automobile, adronautique, télécom, machines spéciales,
construction ...). En résumé, nous proposons dans ce travail une méthode de conception
conjointe des architectures du produit et de I’organisation du projet dans les phases

préliminaires du processus de conception, ou le rdle de I’architecte est déterminant.

Ce mémoire décrit la méthodologie proposée et son application a des exemples industriels. I1

se compose de cinq chapitres :

Le premier chapitre pose le cadre de notre travail : 1’Ingénierie Systeme appliquée au produit

et au projet. Nous introduisons les principaux concepts de la conception modulaire (méthodes

" RECITS, Laboratoire de recherche sur les choix industriels, technologiques et scientifiques, EA 3897, UTBM, Sévenans (90)

% Le Groupe Moto-Propulseur (GMP) correspond principalement au moteur, a la boite de vitesse et a la transmission. La Liaison Au Sol

(LAS) correspond au chéssis : essieux avant et arriere, systemes de direction, de freinage, de suspension ...

® A titre personnel, j’ai participé a plus de 40 entretiens et j’ai passé environ 15 jours sur le site de PSA & La Garenne Colombes.
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de modularisation, métriques de modularité, ...) et de 1’architecture du produit (définitions,
typologies, ...) que nous étendons au projet pour définir I’architecture de 1’organisation du
projet. Ce chapitre nous permet alors de converger vers notre vision de la modélisation de

I’architecture du produit et de I’organisation de conception.

Le deuxieme chapitre présente 1’outil de modélisation des architectures que nous avons
adopté dans notre travail : les matrices de couplage. Cet outil permet a la fois de formaliser les
interactions qui lient les €éléments du systéme et de mettre en ceuvre une méthode de

modularisation.

Dans le chapitre 3, nous décrivons un algorithme de clustering que nous avons utilisé comme
référence et qui supporte une méthode de modularisation. Nous exposons ensuite I’algorithme

que nous avons développé, ses caractéristiques et ses avantages.

Dans le chapitre 4, nous présentons quatre situations de conception des architectures des
domaines du produit. Ces situations dépendent du type de données disponibles a un moment
du processus de conception. Nous proposons alors, pour chaque situation, une méthode de
conception des architectures, faisant appel a un traitement flou et/ou a des opérations
matricielles. Chacune de ces situations est ensuite illustrée par une application a la conception
d’un moteur thermique dans 1’industrie automobile. La démarche présentée dans ce chapitre

est une vision statique de la conception des architectures.

Puis nous montrons, dans le chapitre 5, la nécessité¢ de faire « coévoluer » les architectures
couplées. Nous proposons I’exploration des incertitudes comme méthode pour suivre
I’évolution des systemes (perturbations) étudiés. Nous développons une méthode basée sur un

traitement flou pour faire coévoluer les architectures perturbées et pour les rendre cohérentes.

La conclusion générale de ce mémoire résume nos contributions, tout en soulignant leurs

limites et les perspectives qu’elles ouvrent.

Le schéma suivant montre la structure globale de ce mémoire.
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CHAPITRE 1

DE L’ARCHITECTURE DU PRODUIT A
L’ARCHITECTURE DE DLI’ORGANISATION DU
PROJET

Les évolutions technologiques, les contraintes économiques et la concurrence mondiale de

plus en plus rude poussent les entreprises a chercher de nouvelles solutions pour rester
performantes et maintenir leur avantage sur les marchés. Pour cela, elles doivent sans cesse
développer de nouveaux produits innovants, avec une meilleure qualité, avec des cotts de
production maitrisés et des délais réduits de mise sur le marché.

Le domaine de la conception a été exploré par de nombreux chercheurs pour développer de
nouveaux outils et méthodes pouvant aider les concepteurs a améliorer leurs performances.
Des méthodologies voire une science de la conception [Perrin, 2001], [Forest et al., 2005] ont
été développées, supportées par des concepts, des modeles, des régles et des normes, faisant
appel a des domaines disciplinaires vari¢s.

Le pilotage des activités de conception a pris une place croissante avec d’une part, I’arrivée de
méthodes de planification de grands projets des les années 60 et d’autre part, avec la mise en
place d’organisations de conception plus cohérentes avec les nouveaux objectifs des projets
de développement de nouveaux produits (par exemple, organisations matricielles et par
projet).

Les travaux de recherche concernant la conception de produits mécatroniques ont pour
objet d’expliciter et de développer des méthodes et outils d’aide a la conception en intégrant
des exigences sur tout le cycle de vie du produit, depuis les phases d’invention jusqu’a celles
de production et de maintenance. Ces travaux sont intimement liés a la fois aux

problématiques organisationnelles et stratégiques de 1’entreprise.

Ce premier chapitre vise a présenter la base et le cadre global du travail présenté dans ce
mémoire. C’est pourquoi nous débuterons par la présentation de quelques processus et

démarches de conception en nous attardant sur 1’Ingénierie Systeme. Ensuite, nous
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introduirons le concept d’architecture tel qu’il est utilis€ pour le produit et ensuite, nous

I’étendrons a 1’organisation du projet.

1. Les processus et démarches de conception

La conception est une activité complexe, nécessitant I’intégration de multiples points de vue
(cognitif, technique, social, économique, organisationnel,...), chaque point de vue fournissant
un ensemble d’exigences et de contraintes [Pahl et Beitz, 1996], qui sont évolutives et souvent
mal connues au début du projet. Les travaux portant sur cette activité couvrent de nombreux
aspects, depuis les théories de la conception [Hatchuel et Weil, 2002], [Micaélli et Forest,
2003], [Perrin, 2001], jusqu’a la mod¢lisation du processus de conception en passant par la
capitalisation des connaissances produites au cours des activités de conception [Harani,
1997], [Eynard, 1999], [Bernard, 2000], [Menand, 2002]. Certains travaux concernent
I’organisation de la conception [Midler, 1998], le pilotage des processus [Perrin, 1999], et
I’intégration des compétences et des métiers dans le processus de conception [Bouchikhi,
1990], [Lefebvre et al., 2002]. D’autres travaux ont pour but de développer des supports pour
aider les concepteurs dans leur travail collaboratif [Robin et al., 2004]. En effet, une
conséquence de la complexité de cette activité est que celle-ci n’est jamais individuelle mais
présente un caractere collectif et distribué [Blanco, 1998]. Les acteurs de la conception
proviennent d’univers disciplinaires et culturels différents, d’ou le rdle déterminant des
mécanismes de coopération et de compréhension mutuelle.

La norme AFNOR X50-127 définit le processus de conception de la fagon suivante : « partant
des besoins exprimés, le processus de conception définit pas a pas le produit qui doit répondre
aux besoins et aux attentes par des choix successifs portant sur des points de plus en plus
détaillés ». La tache du concepteur revient donc a transformer un besoin client, exprimé en
termes de fonctions, en une description détaillée et suffisamment complete du produit. La
description finale du produit est généralement représentée sous diverses formes : physique

(maquette), graphique (plan), numérique ou simplement textuelle.

De nombreux modeles de processus de conception, plus ou moins détaillés, existent dans la
littérature de 1’ingénierie de la conception [Ulrich and Eppinger, 2000; Roozenburg et Eekels,
1995; Otto et Wood, 2001 ; EIA 632 ; ISO 15288]. Nous nous intéresserons essentiellement
aux modeles développés par I’association des ingénieurs allemands [VDI 2221 ; VDI 2206],
en particulier, par Pahl et Beitz [1996] ainsi qu’aux modeles provenant d’une norme sur

I’ingénierie systeme qui se focalise sur le processus de développement [IEEE 1220].

1.1. Un modé¢le du processus de conception

Dans leur ouvrage, Pahl et Beitz [1996] ont proposé un modele théorique structurant le
déroulement progressif du processus de conception d’un produit. Ce modele simplifié

comporte quatre phases et a prouvé son efficacité puisqu’il a été pris comme base de référence
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par différents travaux de recherches en conception. Par la suite, chaque entreprise a apporté

ses propres modifications selon les spécificités de ses activités et de son produit.

Retour d'information pour adapter le CdC

-

< c
Analyse du Besoin @ Y 8
> .
Elaboration du CdC g _8 >
o8 o
w

Cabhier des charges )

<

Recherche de principes de solutions j
Analyse fonctionnelle technigue

Phase 2:

Principes de solution

Conception
de principe

l«

v

Définition des plans préliminaires j
Dimensionnement et calcul

Plans préliminaires

Amélioration et affinage

Définition finale des plans d’ensemble et
réalisation des nomenclatures préliminaires

Plans d’ensemble

Phase 3
Conception d’ensemble

<

Réalisation des dessins de définition et
nomenclature finale du produit

Solution finale

Dossier produit

Phase 4
Conception de détail

Figure I-1. Mod¢le du processus de conception [Pahl et Beitz, 1996]

Comme le montre la figure I-1, le mod¢le inclut quatre phases itératives :

e [’analyse du besoin (Product planning and clarifying the task) permet de ré-exprimer

ce dernier en un langage technique, compréhensible par I’ensemble des acteurs de

conception. Le cahier des charges (CdC), résultat de cette phase, regroupe toutes les

données fonctionnelles voulues du produit.

¢ La conception de principe (Conceptual design) vise a spécifier I’ensemble des principes

technologiques et solutions envisageables pour répondre au besoin. Cette phase est

complétée par une analyse fonctionnelle technique puis une évaluation de toutes les

solutions et les principes trouvés afin de ne retenir que les meilleurs.

e [a conception d’ensemble (Embodiment design) s’intéresse a concrétiser la solution

retenue en commengant par mettre au point les grands axes de la solution adoptée (plans

préliminaires) puis, par la suite, améliorer progressivement cette solution. Il s’agit de
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donner la structure générale, de faire les calculs et dimensionnements de base puis de

regrouper les plans d’ensemble.

e La conception de détail (Detail design) consiste a réaliser les dernieres modifications
sur la structure du produit, & déterminer et dimensionner tous ses composants ainsi que
toutes les liaisons qui les relient et enfin a définir les moyens et les modes de
production. A la fin de cette étape, le dossier produit est finalisé. Des tests de fiabilité

par experimentations sur prototype peuvent étre effectués en complément.

Ce modele du processus de conception est important pour expliquer les bases d’une démarche
« systématique » de conception d’un produit mécanique. Cependant, comme tout modele, il
ne peut pas tout représenter : il ne met pas I’accent sur la décomposition systémique ou sur la
définition progressive (éventuellement, avec des rangs de maturité) des produits complexes

et/ou innovants.

En Allemagne, Pahl et Beitz ont fait partie de différents groupes d’ingénieurs allemands (VDI
- Verein Deutscher Ingenieure : Association d’ingénieurs allemands) élaborant des directives
(Richtlinie) portant sur des méthodes de développement de produits. Trés productifs, ces
groupes ont propos¢ différents modeles du processus de conception, en particulier, selon le
type de produits [VDI 2221 ; VDI 2206].

-

1 Clarifi’er et spécifigr les
données de problemes
L Liste d'exigences /
2 Déterminer les fonctions et
leur structure [
. Architecture des 3
v i fonctions 5
— N
» Rechercher des principes de =
3 [«—3 : B
o solution et leur structure Princi g
o I rincipes 3
e v de solution °
= 4 Décomposer en modules o
& réalisables - ©
@ T /Archltecture de <
S y i modules k]
© 5 Définir la forme >
2 des modules clés - c
© T Avant-projets S
8 : 3
S 6 Définir la forme > §
3 du produit globfll Projet total o
v
7 Elaborer les instructions
d'utilisation et de mise en ceuvre Dosel /
T ossier
i v produit
e Développements
complémentaires

Figure I-2. Processus de développement de produits (d’aprés VDI 2221)

Un autre modele du processus de développement de produit, moins connu que le précédent

[Pahl et Beitz, 1996], est tres intéressant pour décrire les tdches critiques en conception
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(figure 1-2). Il permet de situer 1’élaboration de I’ « architecture® fonctionnelle » et de I’
« architecture de modules » et leur amélioration, leur raffinement dans les phases
préliminaires de conception de principe (phases 1, 2, 3) et de conception d’ensemble (phases
4,5,6,7).

Dans la suite de cette partie, nous nous intéresserons a 1’ingénierie intégrée, et dans la
partie 3, nous nous focaliserons sur I’Ingénierie Systeme. Ces approches, en partie fondées sur
les modeles précédents et adaptées au développement de produits mécatroniques complexes,
ont vu le jour au début des années 90 et ont ét¢ mises en ceuvre dans des entreprises de

différentes tailles.

1.2. Une démarche de conception : ’ingénierie intégrée®

L’ingénierie intégrée (ou Concurrent Engineering, notée par la suite CE) [Kusiak et Wang,
1993], [Lawson et Karandika,r 1994], [Prasad, 1997], [Midler, 1998] dite aussi ingénierie
simultanée ou concourante ou encore congruente [Trassaert, 2002] est apparue au milieu des
années 80 comme une nouvelle forme d’organisation en conception. Elle répond a un besoin
d’amélioration de la compétitivité des entreprises, qui doivent développer leur produit et son
systéme de production, toujours plus rapidement, moins cher et avec une assurance de qualité.
Deux grands principes sont mis en ceuvre : la simultanéité et 1’intégration. Le premier consiste
a réaliser en méme temps différentes activités concourant a la conception du produit et de son
systéme de production, le second est caractérisé par I’établissement d’une interdépendance
entre les différentes phases du projet, par la prise en compte, a chaque phase du
développement, des considérations relatives a I’ensemble du cycle de vie du produit, depuis
sa conception jusqu’a sa mise a disposition (cot, qualité, délai, besoins du consommateur...).
Quand la conception du produit atteint un certain stade, des informations préliminaires sont
transmises aux concepteurs du systéme de production et la conception commence des que
possible. Finalement, le projet de conception d’un produit complexe (tel un véhicule) est
lui-méme complexe car son organisation se construit graduellement en fonction des
informations et des contraintes trés variées, évolutives et incertaines qui sont traitées
progressivement par les acteurs du projet. De ce fait, le CE est un défi managérial et

organisationnel.

* Dans une premiére approche, retenons que 1’architecture est un terme, issu du latin, qui désigne une discipline qui associe art et science de
construire des batiments terrestres ou navals et des structures. Par extension, le terme d’architecture est également utilisé pour désigner la

conception ou I’acte de concevoir des systemes complexes. Dans ce cas, on fait référence a la structure générale du systeme.
’ Les termes originaux sont "Funktionsstrukturen” et "Modulare Strukturen".

¢ Terminologie provenant de la norme X50-415 sur le "Management des systémes — ingénierie intégrée — concepts généraux et introduction

aux méthodes d’application", décembre 1994.
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2. L’Ingénierie Systéme

L’ingénierie Systeme (IS) est une méthodologie interdisciplinaire récente, dont le but est de
formaliser et de maitriser les processus de conception, de réalisation et d’intégration de
systémes complexes (produits, systemes de production...). Les principes de I’ingénierie
simultanée peuvent étre mis en ceuvre dans le cadre de cette démarche. Différentes normes
relatives a I’Ingénierie Systéme coexistent [EIA 632], [IEEE 1220], [ISO 15288]. Elles
décrivent en termes de processus et d’activités génériques des principes d’organisation des
projets et des pratiques jugées bonnes des métiers associés. Elles ont des champs
d’application ou des approfondissements limités mais se completent. Parmi les faits marquant
I’histoire de I’IS, nous pouvons mentionner la constitution en 1990 de INCOSE (International
Council on Systems Engineering) et en 1999, de I’AFIS (Association Frangaise d’Ingénierie

Systeme).

2.1. Principes

Selon I’AFIS, I’Ingénierie Systéme est une démarche méthodologique générale qui englobe
I’ensemble des activités adéquates pour concevoir, faire évoluer et vérifier un systéme
apportant une solution économique et performante aux besoins d’un client tout en satisfaisant
I’ensemble des parties prenantes [AFIS]. Cette démarche permet d’intégrer les contributions
de toutes les disciplines impliquées dans les phases de conception et d’intégration d’un
systtme, en tenant compte des différentes exigences des parties prenantes (besoins,
contraintes) intervenant au cours des différentes phases du cycle de vie d’un systeme (point de
vue utilisateur). Grace a la mise en ceuvre systématique et coordonnée d’un ensemble de
processus génériques par des équipes multidisciplinaires, 1I’IS permet la conception équilibrée
d’une solution satisfaisant ces exigences, ainsi que des objectifs du projet en termes de cotits,
délais, risques ... (point de vue du concepteur). Dans le cadre du développement d’un produit
et de ses systémes associés (systeme de conception, systetme de production, systeme de
maintenance, ...), les buts de cette démarche sont de décomposer un systeme complexe sur
différentes strates, d’identifier et d’organiser les activités techniques, d’éviter les retours
arriére tout en progressant avec assurance (gestion des risques et de la maturité¢ de la
conception sur chaque strate), de maitriser les informations nécessaires a la réalisation et ainsi

de réduire les délais et cotts de développement.

2.2. Modéles des processus d’ingénierie systéme

Dans cette partie, nous présentons deux modeles concernant les processus d’ingénierie
systéme, ce qui nous permettra de réaliser un premier positionnement du processus de

développement de I’architecture d’un systeme.

12
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2.2.1. Modéle des processus génériques de I’'IS

Parmi les processus génériques de développement (voir figure 1-3), les normes d’IS
distinguent les processus techniques, faisant passer des besoins a la solution, les processus de
management et les processus facilitants. Au niveau de chaque strate de décomposition d’un
systéme, les processus techniques sont mis en ceuvre pour assurer progressivement
I’exploration du probléme (domaine fonctionnel) et la construction de la solution (domaine

organique) [IEEE 1220]. Ces processus se décomposent en :

e processus d’ingénierie qui représentent la définition des exigences (analyse des besoins
et spécification des exigences) et la conception de la solution (développement des

architectures et spécification des sous-constituants), sur la branche descendante,

e processus de mise en ceuvre qui traduisent la réalisation, I’intégration et la validation,

sur la branche ascendante,

® processus supports de I’ingénierie qui sont transversaux a ces deux branches
(analyse-systéme pour la recherche de compromis global et la justification des choix ;
Vérification-Validation pour les activités de simulation, d’essais et de validations

organique et fonctionnelle des solutions).

Au cours de la réalisation des activités de la branche descendante, I’acteur doit se projeter
dans la réalisation des activités de la branche ascendante pour définir les plans d’intégration et
de validation.

Processus_Développement

Processus_Management Processus_Technique Processus_Facilitant
Processus_Ingénierie Proc_Support_Ingénierie Proc_mise_en_oeuvre
Définition_exigences Conception_Solution
A Anal._Systeme | | Vérific_Validation Intégration_Syst
Analy_besoins % Zr
Spécif_exigenc
Dévelop_Archi
Spécif_constituants Réalisation_Constituants

Figure I-3. Processus génériques en IS (tiré de [Bonjour et Dulmet, 2006])

2.2.2. Modéle du cycle de développement

La démarche de conception en Ingénierie Systeme peut étre décrite par un cycle dit en V. Ce

cycle de développement en V est composé principalement de trois phases (figure [-4):
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e Une phase dite de conception et justification (branche descendante du V), faisant passer
du besoin a une définition justifiée de la solution, de fagcon progressive et itérative,

comportant :

o Une analyse des besoins et contraintes des différentes parties prenantes (sur
I’ensemble du cycle de vie) débouchant sur la spécification du probléme et une
spécification des exigences auxquelles doit satisfaire le systeme (définition des

missions, fonctions de service, criteres de performance, contraintes ...),
o une conception du systéme, consistant a élaborer :

» J’architecture fonctionnelle qui est un arrangement de fonctions et leurs
interactions, définissant le séquencement de leur exécution, les flux de données
et de contrdle qui le conditionnent et les performances requises pour répondre
aux exigences [[EEE 1220],

= J’allocation (ou répartition, projection...) des fonctions sur les composants,

préalablement identifi€s,

» J’architecture organique (technique) des constituants, supportant 1’architecture
fonctionnelle et définie par les exigences attribuées aux constituants et a leurs
interfaces (qui supportent les interactions entre constituants). Le résultat est

une spécification des exigences pour chaque constituant.

e Une phase d’acquisition ou de réalisation des constituants, sous-traitée aux métiers
spécifiques concernés ou a des fournisseurs. Le développement des constituants

complexes suit également un cycle de développement.
¢ Une phase dite d’intégration et de validation (branche ascendante), comportant :

o La construction progressive du systeme par assemblage de ses constituants en
validant que leurs interactions confeérent bien les comportements attendus aux

différents niveaux d’assemblage.

o L’intégration du systetme dans son environnement d’exploitation, suivie de sa

qualification opérationnelle vérifiant qu’il répond au besoin opérationnel.

14
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Analyse des Qualification

besoins opérationnelle

Plan de validation
»

Validation du

Spécification

des exigences systéme

Plan
d’intégration
CEE—

Conception Intégration du

du systeme systéme

] A

Acquisition et réalisation des

constituants

Figure I-4. Le Cycle en V de I’IS, issu de [Meinadier, 2002]

Compte tenu de la complexité des systemes, la résolution du probléme global nécessite sa
décomposition en sous-problémes (décomposition en blocs constitutifs) en tenant compte de
leurs interactions, jusqu’a ce que ces sous-problémes soient suffisamment simples pour leur
trouver des solutions potentielles (composants existants ou a développer). On est donc conduit
a itérer les activités de conception-justification puis d’intégration-validation a différents
niveaux de granularité des constituants. Une définition appropriée de I’architecture prépare et
conditionne le succes de I’intégration. La définition du systéme doit étre justifiée par des

activités d’analyse systeme et de vérification-validation.

L’Ingénierie Systeme (IS) fait référence a I’ensemble des deux branches du cycle de
développement. Dans ce travail, nous nous intéressons principalement a la phase descendante

du cycle en V et plus particulierement a 1’élaboration des architectures du systéme.

Notons enfin que la terminologie varie selon les auteurs ou les entreprises pour désigner la
décomposition d’un systeme. Le terme « constituant » est le plus générique, il est parfois
remplacé par sous-systemes, organes, modules, blocs constitutifs, composants, pieces, etc.

selon le niveau hiérarchique de décomposition considéré.

2.3. Le systéeme et ses représentations

On distingue deux grands types de représentations d’un systéme [Meinadier, 2002]
correspondant a une vue statique et a une vue dynamique. Dans ce travail de these, nous nous
sommes surtout intéressés aux représentations statiques. Nous les développerons donc plus en
détail dans les parties suivantes (2.3.1 a 2.3.4) et nous résumerons l’intérét de la vue
dynamique dans la partie 2.3.5. Les différents langages ou formalismes de modélisation,
supportant ces différentes vues, seront présentées au chapitre Il ou nous justifierons notre

choix concernant un outil de modélisation des architectures.
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2.3.1. Vue externe (ou contextuelle) du systéme

En vue externe, le systéme doit remplir un ensemble de fonctions de service pour satisfaire les
différentes parties intéressées par son utilisation. Elles traduisent 1’action attendue ou réalisée
par le produit pour répondre a un besoin d’un utilisateur donné (ou mission du systéme). Il
faut souvent plusieurs fonctions de service pour répondre a un besoin. Elles sont quantifiées

selon les performances attendues et spécifiées par leurs critéres d’appréciation.

Il existe deux types de fonctions de service:

¢ les fonctions principales, correspondant au service rendu par le systéme pour répondre

aux besoins,

¢ les fonctions contraintes, traduisant des réactions, des résistances ou des adaptations a

des éléments du milieu extérieur.

A ce niveau, le systéme est représenté comme une boite noire échangeant des flux avec son
environnement, ainsi que par des scénarios d’échange (flux entrants et sortants) pour chaque
fonction de service. Il est intéressant d’identifier des phases de vie du systéme ainsi que ses

modes de fonctionnement pour chaque phase de vie.

2.3.2. Vue fonctionnelle interne

En vue interne, le systéme doit satisfaire un ensemble de fonctions techniques dont
I’agencement restitue les fonctions de service. On parle ici d’arborescence puis d’architecture
fonctionnelle du systéme, en cohérence avec Pahl et Beitz [1984] et Hubka et Eder [1988].

L’arborescence fonctionnelle est obtenue en décomposant itérativement les fonctions de
service en sous-fonctions jusqu’a 1’obtention de fonctions pour lesquelles on peut définir des
solutions techniques [Meinadier, 2002]. Ainsi, une architecture fonctionnelle peut étre
obtenue a différents niveaux d’abstraction. A des niveaux de représentation trés détaillés, la
spécification des fonctions est de plus en plus liée a I’architecture physique du produit et

renvoie de ce fait a une solution physique satisfaisant a la spécification de la fonction.

L’élaboration de I’architecture fonctionnelle est utile lorsqu’on cherche a optimiser
I’organisation des sous-fonctions (par exemple, regroupement ou factorisation de module,
dissociation pour faciliter les évolutions, redondance pour assurer la robustesse lors des
évolutions ou pour la sireté¢ de fonctionnement) [Stone et al., 2000]. L’enchainement des
fonctions de I’architecture fonctionnelle permet de réaliser les processus de fonctionnement
internes au systéme, lui conférant ainsi les comportements spécifiés par les fonctions de
service et leurs scénarios. Cette architecture fonctionnelle est en théorie indépendante des
choix de conception et est donc réutilisable pour des projets semblables. En pratique, la

décomposition fonctionnelle ne se fait pas sans préjuger des choix technologiques et la
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validation de [D’architecture technique va nécessiter des itérations, pour modifier et/ou

compléter les exigences du niveau et I’architecture fonctionnelle [Lartigue, 2003].

Les normes IEEE 1220 intégrent dans la définition de I’architecture fonctionnelle, des aspects
dynamiques en tenant compte du séquencement de I’exécution des fonctions, des flux de
données et de contréle qui le conditionnent. Par la suite, nous parlerons d’architecture
fonctionnelle pour désigner uniquement I’arrangement des fonctions et leurs interactions (tout
en étant conscient que cela peut étre considéré comme un abus de langage). Nous ajouterons

I’adjectif « dynamique » pour préciser que nous intégrons les aspects dynamiques.

2.3.3. Vue organique (ou technique)

Dans la vue organique, le systéme est représenté comme un agencement de constituants (ou
d’organes) réalisant par leurs interactions les fonctions identifiées dans [’architecture
fonctionnelle. Cet agencement est appelé « architecture organique » ou sont identifiés les

constituants et les interfaces qui les relient (Figure I-5).

Certains auteurs comme Meinadier introduisent le concept d’architecture physique

« P’architecture technique devient 1’architecture physique lorsque les organes sont définis »,
I’architecture organique ¢tant alors considérée comme un agencement de constituants
« théoriques ». Situant nos travaux dans les phases de conception préliminaire, nous ne ferons

pas cette différence par la suite.

E S1 .
F alloué a > sous-systéme B
S2
alloué a . |
alloué a
i tituant B1 tituant B2
E S1 constituan constituan
F1 I F3 —
112 | S2
21 F2
B1 Lien B2
E F1 Fonction - Fonction F3 S1
interface =_' interface
F 112 F2 123
A —I §2" .
spécification spécification spécification
constituant B1 interface constituant B

—

Figure I-5. Allocation des fonctions aux constituants organiques [Meinadier, 2002]

2.3.4. Vue dynamique d’un systéme

Pour structurer un systeéme, il est possible de le décomposer en vue externe, en vue
fonctionnelle interne et en vue organique, comme nous I’avons présenté précédemment. Ces

vues sont des représentations statiques (ou structurelles) du systéme. Il est possible aussi de

17



Chapitre I

recourir a des représentations dynamiques du systéme (vue dynamique) qui décrivent son

évolution temporelle.

Le systéme peut étre considéré comme un ensemble de processus de fonctionnement qui
décrivent I’enchainement des activités des constituants du systéme afin de restituer les
fonctions de service et leurs performances. Ceci permet de représenter la dynamique de
fonctionnement du systéme pour chaque mode de fonctionnement et pour chaque phase de vie
du systeme. Cette approche généralisée de processus nous donne un point de vue nouveau sur
le systéme ou 1’on peut suivre la transformation des entrées en sorties réalisant les fonctions

de services.

En complément a la vue statique, la vue dynamique repose sur un enchainement temporel de
scénarios et processus, a différents niveaux d’invariance temporelle allant de 1’évolution a
long terme vers le fonctionnement : enchainement des phases de vie, enchainement des modes
de fonctionnement dans chaque phase de vie, enchainement des fonctions dans chaque mode

de fonctionnement.

2.3.5. Synthése sur le systéme produit

Dans ce travail, nous sommes intéressés prioritairement a la vue statique du produit. Dans le
cadre de cette vue, nous avons introduit trois domaines : le domaine des exigences, le
domaine des fonctions systémes et le domaine des constituants. Dans la suite de ce mémaoire,
nous considérons que les exigences sont des contraintes qui s’appliquent au systéme produit
et sont de ce fait externes au produit. Ainsi, comme nous ’avons représenté sur la figure 1-6,

le produit se décompose en vue fonctionnelle et en vue organique.

Systéme
Produit
Vue fonctionnelle : Vue organique :
Architecture des Architecture des
fonctions du systéme constituants

Figure I-6. Les vues fonctionnelle et organique du produit

3. Architecture du produit et conception modulaire

Dans les paragraphes précédents, nous avons souvent utilisé le terme d’architecture, tel que
nous le rencontrons dans la littérature. L’ utilisation de ce terme s’accompagne rarement d’une
définition et d’une caractérisation rigoureuse. L’architecture étant le principal objet de notre

travail, nous allons lui donner un cadre formel, utile pour notre modélisation.
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Dans cette partie, nous revenons sur les définitions de 1’architecture d’un produit. Nous
précisons ensuite le processus de développement de I’architecture et une typologie des
architectures. Nous présentons ensuite les travaux portant sur la conception modulaire et sur

les métriques de la modularité.

3.1. Définitions de I’architecture d’un produit

Dans le cadre de I’ingénierie des produits et des systemes complexes, nous avons trouvé

plusieurs définitions de 1’architecture d’un systéme.

Crawley et al. [2004] font référence a un systéme comme étant composé d’entités et donnent

la définition suivante :

L architecture d’un systeme est la description des entités qui le composent et des

relations qui les lient.

Maier et Rechtin [2000] quant a eux proposent une définition de I’architecture d’un systéme

comme suit :

C’est la structure d’un produit, d’un processus ou d’'un élément en terme de

composants, connections et contraintes.
Enfin, Meinadier [2002] propose la définition suivant :

Une architecture décrit une vision abstraite de la structure et du fonctionnement
d’un systeme (produit ou processus). Elle est généralement constituée par un
arrangement d’éléements (les éléments terminaux d’une arborescence de
décomposition) a la fois sur le plan structurel (éléments et relations) et sur le plan

temporel (dynamique de fonctionnement).

Cependant, méme si Meinadier sous-entend que la dimension temporelle fait partie intégrante
de la définition de I’architecture, nous préférons adopter la définition plus générale proposée
par Crawley et al. [2004]. Par ailleurs, il est a noter que I’architecture est une vision

structurelle d’un systéme a un instant donné du projet et peut évoluer au cours du projet.

Les définitions du concept d’architecture du produit sont multiples mais elles se rejoignent
toutes pour affirmer que l’architecture du produit se caractérise par: «la structure des
composants et des interactions qui les lient» [Pimmler et Eppinger, 1994 ; Chen et Liu,
2005 ; Van Wie et al., 2001 ; Holtta, 2005].

Cependant, il existe d’autres définitions ou I’accent est mis sur certains points caractéristiques
du domaine de recherche. Ainsi dans le cadre de la conception concourante, nous retrouvons
la définition suivante [Dahmus et al., 2000] : « I’architecture du produit est la structure des
composants, leurs interactions et les principes qui gouvernent leur conception et évolution

tout au long du cycle de vie. »
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Au niveau international, les travaux de deux auteurs sont fréquemment cités par les
chercheurs en architecture de produit : Ulrich et Eppinger. Ulrich [Ulrich et Tung, 1991]
définit ’architecture du produit comme « une représentation générique des produits ou un
systetme conceptuel des composants physiques est associé a un systeme conceptuel des

¢léments fonctionnels afin de concevoir différents produits lors de 1’étape de conception. »
Cette définition a été approfondie par [Ulrich, 1995], I’architecture du produit est alors :

e [’arrangement des fonctions ;

¢ [’allocation des fonctions aux composants ;

¢ la spécification des interfaces entre les composants.

En France, le point de vue de I’IS [Meinadier, 2002] sur ’architecture du produit rejoint celui
d’Ulrich. On associe alors aux domaines fonctionnels et organiques la notion d’architecture,
on utilise alors les terminologies d’architecture logique ou fonctionnelle et d’architecture
technique ou organique. Au cours des décompositions conduisant a ces architectures, les
exigences sont allouées (réparties) sur les éléments de la décomposition et les interfaces sont

définies.

3.2. Processus de développement de I’architecture d’un systéme

En s’inspirant du schéma de la boucle descendante d’ingénierie décrite par 'IEEE 1220 (et
reprise par Meinadier), nous proposons (figure [-7) un modele du processus de
développement de 1’architecture d’un systéme. Ce processus est itératif et se répeéte a chaque
niveau de décomposition du systeme. Les exigences de besoin de la strate supérieure (au plus
haut niveau, les besoins du systéme) vont étre tout d’abord analysées et détaillées grace aux
connaissances des concepteurs du niveau considéré. Les concepteurs procedent alors a la
définition de I’architecture fonctionnelle. La recherche de principes de solution et des choix
possibles d’allocation permet progressivement de définir les constituants du niveau considéré.
L’analyse des flux entre constituants permet d’aboutir a 1’architecture technique. Les activités
génériques d’analyse systéme (justification, évaluation de solutions alternatives et ¢laboration
de compromis) et de vérification-validation ne sont pas représentées ici mais se déroulent en
parall¢le. Les choix de solutions techniques a un niveau peuvent contraindre les choix réalisés
au niveau supérieur (par exemple, reconduction d’un constituant avec des interfaces figées).
La spécification des constituants et de leurs interfaces permet d’allouer des exigences au
niveau inférieur. Si le constituant est a son tour décomposable, le processus est itéré. Si le
constituant est élémentaire ou est acheté, le processus de décomposition est terminé et est
suivi par la réalisation ou I’acquisition des modules/composants. A chaque niveau de
conception architecturale, des documents sont émis et seront utilisés pendant les activités

cruciales d’intégration-validation (branche ascendante) correspondant a ce niveau.
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Figure I-7. Processus de développement de I’architecture d’un systéme (schéma adapté de ’'IEEE 1220)

Pour appliquer ce processus de développement de 1’architecture, nous avons besoin d’adopter
une typologie qui permet de mieux caractériser les architectures fonctionnelles et organiques

d’un systéme.

3.3. Typologie de ’architecture des produits
Ulrich [1995] distingue deux types d’architecture :

e [’architecture modulaire : une architecture est dite modulaire si on a un « one fo one
mapping » entre fonctions et modules (c’est-a-dire lorsqu’a une fonction ne correspond
qu’un seul constituant physique) et si les interfaces sont découplées dans le sens ou
modifier un constituant ne demande pas de reconcevoir les autres interfaces. Il en

résulte un découplage total entre les constituants.

e [’architecture intégrale (qu’on qualifiera aussi d’intégrative ou d’intégratrice) est une
architecture ou les constituants sont fortement couplés de telle sorte qu’un changement
apporté sur un constituant nécessite 1’apport d’adaptation sur d’autres constituants. Dans
une architecture intégrale, les fonctions n’impactent pas directement un unique

composant.

Cette typologie en deux points est prise comme référence dans des travaux ultérieurs sur la
conception modulaire dont certains ont essayé de 1I’améliorer. Ainsi, Chen et Liu [2005]
précisent que 1’allocation « one to one » des fonctions vers les composants est dépendante du

niveau de décomposition réalisé tant dans 1’arborescence des fonctions que dans
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I’arborescence du produit. Ils proposent alors de réaliser I’allocation d’un sous ensemble de

fonctions vers un sous ensemble de composants.

Depuis la typologie d’Ulrich, il est communément admis qu’il y a un continuum entre une
architecture entiérement modulaire et une autre, entierement intégrale. Sans recourir aux
méthodes de représentation des architectures qui seront traitées ultérieurement, il est facile
d’imaginer qu’il existe une architecture hybride [Sosa et al., 2000] qui est composée a la fois
de modules (groupements d’¢éléments) et d’éléments intégrateurs, un élément pouvant étre une

fonction, un constituant...

Ericsson et Erixon [1999] ajoutent a la définition d’Ulrich la condition qu’un module doit
avoir peu d’interactions avec les autres modules ou le reste du produit. Ce dernier point est
repris par Baldwin et Clark [2000] qui définissent un module comme «un ensemble
d’éléments fortement liés entre eux et faiblement liés a d’autres éléments externes au
module ». Par opposition aux modules, les éléments intégrateurs sont alors des éléments qui
ne peuvent appartenir & aucun module, étant donné qu’ils interagissent fortement en nombre

ou en intensité avec des éléments appartenant a plusieurs modules.

En étudiant la définition d’une architecture modulaire du produit, on remarque qu’elle a
¢volué durant cette derniére décennie. Avec Ulrich [1995], ¢’est 1’allocation des fonctions aux
constituants qui détermine la modularité de 1’architecture et dans les travaux les plus récents
[Baldwin et Clark, 2000 ; Eppinger et Salminen, 2001 ; Whitfield et al., 2002 ; Holtta et
Salonen, 2003 ; Yang et al., 2004 ; Chen et Liu, 2005], c’est I’étude des interactions et des

interfaces entre constituants qui déterminent la modularité d’une architecture.

La Figure I-8 montre I’exemple d’une architecture modulaire sur une perceuse ou la finalité

du travail était I’identification et la spécification des interfaces entre modules.
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Figure I-8. Exemple d’architecture modulaire [VanWie et al., 2001]
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Dans la continuité des travaux récents sur 1’architecture du produit et dans le cadre de la
typologie d’architecture d’Ulrich, nous considérons que D’architecture du produit est
composée de :

e [ ’architecture fonctionnelle ;
e [ ’allocation des fonctions aux constituants ;
e [ ’architecture organique du produit.

La typologie d’Ulrich s’applique alors aux deux architectures du produit : a I’architecture
fonctionnelle et a ’architecture organique. Cependant la caractérisation de ces architectures se
fera essentiellement sur la base de 1’étude des interactions internes a chaque domaine [Harmel
et al., 2006b] en cohérence avec le positionnement de Baldwin et Clark [2000].

Sur la figure 1-9, nous présentons notre vision de I’architecture du produit. Nous accordons
une grande importance a 1’utilisation de la double fleche pour 1’allocation entre I’espace des
fonctions et 1’espace des constituants. En effet, nous considérons que du point de vue de
I’architecture, les deux espaces se contraignent mutuellement sans hiérarchie, & moins que

celle-ci ne soit voulue par le concepteur.

Architecture
Produit

Architecture S — Architecture

fonctionnelle Allocation organique

Figure I-9. Modélisation de I’architecture du Produit

3.4. Travaux existants sur ’architecture du produit

Le positionnement adopté dans le paragraphe précédent par rapport a la définition de
I’architecture du produit et a la typologie adoptée fait consensus dans la plupart des travaux

qui portent sur la modélisation de 1’architecture du produit et de la conception modulaire.

Dans ce qui suit, nous donnons un apercu sur le nombre et I’importance des travaux par

sous-thémes de recherche :

e [’¢laboration de I’architecture du produit, relative a [’agencement hiérarchisé ou non
d’éléments : [Dahmus et al., 2000 ; Whitfield et al., 2002 ; Yu et al., 2003 ; Sharman et
Yassine, 2004 ;

e Holttd, 2005; Jiao et al., 2006 ; Ulrich et Eppinger, 2000 ; Larses, 2005 ; Ulrich, 1995 ;
Erixon, 1996 ; Balachandra, 2002 ; Holtta et Salonen, 2003 ; Pimmler, 1994 ; Sudjianto
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et Otto, 2001 ; Huang, 2000 ; Stone et al, 2000]. Ces travaux nombreux traitent de la
mod¢élisation et génération de I’architecture du produit. Quelques uns [Oosterman,
2001] s’ouvrent a la modélisation du projet de conception pour lier 1’architecture du

produit aux autres caractéristiques du projet.

e [a définition des interfaces et des flux d’échanges dans le produit [Blackenfelt et
Sellgren, 2000 ; Van Wie et al., 2001 ; Chen et Liu, 2005 ; Andersson et Sellgren,
2004]. Ces travaux s’intéressent aux outils et méthodes de la conception détaillée du
produit ainsi qu’aux échanges entre composants, permettant ainsi de faire le lien avec la

vue dynamique du produit.

e [a propagation d’une évolution de modules [Clarkson et al., 2004]. Trés peu de travaux
se sont intéressés a la robustesse d’une conception en modules et aux conséquences
d’une évolution technologique, se traduisant par exemple, par le changement d’un

module, sur I’architecture globale du produit.

L’abondance de travaux traitant de 1’architecture du produit dénote de I’importance que tient
cette problématique dans le domaine de 1’ingénierie de la conception. Cependant, on peut
nettement faire apparaitre qu’il y a déséquilibre dans le traitement des sous-thémes et que la

modélisation de 1’évolution des architectures est peu traitée.

Dans ce mémoire, nous nous intéressons a la fois a 1’identification des architectures du
produit et a la modélisation de leurs évolutions. Cependant, en considérant la modélisation de
I’architecture du produit sous la forme d’architectures fonctionnelle et organique, nous nous
démarquons vis-a-vis des travaux existants qui sont essentiellement axés sur 1’architecture

physique du produit.

Nous allons maintenant approfondir 1’étude des architectures modulaires et de la modularité

du produit.

3.5. Modularité et famille de produits

La modularité est une notion ambigué¢ qui a été employée de manieére imprécise dans
différents contextes. Dans son utilisation architecturale, ce terme est plus facile a définir a
partir de son antonyme, c'est-a-dire modulaire est I’opposé d’intégré. Le mot « module » a
comme définition’ : « assemblage compact fonctionnant comme composant d’une plus grande

unité ». L’adjectif « modulaire » est a la fois défini comme « entier ou complet ».

Une architecture entierement modulaire est composée clairement d’un certain nombre de
groupement de composants, ces groupements sont caractérisés par une forte densité¢ des

couplages entre les éléments qui les composent.

7 Encyclopédie scientifique en ligne. http://www.techno-science.net
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La notion de modularité est liée a la notion de diversification des produits et a la conception
de familles de produits. En effet, des combinaisons et architectures appropriées de modules
peuvent créer potentiellement un grand nombre de produits différents du point de vue du
client, appartenant a ce qu’on appelle une famille de produits ayant certaines fonctionnalités
communes et se différentiant a travers d’autres fonctionnalités [Langlois et Robertson, 1992 ;
Sanderson et Uzumeri, 1990 ; Ward et al.,1995].

11 apparait ainsi que la conception de produits modulaires est une démarche importante dans la
stratégie de flexibilité [Sanchez, 1999] qui permet a une entreprise de s’adapter rapidement a
I’évolution de la demande en mettant sur le marché de nouvelles variantes de ces produits en

utilisant de nouvelles combinaisons des modules préexistants ou nouveaux.

La notion de modularité peut faire référence aux fonctions du produit. Pahl et Beitz [1996]

proposent la classification suivante des modules :

e Un Module Basique est un module qui implémente une (ou plusieurs) fonction(s)

fondamentale(s) du produit ou de la famille de produits.

e Un Module Auxiliaire est un module qui implémente une (ou plusieurs) fonction(s)
auxiliaire(s) qui est utilisée en association avec les fonctions fondamentales pour créer

de la variété dans la famille de produits.

e Un Module Adaptatif regroupe les fonctions qui permettent d’adapter un composant (ou
un systéme) a un produit (ou un autre systeme). Les modules adaptatifs permettent de

gérer les contraintes imprévisibles.

e Un Non-Module implémente des fonctions spécifiques dictées par les besoins des

clients. Ces fonctions ne sont pas partagées avec d’autre produit de la famille.

Dans sa theése, Mtopi [2006] utilise une autre typologie plus adaptée aux familles de produits.

I1 utilise les concepts suivants :

e Le «produit de base» rassemble tous les modules implémentant les fonctions

principales de la famille et est considéré comme un « module composé ».
¢ un module indécomposable est dit « primitif »,

e un module commun, correspond a une ou plusieurs fonctions présentes dans tous les

produits de la famille,
e un module distinctif introduit la variété dans la famille.

La modularité a aussi été associée a la notion de similitude [Huang et Kusiak, 1998] dans le
sens ou un module regroupe des ¢léments ayant des caractéristiques similaires (par exemple,
des composants ayant la méme géométrie, des fonctions liées a la méme discipline

scientifique comme la thermique, I’automatique).
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3.6. Avantages et inconvénients de la conception modulaire

Plusieurs chercheurs [Huang, 2000 ; Oosterman, 2001 ; Balachandra, 2002 ; Holta et Salonen,

2003] ont fait I’inventaire des avantages, des inconvénients et des limites de la conception

modulaire. Les points les plus importants sont synthétisés ci-dessous.

Les avantages les plus significatifs de la modularisation sont :

26

Augmenter les variétés de produits en utilisant un nombre limité de composants [Ulrich
1995 ; Sanchez, 2002] : les produits peuvent étre congus de telle facon que la source de
différenciation entre un ensemble de produits se concentre dans un composant

modulaire.

Permettre la personnalisation de masse : historiquement, les entreprises industrielles
avaient soit des systemes de production de masse ou de personnalisation. Avec la
conception modulaire, il est possible d’utiliser des processus de production flexibles

pour des volumes réduits avec une réduction réelle des cotits [Duray, 2000].

Faciliter les stratégies de plateformes : la conception modulaire permet de concevoir
une architecture de plateforme stable et d’introduire sur le marché des produits
différents.

Limiter les colits de développement et d’industrialisation : une stratégie de conception
modulaire permet de réduire les cofits en allouant certaines fonctions a des modules
réutilisables par la suite.

Permettre les économies d’échelle : c’est un principe simple d’économie qui stipule que
lorsqu’on augmente les quantités de production, on réduit relativement les cofits. Or, la
conception modulaire permet la réutilisation de certains composants et donc

I’augmentation des quantités.

Permettre une innovation technologique plus rapide: la modularisation permet a
I’entreprise de se doter de processus de conception et d’industrialisation flexibles
[Ericsson et Erixon, 1999]. C’est cette flexibilité qui permet a I’entreprise de répondre

rapidement aux changements des marchés.

Réduire les délais de développement (Time to market) : du moment que les interfaces
entre les composants sont bien définies, il est possible de paralléliser les activités de
conception. Ceci réduit les durées de développement et limite les phases de

reconception.

Faciliter la mise en place d’équipes de conception adaptée a 1’architecture du produit.
Les équipes seront de taille raisonnable et les échanges sont réduits vu que les interfaces
sont bien spécifiées. [Sosa et al., 2000 ; Baldwin et Clark, 1997 ; Ulrich et Eppinger,
2000 ; Blackenfelt, 2001].
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e Faciliter la maintenance, la réparation et le recyclage des produits tout au long du cycle
de vie en permettant I’identification et I’acces a des modules [Newcomb et al., 1998 ;
Dahmus et. al., 2000].

Mais la conception modulaire a aussi quelques inconvénients :

e Une utilisation intensive de la modularisation rend les produits tous semblables
[Oosterman, 2001].

La modularisation fait augmenter les risques de voir les produits copiés par les
entreprises concurrentes [ Yang et al., 2004].

e La conception initiale des modules est tres difficile en raison de la complexité des

contraintes sur les interfaces [Oosterman, 2001].

Plusieurs auteurs affirment qu’une architecture modulaire est un frein pour la
conception de produits performants a cause du compromis que réalise une architecture

modulaire parmi tous les produits [Whitney, 2003].

e [a conception modulaire peut engendrer des surcolits, si par soucis de conserver les
mémes interfaces, on remplace un composant par un autre plus cher [Krishnan et Gupta,
2001].

Cette synthése montre que les entreprises s’engageant dans une stratégie de conception
modulaire de ses produits peuvent en tirer des bénéfices importants mais doivent é&tre

conscientes des limites et des risques de la modularisation.
Nous allons présenter maintenant les principales méthodes de modularisation, recensées dans
les travaux de recherche en ingénierie de la conception.

3.7. Les méthodes de modularisation du produit

3.7.1. Introduction

Les outils d’aide a I’identification des modules dans un produit sont peu nombreux dans la
littérature de 1’ingénierie de la conception. Parmi elles, trois méthodes sont fréquemment

référencées :
e M¢éthode heuristique pour ’architecture des fonctions,
¢ Méthode MFD (Modular Function Deployment),

e Méthode de “clustering” d’une matrice structurelle de conception (en anglais DSM pour

Design Structure Matrix).

Une étude comparative de ces trois méthodes a été réalisée par Holtta et Salonen [2003]. Pour

notre part, dans cette partie, nous ne présenterons que les deux premieres méthodes. La
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troisieme étant celle que nous avons utilisée dans ce travail, elle sera traitée en détail dans le

chapitre III.

Il est a noter que d’autres techniques, telles que la méthode de Hatley/Pirbhai [Zakarian et
Rushton, 2001] et les graphes d’interaction [Kusiak et Huang, 1996], ont été¢ également
employées pour la conception de produits modulaires. Les travaux de Messac et al. [2002] ont
utilisé des techniques de programmation pour formuler une fonction de pénalité pour une
famille de produits. Siddique et Rosen [1999] ont proposé une approche de grammaire de
graphes pour identifier la ressemblance dans une famille des produits et d’autres ont
¢galement utilisé des Algorithmes Génétiques (AG) [D’Souza et Simpson, 2003] pour

rechercher les modules communs d’une plateforme.

I1 est important de préciser que toutes ces méthodes sont susceptibles d’avoir comme résultats
des architectures modulaires non-optimales et non-uniques. De plus, certaines méthodes sont
liées a la définition de I’architecture du produit comme étant 1’allocation des fonctions aux

composants.

3.7.2. Meéthode des heuristiques pour ’architecture des fonctions

Avant de présenter cette méthode, nous allons définir succinctement ce qu’est une heuristique.

Une heuristique est une démarche (ou un algorithme) de résolution de probléme, connue pour
fournir un résultat proche de I’optimum (une « bonne solution »). La décision de proposer a
’utilisateur un choix parmi plusieurs bonnes solutions a la place d’un optimum illusoire est a
conseiller, surtout lorsque les criteres a optimiser sont multiples et mal explicités. Les
heuristiques formalisent souvent ['utilisation de régles empiriques, tirées de I’expérience, du
bon sens ou d’analogies. Comparées a un algorithme optimal, elles présentent 1’avantage
d’étre plus facilement exploitables et compréhensibles par les utilisateurs qui peuvent alors
mieux s’approprier les résultats proposés. Les heuristiques trouvent leur place dans les
problémes complexes qui nécessitent 1’exploration d’un grand nombre de solutions possibles,
car elles permettent d’atteindre rapidement des solutions qui ont le plus de chances de donner

une réponse satisfaisante.

La méthode des heuristiques pour générer 1’architecture des fonctions a été développée
initialement par Stone et al., [1998, 2000]. Elle est basée sur trois heuristiques séparées qui
permettent d’identifier les modules d’un produit. Son point de départ est la décomposition
fonctionnelle développée par Pahl et Beitz [1996]. Elle est née d’observations d’un engin de
maintenance. Un ensemble de fonctions de ce produit interagit par des flux d’information

pour former des modules physiques. Ces observations se résument comme suit :
1- un flux peut traverser un produit en restant inchangé : ce sont les flux dominants.

2- un flux peut se ramifier pour former des chaines de fonctions indépendantes.
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3- un flux peut étre converti en un autre.

Ces observations ont conduit Stone et ses coauteurs [1998, 2000] a la formulation de trois
heuristiques :

e Heuristique des flux dominants : elle examine les flux a travers une arborescence
fonctionnelle, elle suit les flux jusqu’a ce qu’ils sortent du systéme ou subissent une
transformation. Elle conclut a : s’il existe un ensemble de fonctions a travers lesquelles
un flux passe jusqu’a la sortie ou la transformation, alors ces fonctions forment un

module.

e Heuristique des flux ramifiés : elle examine les flux divergents ou convergents issus de
chaines de fonctions parall¢les. Chacune de ces chaines peut devenir un module dont

I’interface correspond au point de branchement de la chaine.

e Heuristique du module de conversion-transmission : elle examine les flux convertis. Ces
flux sont convertis au niveau de certaines fonctions. On considere alors ces fonctions
comme étant des modules a elles seules. Si dans une méme chaine de fonctions il y a
plusieurs fonctions de conversion ou de transmission, alors ces fonctions délimitent un

module de conversion-transmission.

Zamirowski et Otto [1999] proposent trois heuristiques additionnelles pour identifier les
fonctions partagées dans un produit unique ou dans une famille de produit et les fonctions
uniques propres a un produit donné. Ainsi, les fonctions qui partagent des flux similaires ou
qui apparaissent plusieurs fois peuvent étre regroupées pour former un unique module. Les
fonctions uniques sont celles spécifiques a un seul produit, elles peuvent étre regroupées pour

former un module.

Nous remarquons que les principaux criteres de modularisation sont fonctionnels et
indépendants de 1’architecture physique du produit. Cette méthode est présentée comme étant
idéale pour la conception de famille de produits [Holtta et Salonen, 2003] mais elle présente
le défaut d’étre dépendante de I’interprétation et de la décision humaine. Cette méthode ne
peut pas €tre automatisée et de ce fait ne peut étre appliquée sur des produits complexes [Otto
et Wood, 2001]. Pour des présentations plus approfondies de cette méthode et surtout de la
démarche de mise en ceuvre, nous conseillons la lecture des travaux de Dahmus et al. [2000],
Otto et Wood [2001] et Holtta et Salonen [2003].

3.7.3. Méthode MFD
La méthode MFD (Modular Function Deployment) est une méthode de modularisation plus
orientée management qu’ingénierie. Elle a été développée par Erixon [Erixon, 1996 ; Ericsson
et Erixon, 1999]. Cette méthode est aussi basée sur la décomposition fonctionnelle et elle est

dédiée a la modularisation d’un produit unique.
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La méthode MFD est basée initialement sur 12 « pilotes de modularité », ce nombre monte

jusqu’a 23 avec Blackenfelt [2001]. Le tableau I-1 présente et explique les 12 pilotes initiaux.

Reconduction Une partie du produit peut étre réutilisée et reconduite dans plusieurs produits.
Les pieces sont susceptibles de subir des changements en raison des demandes de
Développement du Evolution clients ou des innovations technologiques. Il est important de pouvoir adapter les
produit technologique interfaces de sorte que la nouvelle technologie puisse étre introduite sans remettre
en cause I’ensemble du produit.
Modification . . . . : . .
o cations L’entreprise a ’intention de développer et de changer certaines parties du produit.
planifiées
Spécifications Pour prendre en compte la personnalisation des produits efficacement, un
pvariables concepteur devrait tacher d’assigner toutes les variations a un petit nombre de
Variabilité LA
Style Les modules de style contiennent les composants qui peuvent étre altérées pour
créer des variations du produit.
" Les composants et fonctions en commun entre plusieurs produits permettent le
Unité en commun N - .
; partage d’une unité de production.
Production
Processus et/ ou as : 2 : ;
S Des picces exigeant le méme processus de production sont groupées ensemble.
organisation
" P La possibilité de tester séparément chaque module avant la livraison a
Qualité Essais séparés , : NI oy
I’assemblage final peut contribuer a I’amélioration de la qualité.
Disponibilité . . .
Achats Spo b 15655 Modules standard d’achat disponibles chez les fournisseurs externes.
fournisseurs
Service et Les composants nécessitant une maintenance peuvent étre groupés ensemble pour
maintenance former un module qui facilite les opérations de remplacement et de réparation.
Apres-vente Amélioration 11 faut donner aux clients la possibilité de faire évoluer leur produit.
Le nombre de matériaux dans chaque module devrait étre limité. Les matériaux
Recyclage

facilement recyclables peuvent former un module séparé.
Tableau I-1. Les pilotes de la modularité dans la méthode MFD
Dans sa stratégie de développement de produits modulaires, une entreprise peut utiliser un ou

plusieurs des pilotes présentés dans le tableau I-1. Elle applique ensuite la démarche de MFD

qui comprend cinq étapes :

1- Clarifier la spécification du produit en utilisant une matrice QFD [Akao, 1990] avec

les pilotes de modularité qui remplacent les besoins des clients.
2- Analyser les fonctions et sélectionner les solutions techniques.

3- Identifier les modules possibles en utilisant la matrice MIM (Module Indication
Matrix)

4- Evaluer les concepts en testant les interfaces entre les modules.
5- Améliorer chaque module.

L’identification des modules de la méthode MFD se fait en classant les fonctions selon un

score croissant. Les fonctions participant a un méme pilote de modularité sont candidates pour
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former un module. Blackenfelt [2000] propose un rapprochement entre la méthode MFD et

I’outil DSM, que nous décrirons ultérieurement.

La méthode MFD présente ’avantage de laisser le choix aux ingénieurs de définir les
stratégies de modularisation en jouant sur les pilotes. Ce méme avantage est 1’'un des
inconvénients de la méthode qui reste dépendante des ingénieurs dans le choix des modules et
de leurs tailles, ceci a pour conséquence de limiter la possibilité d’automatiser la méthode et

d’avoir la méme architecture d’un utilisateur a un autre (faible reproductibilité).

3.7.4. Besoin d’une autre méthode de modularisation

Les deux méthodes de modularisation présentées ci-dessus montrent certes plusieurs

avantages mais aussi certaines limites :

e Elles dépendent des choix des ingénieurs a certains moments de la démarche de

modularisation.

e Elles ne peuvent pas étre automatisées et sont difficilement exploitables sur des
exemples complexes ou une assistance par un traitement informatique serait

souhaitable.
¢ Elles sont essentiellement adaptées a I’espace fonctionnel.

Ces limites font que, comme d’autres chercheurs, nous opterons pour une autre méthode de
modularisation, a savoir la méthode de clustering des matrices DSM. Celle-ci permet a la fois
de modéliser les architectures par les DSM et de générer des architectures modulaires

« satisfaisantes », a travers 1’utilisation d’un algorithme de clustering.

3.8. Les métriques de la modularité

Quand on parle de modularité, on est en droit de se poser la question : a quel point un produit
est-il modulaire ? Afin de quantifier la modularité, plusieurs mesures et métriques ont été
développées. Rappelons cependant que plusieurs études ont conclu a I’absence de pertinence
de la comparaison des modularités entre des produits différents [Gershenson et al., 2004]. Les

mesures développées servent alors a comparer différentes architectures d’un méme produit.

Les mesures que nous présentons dans ce paragraphe sont classées selon une complexité

croissante.

Blackenfelt [2000] utilise deux métriques pour mesurer la modularité d’un produit : le MI
(Module Independence) [Newcomb et al., 1998] et I’ARP (Average Ratio of Potential) dont

les expressions sont :

S in
MI = z_m Eq.I-1
e fot

31



Chapitre I

n 1 .
124
ARP =Y~ Eq.l-2
_ nin,,
Avec :
n: Le nombre de modules
m : L’indice d’un module
inm :  Lasomme des interactions a I’intérieur du module m
in . . Lasomme des interactions a I’intérieur d’un module pondérée par un facteur a fixer

pot *

La différence principale entre ces deux métriques est que I’ARP est maximal pour une

architecture composée de plusieurs petits modules.

Les métriques utilisées par Blackenfelt ne prennent pas en compte les interactions externes

aux modules, de ce fait la pertinence des métriques est tres limitée.

Une autre mesure de la modularité est le SMI [Holtta et al., 2005] pour « Singular Value
Modularity Index », la mise en place de cet indicateur nécessite une étape intermédiaire qui

est la diagonalisation de la DSM du produit. On a alors :

DSM =UX ,,, V" Eq.1-3
Avec
o, 0 0
Lpsr = 0 . 0 Eq.I-4
0 0 oy

Ou les o; sont les valeurs propres classés dans un ordre décroissant.

On définit alors SMI par :

N-1
SMI(Z, ):1_%201.(@ 5. Eq.-5

i+l
0, =
La valeur de SMI est encadrée par 0 et 1, un SMI proche de 1 indique un fort degré de

modularité, un SMI proche de 0 définit une architecture intégrale.

Se basant sur les valeurs propres de la DSM, cette métrique ne permet pas de faire le lien
entre la taille des DSM, la taille des modules, leurs densités et la densité des interactions

externes. L’interprétation de cette métrique nécessite de se référer a la DSM initiale.

Guo et Gershenson [2004] ont étudié¢ huit métriques de modularisation et proposent une
mesure de la modularité basée sur les intensités des interactions entre éléments dans un
systeme. Cette métrique (Eq. 1-6) se compose de deux parties : une partie positive qui donne
un poids aux interactions internes aux modules et une partie négative qui pénalise les

interactions externes aux modules.
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my o my my [ n 1
B VD D ¥
i= =ny ] ny i= ny ] my +
Z; —n, +1) ; nk+1)(N —m, +n,—1)
Eq.I-6
Mﬂ’l
Avec
ng: index du premier élément du k™ module N . - nombre total de composants dans le produit
m, : index du dernier élément du k*™ module Rl.j 3 la valeur de I’interaction entre les éléments i et j
M : nombre total des modules dans le produit

Cette mesure peut étre utilisée avec toutes les DSM composants, elle présente 1’avantage de
prendre en compte les interactions extérieures aux modules. Cependant, Wietfield et al.
[2002] utilisent une métrique proche de celle de Guo avec des pondérations plus pertinentes
(Ie nombre d’interactions disponibles). Cette mesure de la modularité est I’indicateur MSI
pour Module Strength Indicator. Le MSI s’applique a un module et se compose de deux

parties (Eq.I-7 et Eq. I-8)

> Dsm(i. )
MSI, === Eq.I-7
(nz_nl )2 - (nz - nl)
ny, ny N n
> > DSM(i, j)+DSM(j,i) D> DSM(i, j)+DSM(j,i)
MSI, = =2 + Eq.I-8
2% (nx(m, =) 2%((N =n,)x(n, = n,))

MSI = MSI, — MSI, Eq.1-9

DSM (i, J ) Valeur de I’interaction entre I’élément i et j dans la DSM

n Index du premier élément du module
n, Index du dernier élément du module
N Le nombre total d’élément

L’indicateur MSI permet alors de mesurer le degré de modularité de chaque module en
comparant les interactions a I’intérieur et a I’extérieur du module, le degré de modularité
augmente lorsque le nombre d’interactions internes au module croit et que le nombre
d’interactions externes décroit. Cet indicateur permet ainsi a I’architecte systeme d’évaluer la
modularité de chaque module et de simuler plusieurs configurations. Ce dernier indicateur
semble le plus complet pour évaluer la modularité d’une architecture. Une derni¢re remarque
concernant cette métrique : les auteurs proposent les indices n; et n, et affirment que le
nombre d’éléments est n,-n;, pour que cette affirmation soit vraie il faut que n; soit I’indice

du dernier élément dans le module précédent.
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Cependant, cet indicateur comme les précédents ne peut pas €tre utilisé pour optimiser d’une
mani¢re automatique une architecture car ils tendent tous a créer un module unique

représentant tout le systéme.

Quelques travaux de recherche se sont intéressés a la comparaison de certaines métriques

présentées dans ce paragraphe [Holtta et al., 2005 ; Larses et Blackenfelt, 2003 ]

4. De Parchitecture du produit vers P’architecture de I’organisation du

projet

Dans cette partie, nous allons étendre les concepts définis pour 1’architecture de 1’organisation

du projet.

4.1. Ingénierie Systéme appliqué au projet

Les normes qualité ISO9000-version 2000 définissent un projet comme un « processus unique
(particulier) qui consiste en un ensemble d’activités coordonnées et maitrisées comportant des
dates de début et de fin. Ce processus est entrepris dans le but d’atteindre un objectif
conforme a des exigences spécifiques telles que les contraintes de délai, de colts et de
ressources. » Nous adaptons cette définition en considérant qu’un projet est I’instanciation et

la réalisation d’un processus unique.

Dans cette partie, nous allons montrer que 1’Ingénierie Systéme peut s’appliquer sur le
systéme-projet. Nous allons définir et expliquer ce qu’est I’architecture de 1’organisation du

projet.

4.1.1. Les trois domaines du projet

Nightingale [2000] et Eppinger et Salminen [2001] ont mis en évidence qu’un projet de
conception de produit repose sur 3 domaines inter-reliés : le produit, le processus de
conception et les acteurs de conception (équipe ou concepteur individuel). Un acteur a la
responsabilité de réaliser une (ou plusieurs) tiche(s) de conception, qui contribue(nt) a la
définition justifiée du produit. Dans ce travail, nous nous rapprochons de cette vision du
projet. Cependant, nous introduisons le domaine de 1’organisation du projet. Le paragraphe

qui suit explique notre positionnement.

4.1.2. Différentes vues de I’organisation du projet

Dans le paragraphe relatif a I’IS, nous avons intentionnellement conféré un caractere
générique au systéme. La premicre instanciation d’un systéme concerne le produit. Une
seconde instanciation concerne le systéme-projet. L’organisation du projet peut ainsi étre
considérée sous des vues différentes, en cohérence avec la définition de Meinadier

[Meinadier, 2002, p53] que nous reprenons ci-dessous :
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e «une vision contextuelle de 1’entreprise échangeant des flux avec les organismes de
I’environnement selon des scénarios d’échange (par exemple, flux de matieres, produits

ou services et flux monétaires compensatoires),

e une décomposition structurelle en fonctions et sous-fonctions (I’organigramme

fonctionnel),
¢ une décomposition en niveaux d’invariance temporelle,

e des processus enchainant des activités exercées par les fonctions, décrivant le

fonctionnement de 1’organisation,
¢ une architecture physique formée des entités de I’organisation et de leurs interfaces,

e une subdivision en un systtme opérant et un systtme de pilotage généralement

hiérarchisé en fonction des niveaux temporels ».

Les taches de développement peuvent étre déterminées a partir d’'une combinaison entre les
activités génériques de développement et les constituants de I’ « arborescence technique du
produit »® & réaliser (organigramme du produit, ou PBS, Product Breakdown Structure). Le
résultat de cette combinaison est représenté sous forme d’une arborescence ou d’une
succession de taches et est appelé « organigramme des taches » (ou WBS, Work Breakdown
Structure)’ [PMI, 2001 ; PMI, 2004]. Cette arborescence est ensuite utilisée pour décrire le
projet comme un réseau de processus enchainant des taches. C’est 1’architecture fonctionnelle
du systeme-projet. Les processus (de fonctionnement du systéme-projet) doivent étre
coordonnés en fonction des dépendances entre taches, de leurs conditions de fin et en vue de
respecter les objectifs de réalisation. L’architecture organique consiste a allouer des taches et
des ressources a des entités organisationnelles, ou équipes, (analogie avec la projection des
fonctions sur les constituants du produit) qui auront alors la responsabilité de
I’accomplissement de ces taches. Nous utiliserons le terme « acteur » pour désigner soit une

entité organisationnelle ou une équipe (acteur collectif) soit un concepteur (acteur individuel).

Notons que I’architecture fonctionnelle doit avoir une certaine robustesse, en cas d’évolution
d’une tiche ou d’un acteur au cours du projet, ainsi que d’un projet & un autre (2 un certain
niveau d’abstraction). Par ailleurs, I’allocation des taches a des acteurs peut étre contrainte par
des aspects non techniques mais économiques, politiques ou juridiques, comme par exemple,

I’existence de Métiers ou d’entités juridiques, des décisions d’outsourcing.

$ Terminologie provenant de la norme X50-400 sur le "Management des systémes — Référentiel cadre — Lignes directrices pour 1’utilisation

des méthodologies du management de projet", décembre 1994.

? Definition of Work Breakdown Structure according to [PMI 2001]. A deliverable-oriented grouping of projects elements that organizes and
defines the total scope of the project. Each descending level represents an increasingly detailed definition of the project work.
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Si I’ingénierie de la conception fait partie de la productique, les travaux de recherche traitant
de I’organisation d’un projet concernent aussi d’autres domaines scientifiques, telles que les
sciences de gestion, les sciences cognitives, la sociologie ou la théorie des organisations
[Simon, 1997] [Midler, 1998] [Hatchuel et Weil, 2002] [Lefebvre et al., 2002] [Perrin, 2001].
Notre travail, reste dans le cadre de la productique, nous I’axons sur la vue structurelle de

I’organisation de projet.

Le terme « organisation » a de multiples significations : une action d’organiser un systeme, un
résultat de I’organisation, une entité « entiére » comme une entreprise ou une association, ...
Nous choisissons la définition suivante de 1’organisation du projet (ou structure
organisationnelle, pour certains auteurs) : c’est le résultat de la structuration du projet qui
permet de définir les processus, les acteurs et leurs responsabilités (missions, liens
hiérarchiques), les moyens et procédures de communication.... Nous parlerons de
I’architecture de 1’organisation du projet pour désigner les architectures fonctionnelle et

organique, présentées ci-dessus, tout comme nous parlons d’architecture du produit.

4.2. Vers P’architecture de I’organisation du projet

Il est possible d’étendre la définition de la modularité basée sur 1’étude des interactions entre
¢léments [Ericsson et Erixon, 1999 ; Baldwin et Clark, 2000 ; Sosa et al., 2000] a tout

systéme et ainsi a 1’organisation du projet.

Dans le paragraphe précédent, nous avons introduit différentes vues de 1’organisation du
projet et nous avons étendu les concepts d’architectures fonctionnelle et organique des
produits a 1’organisation du projet de conception. Ainsi, nous considérons les architectures du
domaine fonctionnel de 1’organisation, a savoir les processus et du domaine organique, a
savoir les acteurs du projet. Nous définissons I’architecture de 1’organisation du projet comme

composée d’une architecture fonctionnelle et d’une architecture organique (Figure I-10).
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Architecture Produit

Architecture <:> Architecture

fonctionnelle Allocation organique
A A A A
A 4 A4 A 4 A4

Architecture de
Porganisation du projet

Domaine des Domaine des
processus <:::> acteurs
Allocation
Architecture fonctionnelle Architecture organique

Figure I-10. De I’architecture du produit a I’architecture de ’organisation du projet

Comme nous avons choisi de caractériser les architectures des systémes que nous étudions en
fonction des interactions internes a ces domaines, nous pouvons étendre les notions
d’architectures modulaires et d’éléments intégrateurs a toutes les architectures que nous

traitons, y compris celles de I’organisation du projet.

Les méthodes de modularisation que nous avons introduites précédemment sont liées a
I’architecture du produit. Nous présenterons dans le chapitre suivant un outil matriciel de
représentation des interactions applicables au systéme projet de conception. Cette méthode de
représentation nous donnera la possibilité d’utiliser un algorithme de clustering comme

méthode de modularisation applicable a tout systeme (Cf Chapitre III).

4.3. Pilotage du processus de définition de I’architecture du produit

Dans le paragraphe 3.2, nous avons présenté un processus de définition de 1’architecture du
produit. Ce processus inclut des taches d’analyse des exigences, d’amélioration dans le niveau
ou entre niveaux (boucles, itérations), ainsi qu’'une tiche d’évaluation et de validation. Par ces
taches, il est ainsi couplé a un processus de pilotage opérationnel. Cependant, pour que ce
processus existe, il a fallu le concevoir, c’est-a-dire définir ses objectifs ou missions et le
décomposer en un ensemble de sous-processus. Les normes de 1’Ingénierie Systéme en
fournissant un ensemble de processus génériques aident a la bonne structuration et a

I’agencement des processus de conception.
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4.4. Les niveaux de pilotage du projet d’IS

Meinadier [2002] soutient que : « la planification d’un projet consiste a rendre cohérentes

entre elles trois logiques, dans le respect des objectifs et contraintes du projet :

la logique du produit a réaliser (arborescence des produits),
la logique temporelle des processus (enchainement des activités),

la logique de la structure organisationnelle du projet. »

Et par extension, la conduite de projet a pour objectif de veiller a la réalisation et au maintien

de cette cohérence tout au long du projet face aux aléas.

Nous souhaitons affiner cette vision en distinguant trois niveaux importants dans le pilotage

d’un projet [Bonjour et Dulmet, 2006] :
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Pilotage stratégique : le projet est décomposé¢ en phases qui constituent son cycle de vie.
Le passage d’une phase a la suivante donne lieu a une revue de projet planifiée ou des
décisions critiques sont prises : décisions d’engagement, de poursuite avec maintien des
objectifs ou avec révision des moyens, d’itération pour amélioration de la solution ou
pour révision des objectifs, ou décision d’arrét. Durant ces revues, le chef de projet rend
compte au comité de pilotage de 1’avancement du projet en termes d’objectifs et de

moyens mis en ceuvre.

Le pilotage organisationnel (ou définition de 1’architecture du systéme-projet) : elle
consiste a analyser les besoins et a spécifier les objectifs et missions du systéme-projet
(études d’opportunité), puis a définir le processus de conception comme un
enchainement de taches a réaliser (architecture fonctionnelle du projet) pour atteindre
ces objectifs et enfin a affecter un acteur a la réalisation de chaque tache afin d’obtenir
un enchainement des flux d’informations entre acteurs (architecture organique du
projet). Les termes pour désigner ces activités varient fortement selon les auteurs. Nous
parlerons de pilotage organisationnel du projet. Quand le projet est lancé, ces activités
de structuration peuvent étre itérées périodiquement pour adapter I’organisation du
projet, en fonction des écarts observés ou de nouvelles connaissances acquises en cours
de projet. En effet, on ne peut espérer une organisation détaillée des taches et des
ressources, définie une fois pour toute et stable tout au long du projet. Le projet n’a pas
un caractere déterministe mais fortement incertain (probléme incomplétement défini au
départ, constante évolution de I’environnement ...). Les architectes systémes et chefs de
projets n’acquierent donc que progressivement les connaissances sur le projet qui leur

permettent de 1’organiser au mieux.

Le pilotage opérationnel (ou conduite de projet) : elle consiste a gérer les activités dans

le plan du projet, a les ordonnancer, a maitriser au mieux les dérives et modifications
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dues aux aléas, de manicre a respecter les objectifs du projet et a garantir la cohérence
de la maturité¢ a I’intérieur d’une strate ainsi que la progression entre les strates. En
effet, la mise en ceuvre de rangs d’exigences entraine qu’il n’est pas nécessaire
d’attendre la fin de la conception dans une strate pour enclencher la conception dans la
strate aval. La gestion de I’information est ainsi une activité importante pour le bon
déroulement du projet. Les activités de pilotage opérationnel permettent d’intégrer
progressivement les différentes contributions des acteurs du projet et de fournir les

informations nécessaires a la validation de ces résultats, lors des revues de projet.

Certains auteurs adoptent une structuration semblable du systéme de pilotage [Génelot, 1992],

en particulier pour la conception et le pilotage de systémes de conception [Girard, 2004].
De nombreux travaux portent sur :

® [e pilotage opérationnel des projets de conception : par exemple, ordonnancement de
projet [Giard, 1991], [Herroelen et Leus, 2005] ou aide a la décision multi-critére pour

I’évaluation des résultats d’un projet [ Yannou et Bonjour, 2006] ;

¢ le pilotage stratégique et les décisions d’outsourcing : par exemple, choix de projets

dans un portefeuille de projets [Levine, 2005].

Notre travail s’inteégre dans le cadre du pilotage organisationnel, ¢’est-a-dire de la conception

des architectures du produit et de 1I’organisation du projet.

4.5. Travaux sur les architectures de I’organisation du projet

Les travaux de recherche qui se sont intéressés a I’architecture de I’organisation du projet,
telle que nous 1’avons définie précédemment, peuvent étre classés en trois grandes

thématiques :

e Travaux traitant uniquement de la décomposition de I’organisation en équipes de
conception [Morelli et al., 1995 ; David et al., 2002 ; Tseng et al., 2004 ; Fitzpatrick et
Askin, 2005] ;

e Travaux traitant de 1’optimisation des processus par la réorganisation des équipes de
conception : [McCord et Eppinger, 1993 ; Eppinger et al., 1994; Chen and Lin, 2003 ;
Braha, 2002] ;

e Travaux traitant de la correspondance entre les architectures du produit et de
I’organisation : [Gulati et Eppinger, 1996 ; Lockledge et Salustri, 2001 ; Sosa et al.,
2000 ; 2003 ; 2004 ; Sanchez et Mahomey, 1996; Browning, 2001; Oosterman, 2001].

Ces trois familles de travaux ont des objectifs tres différents. De ce fait, les outils et les
approches de I’architecture de I’organisation sont différents. Ainsi, les travaux appartenant a

la premiere classe empruntent certains concepts aux sciences humaines, en étudiant les
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techniques de communication et les modes de travail. Ils ont pour but de définir un découpage
adéquat (voire optimal) des équipes de conception. Quant aux travaux traitant de
I’optimisation des processus de conception, ils incorporent un aspect temporel sous forme de
contraintes de précédence et proposent de réorganiser les équipes de conception pour limiter
les retours-arrieres des flux d’information ou faciliter les chevauchements entre taches. Ces

deux premiers types de thématiques sortent du cadre de notre travail.

Nous positionnons une partie de nos contributions sur la troisiéme thématique qui s’intéresse
a la correspondance entre ’architecture du produit et celle de I’organisation. Cependant, au
lieu de représenter cette correspondance comme étant une propagation d’un domaine vers un
autre, nous proposons de modéliser dans le chapitre V cette correspondance comme étant une
dépendance mutuelle qui nécessite la coévolution des architectures du produit et de

I’organisation du projet.

5. Synthése sur la conception conjointe des architectures du produit et de
I’organisation du projet

Dans ce chapitre, nous nous sommes positionnés comme suit :

e L[e produit comme I’organisation du projet sont des systémes qui peuvent Etre

décomposés d’une maniére itérative en sous-systemes inter-reliés.

e [’architecture du produit est définie par la caractérisation des architectures

fonctionnelle et organique ainsi que par leur couplage (ou allocation).

e [’architecture du produit est modélisée selon la typologie d’Ulrich [1995]. Par
extension, cette typologie nous permet de caractériser 1’architecture du produit sous la

forme de modules et d’éléments intégrateurs :

o Baldwin et Clark [2000] définissent un module comme étant « un ensemble
d’éléments fortement liés entre eux et faiblement liés a d’autres éléments

externes au module ».

o Un élément intégrateur est un élément qui interagit fortement en nombre ou en
intensité avec des ¢léments appartenant a plusieurs modules. Par conséquent, il
est préférable qu’il n’appartienne a aucun module car il crée la cohésion du

systeme dans sa globalité.

e [’architecture de 1’organisation du projet est définie par la caractérisation de
I’architecture des processus et 1’architecture des acteurs du projet (structuration en

équipes).
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e La typologie des architectures et notre définition des modules et des éléments

intégrateurs sont étendues a 1’architecture de 1’organisation du projet.

e Dans le cadre du pilotage organisationnel, nous nous intéressons a la conception des
architectures du produit et de I’organisation ainsi qu’a leurs évolutions au cours du

projet.

Précisons avant de conclure que récemment d’autres travaux au niveau national ont fait le
parallele entre la conduite du projet et la conception du produit [Baron, 2005] et

[Gutiérez-Estrada, 2007] et ont proposé une autre approche formelle des couplages.

Avant de présenter I’outil de modularisation que nous avons développé dans ce travail et son
application sur I’identification des architectures (chapitre IV), nous avons besoin d’adopter un
modele de représentation des architectures qui soit compatible avec notre problématique.
Dans le chapitre qui suit, nous présentons les outils matriciels que nous avons utilisés pour

modéliser I’architecture du produit et de I’organisation du projet.
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CHAPITRE 11

MODELISATION MATRICIELLE DE
L’ARCHITECTURE D’UN SYSTEME

De tout temps, les chercheurs ont travaillé sur les méthodes et outils pour mettre en ceuvre les

concepts qu’ils proposent. Nous venons de clarifier dans le chapitre précédent notre

positionnement vis-a-vis du concept d’architecture et de 1’Ingénierie Systeme.

Dans ce chapitre, nous allons introduire un premier outil qui nous permettra de faire
I’articulation entre notre définition de 1’architecture et les méthodes de modularisation que

nous traiterons dans le chapitre III.

Avant de présenter 1’outil sur lequel notre choix s’est porté, nous allons présenter

succinctement d’autres méthodes de représentation des architectures du produit.



Chapitre II

1. Les modeéles de représentation des architectures

Les représentations référencées dans ce travail s’adressent a deux types d’architecture :
I’architecture fonctionnelle et 1’architecture physique. Il y a de multiples modéeles et méthodes
pour représenter 1’architecture d’un produit. Aussi nous en présenterons succinctement

quelques-uns, qui sont :
e soit a la base des autres modélisations (SA ou SADT, diagrammes d’états-transition),
¢ soit les plus utilisés en Ingénierie Systéme (arborescence hiérarchique, FFBD, SA-RT).

Mentionnons d’abord I’existence de méthodes globales de modélisation des systémes

informatiques ou technologiques, comme :

¢ la méthode SAGACE, développée au CEA [Penalva, 1997], qui adopte une approche
systémique globale pour la représentation des systémes complexes sous de multiples
points de vue. En effet, elle couple deux axes d’analyse du systéme a trois dimensions
(d’abord fonctionnel, structurel et décisionnel, et ensuite, action, fonctionnement et
évolution), ce qui donne 9 représentations possibles d’un systéme et une grande richesse
de modélisation. Méme si leur sémantique est plus riche, les diagrammes clés dans
Sagace (diagramme de transaction de flux ; diagramme d’interaction ou de transition

entre activités) sont trés proches des diagrammes SADT.

¢ le langage SysML, construit a partir du langage UML?2, évolution d’UML. SysML est
amené a devenir une référence internationale en modélisation pour I’'IlS [OMG, 2006]
SysML est composé de différents types de diagrammes représentant différentes vues du
systetme : diagramme des exigences (nouveau type), diagrammes comportementaux,
dont les cas d’utilisation et les diagrammes de séquences (représentant des scénario
d’échanges entre le systéme et les entités de son environnement), et les diagrammes
structurels dont les diagrammes de définition des blocs et les diagrammes paramétriques

(nouveau type) pour faire le lien entre la vue statique et la vue dynamique du systéme.
Des représentations matricielles, comme les DSM (Design Structure Matrix), peuvent aussi
étre utilisées. Nous les détaillerons dans la partie 2.
1.1. Modélisation par une arborescence hiérarchique

Le moyen le plus simple pour représenter une architecture est probablement 1’arborescence
hiérarchique. Dans un arbre, un systéme est décomposé en sous-systémes qui seront a leur
tour décomposé€s jusqu’a 1’obtention du niveau de décomposition voulu. Cette représentation

est possible pour décomposer les fonctions ou décomposer les constituants du systeme.

En enrichissant sa sémantique, une arborescence hiérarchique peut permettre de représenter la

diversité dans une famille de produits. La Structure Générique d’un Produit (SGP) d’une
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famille de produits fait référence a 1’organisation générique de tous les modules qui peuvent
se trouver dans la famille [Jiao et al., 2000]. En se rapprochant du concept de nomenclature
générique, un module générique est un module abstrait qui représente une famille de modules
concrets similaires. Nous distinguons en différentes catégories de modules concrets (figure
II-1):

¢ des modules communs qui appartiennent a toutes les variantes de la famille de produits,

e des modules distinctifs qui rendent les variantes du produit différentes les unes des

autres,

¢ des modules composés (qui peuvent étre décomposés !) et par opposition, des modules

primitifs.
Stylo a bille
Module composé
[ I !
Systeme écriture Corps Capuchon
Module composé Module commun Module distinctif
| I
[ [ |
Téte écriture Cartouche Encre Capuchon noir Capuchon rouge
Module distinctif Module commun Module distinctif Module primitif Module primitif
Téte 0.5 Téte 0.7 Noir Rouge
Primitif Primitif Primitif Primitif

Figure II-1. Arborescence d’une structure générique de produit [Mtopi, 2006]

1.2. Modélisation de ’architecture fonctionnelle en vue statique

Les formalismes permettant de représenter 1’architecture fonctionnelle de 1’organisation d’un
projet (c’est-a-dire un processus vu comme un enchainement de taches) peuvent étre utilisés

pour représenter 1’architecture fonctionnelle du produit.

Différents types de modéles sont fondés sur des diagrammes représentant les fonctions et
sous-fonctions transformant des flux entrants en flux sortants. Ces diagrammes sont obtenus
par décomposition successive du systéme a différents niveaux hiérarchiques. Le systeme est
d’abord vu comme une boite noire échangeant des flux avec son environnement. Ensuite les
fonctions du systeme sont décomposées en sous-fonctions transformatrices des flux de

données ou d’objets (maticre, énergie, donnée).

Dans les diagrammes de flux (ou flots) de données (DFD, Data Flow Diagramm), un élément

de modélisation supplémentaire (double traits) permet d’indiquer un stockage de données. La
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simplicité de ces diagrammes les rend facilement exploitables pour représenter des systémes

traitant de flux de données.

Dans la méthode SADT, il s’agit de représenter un enchainement d’activités (boites)
transformant des flux entrants en flux sortants (fleches horizontales), au moyen de ressources
ou organes (fleche verticale montante) et sous I’effet de controle (fleches verticales
descendantes) qui peuvent étre considérées comme des déclencheurs ou des parameétres de
régulation (figure I1-2). Ce dernier élément de modélisation correspond a un premier pas vers
les aspects dynamiques. SADT est tres utilis€ dans la modélisation des processus. Parfois
utilisée sans le concept de ressources, elle permet aussi de représenter simplement une

architecture fonctionnelle d’un produit.

Controle

Ressources

Figure II-2. Mod¢le de fonction par SADT

Dans la figure II-3, nous avons repris deux représentations possibles de I’architecture
fonctionnelle d’un lave-linge. La représentation du dessus expose la décomposition sous
forme d’arborescence hiérarchique des fonctions du lave-linge. La représentation du dessous
représente par un diagramme de flux simplifié 1’enchainement des taches sur le cycle de
fonctionnement. Ces deux représentations nous renseignent a deux niveaux différents sur

I’architecture fonctionnelle du lave-linge.
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Figure II-3. Deux visions de I’architecture fonctionnelle d’un lave-linge [Meinadier, 1998]

Dans la figure II-4, nous avons repris de Stone et al. [2000] la modélisation par SADT de

I’architecture fonctionnelle d’un tournevis électrique. Cette modélisation a été enrichie d’une
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part en représentant différent types de flux liant les fonctions et d’autre part en représentant
directement sur les diagrammes les modules fonctionnels qu’ils ont identifiés. Nous verrons

ultérieurement qu’avec 1’outil de modélisation que nous allons adopter la représentation des
modules va étre simplifiée et surtout formalisée.
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Figure II-4. Utilisation de SADT pour modéliser le fonctionnement d’un tournevis

1.3. Modélisation de I’architecture fonctionnelle dynamique

Différents formalismes existent pour intégrer une vue fonctionnelle et une vue dynamique du

systetme (on parle souvent de modeles comportementaux). Les plus utilisés en Ingénierie

Systéme [Meinadier, 2002] sont :

¢ les diagrammes de scénarios d’enchainement de fonctions (ou diagrammes de flux
fonctionnels, FFBD),

e les diagrammes d’états-transitions (statecharts) [Ward et Mellor, 1985], qui ont eu
diverses extensions [Harel, 1987].
1.3.1. La méthode FFBD

Un diagramme de flux fonctionnels (FFBD, Functional Flow Bloc Diagram) peut représenter
une architecture fonctionnelle (ou un scénario d’enchainement fonctionnel). L’architecture

fonctionnelle (ou logique) peut prendre en compte les flux de matiere, d’énergie et
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d’information [Pahl et Beitz, 1996]. Les FFBD sont utilisés pour décrire le contenu et 1’ordre
de déroulement des fonctions. Les fonctions sont représentées par des blocs, qui se succedent
les uns aux autres dans I’ordre indiqué par les fléches. Lorsque deux opérations sont réalisées
en parallele, elles sont reliées par deux ET (ou deux AND). Il peut également y avoir
plusieurs alternatives, que 1’on représente alors a 1’aide de OU (ou de OR). Deux méthodes
permettent de représenter la répétition : soit a I’aide d’une boucle d’itération (IT), qui peut
préciser le nombre de répétition, soit a 1’aide d’une boucle conditionnelle (LP comme Loop),

qui se terminera sur une condition de fin de boucle (LE comme Loop End).

Par rapport aux FFBD simples, les EFFBD (Extended FFBD) introduisent une vision
dynamique supplémentaire en indiquant les échanges de flux entre les fonctions. Les flux
d’entrée peuvent étre utiles ou nécessaires a la réalisation de la fonction. Dans certains cas, ils

peuvent également étre des « déclencheurs » (trigger) de la fonction.

Cette représentation peut étre aussi utilisée pour représenter la décomposition du produit en

composants.
Matiére—bf \—b Matiére
Energie- - - - - - > Fonction ~ |f----- » Energie
Information - wweeees > oeveveeee e InfOrmation
g J

Figure II-5. Représentation d’une fonction par FFDB

1.3.2. Les diagrammes d’états et la méthode SA-RT

Les diagrammes état-transition modélisent les enchainements d’états auxquels sont attachées
les activités fonctionnelles. IIs mettent en relief les événements déclenchant 1I’enchainement
des fonctions. Ils permettent de représenter la dynamique d’évolution dans les systémes temps
réel. IIs modélisent les synchronisations série et parallele des fonctions. On associe aux états
les activités opérantes des processus de fonctionnement et aux transitions, dont les conditions
de franchissement sont exprimées par des équations logiques, les actions de commande
associées au passage dans le nouvel état et donc au déclenchement des activités
correspondantes. Les diagrammes d’états (statecharts) de Harel présentent une amélioration
dans la précision des diagrammes €tat / transition classiques.

SA-RT (Structured Analysis Real Time, [Hatley et Pirbhai, 1987]) est une méthode
particulierement bien adaptée a la spécification fonctionnelle dans les phases amont. Elle
représente une extension temps réel de la méthode DFD. Ses auteurs ont ajouté a cette
description des diagrammes de flots de controle et des spécifications de contrdle permettant
de représenter les informations qui activent ou désactivent les processus représentés dans les
DFD. Ward et Mellor [1985] préconisent I’utilisation de diagrammes états-transitions pour

mettre en relief les événements déclenchant les processus.
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Baron [2005] fait une étude comparée de SA-RT et d’UML pour la modélisation des systémes
mécatroniques. Elle note que SA-RT est adapté a la vue dynamique des systémes embarqués

mais détaille peu la conception de 1’architecture matérielle des systémes.

La figure II-6 représente le scénario de démarrage d’un moteur thermique par un digramme

état attente clé en |

cléeni (événement)
demander code (action)

d’état.

état attente code

code erroné

code bon (événement)
fournir contact (action)

état attente clé en D

clé en D (événement)
Démarrer (action)

état moteur tourne | ¢

i rapport vitesse on rapport vitesse off
cléeen0 h i
arréter moteur coupler moteur / boite découpler moteur / boite

Y

(état véhicule déplacement) —

Figure II-6. Exemple simple de scénario de démarrage moteur

1.4. Modélisation de I’architecture organique

Nous n’avons pas identifi¢ d’outils dédiés spécifiquement a la modélisation de 1’architecture
organique (mis a part des représentations géométriques ou cinématiques par des outils de
CAOQ). Cependant, les outils de décomposition hiérarchique et les diagrammes de flux de

données sont tres fréquemment utilisés pour représenter I’architecture organique d’un produit.

Sur la figure II-3, nous avons représenté 1’architecture fonctionnelle d’un lave-linge. Sur la
figure II-7, nous représentons son architecture organique en utilisant le méme type de

représentation.
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Figure II-7. Deux visions de I’architecture organique d’un lave-linge [Meinadier, 1998]

1.5. Synthese sur la modélisation des architectures

Les méthodes présentées sont des méthodes plus proches de la représentation fonctionnelle du
produit que de sa représentation physique avec prise en compte des interfaces. Elles ne sont
pas automatisées pour permettre la modélisation et la simulation des architectures de systémes

complexes.

L’étude bibliographique développée succinctement ici montre que pour représenter des
modules, il est nécessaire d’avoir un outil de modélisation des architectures qui soit a la fois
visuel, simple d’utilisation, qui se préte a la programmation et a la simulation. Ces
caractéristiques nous ont confortés dans le choix de I’outil DSM basé sur une représentation
matricielle des architectures. La partie qui suit est dédiée a la présentation de 1’outil DSM en

mettant en avant sa position parmi les outils matriciels de modélisation des architectures.

2. Modélisation des architectures par des outils matriciels

2.1. Introduction

Les outils matriciels ont pour principal objectif la facilitation de I’analyse des interactions des

systemes complexes dans le cadre des activités suivantes [Malmqvist, 2002] :
e Modélisation des produits [Erixon, 1998],

® Analyses des interactions entre les constituants d’un produit [Pimmler and Eppinger,
1994],

e Mod¢lisation de la conception [Suh, 1990],
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¢ Analyse des impacts des évolutions [Clarkson et al., 2004].

Un outil matriciel de modélisation représente une vue d’un systétme sous une forme
matricielle. Cette représentation peut servir a 1’analyse du projet a différents niveaux :
fonctionnel, interfaces, etc... Cette analyse se fait par le biais de plusieurs types d’algorithmes

tels que « le clustering », le partitionnement, etc...

2.2. Classification des méthodes matricielles
Malmgqvist [2002] a classé les méthodes matricielles en trois classes :

e Matrices pour le niveau élément: ces matrices représentent des relations entre des
éléments/des composants d’un projet. On identifie deux sous catégories a savoir : les

matrices inter-domaines et les matrices intra-domaines.

e Matrices pour le niveau systéme : ces matrices permettent de lier des caractéristiques ou
des propriétés du systeme, il n’y a pas la notion de décomposition qui existe dans les
matrices éléments ou tous les éléments forment le produit ou le projet. Ces matrices
systéme servent par exemple pour les plates-formes de produit [Ulrich and Eppinger,
2000].

e M¢éthodologies matricielles : ces méthodologies utilisent un ensemble de méthodes
matricielles avec une cohérence interne qui leur permet de traiter certains problémes

complexes de conception.

Nous allons approfondir dans ce qui suit la présentation des matrices pour le niveau élément.

Comme nous I’avons présenté plus haut, ces matrices peuvent étre de deux types :

¢ [es matrices intra-domaines : elles représentent des couplages entre éléments de méme
type, entre composants par exemple. Ces représentations matricielles peuvent étre
utilisées a des différents niveaux d’abstraction : systémes, composants, attributs. Les
matrices intra-domaines peuvent étre utilisées pour étudier les interactions entre des
propriétés/attributs, entre fonctions, entre sous-systémes/composants/parametres, entre
acteurs et bien sir entre processus. Les éléments sur la diagonale de ces matrices sont
sans signification. Ces matrices sont en effet les DSM citées précédemment, de ce fait
nous utiliserons dans la suite la dénomination de DSM pour qualifier les matrices

intra-domaines (aussi appelées matrices de couplage par Meinadier).

e Les matrices inter-domaines : elles représentent des couplages entre ¢léments de types
différents et de ce fait appartiennent a différents domaines. Les matrices de la
conception axiomatique [Suh, 1990] sont un exemple de matrices inter-domaines, ces
matrices permettent de visualiser les relations entre des fonctions et des parametres de
conception. Un autre exemple est celui de la méthode QFD (Quality Function

Deployment) [Akao, 1990], ces matrices représentent les liens entre un composant et les
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processus de fabrication. Dans la suite de ce travail, nous appellerons ce type de
matrice, des Matrices d’Incidence (MI) (aussi appelées matrices de tragabilité ou de

projection, par Meinadier ou matrices d’incidence et d’allocation en mathématiques).

2.3. Représentation par les matrices binaires

L’utilisation des matrices dans le domaine de modélisation des systemes remonte aux travaux
de Warfield dans les années 70 [Warfield, 1973] et de Steward dans les années 80 [Steward,
1981]. Cependant, ce n’est que dans les années 90 que cette méthode a recu une attention de
plus en plus grande et une diffusion importante et ce, sous I’impulsion principale des
chercheurs du MIT (Massachussets Institute of Technology) qui ont utilisé cette méthode dans

le domaine de la modélisation des architectures en conception.

A TD’origine des matrices binaires utilisées par Warfield et Steward, on trouve la théorie des
graphes. Berge [1958] définit un graphe comme étant un ensemble de sommets, un ensemble
d’arétes et une fonction d’incidence qui associe deux sommets a chaque aréte. Un graphe est
dit orienté si on différencie le sommet de départ et le sommet d’arrivée. Une représentation

des graphes orientés est donnée dans la figure II-8.

o o®

Figure II-8. Exemple de graphe

Un graphe peut étre aussi représenté par une matrice d’adjacence. On définit alors la matrice
d’adjacence par : un élément de la matrice vaut 1 si I’arc existe et O sinon. Ainsi le graphe
précédent peut étre représenté par la matrice de la figure I1-9. Les sommets de départ sont en

ligne et les sommets d’arrivée en colonne.

1 2 |3 4
1 1 1 0 O
2 0 O 0 1
3 0 1 0 O
4 0 O 1 0

Figure II-9. Traduction en matrice d’adjacence
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Dans le cas d’un graphe non orienté, une liaison entre deux nceuds i et j implique que les
¢léments de la matrices d’adjacence d’indices ij et ji sont non nuls et identiques. La matrice

est symétrique.

Les matrices binaires de Warfield et Steward sont des matrices d’adjacence sauf qu’on
n’associe aucune signification aux ¢léments en diagonale (les boucles refléxives sont
interdites), c¢’est pourquoi ils sont soit laissés vides, soit noircis (éventuellement, on rappelle

le nom de I’élément sur la diagonale pour faciliter la lecture d’une matrice de grande taille).

Dans la littérature, les matrices binaires sont représentées généralement par une des formes

(équivalentes) illustrées sur la figure II-10.

A B C A B C
A B x AN o
B B x B o [ 1
c X [ ] c 1 o

Figure II-10. Deux formes de représentations binaires

Nous distinguons deux principales classes de matrices binaires :

e [a premicre classe correspond aux matrices symétriques, ¢’est-a-dire a des graphes non
orientés (tableau II-1). Ces matrices, les plus souvent utilisées, permettent de représenter
des interactions symétriques sans relation de hiérarchie ou de précédence entre les
constituants du systéme. Dans cette classe, deux blocs basiques permettent de modéliser
les interactions sous la forme matricielle : soit les éléments A et B sont indépendants,

soit ils sont couplés.

Matrices binaires symétriques

Relation Non couplé Couplé

-- .
Graphe --! t--

[a]
(B 1]
| |
A B‘ A B|
Matrice A _ ‘ A _ X |
a2l N |

Tableau II-1. Caractéristiques des matrices binaires symétriques

¢ [a deuxieme classe correspond a des matrices non symétriques et regroupe les graphes
orientés ou les interactions peuvent étre non symétriques et ainsi servir a modéliser des
relations de hiérarchie, de contrainte et de précédence entre les éléments d’un systeme.

Dans cette classe, trois blocs basiques (tableau II-2) permettent de modéliser les
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interactions sous la forme matricielle : soit les éléments A et B sont indépendants et
peuvent étre réalisés en parallele, soit I’un des éléments contraint I’autre (enchainement

séquentiel), soit les éléments se contraignent mutuellement (ils sont dits couplés).

Matrices binaires non symétriques

Relation Paralléle Séquentielle Couplé
A TS
LaHE.
B | (3]
A B

| | |

‘ A | B ‘ A B ‘

Matrice A . ‘ A . ‘ A . X ‘
HE R

Tableau II-2. Caractéristiques des matrices binaires non symétriques

2.4. Les Matrices Structurelles de Conception : DSM

DSM est I’acronyme de « Design Structure Matrix » ce qui est traduit par matrice structurelle
de conception. Dans la suite de ces travaux, nous allons utiliser le terme DSM pour faire

référence a une matrice structurelle.

Une DSM est un outil de modélisation, utilisé dans les projets de conception et dérivé des
matrices binaires avec I’introduction de nouvelles capacités et possibilités. Nous présentons
dans ce qui suit les fondements de cet outil matriciel et ses apports dans la modélisation des

domaines d’un projet.

2.4.1. Classification des DSM

Il existe deux classes de DSM, en lien avec la classification utilisée pour les matrices binaires.
On retrouve (figure II-11) ainsi la classe des matrices symétriques sous le nom de DSM

statiques et la classe des matrices asymétriques sous le nom de classe des DSM temporelles.

Les DSM statiques tirent leur nom du fait qu’elles sont utilisées pour matérialiser les
interactions entre les éléments d’un systeme, indépendamment du temps. Les deux
sous-classes les plus utilisées des DSM statiques sont les DSM Produit utilisées pour
représenter I’architecture des produits et les DSM Organisation (ou Acteurs) pour modéliser
I’organisation des acteurs dans un projet ou dans I’entreprise. Les DSM temporelles quant a
elles permettent de représenter les systemes dont les éléments sont liés par des relations de
précédence, qui peuvent étre des relations de précédence de type temporel (DSM Processus)

ou des relations de hiérarchie ou de contrainte (DSM Paramétres).
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Matrices Structurelles de
Conception (DSM)

Statiques Temporelles

DSM Produit DSM Organisation DSM Processus DSM paramétres

Figure II-11. Classification des DSM

2.4.2. Les DSM Temporelles

La terminologie exacte utilisée pour faire référence a la modélisation matricielle des systémes
hiérarchisés est « Dependency Structure Matrix », ce qui permet d’obtenir le méme acronyme
DSM.

Les deux sous-classes les plus connues des DSM temporelles sont les DSM processus et les
DSM parametres.

Les DSM Processus. Elles permettent de modéliser I’enchainement des taches de tous les
processus de I’entreprise. Dans 1’entreprise les taches déterminent principalement 1’allocation
des ressources et servent de base pour estimer la durée et le cotit du projet. C’est pourquoi les

deux grands domaines d’application des DSM temporelles sont :

e [’optimisation des processus du point de vue colt et délais : nous citerons les travaux
de Yassine et al. [2001] sur les probabilités de reconception, ceux de Carrascosa et al.
[1998] sur I’estimation des délais de conception et ceux de Browning et d’Eppinger

[2002] sur le lien entre le séquencement des taches et les cotits de développement.

e [’optimisation des processus pour la conception des équipes de conception : nous
citerons les travaux d’Eppinger et al. [1994], de Chen et Lin [2003], de Browning
[1999] et de Braha [2002].

Les DSM Paramétres. Elles ont été initialement utilisées pour modéliser les relations de
précédence et les contraintes entre les parametres et variables en conception. Elles

s’appliquent plus généralement a tous les systemes dont les éléments ne sont pas homogenes.

L’objectif général lorsqu’on analyse des DSM temporelles est de réorganiser les éléments en
ligne et en colonne de maniere a réduire les retours en arriere lorsqu’il s’agit de taches, ou
d’identifier une hiérarchie entre les éléments. Sur la figure II-12, si on considere que les
activités s’enchainent de A vers K, alors on remarque qu’il y a trois retours en arrieres (les

croix au-dessus de la diagonale).

Cette réorganisation est assurée par des algorithmes de séquencement et de partitionnement.
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ACTIVITES A B C D E F G H I J K
Recevoir spécifications A A

Générer concepts B X B

Concevoir les modéles C X X  C

Produire les modéles D X D

Développer programme de tests E X X X E

Tester les modeles F X X X F

Concevoir les plans G X X X X G X X
Concevoir les moules H X X X X H X
Concevoir les outils d’assemblage I X X 1
Fabriquer les moules J X J
Initialiser la production K K

Figure II-12. Exemple de DSM temporelle

Le partitionnement est le processus de réorganisation des lignes et des colonnes d’'une DSM
temporelle de sorte qu’on réduise les interactions représentant les retours en arriere. Cela
revient a rendre la DSM le plus possible triangulaire. Cependant cette action n’est pas
toujours synonyme de réduction de la durée globale du processus modélisé. En effet,
I’exemple en figure II-13 montre un processus composé de 7 taches dont les relations de
précédence sont modélisées par une DSM. La figure II-13(a) montre le résultat du
partitionnement qui a pour but de réduire les boucles en arriére, on remarque qu’on a
uniquement deux sauts en arriere de E vers A et de F vers C. On suppose que le processus en
question est fini lorsqu’on passe au moins une fois par toutes les tiches et que toutes les
taches ont des durées équivalentes, alors on obtient I’enchainement suivant (A, B, C, D, E, A,
B,C,D,E,F,C,D,E,F, G)avec 16 taches. On remarque alors, que plus les interactions sont

¢loignées de la diagonale, plus la boucle est grande.

Pour remédier a ces problémes d’allongement des processus, une alternative est de réarranger
les lignes et les colonnes des DSM temporelles de maniére a ce que les interactions soient les
plus proches de la diagonale. Ainsi, on augmente le nombre des boucles arricre, mais ces
boucles seront plus courtes. La figure 1I-13(b) montre qu’avec la deuxiéme technique de
séquencement, on obtient 4 boucles mais un processus plus court (A, E, A, E, D, E, D, B, D,
B, C, F, C, F, G) avec 15 taches.
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A B C D E F G A E D B C F G
A X A X
B X E X X
C X D X
D X B X
E X X C X X
F X X X F X X X
G X G X

(@) (b)

Figure I1-13. Deux résultats de partionnement d’'une DSM

2.4.3. Les DSM statiques

Les DSM statiques par opposition aux DSM temporelles permettent de modéliser d’une
maniere non hiérarchique les interactions entre les constituants d’un systéme, ce systéme

pouvant étre un produit ou une organisation.

Historiquement, les DSM statiques binaires ont été choisies [Kusiak et al., 1993] pour
modéliser I’architecture des produits et modéliser les interactions qui lient leurs composants.
Ces DSM sont binaires et permettent d’identifier I’existence ou non d’un type d’interaction
¢tudiée. Les DSM statiques binaires sont encore utilisées malgré 1’apparition des DSM

numériques [Bohm et al., 2004].

Une DSM Produit modélise les interactions entre les constituants d’un produit. Pimmler et
Eppinger [1994] proposent une taxonomie (tableau II-3) permettant de différencier les
différents types d’interactions. Cette taxonomie permet ainsi de construire des DSM produits
ou les cellules, autres que les diagonales, contiennent des vecteurs de dimension 4 contenant

des valeurs binaires.

Type de

Type d’interaction Explication
DSM L 2
Spatiale Lié a la propagation de contraintes physiques
Energie Lié aux flux d’énergie
Produit g &
information Li¢é au flux d’information
matériel Lié au flux de matiere

Tableau II-3. Taxonomie des interactions du Produit [Pimmler et Eppinger, 1994]

Dans le cadre de I’'lS, Meinadier [2002] justifie I’utilisation des matrices DSM auxquelles il
donne le nom de matrices de couplage et d’intégration, car elles permettent en effet de
représenter et visualiser facilement les interactions (de différentes natures) entre les
constituants. Elles sont utiles d’abord lors de la définition de I’architecture organique

(regroupement de modules, optimisation des couplages) et ensuite lors de I’intégration pour
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vérifier que les zones de couplages et les interfaces entre constituants sont bien réalisées et

vérifiées.

Avec une DSM « Organisation »'°, on modélise les interactions entre les acteurs dans une
équipe de conception. Parmi les travaux les plus récents utilisant les DSM Organisation
binaires, on citera ceux de [Sosa et al., 2004]. Dans ses travaux, Sosa propose la taxonomie

des interactions présentée dans le tableau I1-4.

Type de DSM Type d’interaction Explication
Qualité Lié aux type de moyens de communication (direct, mail, document, etc.)
Fréquence Li¢ a la fréquence des interactions
Acteurs
Direction Lié a ses des interactions
« Timing » Li¢ a la référence des interactions par rapport au projet

Tableau II-4. Taxonomie des interactions entre acteurs [Sosa et al., 2004]

2.4.4. Synthése sur les types de DSM
Le tableau II-5 résume les principaux types de DSM utilisées dans la modélisation de projet.

Type de DSM Représentation Application Méthode d’analyse

Produit Interactions entre composants Conception et architecture des systémes Clustering

. . Conception d’organisation, gestion des
Caractérisation des interfaces . . .
Acteurs interfaces entre acteurs, coopération et Clustering
entre acteurs . . .
collaboration, flux d’information

s Relations Input/Output entre Structuration des processus, planification .
Activités o . partitionnement
activités des projets
. Précédences et hiérarchies entre ”»
Parametres partitionnement

parametres

Tableau II-5. Récapitulatif des caractéristiques des DSM

Avant la numérisation proprement dite des DSM, nous avons assisté¢ a 1’utilisation d’une
forme intermédiaire entre les DSM binaires et celles numériques, il s’agit des DSM utilisant
une métrique discrete la plupart du temps basée sur une sémantique linguistique du genre
Faible, Moyen et Fort. Ainsi dans les travaux de Sosa [2005] on retrouve une métrique

utilisant les classes Fort, Faible et Nul.

2.5. Les DSM numériques

Dans les DSM binaires, un seul attribut est utilisé pour caractériser les interactions a
I’intérieur d’un systtme a savoir D’existence ou [’absence d’une interaction. Une
quantification des interactions modélisées dans les DSM permet de relativiser le poids des

interactions et ainsi d’augmenter la qualité informative des DSM.

' Terme anglo-saxon utilisé, nous le remplacons par Acteurs dans notre travail
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2.5.1. DSM temporelles numériques

Concernant les DSM temporelles, nous pouvons retenir les travaux d’Eppinger et al. [1994]

qui proposent de rendre numérique une DSM processus (Figure 11-4) en portant sur la

diagonale la durée de chaque tdche et en transformant la représentation binaire des

interactions en ¢valuation numérique du degré de dépendance entre les tdches (valeur

comprise entre 0 et 1).

Le traitement proposé par les auteurs est de simuler le partitionnement qui réduit la durée

totale du processus modélisé.

BCAKLJFIEDH®G

GIoOm-=-=T"crX®»00

Figure II-14. Exemple de numérisation des DSM temporelles [Eppinger et al., 1994]

La question qu’on peut se poser lorsqu’on veut faire évoluer le caractére informatif des DSM

binaires est : quels attributs rendre numériques ?

Dans la littérature, on trouve plusieurs méthodes de numérisation des DSM temporels. Dans

ce qui suit, nous allons passer en revue les plus connues :

Steward [1981] qui suggere d’utiliser des valeurs numériques pour caractériser 1’ordre
dans lequel les taches de retour en arriere sont traitées. La marque avec la plus haute

valeur est celle qui doit étre analysée en premier.

Yassine et al. [2001] qui proposent de quantifier le degré d’importance des interactions.
Une échelle linguistique est utilisée pour caractériser les interactions : 1 = importante,
2 = moyenne, 3 = faible dépendance. Dans ce cas, on obtient trois classes de

dépendance ordonnées selon leur degré d’importance.

On peut caractériser la force du lien de dépendance entre les taches, deux mesures sont
usuellement utilisées soit entre 0 et 1 [Eppinger et al., 1994], soit entre 1 et 10 [Yassine
et al., 2000]. L algorithme de partitionnement utilisé a pour but alors de minimiser une

somme globale des dépendances dans la DSM.

On peut caractériser le volume des flux d’information. L’algorithme de partitionnement

a les mémes objectifs que celui du cas précédent [Guivarch, 2003].
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¢ On peut caractériser la variabilité de I’information échangée. Cette mesure de variabilité
refléte ’incertitude sur les échanges d’information entre taches. Cette mesure peut étre
construite statistiquement ou évaluée subjectivement par les acteurs du projet [ Yassine,
2004].

¢ On peut caractériser la probabilité de répétition, ainsi une valeur numérique renseigne
sur la probabilité de causer des répétitions [Smith et al., 1997 ; Browning, 1998] [Cho
et Eppinger, 2001]

e (arrascosa et al. [1998] proposent de construire et de caractériser les couplages entre
taches par des probabilités, puis de provoquer des changements, ce qui représente une

vision plus large que le modéele présenté dans le point précédent.

Avant de définir les DSM statiques numériques, il est important d’ajouter que dans certains
travaux, nous trouvons une modélisation du domaine des activités et des taches par des DSM
statiques numériques [Chen et Lin, 2003]. L’objectif est alors d’identifier les regroupements

entre taches pour les affecter par la suite a des acteurs collectifs (des équipes).

2.5.2. DSM statiques numériques

Les travaux d’enrichissement de 1’outil DSM se sont intéressés tout d’abord aux DSM
temporelles, ce qui a ouvert la porte a la numérisation des DSM statiques et plus
spécifiquement a la numérisation des DSM Organisation. En effet, les premiers travaux sur la
numérisation des DSM statiques ont été réalisés par McCord et Eppinger [1993] et ont porté
sur la construction d’'une DSM acteurs en partant des taches que les acteurs réalisent. Ils
proposent alors de quantifier les couplages entre les acteurs en utilisant une DSM temporelle

numérique qui évalue I’intensité des dépendances entre les taches.

La formalisation de la numérisation des DSM organisation a été réalisée quand les premieres
taxonomies des types d’interactions entre acteurs ont été proposées, ces taxonomies servaient
de base pour la proposition de métriques. Morelli et al. [1995] ont utilisé la « qualité » comme
métrique pour qualifier les moyens de communications entre les acteurs. Les travaux les plus
récents quant a eux utilisent beaucoup plus la fréquence des interactions comme métrique
[Sosa, 2004].

Quant aux DSM produit, certains travaux pionniers dans la numérisation [Pimmler et
Eppinger, 1994] proposent une métrique discrete qui s’applique a tous les types d’interactions
identifiées. Cette métrique représentée dans le tableau II-6 classe les interactions en 5 types.
La DSM représentée dans la figure II-15 montre 1’'une des premicres applications des DSM

Produit numériques. Le produit en question est un moteur thermique.
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Type de DSM Type Métrique
Spatiale Nécessaire : (+2)  L’interaction est nécessaire pour le fonctionnement du produit
. Désiré : (+1)  L’interaction est bénéfique mais non absolument nécessaire
Energie
Produit Indifférent : (0) L’interaction n’affecte pas la fonctionnement du produit
information Non-désirée : (-1)  L’interaction affecte la fonctionnement du produit
mETaEl Nuisible : (-2)  L’interaction empéche le bon fonctionnement du produit

Tableau I1-6. Métrique pour les DSM Produit Pimmler et Eppinger, 1994]
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Figure II-15. Exemple de DSM Produit [Pimmler et al., 1994]

Une autre métrique trés répandue dans les DSM produit numériques, est celle qui utilise des
valeurs numériques réelles la plupart du temps positives (bornées ou pas) [Larses, 2005]
[Rodriguez-Torro, 2004] [Clarkson et al., 2004].

3. Modélisation par les DSM du produit et de I’organisation du projet

Dans notre démarche vers la proposition d’un outil d’identification des architectures du
produit et de I’organisation du projet, nous proposons d’utiliser 1’outil DSM et les MI pour
modéliser respectivement les interactions inter-domaines et les interactions intra-domaines
[Harmel et al., 2007]. Ce choix est justifié par le positionnement qu’on a fait concernant la

caractérisation des architectures par les couplages.

La classification anglo-saxonne des DSM statiques en DSM Produit et DSM Acteurs ne
reflete pas D’existence de deux formalismes différents mais seulement de deux cas

d’application.
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Dans notre travail, nous mettons beaucoup plus I’accent sur le fait que les DSM que nous
utilisons sont des DSM statiques utilisées pour capturer a un instant donné les interactions et
les couplages qui existent entre des éléments appartenant & un méme domaine ou a des

domaines différents.

Nous ferons remarquer au lecteur, comme nous l’avons souligné plus haut, que les DSM
Processus peuvent avoir deux représentations possibles : 'une est la DSM temporelle qui est
la plus usuellement utilisée. Dans ce cas, la finalité est d’identifier le meilleur séquencement
des taches pour satisfaire un objectif de réduction de durée, d’élimination de bouclage, etc...

I’autre est la DSM statique. Notre choix s’est porté sur cette dernicre possibilité.

Nous modélisons alors par ces outils matriciels les domaines du produit et de 1’Organisation
du projet (figure II-16). Concernant le Produit, nous définissons alors une DSM Fonctions
Systéeme (DSM FS) qui nous permettra d’identifier 1’architecture fonctionnelle du produit, une
DSM composant (DSM COMP) qui nous permettra d’identifier I’architecture organique du
produit et une matrice d’incidence liant les Fonctions Systéme et les composants (MI
FS-COMP) pour représenter les couplages entre les domaine fonctionnel et organique. Nous

reproduisons cette modélisation pour 1’organisation du projet.

DSM Produit DSM Organisation
du projet
é 2) Domaine des e 2
DSM MI processus MI
Fonctions FS-COMP Proc-Acteurs
Systémes <:l> DSM fonctionnelle
_ J Allocation & 4
Domaine des
acteurs
DSM
Composants
DSM organique

Figure II-16. Modélisation des domaines du produit et de I’organisation du projet

4. Syntheése

Dans ce chapitre, nous avons commencé par donner un aper¢u sur les méthodes de
représentation des architectures fonctionnelle et organique, nous avons ensuite approfondi la

présentation des outils matriciels : matrice d’incidence et DSM.

En cohérence avec notre choix d’étudier les architectures des domaines du produit et de

I’organisation du projet sur la base des couplages qui existent a I’intérieur et entre ces
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domaines, nous avons opté pour I’utilisation des outils matriciels qui formalisent la

représentation de ces interactions.

Nous introduisons dans le chapitre suivant les méthodes d’identification des architectures.
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CHAPITRE III

UN NOUVEL ALGORITHME DE CLUSTERING POUR
L’IDENTIFICATION DES ARCHITECTURES

Dans ce chapitre, nous proposons un nouvel algorithme de clustering'’ qui utilise le

formalisme de représentation matricielle pour mettre en ceuvre [’identification des
architectures des domaines du projet. Le principe retenu est d’utiliser les DSM en entrée pour
proposer des architectures cohérentes avec les définitions retenues des concepts de modules et

d’éléments intégrateurs, inspirées de la typologie d’Ulrich [1995].

Notre contribution concerne 1’amélioration d’un algorithme de clustering existant qui a servi
de référence a plusieurs travaux antérieurs. Dans ce chapitre, nous faisons une synthese sur les
différents types d’algorithmes qui existent et en particulier, sur ceux qui utilisent comme
donnée une DSM. Nous présentons brievement d’autres types d’algorithmes tels que les
Algorithme Génétiques (AG). Ensuite, nous détaillons 1’algorithme qui a servi de base et de
référence a notre travail. Nous proposons alors plusieurs améliorations de cet algorithme, a
partir de notre analyse bibliographique sur la conception modulaire et les indices de
modularité. Enfin, nous comparons 1’algorithme amélioré a I’algorithme de départ en utilisant
comme critéres la reproductibilité et la pertinence des résultats, en soulignant ainsi les gains

obtenus avec ’algorithme proposé.

' Nous utiliserons le terme anglo-saxon "clustering" qui signifie regroupement.
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1. Sur les algorithmes de clustering

Le « clustering »'* fait référence au classement d’objets dans différents groupes, plus
précisément au partionnement des données en paquets homogénes qu’on appelle « cluster »"°.
Les objets appartenant a un cluster partagent des caractéristiques communes, qui
correspondent le plus souvent a des critéres de proximité que 1’on définit en introduisant des
mesures de distance. Selon Hartigan [1975], « le but originel du clustering est de trouver des
similitudes entre éléments afin de les grouper ensemble en se basant sur un seuil de

ressemblance ».

Il y a plusieurs méthodes pour mettre en ceuvre le clustering, par exemple : les coefficients de
similarité¢ [Bezdek et Pal, 1992], le tri, ’optimisation de cotts [Idicula, 1995 ; Fernandez,
1998 ; Thebeau, 2001], I’itération et les algorithmes génétiques [Kusiak et al., 1993 ; Rogers
et McCulley, 1996 ; Yu et al. 2003].

On classe les algorithmes de clustering en algorithmes hiérarchiques ou de partionnement. Les
algorithmes hiérarchiques identifient les clusters en utilisant ceux qui sont identifiés a 1’étape
précédente. Les algorithmes de partionnement trouvent directement tous les clusters, mais

pour ces algorithmes, le nombre de clusters est fixé (méthode K-means).

Les algorithmes hiérarchiques peuvent procéder de deux manieres différentes : soit par des
agrégations successives, c’est la méthode Bottom-Up, soit par division, c’est la méthode

Top-Down.

Toutes ces méthodes nécessitent des mesures de distance ou de ressemblance pour
caractériser les clusters. Ces métriques se basent sur les attributs des objets pour proposer une
« fonction objectif »'* de la distance. Plusieurs travaux sur les métriques de distances et les

algorithmes de clustering existent, les pionniers étant Alexander [1964] et Hartigan [1975].

Dans ce travail, nous n’allons pas approfondir I’étude des métriques et des fonctions
objectives qui définissent les algorithmes de clustering et ce pour deux raisons principales :
d’abord a cause de leur grand nombre, ensuite a cause de leur diversité liée aux types de

probléme, a leur complexité et aux types d’algorithme de clustering.

"2 http://en.wikipedia.org

" Nous utiliserons dans la suite de ce document les termes "cluster" et "module" comme synonymes mais nous privilégierons le terme

francophone.

'* En recherche opérationnelle, le terme retenu est aussi "fonction coiit". Il s’agit de la fonction qu’il s’agit d’optimiser.
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1.1. Le clustering des DSM

La plupart des algorithmes de clustering n’utilisent pas les DSM comme moyen de
représentation des données, mais plutdt les graphes et les hypergraphes. Cependant, les DSM

offrent principalement deux avantages :

¢ Les DSM sont modélisées par une forme mathématique (les matrices) qui facilite la

mise ceuvre des algorithmes de clustering.

e Les DSM facilitent la mise en ceuvre d’une méthode de modularisation cohérente avec
notre définition d’un module (pour rappel, un module est un ensemble d’éléments

fortement li€s entre eux et faiblement liés a d’autres ¢léments externes au module).

Les DSM sur lesquelles on peut appliquer des algorithmes de clustering sont les DSM
statiques. Les travaux relatifs au clustering des DSM statiques sont dans une grand majorité
issus du MIT (Massachusetts Institute of Technology) et plus précisément des départements
d’ingénierie mécanique et du centre international pour la recherche sur le management des
technologies, ce dernier réalisant le transfert des technologies issues du MIT vers 1’industrie.
Les premiers travaux sur le clustering des DSM se situent en 1995 quand Idicula [Idicula,
1995] a soutenu une these, encadré par Eppinger. L’algorithme de clustering développés par
Idicula a été ensuite repris et amélioré successivement par Fernandez [1998] et Thebeau
[2001]. L’algorithme proposé dans ces travaux repose sur une méthode hiérarchique

Bottom-Up par optimisation de cofit.

D’autres méthodes de clustering des DSM existent. La plus connue aprés la méthode
d’optimisation de colt est le clustering par des algorithmes génétiques [Yu et al., 2003]
[Whitfield et al., 2002].

La méthode de clustering adoptée dans ce travail s’appuie sur l’algorithme initialement
développé par Idicula. Avant d’approfondir cette méthode de clustering, nous allons présenter
succinctement 1’autre méthode de clustering, a savoir le clustering par des algorithmes

génétiques.

1.2. Le clustering des DSM par les algorithmes génétiques

En dépit du grand nombre d’applications des algorithmes génétiques (AG) dans les problémes
d’optimisation, les travaux de recherche utilisant les AG dans les problémes de clustering des

DSM sont peu nombreux.

Des travaux récents existent pour le traitement des DSM temporelles, dont I’objectif est
d’optimiser le séquencement et 1’enchainement des taches [Altus et al., 1996], [McCulley et
al., 1996].

L’utilisation des algorithmes génétiques dans les problemes de clustering des DSM est encore

plus récente. Nous pouvons mentionner les travaux de [Demeriz et al., 1999], de [Whitefield
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et al., 2002] et de [Yu et al., 2003 ]. L’algorithme utilisé dans ces deux derniers travaux est
celui de Goldberg [1989]. Cependant plusieurs modifications ont été introduites, que ce soit

au niveau des fonctions objectives ou sur les procédures régissant le fonctionnement de I’AG.

Il faut noter cependant que Whitfield n’a pas utilisé¢ directement I’AG pour proposer des
architectures modulaires mais pour tester ces architectures en adoptant la métrique MSI
(paragraphe 3.8 du chapitre I). Concernant Yu, il a utilisé un formalisme complexe qui est tres
peu référencé dans notre domaine. Ce formalisme est connu sous le non de « longueur
minimale de description » (en Anglais, Minimum Description Length) dont la publication de
référence est [Rissien, 1978]. D’un autre coté, I’AG de Yu a été utilisé uniquement sur des
DSM binaires avec des contraintes bien spécifiques et il n’y a pas, a notre connaissance, de

travaux plus récents permettant 1’extension des AG aux DSM numériques.

1.3. Syntheése sur les algorithmes de clustering

Notre principal objectif n’était pas le développement d’un algorithme de clustering mais
d’une méthode d’identification des architectures des domaines du projet. Dans un premier
temps, nous avons donc opté pour l’'utilisation d’un algorithme de référence, connu pour
donner de bons résultats : I’algorithme d’Idicula [Idicula, 1995]. De plus, cet algorithme a
déja fait I’objet d’analyses et d’études contradictoires, qui ont mis en évidence ses avantages
et ses limites. Par la suite, aprés une période d’utilisation de cet algorithme et apres analyse
des indices de modularit¢ proposés dans la littérature, nous avons remarqué que des

améliorations significatives de cet algorithme étaient possibles.

La partie suivante (partie 2.) présente I’algorithme qui nous sert de référence. Ensuite, nous
proposerons une adaptation de cet algorithme (partie 3.) ainsi qu’une comparaison mettant en

évidence I’amélioration obtenue.

2. L’algorithme de référence de Idicula (1995)

Idicula [1995] s’est intéressé a deux problémes rencontrés en ingénierie concourante et liés
aux taches de conception. Le premier probléme était « d’identifier I’ensemble de taches
interdépendantes dans un processus de conception». Le second avait pour sujet «la
détermination des groupements des taches interdépendantes ». L’algorithme proposé par
Idicula pour le deuxieme probleme est un algorithme de clustering hiérarchique du type
Bottom-Up qui groupe « les taches de conception dans des modules qui sont faiblement
couplés entre eux, alors que chaque module est compos¢ de taches fortement couplées ».
Notons qu’ldicula s’intéressait aux couplages entre tdches (et aux colts de coordination

associés) mais sans introduire 1’aspect temporel : il traitait donc bien des DSM statiques.

Pour identifier ces modules, Idicula a utilisé un algorithme stochastique qui recherche

itérativement a réduire la valeur d’une « fonction objectif » qu’il appelle « colt total de
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coordination ». L algorithme peut étre configuré de différentes facons pour produire différents

groupements.

2.1. La méthodologie de I’algorithme

Nous allons présenter maintenant la méthodologie de 1’algorithme dans sa derni¢re version
avec les améliorations apportées par Fernandez [1998] et Thebeau [2001]. Précisons que
Fernandez et Thebeau ont travaillé respectivement sur des DSM acteurs et des DSM
composants mais ils ont conservé la méme dénomination de la « fonction objectif »,
c’est-a-dire colt total de coordination. Dans la présentation de 1’algorithme développé par les

chercheurs du MIT, nous conserverons leurs notations.
La méthodologie de I’algorithme peut étre résumée de la fagon suivante (Figure III-1) :

¢ En premier, faire de chaque élément de la DSM un module et calculer un coft total de

coordination.

¢ Ensuite, un ¢élément est choisi aléatoirement et il est assigné a un module qui a présenté
la plus forte enchére pour prendre cet élément. Si le fait de créer ce nouveau module
réduit le colt total de couplage, alors le module est accepté. Les modules vides, les
modules en doublon et les modules contenus enticrement dans d’autres modules sont

supprimes.

e [ ’algorithme répete ce processus jusqu’a ce qu’on n’obtient plus aucune amélioration

du cot total de coordination.

e [l y a plusieurs dispositifs aléatoires implémentés dans 1’algorithme qui permettent la
formation de modules, méme s’ils ne présentent pas « les interactions les plus fortes »
ou une amélioration du colt de coordination. Cet aspect aléatoire permet a 1’algorithme
de couvrir au maximum 1’espace des solutions admissibles, de sortir d’optima locaux et
ainsi d’obtenir les solutions finales avec le colt total de coordination « le plus bas

possible »"°.

Un organigramme de 1’algorithme est présenté dans la figure III-1. Les caractéristiques les

plus importantes de 1’algorithme sont incluses dans 1’organigramme.

' Cette exploration de I’espace des solutions ne peut pas garantir 1’atteinte d’un optimum mais la procédure du recuit simulé, que nous
détaillerons par la suite, est réputée pour permettre de trouver de bonnes solutions, avec des temps de calcul limités.
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INITIALISER
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Régler le systéme sur instable

A 4
CHOISIR UN ELEMENT
Distribution aléatoire

~——

( CALCULER ENCHERES ]  (METTRE A JOUR MODULES
Supprimer les modules vides,
[ CHOISIR MEILLEURE } en copie ou inclus dans d’autres

ENCHERE Régler le systéme sur instable

Ou la deuxieme tous les A
rand b1d fois

CALCULER LE NOUVEAU
COUT TOTAL

AMELIORATION
Dans le cofit ?

Oul
METTRE A JOUR

Une fois tous les
rand_accept fois ?

LE SYSTEME EST-IL
STABLE ?

( AFFICHER LES MODULES ]

Figure III-1. Organigramme de I’algorithme [Fernandez, 1998]

Il y a quatre points importants qui font la spécificité de cet algorithme :

e [a fonction d’enchére qui permet a un module de tester le colit de I’incorporation d’un

¢lément ;

e [a « fonction objectif » qui exprime le colit de coordination de ’architecture testée et

qui garantit I’obtention de I’architecture la plus adaptée en minimisant ce colt ;

e [Le recuit simulé qui permet a 1’algorithme de sortir du chemin d’un optimum local pour

trouver une architecture qui minimise le cotit de coordination ;

e [l permet aussi a un élément d’appartenir a plusieurs modules et s’oppose de ce fait a la

pratique commune de ne faire appartenir un composant qu’a un seul et unique module.
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2.1.1. La fonction d’enchére

L’algorithme choisit aléatoirement et donc équiprobablement un élément. Une fois que
1I’é1ément est choisi, I’algorithme calcule une enchére de chaque module. Une telle enchére est
une mesure de la fagon dont les membres « forts » d’un module interagissent avec 1’élément

choisi. L’équation III-1 montre la forme exacte de la fonction d’enchere.

e o5001)+ DM xcL_sare )

Bid(cluster, ,element,) = : 5 Eq. 111-1
= cl _size(k)
Avec:
Bid(cluster, ,element,)  Est l'enchére du module k envers I’élément i.
DSM (i, j) Est la valeur de ’interaction entre i et j dans la matrice.
size Est la taille de la DSM, cad le nombre d’éléments composant le domaine.
cl _size(k) Est le nombre d’éléments contenus dans le module k.
pow _dep Contréle I'importance donnée aux interactions fortes relativement aux
interactions faibles. Une grande valeur augmente cette différence.
pow _bid Contréle la valeur de [’enchere relativement a la taille des modules. Une

grande valeur décourage la formation de grands modules et encourage la
formation de modules de la méme taille.

CL MAT(k, ) C’est une variable binaire. Il prend 1 quand [’élément j est dans le module
k.

2.1.2. La fonction Coiit

La fonction « cott total de coordination » est 1’agrégation des cofits de coordination de toutes
les taches. Dans ’algorithme de référence, I’auteur distingue deux situations différentes pour

le calcul du colt de coordination entre les taches.

Premiére situation : si les tache i et j interagissent et si cette interaction est incluse dans un
module — autrement dit, i et j appartiennent au méme module, c’est alors I’équation I1I-2 qui

s’applique pour calculer le cotit de coordination '°:
Cotit de Coordination(Tdchei, Tdche, ) = (DSM(i, j)+ DSM{(},i))x (cluster(i, j)”ow—w) Eq.I11-2

Seconde situation : si les tdches i et j n’appartiennent pas au méme module, c’est alors

I’équation I11-3 qui s’applique :

Coiit de Coordination(T dche,,Tdche, )= (DSM (i, j)+ DSM(,i))x (sizep o ) Eq.I11-3

'® Nous conservons ici la dénomination utilisée par les chercheurs du MIT.
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On peut vérifier qu’une interaction nulle induit un coit de coordination nul. Le cott total de
coordination est alors la somme des coits de coordination de toutes les interactions
(Eq.III-4) :

size size
Coiit Total de Coordination = ZZ Coiit de Coordination(T dche,,Tache ].) Eq.111-4

i=1 j=l

Avec:

cluster(i, J) Est la taille du module qui contient i et j .

pow _cc Est le parametre qui controle la pénalité assignée a la taille des modules dans le coiit.

L’algorithme d’Idicula sélectionne d’une maniére aléatoire une tache et calcule des encheres
pour les différents modules. L’enchére la plus élevée est choisie, la tiche est alors associée a
ce module et on calcule le nouveau cot total de coordination. S’il y a amélioration du coft
alors la tache est incluse dans ce module. Ce processus se poursuit d’une maniere itérative et
se termine lorsqu’aucune amélioration du colt de coordination ne survient, pendant un

« certain » nombre d’itérations (parametre a fixer).

2.1.3. Le recuit simulé

Dans deux étapes de I’algorithme, la décision portant sur le choix de 1’étape suivante n’est pas
déterminée par les résultats obtenus mais par un processus aléatoire. Ce type de processus est
connu sous le nom de « Simulated Annealing » qui en frangais est traduit en « Recuit

Simulé ».

Le Recuit Simulé est un méta-algorithme probabiliste générique, il permet de réaliser une
bonne approximation de I’optimum global d’une « fonction objectif » dans un grand espace
de définition. Il a été développé parallelement par Kirkpatrick, Gelatt et Vecchi [Kirkpatrick
et al., 1983], et par Cerny [1985].

La dénomination de cet algorithme est inspirée de la métallurgie, ou on répéte cycliquement la
chauffe et le refroidissement d’un métal pour augmenter la taille de ses cristaux et réduire ses

défauts.

Le principe de 1’algorithme est le suivant : I’algorithme est initialisé avec une solution prise
au hasard. A chaque itération, il modifie 1égérement la solution pour essayer d’améliorer la
« fonction objectif ». Des sauts aléatoires sont introduits pour permettre de sortir d’optima
locaux, et donc accepter des solutions méme si elles n’améliorent pas la « fonction objectif ».
Des conditions d’arrét de 1’algorithme sont définies pour limiter la durée d’exploration de
I’espace de solutions. La solution obtenue est généralement de bonne qualité (voire optimale),

méme si ['utilisateur n’a pas de garantie d’optimalité.
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En incorporant ce méta-algorithme dans un algorithme de clustering, nous créons une
divergence dans le processus de décision qui permet a 1’algorithme d’atteindre des solutions

qu’il n’aurait pas pu atteindre normalement.

Les parametres rand bid et rand accept contrdlent ces deux étapes dans 1’algorithme. Le
premier affecte la probabilité de choix de la meilleure enchére et laisse la possibilité a d’autres
modules de tenter d’optimiser la « fonction objectif ». Le parametre rand accept quant a lui
controle la probabilité qu’un module soit modifié bien qu’aucun changement dans la
« fonction objectif » ne soit réalisé. Dans les deux situations, ce processus de saut introduit
des modifications aléatoires dans la progression de 1’algorithme, ¢’est-a-dire dans la recherche
de la meilleure solution. De plus, ces sauts nous garantissent 1’exploration par ’algorithme
d’un espace de solutions plus grand, ce qui évite d’étre piégé dans une solution localement

optimale.

La figure III-2 montre I’historique des cofits calculés a chaque boucle de I’algorithme.
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Figure III-2. Exemple de I’historique du Coiit Total

Nous remarquons a travers cette figure que le recuit simulé a permis de relancer 1’algorithme
trois fois vers des architectures qui n’améliorent pas le cotit. Ceci a eu pour résultat d’aboutir

a une architecture qui a un plus faible colit que les autres optima locaux.

Apres avoir résumé la méthodologie de 1’algorithme de référence et ses points forts, nous
allons présenter dans le paragraphe suivant les parametres qui permettent de contrdler le

fonctionnement de 1’algorithme.

2.2. Les données d’entrée et les parameétres

Les données et les parametres passés a [’algorithme déterminent le comportement de
I’algorithme et le type de résultat obtenu. Une DSM numérique, listant les interactions entre
les éléments d’un domaine et évaluant 1’intensité de ces interactions, structure nos données
d’entrée. Les parameétres déterminent la fagon dont 1’algorithme explore et trouve une

solution.
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Les auteurs successifs qui ont travaillé sur cet algorithme font remarquer que I’intensité
relative des interactions peut influencer le résultat du clustering, spécialement pour les cas ou

la métriques utilisée est discrete et repose sur deux ou trois valeurs possibles.

Par exemple s’il y a seulement deux niveaux d’interaction : Fort et Faible, I’utilisateur devrait
décider si deux interactions faibles additionnées ensemble sont plus, moins ou aussi
importantes qu’une unique interaction forte. Ainsi, différents cas de figure sont possibles sur
I’importance relative des intensités. Par exemple, cas 1 : Faible=3, Fort=10 ; cas 2 : Faible=5,
Fort=10 ; cas 3 : Faible=7, Fort=10. Les auteurs précisent alors que pour une méme DSM,
avec ces trois configurations, on peut obtenir trois architectures différentes. Il y a huit
parametres différents employés pour commander et contréler I’algorithme. Ce sont tous des
nombres entiers positifs. Ici nous présenterons brievement ce qu’ils contrdlent et comment ils
peuvent étre utilisés pour influencer les résultats de 1’algorithme. Le choix de la valeur de
certains parametres peut « favoriser » 1’obtention d’un certain type de solution, ce qu’il est

nécessaire de rappeler ici. Nous rappelons dans le tableau III-1, les parameétres passés a

’algorithme.
size Est la taille de la DSM, cad le nombre d’éléments composant le domaine.
pow_cc Controle la pénalité assignée a la taille du module dans le coiit de couplage.
. Est semblable au précédent, sauf qu’il est utilisé dans la fonction d’enchere qui sera
o expliquée ultérieurement. Les valeurs usuelles sont entre 0 et 3.
L Est aussi utilisé dans la fonction d’enchére. Les valeurs usuelles sont entre 0 et 2, les

valeurs les plus élevées mettent en avant les interactions fortes.

Empéche la formation de modules contenant plus que max_Cl_size éléments. Si
max_Cl_size [utilisateur désire restreindre le nombre d’éléments dans un module, ce parametre
doit étre ajusté a la valeur désire.

Impose a [’algorithme de faire un changement tous les « rand_accept » itérations,
rand_accept méme si aucune amélioration n’a été obtenue dans le coiit de couplage. On a utilisé
des valeurs entre 0.5*size et 2*size.

Impose a [’algorithme de prendre la seconde plus haute enchére chaque

rand_bid S s . .
- « rand_bid » itérations. On a utilisé des valeurs entre 0.5 *size et 2*size.
Détermine le nombre de fois (en fait, (timesXsize)) que [’algorithme essaiera de
times sélectionner un élément et de créer un module avant de vérifier la stabilité du

systeme.

Détermine une condition d’arrét de [’algorithme. (stable limit X (times Xsize))
stable_limit  itérations pourront étre réalisées sans amélioration dans le coiit de couplage avant
de prendre la décision de stopper [’algorithme.

Tableau III-1. Les parametres de I’algorithme initial
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Le tableau III-2 donne un apercu des valeurs utilisées par Fernandez [1998] et Thebeau

[2001] dans leurs applications.

Parameétres Fernandez Thebeau

size 23 61
pow_cc 2 1
pow_bid 2 1
pow_dep 2 4
max_Cl size 23 61

rand_accept 23 122

rand_bid 10 122
times 2 2
stable limit 2 2

Tableau III-2. Initialisation des paramétres dans I’algorithme original

Le parametre pow_cc pénalise la taille du module dans le calcul de cofit. On a remarqué que

les valeurs plus grandes que 2 ne modifient pas le clustering obtenu.

Le parametre pow_bid est initialement fixé a zéro ce qui a pour conséquence de ne pas
pénaliser le module a cause de sa taille dans le processus d’enchére. Une valeur non nulle

favorise les modules avec une grande taille dans le calcul des encheres.

Le parametre pow_dep permet de favoriser les interactions fortes durant le processus

d’enchere.

La partie «simulated annealing » de 1’algorithme de clustering utilise les paramétres
rand_bid et rand accept, qui spécifient le nombre de fois que 1’algorithme pourra faire un
changement non optimal. Des résultats expérimentaux ont permis de mettre en évidence que
des valeurs égales a la dimension du domaine (size) permettent d’obtenir des résultats

satisfaisants.

Concernant les parameétres times et stable_times, elles ont été fixées a 2. L’expérience a

montré que ces valeurs sont suffisantes pour obtenir les meilleurs résultats.

2.3. Simulation de I’architecture optimale

L’algorithme de clustering présenté dans cette partie est un algorithme hiérarchique du type
bottom-up. Il procede par agrégations successives pour identifier I’architecture optimale.
Cependant, cet algorithme ne permet pas les retours en arriere, dans le sens ou on ne peut pas
défaire un module pour en créer un autre. Il peut dupliquer un élément et le faire appartenir a
plusieurs modules, si cela présente un avantage pour le colt total. On peut enregistrer les

architectures simulées, pour retenir la meilleure a la fin de I’algorithme.

Cette caractéristique fait que ’algorithme ne suit pas d’une maniere déterministe le chemin

qui mene a la solution optimale. De ce fait, il peut proposer des architectures non optimales.
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Pour remédier a ce probléme, les auteurs proposent de simuler plusieurs fois le clustering
d’une DSM donnée. On obtient alors avec des fréquences variables (selon la taille et la
densité de la DSM) une architecture minimisant le cofit total, parmi d’autres dont les cofts

sont supérieurs.

Il n’est pas possible de vérifier si I’architecture avec le colt minimal est celle qui réalise
effectivement I’optimum global du probleme. En effet, si on considére une DSM de
dimension 13 avec trois modules (I’arrangement des éléments dans un module n’affecte pas le
cotit) de taille 6, 4 et 3 alors il y a 60060 architectures possibles. Cependant, le nombre de
modules n’étant ni fixe, ni connu a I’avance, on a alors comme valeur supérieure du nombre

d’architectures possibles le nombre de permutations. Ce nombre dépasse les 9 milliards.

Dans la suite de nos travaux a chaque fois que nous ferons référence, par abus de langage, a
I’architecture optimale, au colit optimal ou a la solution optimale, il faut comprendre que nous
faisons référence a la solution proposée par 1’algorithme et non a la solution optimale du

probleme.

3. Proposition d’un nouvel algorithme de clustering

Dans ce qui suit, nous allons présenter I’algorithme de clustering amélioré et son

fonctionnement.

L’algorithme utilisé se base sur 1’évaluation des couplages entre éléments d’un méme
domaine pour générer d’une maniere systématique des groupements en modules de ces
mémes éléments en optimisant une « fonction objectif ». Il ne gére que les valeurs positives

des couplages.

Nous avons réutilisé la méthodologie de 1’algorithme d’Idicula, mais nous avons opté pour
une dénomination plus générique de la « fonction objectif » indépendante du domaine étudié,

a savoir : « colt total de couplage ».

L’algorithme d’Idicula permet de produire d’'une maniére stochastique des modules a partir
d’une DSM. Cependant, cet algorithme est lourd a utiliser et les parameétres de controle sont

trop nombreux pour permettre de trouver une combinaison optimale.

Dans notre démarche d’amélioration de 1’algorithme de référence, nous avons intégré des
notions fondamentales de 1’architecture modulaire afin d’orienter le fonctionnement de

I’algorithme.
Les modifications que nous avons apportées concernent cing points spécifiques :
e [.a fonction d’enchére,

¢ [a « fonction objectif »,
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e [ e recuit simulé,
¢ [’identification des éléments intégrateurs,

e Et les parametres de fonctionnement.

3.1. La fonction d’enchére

La fonction d’enchére a un role trés important dans 1’optimisation de [’algorithme de
clustering que nous proposons. C’est la fonction d’enchére qui nous permet d’associer a un
élément un module bien précis qui peut accepter favorablement ce nouvel élément. On peut
aisément comprendre que sans la fonction d’enchere, 1’algorithme de clustering devient un

algorithme d’exploration aléatoire.

En effet, apres la sélection aléatoire d’un élément (élément,;), la fonction d’enchére (que nous
appelons enchére, Cf Eq. 111-5) évalue pour chaque module M; I’intérét d’intégrer cet élément.

Le module qui propose la meilleure enchere est présélectionné et le nouveau coft total est
alors calculé. Nous avons adopté la fonction d’enchere suivante :

enchere (M j,élémenti)z CM ( { M ;3 €lément, } )— CM (M j) Eq.I11-5

Avec CM, une fonction qui calcule la Cohésion d’un Module donné. Cette fonction est proche
des mesures IM et ARP utilisées par [Blackenfelt, 2000]. Cette formulation permet de

favoriser la mise en place d’une architecture modulaire.

L’expression de CM est donnée dans 1’équation II1-6.

exp_int
[Z z ( DSM (i, j)+DSM(j,i) )J
CM(M,)=~EM = : Eq.I11-6
. exp_taille
( lallle(Mk) )
Avec
. Est une fonction qui donne le nombre d’éléments qui compose un module donné M. Cette
taille(M) S , . , . oL
fonction était appelée cl_size dans [’algorithme initial.
DSM(i,j) Est la valeur du couplage entre [’élément i et [ 'élément j. A noter : quand i=j, DSM(i,i)=0,
P carla diagonale de la DSM n’a aucun sens.
. Est un parameétre qui permet d’ajuster ['importance des interactions au sein d’un module
exp_int . : ;
dans la fonction d’enchere
i) il Est un parametre qui permet d’ajuster ['importance de la taille des modules dans la

fonction d’enchere.

Afin d’expliquer le comportement de la fonction d’enchére, nous allons considérer un
exemple didactique. Nous considérons une DSM de dimension 6, décrite dans la figure I1I-3.

L’architecture représentée correspond a 1’étape ou les modules I=(A, B, C) et II=(D, E) vont
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proposer une enchere pour 1’élément F. Nous avons fixé arbitrairement, pour cet exemple,

exp _inta2etexp tailleal.

A 5 4 2
IE 3

c 4 3 5
- 5 1
E 5 7
2 B B

A B C F D E A B C F D E
A 5 4 2 A 5 4 2
B 5 3 B 5 3

C 4 3 5 C 4 3 5

F 2 5 1 7 F 2 5 1 7
D 1 5 D 1 5
E o 5 E 75

Figure I11-4. Architecture visée pour chaque enchére

On obtient enchére (I,F)=169 et enchére (II, F)=175.33. Donc c’est le module II qui

remporte les enchéres. Ainsi la fonction d’enchere agit comme une mesure de I’évolution de

la densité d’un module entre I’avant et 1’aprés de 1’incorporation d’un nouvel élément.

La fonction d’enchere proposée ne prend en compte que les interactions internes au module,
elle favorise donc la création de modules qui présentent une forte cohésion entre les éléments

qui les composent.

3.2. La fonction Coiit Total de Couplage

L’algorithme est construit autour d’une « fonction objectif » appelée le colt total de couplage.
Cette fonction a pour but de faire correspondre notre vision de I’architecture d’un systéme a la
formulation mathématique qu’elle utilise. Ainsi, le but est de transcrire les observations

suivantes dans une formulation mathématique :

e Le temps ou le colit de traitement d’une interaction est proportionnel a I’importance de
cette interaction. Une interaction importante ou plus fréquente exige plus d’attention,
plus de ressources, ou plus de travail des concepteurs. Par conséquent, un couplage avec

une valeur plus élevée aura un colit de couplage plus élevé.

e Nous supposons ici que dans une architecture modulaire, un élément appartenant a un

module est fortement couplé aux autres éléments de ce module, alors qu’au méme
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moment, cet ¢lément est faiblement couplé a ceux appartenant a d’autres modules.
Drailleurs, un élément intégrateur est un élément qui ne peut appartenir a aucun module

puisqu’il est couplé a beaucoup d’éléments appartenant a différents modules.

e Lorsque la taille d’un module est importante, il devient difficile et coliteux a concevoir a
cause de sa complexité. De plus, il est moins ais¢ a standardiser. Nous considérons alors
que le colit de couplage d’une interaction est une fonction croissante de la taille du

module qui la contient.

e Lorsqu’une interaction lie deux €léments appartenant a deux modules différents alors le
cout de spécification/définition de cette interaction dépend de la taille des deux modules
qu’elle rapproche. Cette remarque est a I’origine de 1’évolution du colit de couplage que

nous proposons par la suite (Cf Eq.III-8).

Pour obtenir I’expression finale du coft total de couplage, nous avons procédé en deux
temps :

e Dans un premier temps, a I’image de la proposition d’Idicula [1995], nous avons
construit deux fonctions complémentaires du colt de couplage : 'une pour caractériser
les interactions internes a un module et I’autre pour caractériser les interactions externes

a ce module.

¢ Dans un second temps, nous avons essay¢ d’améliorer 1’efficacité des ces fonctions en

les couplant a des métriques de modularité.

Pour chaque interaction dans la matrice DSM, [’algorithme initial calcule un colit de
couplage. Ensuite, la somme de tous les colits de couplage donne le cot total de couplage.
Les équations Eq.III-7 et Eq.III-8 montrent les colits de couplage pour une interaction.

Si les deux éléments 1 et j appartiennent au méme module k (A7), alors :
Coit Couplage (i, j)=(DSM(i, j)+ DSM(,i))x (taille(M,))’ Eq.I11-7

Sinon, si aucun module ne contient les éléments 1 et j, alors il existe deux modules M;> et M
qui contiennent respectivement les éléments 1 et j. Le colit de I’interaction entre les éléments 1

et j s’écrit alors :
Coit Couplage (i, j)=(DSM (i, j)+ DSM (j,i))x (taille(DSM )+ taille(M, )+ taille(M , )} Eq.I11-8

L’équation III-9 résume I’expression du cofit total de couplage. C’est cette fonction que

I’algorithme a pour objectif de minimiser.

Coiit Total Couplage = ZZ Coiit Couplage (i, j) Eq.IT1-9
i
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Les trois formulations précédentes des colts de couplage peuvent étre réécrites en adoptant
comme référence les modules. On peut formuler alors une fonction de colt de couplage, soit

interne, soit externe a un module k, My (Eq.III-10 et ITI-11).

Cout Couplage Interne(Mk )= Z Z(DSM(i,j)+ DSM(j,i))X( taille(Mk) )2 Eq.I1I-10

ieMk jeMk,j¢i

Coiit Couplage externe(M, )= z Z l(DSM(i, j)+ DSM(}j,i))x (taille(DSM) + taille(M, )+ taille(Mm )’ J

[eMk szk,jeMm

Eq.III-11
Alors le Cott Total de Couplage peut s’écrire sous la forme présenté dans I’équation I11-12.

Module.
Coiit Total Couplage = Z(Coﬁt Couplage Interne(M, )+ Coiit Couplage Externe(M, ))
My
Eq.III-12
Dans un second temps, nous avons voulu améliorer la fonction de colit proposée pour mettre

I’accent sur deux caractéristiques d’une architecture modulaire :
¢ Un module est le groupement d’éléments interagissant fortement entre eux

e Les ¢léments appartenant a un module interagissent faiblement avec les éléments

appartenant a d’autres modules.

A la lumiere de ces deux remarques, nous avons opté pour une adaptation de I’indicateur MSI
proposé par [Whitfield et al., 2002] (page 44). L’indicateur MSI se compose de deux parties,
MSIi et MSle.

La partie MSIi (pour indicateur MSI interne) prend en compte les interactions internes a un
module et donne de ce fait une mesure de la cohésion et de la robustesse (Strength) interne du

module.

La partie MSIe (pour indicateur MSI externe) prend en compte les interactions externes qui
lient les éléments appartenant au module aux autres éléments externes au module, ainsi MSle

mesure la force des interactions externe au module.

Il apparait a travers les deux définitions que MSIi et MSle sont deux indicateurs antagonistes.

C’est pourquoi I’indicateur MSI s’écrit comme la différence des deux.

Dans notre travail, nous n’allons pas utiliser directement 1’indicateur MSI, mais une forme
dérivée des deux indicateurs MSIi et MSIe. Alors que ces deux indicateurs originaux tiennent
compte de l’intensité¢ des interactions, les indicateurs que nous proposons tiennent compte
uniquement de 1’existence ou non des interactions. On obtient alors les indicateurs MSIi’ et
MSIe’ présentés en Equation II1-13 et I1I-14.

84



Un nouvel algorithme de clustering pour I’identification des architectures

> D686, ))
MSI' (M, )= i B Y i Eq.I11-13
l( k) (”2_”1"'1)2 —(I/l2 _n1+1) !

n N, taille(DSM) n,

2,229 )) > 226807
ML M) = o —n e T) X GaieSI ) om o 1) P
Avec :
o0(i, J) Prend la valeur I quand DSM (i, j)# 0 et la valeur 0 quand DSM(i, j)=0.
n, Index du premier élément du module M,
" Index du dernier élément du module M, (n, 2 n,). Si n, =n,, le module ne contient en

fait qu’un seul élément.

Notons que le dénominateur correspond au nombre total d’interactions possibles, en dehors de

la diagonale et que nous considérons uniquement des DSM symétriques.

L’indicateur MSI a été développé pour des DSM numériques qui prennent leurs valeurs entre
0 et 1. On obtient alors des indicateurs MSIi et MSle ayant leurs valeurs entre 0 et 1. Du fait
que les indicateurs MSIi’ et MSle’ prennent en compte des interactions valant 1 ou 0, MSIi’ et

MSIe’ ont une valeur bornée par 0 et 1.

Avant d’expliquer I'utilisation de ces indicateurs dans la fonction de cofit, nous allons étudier

le comportement de ces deux indicateurs.

L’indicateur MSIi’ est maximal et vaut 1, lorsque le module est totalement dense, c’est a
diretous les éléments qui le composent interagissent. L’indicateur est nul, lorsque les éléments
qui composent le module n’interagissent pas du tout entre eux (ce qui remet en question

I’utilisation du terme module pour qualifier ce groupement d’éléments).

L’indicateur MSle’ est nul lorsque le module concerné n’interagit avec aucun élément externe
(il est completement découplé). Il est maximal lorsque chacun des éléments qui le composent
interagit avec tous les éléments externes a ce module. Cette derniére configuration est

¢galement contraire a I’application du terme module a un groupement d’éléments.

Ainsi, un groupement d’éléments tend a devenir un module parfait quand son MSIi’ tend vers
1 et son MSle’ tend vers 0.

Si nous reprenons la « fonction objectif » choisie plus haut (Eq.III-12), nous remarquons que
nous pénalisons plus fortement les interactions externes que les interactions internes. Cette
configuration peut aboutir selon 1’exemple traité a la création de modules relativement grands,

méme si la taille du module est pénalisée. Ainsi, pour ajuster et corriger la « fonction
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objectif », nous adoptons I'une et/ou 1’autre des corrections présentées en Equation III-15 et
III-16.

Coiit Couplage Interne Corrigé(M k)= Coiit Couplage Interne (M . )/ MSIi(M k) Eq.I11-15
Coiit Couplage Externe Corrigé(M k): Conit Couplage Externe(M f )x MSIe(M k) Eq.I1I-16

Ces deux corrections sont interprétées de la manieére suivante :

e En divisant le colit de couplage interne par MSIi’, nous favorisons la création de
modules plutot denses que grands ;

¢ En multipliant le colit de couplage externe par MSle’, nous favorisons la minimisation

des interactions externes aux modules.

Le Cott Total Corrigé s’écrit alors :

Modules
Coiit Total CouplageCorrigé= Z(Coﬁt Couplagelnterne Corrigthk )+ Conit CouplageExterneCorrigéMk ))

My

Eq.III-17
Afin de montrer la pertinence de cette derniére « fonction objectif », nous allons comparer

dans le dernier paragraphe de ce chapitre notre algorithme et I’algorithme référence.

3.3. Le recuit simulé

Dans I'ultime évolution de I’algorithme d’Idicula, proposée par Thebeau [2001], le recuit
simulé permet a 1’algorithme de réaliser aléatoirement certaines opérations, ce qui a pour
intérét d’augmenter le nombre de solutions explorées par 1’algorithme. Cependant, nous avons

remarqué une erreur liée a 1’utilisation du recuit simulé.

Cette erreur se situe dans la boucle qui permet d’accepter un cotlit de couplage supérieur,
I’algorithme de référence enregistre alors la meilleure architecture référencée en cours
obtenue jusqu’a 1a (best _curr_cost) et qui peut étre obtenue dans la boucle de stabilité en
cours, mais cette architecture n’est pas sauvegardée dans la variable best coord cost qui
contient la meilleure architecture obtenue. Il s’ensuit a la sortie de cette boucle que
I’algorithme peut accepter un colt qui améliore best coord cost sans vérifier si
best_curr_cost améliore best coord cost. Par conséquent, I’algorithme peut ne pas prendre en
compte la meilleure architecture parmi celles qu’il teste. Pour remédier a cette erreur, nous
avons vérifié dans un premier temps, que best curr_cost peut étre meilleur (plus petit) que
best _coord _cost. Ensuite, nous avons ajouté une boucle de test qui compare les deux solutions

et qui enregistre la meilleure des deux solutions.
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3.4. Identification des éléments intégrateurs

Si on prend en référence uniquement les interactions qui lient les éléments entre eux, un
¢lément intégrateur est en premier lieu un élément qui n’appartient & aucun module et qui

interagit avec des éléments appartenant a plusieurs modules.

Cependant I’objectif principal de I’algorithme de clustering de référence est d’agréger les
éléments pour construire des modules. D’un autre c6té, la situation de départ pour
’algorithme est celle ou chaque élément forme un module, c’est a direou chaque élément est
considéré comme étant intégrateur. Cette configuration est non souhaitée et a de ce fait un
colt important. On arrive alors au constat que d’abord il est difficile de caractériser les
¢léments intégrateurs et qu’ensuite 1’algorithme favorise I’intégration des éléments pour

former des modules.
Nous distinguons deux types d’éléments intégrateurs :

¢ le premier type correspond aux éléments intégrateurs qui interagissent fortement et en
nombre avec plusieurs éléments du systéme. Par exemple, 1’élément H dans la DSM de

la Figure I1I-5(a) est clairement un élément intégrateur.

e [e deuxicme type d’éléments intégrateurs comprend ceux qui ont peu d’interactions.
Par exemple, 1I’élément H de la figure III-5(b) qui a moins d’interactions par

comparaison a celui de la premiere DSM, mais peut encore étre considéré comme

intégrateur.

A B C D E F G H A B C D E F G H
A 10 4 A 10 8
B 10 6 6 B 10 6
CcC 8 6 10 cC 8 6 10
D 10 2 F 10
E 10 8 D 10 8
F 8 10 E 8 10
G 8 4 G 8
H 4 6 10 2 8 10 4 H 10 8 10
(a) H : Premier type d’¢léments intégrateur (b) H : deuxiéme type d’élément intégrateur

Figure III-5. Les deux types d’éléments intégrateurs

Avec la «fonction objectif » que nous avons construite, il est possible de détecter
automatiquement le premier type d’éléments intégrateurs. Cependant, il est presque

impossible que le deuxiéme type puisse étre identifié.

Ainsi, pour pallier ces incertitudes et étant donné la difficulté a déterminer certains éléments
intégrateurs, nous avons introduit deux procédures pour donner la possibilité a 1’utilisateur

d’identifier le caractére intégrateur d’un élément :
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¢ Premierement, pour optimiser 1’identification des éléments intégrateurs du premier type,
nous introduisons un Indice de Couplage (IC). L’IC mesure le taux de couplage entre un
¢lément et le reste du systeme. Par exemple, un élément avec un IC de 80% est en
interaction avec 80% des autres éléments du systeme (I’équation dd montre I’expression
mathématique de I’IC). Ainsi, nous permettons a I’utilisateur de préciser un seuil pour

IC. Au-dela de ce seuil, les éléments sont considérés comme étant intégrateurs.

taille(DSM )
.60, /)

IC(élément ) = — 12 Eq.I11-18
( D= ailie(DSM) -1 a

¢ Deuxiemement, pour le deuxiéme type d’éléments intégrateurs, nous permettons a
I’utilisateur de choisir directement les éléments qu’il considére comme étant

intégrateurs.

L’exemple suivant permet de juger de 1’utilité de ces deux procédures. Considérons la DSM
d’un systeme compos¢ de 12 ¢éléments, décrite sur la figure I11-6 (a). L’ architecture présentée
est celle qui est attendue par les architectes systeme. Elle correspond a un Cott de Couplage
Total de 4513. On remarque qu’il y a trois modules et deux éléments intégrateurs. Le premier
élément intégrateur K a 4 interactions, il ne se distingue donc pas des autres éléments. Le
deuxieéme élément intégrateur L a quant a lui 7 interactions dont 4 avec le premier module
(A,B,C,D,E).
A B CDETFGHTI J KL A'B CDELF GHKIIJ

1 1 1 1
1 1 1 1 1

1 1 1 1 1
I 1 1N R 1 1
(a) avec les procédures d’identification des ¢léments intégrateurs (b) sans les procédures

ER e =~Z oM ED A >
“ N xZadcESAaw >

Figure II1-6. Exemple d’architecture avec des éléments intégrateurs

En appliquant I’algorithme de clustering sans les procédures spécifiques aux éléments
intégrateurs, nous obtenons 1’architecture présentée dans la figure III-6(b). Cette architecture
montre que 1’algorithme a intégré I’élément L dans le premier module ce qui a permis
d’éliminer quatre interactions externes et a intégré 1’élément K dans le deuxiéme module avec
lequel il interagissait prioritairement. Objectivement, I’architecture obtenue est meilleure que

la premiére du point de vue « mesure de la modularité » avec un colt de 2073. Cet exemple
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montre que I’algorithme initial n’est pas congcu pour identifier des éléments intégrateurs tels
que K et L.

Pour tenir compte du jugement des architectes, nous fixons IC a 60% (ce qui permet
automatiquement d’identifier L comme étant intégrateur) et nous classons manuellement K
comme élément intégrateur. Avec cette semi-automatisation du clustering, on obtient alors
I’architecture attendue, représentée en figure I11-6 (a). Nous pouvons remarquer que 1’élément
K est couplé avec chacun des modules existants, ce qui justifie bien son caractére intégrateur.
Nous reviendrons ultérieurement sur la difficulté intrinséque a tout algorithme de clustering

pour identifier "automatiquement" les éléments intégrateurs.

3.5. Les paramétres de fonctionnement

L’algorithme de référence peut €tre ajusté par 8 parametres. Ces parametres sont présentés

dans le paragraphe 2.2 de ce chapitre.

Le tableau III-3 présente la liste des parametres originaux et ceux que nous avons retenus pour

notre algorithme.

Nom du paramétre initial Nom du paramétre que nous retenons

pow_cc Non utilisé
pow_bid exp_taille
pow_dep exp_int

max_Cl size Non utilisé

rand_accept Pris égal a la taille de la DSM
rand_bid Pris égal a la taille de la DSM

times

. « qualité »
stable limit q

Tableau III-3. Comparaison des parametres dans les deux algorithmes

Nous remarquons a travers le tableau précédent que le nombre de parametres que nous
retenons passe de 8 a 5 dont deux pris €gaux a la taille de la DSM. Nous allons expliquer les

raisons de ces choix :

® pow cc n’a pas d’équivalent dans notre algorithme. Apres différents tests, nous avons
fixé la pénalisation des tailles des modules a 2, valeur qui nous a permis d’obtenir de

bons résultats ;

¢ pow bid devient exp taille. Ce paramétre permet d’ajuster le poids de la taille des
modules dans la fonction d’enchére. Nous utilisons pour exp _taille les valeurs de 0, 1 ou
2. La valeur doit étre choisie relativement a celle donnée a exp_int.

e pow dep devient exp int. Ce parameétre permet d’ajuster le poids de I’intensité des
interactions dans la fonction d’enchére. Nous utilisons pour exp_int les valeurs de 0, 1

ou 2. La valeur doit étre choisie relativement a celle donnée a exp _taille.
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e max_ Cl size n’est pas utilisé, la taille des modules est limitée par la prise en compte de
la taille des modules dans le calcul des colts et par I’indicateur SMIi’ qui favorise des

modules denses.

e La pratique et les travaux antérieurs de Fernandez et Thebeau nous ont montré que les
parametres rand accept et rand bid ne doivent pas étre trés grands (ne pas faire de
recuit simulé), ou trés petits (ne pas laisser ’algorithme poursuivre un chemin

cohérent). De ce fait une valeur égale a la taille de la DSM donne de bons résultats.

e [es parametres times et stable limit permettent d’ajuster le nombre de boucle que fait
I’algorithme dans son travail d’exploration. La pratique nous a montré qu’une valeur de
2 suffit pour des problemes de taille inférieure a 20, et qu’une valeur de 4 donne
généralement de bons résultats avec toutes les tailles. Nous avons ainsi fusionné deux
parametres initiaux dans le parametre « qualité » que nous utilisons généralement entre
2 et 6.

3.6. Comparaison a I’algorithme de référence

Dans cette partie, nous comparons 1’algorithme de clustering que nous avons développé a la
derniere évolution de I’algorithme d’Idicula [1995], a savoir I’algorithme de Thebeau [2001]

qui est aussi le plus performant.

Notre algorithme reprend la méme architecture que 1’algorithme de Thebeau (enchere, cott
total, recuit simulé). Mais il se différencie avec une nouvelle fonction d’enchére, une nouvelle
fonction de colt total et une procédure nouvelle pour I’identification des éléments

intégrateurs.

La comparaison entre les deux algorithmes se fera en deux temps. Premi¢rement, nous allons
comparer ’efficacité des nouvelles fonctions d’enchére et de colt total. Pour cela, nous
testerons les deux algorithmes sur des architectures uniquement modulaires sans éléments
intégrateurs. Nous proposons 5 exemples de DSM dont les dimensions vont de 8 a 16.
Ensuite, nous allons comparer les deux algorithmes sur un exemple introduisant des éléments

intégrateurs.
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3.6.1. Critére et test d’efficacité

Les algorithmes ont été configurés comme représenté dans le tableau I11-4.

5 Valeurs pour notre Valeurs pour I’algorithme
Paramétres o o
algorithme initial

pow_cc Non utilisé 2
exp_taille 1 1
exp_int 2 2

max_Cl size Non utilisé Taille(DSM)

rand accept Taille(DSM) Taille(DSM)

rand bid Taille(DSM) Taille(DSM)
times 4 4
stable limit Non utilisé 4

Tableau III-4. Configuration des deux algorithmes

Afin de tester I’efficacité des deux algorithmes, nous devons retenir un ou des critéres de
comparaison. Il est d’abord important de noter que les cotits obtenus ne sont pas comparables
puisque la méthodologie utilisée par les deux algorithmes est semblable mais differe par les
fonctions d’enchere et de colt total. Le but des adaptations que nous avons réalisées est de
simplifier la configuration de 1’algorithme et d’améliorer la densité des modules. Il faut donc
pouvoir comparer les algorithmes sur des exemples avec une architecture de référence et nous
pourrions évaluer leur capacité a converger vers cette architecture. Nous avons donc retenu
comme critére, leur reproductibilité que nous mesurons par la fréquence d’obtention de la
meilleure solution connue. Nous avons réalis€¢ 40 simulations et ainsi généré 40 architectures
pour chaque exemple. Nous avons observé, dans chaque exemple, que la meilleure
architecture identifiée est la méme pour les deux algorithmes. Cependant, la fréquence est

plus forte avec notre algorithme.

Nous avons généré manuellement des DSM de taille différente, en leur attribuant des
caractéristiques particulieres et en construisant manuellement I’architecture qui serait attendue

par architecte. Cette architecture servira de base pour comparer les deux algorithmes.

3.6.1.1. DSM de dimension 8

La figure III-7 montre a la fois la DSM de dimension 8 que nous avons utilisée en entrée des

deux algorithmes et I’architecture optimale attendue. Cette DSM est de densité égale a 57%.

1 2 3 4 5 6 1 8
1 Bl 7 &8 6 s 3
2 7B 5 7 s 4
3. 8 s ¢ 7 2

476 713 I 3

5 s 6 17 ¢t IR

6 L
7 4 s Il
8 3 s 7 IR

Figure III-7. DSM de dimension 8 et I’architecture attendue
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Les deux algorithmes identifient cette architecture (Figure I1I-8).
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(a) Notre algorithme

(b) Algorithme de Thebeau

Figure III-8. Architectures optimales pour les deux algorithmes

Le tableau III-5 résume la fréquence d’obtention de 1’architecture optimale, on remarque que

les deux algorithmes ont des fréquences proches avec un léger avantage pour 1’algorithme

original.

Fréquence

Notre algorithme

31/40=77%

Algorithme original

35/40=87%

Tableau III-5. Fréquence de ’architecture optimale pour les deux algorithmes

3.6.1.2. DSM de dimension 10

La figure III-9 montre la DSM de dimension 10 que nous avons utilisée en entrée des deux

algorithmes et I’architecture attendue. Par rapport a la DSM précédente, nous avons bien siir

augmenté la taille de la DSM, mais nous avons aussi introduit plus d’interactions externes et

des interactions nulles a I’intérieur des modules. La densité globale est de 51%.

1
.
2 8
3 0
4 7
5 6
6 5
7
8
9 3
10

2
8

N O W

4

3
0
8

N o © W

4
7
5
5

(SN

_N O O W

6 7 8 9 10
5 3
7 4
g8 2
6 7
;
B 7 6

s Tl ¢ 5

7 s Tl

6 5 |

Figure II1-9. DSM de dimension 10 et ’architecture attendue

Le tableau III-6 résume la fréquence d’obtention de 1’architecture optimale, on remarque que

les deux algorithmes ont des fréquences proches avec un léger avantage pour notre

algorithme. Nous remarquons que les deux fréquences sont élevées.
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Notre algorithme Algorithme original
Fréquence 36/40=90% 34/40=85%

Tableau III-6. Fréquence de I’architecture optimale pour les deux algorithmes

3.6.1.3. DSM de dimension 12

La figure III-10 présente la DSM de dimension 12 que nous avons testée en entrée des deux
algorithmes. Par rapport a la DSM précédente, nous avons augment¢ la taille de la DSM, mais
nous avons aussi diminué la densité des modules et nous proposons des interactions externes

multiples pour les éléments 3 et 8. La densité globale est de 48%.

1 2 3 4 5 6 71 8 9 10 1u 12
1t B 8 o 7 6 5 | 4

2 s I o 8 7 6 | s 8

3 o o B s 5 6 7 5 7

4 7 8 + I 38 o 7 4

5 6 71 5 st I ¢+ o 2

6 5 6 6 0o 4+ B s o

70 4 s 7207 9 ¢« 5

8 2 6 Bl o 8 |7 6

9 4 o B 7 6 o

10 s 7 5 @ ¢

11 7 7 6 5 R s

12 8 6 0o 4 3 DB

Figure III-10. DSM de dimension 12 et I’architecture attendue

Le tableau III-7 résume la fréquence d’obtention de 1’architecture optimale, on remarque que
I’évolution de D’algorithme que nous proposons se détache avec un écart de 15%. Nous

remarquons que dans cet exemple, notre algorithme prend un léger avantage.
Notre algorithme Algorithme original

Fréquence 33/40=82% 27/40=67%

Tableau III-7. Fréquence de ’architecture optimale pour les deux algorithmes

3.6.1.4. DSM de dimension 14

La figure III-11 montre la DSM de dimension 14 que nous avons utilisée en entrée des deux
algorithmes, ainsi que D’architecture attendue. Dans cette DSM, nous avons augmenté la
densité des interactions externes et diminuer la densité des modules. La densité globale est de
39,5%.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 B ¢ o 5 (4 6 s 8
2 Il ¢ 2 o 5 8 6
3 0o o6 B o 7 9 3002
4 5 2 oW : 7 4
5 4 o 7 3 M ;5 2 2
6 6 5 9 1 5 IR 4 3
75 Bl : o2 7 3
8 8 s I 8 6 o 5
9 4 0o s W 7 o
10 4 3 2 6 717 ¢
1 3 7 70 o 9o R
12 6 3 B
13 8 2 5 4 B s
14 2 3 /5 s IR

Figure III-11. DSM de dimension 14 et I’architecture attendue

Les deux algorithmes identifient comme optimale 1’architecture attendue, mais cette fois-ci
les fréquences chutent considérablement. Pour notre algorithme, cette architecture reste la
premiére du point de vue de la fréquence d’obtention (ici, de 25 %). En ce qui concerne
I’algorithme initial, il aboutit plus fréquemment vers une autre architecture (avec une
fréquence de 1’ordre de 28%) qui n’est pas la meilleure et dans 20% des cas, il converge vers
I’architecture attendue. Ceci nous amene a supposer que les extremums locaux sont peut-étre

plus nombreux.
Notre algorithme Algorithme original

Fréquence 10/40=25% 8/40=20%

Tableau ITI-8. Fréquence de ’architecture optimale pour les deux algorithmes

3.6.1.5. DSM de dimension 16

La figure I11-12 montre la DSM de dimension 16 utilisée en entrée des deux algorithmes, ainsi
que Dl’architecture attendue. Les interactions externes sont relativement denses avec une
densité de 27% et les modules ont une densité¢ de 70%. La densité globale quant a elle est de
42.5%.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 Il 7 8 6 0 5 4 2 3 5
207 o |5 (6 78 1 4 2 3
3 8 oW e6 8 6 0 3003
4 6 5 6 o o 3 2 3 1
5 0 6 8 9P 7 6 4 2
6 5 17 6 o 1710 o 1 3
74 8 0o 8 6 o R 11
8 1 4 B s 7 s 2 1
9 2 2 1 s W o &8 7 3
10 4 3 6 o B o o
n 3 2 7 8 ol o <2
12 2 1 3 8 7. 9 0o B 4
1B s 1 2 Bl ¢ 2
14 3 1 2 s Il o s
15 3 3 4 o I -
16 3 1 4 2 8 7R

Figure III-12. DSM de dimension 16 et architecture attendue

Le tableau III-9 résume la fréquence d’obtention de I’architecture optimale, on remarque que
les fréquences s’établissent aux alentours de 75% pour notre algorithme contre 57% pour

’algorithme original.

Notre algorithme Algorithme original
Fréquence 30/40=75% 23/40=57%

Tableau II1-9. Fréquence de I’architecture optimale pour les deux algorithmes

3.6.2. Test de pertinence

Dans ce paragraphe, nous comparons la pertinence des deux algorithmes dans 1’identification
de D’architecture attendue ou optimale. Nous avons identifié deux facteurs qui peuvent
influencer 1’obtention de 1’architecture optimale. Le premier est la densité de la matrice. Le

deuxieme est la valeur relative des interactions externes et internes pour un module donné.

3.6.2.1. Influence de la densité
Considérons la DSM de dimension 16 représentée dans la figure III-13. Cette DSM a été

construite sur la base de celle qui a été représentée en figure III-12, mais avec une densité
globale plus forte (46%) et surtout une densité des interactions externes aux modules attendue
de I’ordre de 36%. Nous constatons qu’apres clustering, les interactions externes ont des

valeurs inférieures a 4, tandis que les interactions internes aux modules sont supérieures a 4.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1l o 8 7 o 7 6 4 3 5

2 oo 9 6 7 8 3 4 4 3

3 8 oMM 8 9 o 5 302
4 6 5 o o o s 4 3 3

5 0o 6 8 oM 7 9 4 4 4
6 5 7 6 o 7 M o 3 3 3
7.4 '8 0o 8 6 o N 4 3

8 3 4 B s 7 s 3
9 4 4 3 o B o 8 7 3
10 4 5 3 6 o B o 9 3 3

n 3 4 47 8 oW o ¢«

12 4 3 3 g8 7.9 o IR 34
1B 5 3 3 4 s 9 o
14 3 304 3 s Il o s
15 3 4 3 3 9 o B s
16 2 3 3 4 0o 8 ¢ IR

Figure III-13. DSM de dimension 16 et I’architecture attendue

Avec notre algorithme, nous obtenons comme architecture optimale, 1’architecture attendue
(Figure III-14). Ainsi la densité croissante des interactions externes n’a pas influencé le
résultat. Nous pouvons remarquer que ce sont les interactions fortes a I’intérieur du module

qui créent la cohésion.
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Figure III-14. Architecture optimale pour notre algorithme

L’algorithme de Thebeau propose I’architecture représentée sur la figure I1I-15. L architecture
se compose de deux modules de tailles 9 et 7. Nous remarquons que les densités des modules
sont relativement faibles, (respectivement 52% et 66%) par comparaison aux 66%, 80% et
66% de I’architecture attendue. Mais la taille des modules obtenus fait que les interactions
externes sont moins nombreuses. Nous avons lancé 1’algorithme initial a 40 reprises. Il n’a

jamais atteint I’architecture optimale.
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Figure III-15. Architecture optimale pour I’algorithme de Thebeau

Ainsi avec deux fonctions de colit dont une qui pénalise plus fortement les interactions
externes, 1’algorithme de Thebeau tend naturellement a créer de grands modules car cela

permet de réduire fortement les interactions externes.

En raison des deux indicateurs que nous avons introduits et plus précisément dans ce cas avec

MSI;’ notre algorithme limite la taille des modules en imposant une contrainte de densité.

3.6.2.2. Influence de l’intensité relative des interactions

Considérons la DSM représentée sur la figure III-16, elle ressemble fortement a celle en
représenté en figure I1I-9 sauf que toutes les interactions internes ont une intensité égale a 3 et

les interactions externes sont égales a 9.

1 2 3 4 5 6 1 8 9 10
"I 3 3 3 3 9
2 35 I 3 3 3 9
3 3 3 I 3 3 9
4 3 3 s I 3 9
5 3 3 3 3 B s
6 3 3 3 3 s R
7 9 - E 3 3
8 9 s I 3
9 9 3 3 N
10 9 3 3 s IR

Figure I1I-16. DSM de dimension 10 et I’architecture attendue

En utilisant les deux algorithmes de clustering avec cette DSM, nous obtenons deux
architectures optimales différentes, et ce, lors du lancement de 40 simulations avec chacun des
algorithmes. La figure I1I-17 montre 1’architecture obtenue par notre algorithme. Il s’ agit bien
de D’architecture attendue avec deux modules complétement denses et des interactions

externes limitées en nombre, méme si elles sont de forte intensité.
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Figure III-17. Architecture obtenue avec notre algorithme

L’algorithme initial nous a fourni I’architecture représentée dans la figure III-18. Les deux
modules identifiés ici différent de ceux de I’architecture précédente. L algorithme initial tend
a construire deux modules de maniere a rendre internes a ces modules les interactions a forte
intensité (Figure I1I-16). Ainsi, en pénalisant les interactions externes plus que les interactions
internes, 1’algorithme initial ne peut qu’inclure les interactions externes qui sont fortes dans
des modules pour baisser le colit de couplage total. Nous remarquons alors que les
interactions externes finales dans la figure III-18 sont plus nombreuses mais avec une plus

faible intensité et que les modules sont moins denses.
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Figure III-18. Architecture obtenue avec I’algorithme initial

Ce dernier exemple illustre I’importance de I’utilisation des indicateurs MSIi’ et MSle’ dans
le calcul des cofits de couplages internes et externes aux modules. Ils permettent en effet de
réduire I’influence de la relativité des valeurs internes et externes en privilégiant la création de

modules dont la densité prime sur la taille.
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3.6.3. Test sur une architecture hybride

La DSM représentée dans la figure II1I-19 montre I’exemple d’une architecture attendue dans

laquelle il y a des modules couplés et des éléments intégrateurs.
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12 4 6 8 3 5 7 R

Figure I1I-19. DSM hybride de dimension 12 et I’architecture attendue

L’algorithme initial propose I’architecture représentée dans la figure I1I-20. On remarque que
les deux €léments intégrateurs 11 et 12 ont été intégrés respectivement dans le premier et

deuxiéme module.

DrE W Males; Coll Todal : 1887E
Eleman

uD 1 ? 3 ll- 12 ? ] i:' 11 ? L] 1I|] 1]
1]l &« & & = * " -
i | = = L . 3
k| = ® N . J
4F L] L L] = * L] -
12 L] L o L " " " -
E 8t . . « * = i
. B - - -
T L & L] -
11r L] . & & & -
B ¥ L] L] L ] L -
9t " . '3 " - -
10 L ] L]
o "

Figure I1I-20. Architecture obtenue avec I’algorithme initial

En utilisant notre algorithme, et en fixant IC= 0.5 et en identifiant directement 1’élément 11
comme intégrateur, nous obtenons [’architecture représentée dans la figure III-21. On
remarque que cette architecture est la méme que celle qui était attendue. Il est intéressant de
constater que le caracteére intégrateur de 1’élément 11 vient du fait qu’il couple les 3 autres

modules identifiés et 1’élément intégrateur 12.
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Figure III-21. Architecture obtenue avec notre algorithme

Il apparait clairement qu’avec I'utilisation du seuil IC et une éventuelle aide manuelle, on
arrive a identifier les €léments intégrateurs. Rappelons pour finir que I’existence de ces
¢léments va a I’encontre du principe méme du clustering qui vise a minimiser les interactions
externes et maximiser les interactions internes. Ce principe, appliqué sur les éléments
intégrateurs, fait qu’il existe toujours un module qui peut accueillir ces éléments et réduire de

ce fait le colit de couplage total.

4. Synthése

Dans ce chapitre, nous avons présenté 1’algorithme de clustering que nous utiliserons dans la

suite de ce travail pour identifier I’architecture sous-jacente dans une DSM.

En vue d’obtenir un algorithme « relativement »'’ satisfaisant, nous sommes partis d’un
algorithme hiérarchique du type bottom-up utilisant une fonction de pénalisation comme
fonction objectif et faisant appel au recuit simulé pour explorer le plus grand nombre de

solutions possibles.

Nous avons introduit deux coefficients correcteurs pour les fonctions cofts, ces coefficients
sont issus de I’indicateur MSI développé par Whitfield et al. [2002]. Ceci nous a permis
d’optimiser les capacités de 1’algorithme a identifier les modules sous la forme d’éléments
interagissant fortement (en nombre et en intensité) entre eux et faiblement avec les éléments

appartenant aux autres modules.

Pour faciliter I’identification des éléments intégrateurs, nous avons automatis¢ 1’identification
des éléments comme intégrateurs en adoptant un seuil de couplage (IC) et nous avons permis

a I’utilisateur d’identifier en amont les éléments qu’il per¢oit comme étant intégrateurs.

17 Par rapport a I"utilisation que nous faisons d’un algorithme de clustering et en comparaison avec les algorithmes de Idicula et de Thebeau
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Enfin, la comparaison a I’algorithme initial montre que la limitation du nombre de parametres

facilite le réglage de I’algorithme et réduit le temps d’affinage des résultats.

L’algorithme final que nous avons obtenu a montré son efficacité que ce soit en fréquence ou
en pertinence dans 1’obtention d’architectures satisfaisantes et surtout identiques a ce que
I’utilisateur peut attendre.
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CHAPITRE IV

UNE METHODE POUR LE DEVELOPPEMENT DES
ARCHITECTURES

Dans le cadre de I’IS, nous nous intéressons a la conception modulaire et plus précisément au

principe de modularité. La conception d’un produit complexe peut étre facilitée par la
conception appropriée de son architecture. L’IS nous permet d’élargir I’objectif de pilotage du
projet de conception, du produit vers le projet dans sa globalité. Ainsi, la conception du
produit nécessite une structuration et une conduite efficace du projet. De la méme manicre
que I’architecture du produit est un préalable a une conception détaillée satisfaisante,

I’architecture de 1’organisation du projet est un préalable a une conduite efficace du projet.

Nous distinguons deux types de projet de conception, les projets totalement innovants et les

projets de reconception :

e [ ’organisation d’un projet totalement innovant se construit parallelement a la définition du
produit. Ces projets nécessitent des itérations successives pour corriger et affiner les
résultats de I’activité de conception mais aussi pour adapter les plans d’action des équipes
du projet. La nécessité de ces itérations est liée a la levée des incertitudes et a I’apport de
connaissances, c’est-a-dire, a la qualité et a la quantité des données disponibles. Ces
données sont progressivement enrichies et affinées, au cours du projet, d’une part, en
approfondissant la spécification du produit et de ses constituants (espace des concepts,
selon la théorie C-K [Hatchuel et Weil, 2002]), et d’autre part, en explorant ou en

réutilisant des éléments de solution (espace des connaissances).

e Les projets de reconception correspondent a la reconduite de solutions développées dans
des projets antérieurs. Ils portent sur des produits similaires tout en comportant une "petite"
part de nouveauté. Des modifications peuvent étre apportées sur le domaine du produit, des
processus ou des acteurs. D’un point de vue structurel, si des modifications affectent 1’un
des domaines structurant le projet alors ces modifications doivent étre propagées pour

identifier les modifications dans I’architecture du projet.
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Dans le cadre de ces deux situations de conception, nous pensons que la caractérisation des
architectures des domaines du projet doit permettre d’améliorer les performances de I’activité
de conception. En effet, pour les projets de conception des produits complexes, I'un des
concepts clés que propose 'S est de stratifier le processus de conception en se basant sur la
décomposition du systéme. Cependant le passage d’un niveau de décomposition a un autre
peut étre rapide surtout quand la politique de conception de ’entreprise n’est pas basée sur la

conception modulaire.

Considérons le sous-systtme GMP (Groupe MotoPropulseur) d’une automobile et sa
décomposition physique (FigurelV-1) telle qu’elle est définie chez le constructeur automobile
avec qui nous avons collaboré, on remarque qu’au premier niveau il y a un seul systéme, au

deuxiéme deux sous-systémes et au troisiéme niveau, 24 constituants.

EGR
Injection

Culasse

Admission air

Echappement

Distribution

Attelage mobile
Carter
Lubrification et Blow-by

Moteur Diesel

Entrainement accessoires

Entrainement synchrone

Circuit du vide

Générateur d’énergie secondaire

Circuit caloporteur

Controéle et Capteurs

Tringlerie

Synchroniseur

Commande interne

BV manuelle

Embrayage

Commande interne d’embrayage
Carter BV
Lubrifiant
Différentiel
Mécanique interne

Figure IV-1. Décomposition physique du GMP

Ainsi, méme en appliquant I’'IS et la décomposition progressive qu’elle propose pour faire
face a la grande complexité des produits du secteur automobile, on est confronté comme le
montre la figure IV-1 a I’explosion, d’une strate a I’autre, du nombre d’éléments a concevoir.
La difficulté n’est pas liée a I’allocation des ressources nécessaires mais a la propagation des
contraintes et a la négociation des spécifications entre les éléments et entre les deux strates

successives.

L’outil de conception conjointe des architectures des domaines du produit que nous

présentons dans ce chapitre a pour but de s’interfacer entre les deux derniers rangs de la
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décomposition présentée ci-dessus pour proposer une étape intermédiaire dans la
décomposition des systemes (figure 1V-2). En se basant sur la typologie d’architecture
d’Ulrich (1995) et sur la définition des modules, 1’outil permet a 1’architecte systéme

de simuler les architectures des domaines du produit et, si elles sont validées, les utiliser

pour :

e gspécifier les interfaces fonctionnelles ou physiques (figer les interfaces externes aux
modules avant de figer les interfaces internes entre les éléments appartenant a un méme
module).

e optimiser les processus d’ingénierie et d’intégration en utilisant les architectures validées
comme étapes permettant le passage d’une strate a une autre et ainsi maitriser la

complexité des taches a accomplir.

Architecture moteur / EGR
Injection

A

—
Module 1 Culasse
! Admission air
' % Echappement
K Module 2 )= Distribution
! 7 Attelage mobile
Moteur Diesel !
> ( Module>4</ Carter
, — Lubrification et Blow-by

/ \
4 Entrainement accessoires
/

, Entrainement synchrone
Intégrateur 1 — -
: . \ Circuit du vide

/ 1

Générateur d’énergie secondaire
Intégrateur k Circuit caloporteur
] Contréle et Capteurs

Figure IV-2. Positionnement de la méthode d’architecture sur le moteur

Dans la suite de ce chapitre, nous présentons d’abord les quatre situations d’utilisation
possible de I’outil aidant a la construction des architectures. Cette typologie des situations
repose sur le choix des outils matriciels de modélisation qu’on a adoptés a savoir les matrices
d’incidence et les DSM. Nous proposons une démarche pour la construction des données
utilisées en entrée de la méthode. Puis, nous expliquons une a une les méthodes proposées a

chacune des situations avec quand c’est nécessaire 1’utilisation d’un traitement flou.

1. Construction des architectures : quatre situations d’utilisation

possibles

1.1. Cadre général

L’architecture d’un systéme se détermine a travers ’architecture des sous-systémes qui le
composent. L algorithme de clustering que nous avons présenté dans le paragraphe précédent

est 'outil que nous allons utiliser pour révéler 1’architecture des systémes. Etant donné que
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I’algorithme utilise en entrée des DSM, nous devons construire les DSM de chacun des

systémes dont nous voulons étudier I’architecture.

La question qui se pose a nous provient en partie des difficultés qu’on a rencontrées sur le
terrain pour construire les DSM: Que faire quand les DSM ne sont pas disponibles ou
difficiles a construire ?

Une partie de la réponse a cette question provient de I’existence de deux types de méthodes
matricielles pour la modélisation des couplages dans un systéme : les matrices intra-domaines
a savoir les DSM et les matrices inter-domaines que nous avons décidé d’appeler Matrices
d’Incidence (MI). Ainsi dans le cas ou les DSM ne sont pas accessibles, est-il possible
d’utiliser les MI ?

Dans la suite de ce chapitre, nous allons démontrer que :

¢ Premicrement : les MI ou plutot I’information qu’elles recelent est un élément clé du
processus de conception et le fondement méme de la compétence des architectes
systemes. Il s’ensuit que I’information nécessaire a la construction de ces MI est

disponible relativement tot dans le processus de conception ;

¢ Deuxiecmement : a travers un traitement flou qui sera approfondi ultérieurement, nous
montrons qu’une seule MI permet d’obtenir deux DSM. Il s’ensuit que par gain de
temps et pour réduire la sollicitation de nos interlocuteurs, nous préférons construire des
MI ;

¢ Enfin: dans les différentes situations de construction des architectures des domaines
que nous présenterons et en tenant compte de la relation hiérarchique entre les MI et les
DSM, nous démontrerons que les MI interviennent dans la majorité des situations et
qu’elles permettent de créer de la redondance dans les résultats, ce qui permettra de les

affiner.

L’analyse de I’activité de 1’architecte systeme nous a permis d’identifier I’existence de quatre
situations élémentaires de construction des architectures des systémes. Ces situations peuvent
étre combinées pour décrire une situation réelle : par exemple I’architecture d’un projet de

conception ou I’architecture d’un produit.

Considérons un systeme composé de trois domaines A, B et C modélisés par des DSM liées
par deux MI. Ce systéme représenté dans la figure IV-3 est un systéme générique avec lequel
on peut expliquer tout systeme ayant un degré de complexité plus grand —en recourant a la

décomposition hiérarchique des systémes.
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Systeme
( \
DSM MI A-B
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. J

DSM MIB-C

B i
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Données

Traitement flou
et DSM
Conditionnement B
A 4 A 4 A 4 A 4
Clustering Architecture Architecture || Architecture Architecture Architecture | | Architecture
A A B A A B

Figure IV-3. Les quatre situations de construction des architectures

Les quatre situations que nous avons identifiées sont déterminées a travers le type de données
disponibles. Pour chaque situation et donc pour chaque type de données disponibles, nous

proposons une méthode de construction des architectures.

1.2. Les quatre situations ¢élémentaires de construction des

architectures

Nous allons énumérer dans ce qui suit les différentes situations en présentant leurs

caractéristiques et les méthodes utilisées pour construire les architectures :

e Premicre situation : elle est caractérisée par la disponibilité d’'une DSM par domaine. Si
cette DSM n’est pas le résultat d’un traitement antérieur, elle est alors construite
manuellement par les acteurs du projet. Dans ce cas, nous présenterons des regles de
construction pour les méthodes matricielles que nous appliquerons sur 1I’exemple d’une

DSM Fonctions Systéemes.

e Deuxiéme situation : elle est caractérisée par la donnée d’une MI (ou plusieurs n’ayant

aucun domaine en commun). Dans ce cas, la matrice d’incidence est nécessairement
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construite manuellement, nous proposons alors des régles pour la construction de ces
MI. Ensuite, nous proposons un traitement flou pour construire les DSM A et DSM B
en partant de MI A-B et des opérations de conditionnement pour transformer les DSM

simulées afin de les préparer pour le clustering.

¢ Troisieme situation : elle est caractérisée par la redondance d’informations concernant
un domaine donné. Pour un domaine A, nous pouvons avoir deux DSM A qui peuvent
soit étre construites par deux acteurs différents, soit étre issues de deux MI différentes
(situation 2), soit un mélange des deux possibilités précédentes. Nous proposons alors
une méthode pour préparer les DSM données quand c¢’est nécessaire et une autre pour

les agréger et générer la DSM résultante pour le clustering

¢ (Quatrieme situation : elle est caractérisée par la disponibilité d’'une DSM A et d’une MI
A-B. Nous proposons d’abord un conditionnement de la DSM A, ensuite un traitement
flou qui utilise ces deux matrices en entrée pour simuler une DSM du domaine B (DSM
B) qui sera utilisée par 1’algorithme de clustering pour proposer une architecture du

domaine B.

2. Collecte et structuration des données

Avant de développer la méthode pour chacune des situations élémentaires, nous proposons
aux utilisateurs des régles et des conseils pour la construction manuelle d’une matrice qu’elle
soit une DSM ou une MI.

2.1. Construction directe d’une matrice d’incidence

Dans ce travail, nous conférons aux matrices d’incidence un rdle central dans I’architecture
global d’un projet de conception. Le choix des matrices d’incidence comme donnée principale

pour la simulation des architectures des domaines du projet est dictée par deux constations :

e Méme si les matrices d’incidence numériques ne sont pas utilisées comme outil de
mod¢lisation, 1’information nécessaire a leur construction, a savoir les couplages
inter-domaines, sont souvent disponibles sous plusieurs formes : graphes, schémas bulle

ou matrices non numériques ;

¢ [’information nécessaire a la construction des matrices d’incidence peut étre disponible
trés tot dans le processus de conception, spécifiquement dans le cadre des projets
complexes ou dans les phases préliminaires, une premiere identification de la

composition du projet et de la structure globale du projet est réalisée.

Ainsi, le fait que I’information concernant le couplage entre les domaines du projet peut étre

disponible sous plusieurs formes et assez tot dans le projet nous a permis de choisir les
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matrices d’incidence comme point de départ pour la construction des architectures des

domaines du projet.

Dans ce qui suit, nous allons présenter I’importance des matrices d’incidence. Ensuite nous
proposerons un guide pour la construction de ces matrices, guide qui nous a servi pour assister

les acteurs du projet dans leur construction.

2.1.1. Métier d’architecte systéme et role clé des matrices d’incidence

Dans le cadre d’un projet de recherche que nous avons mené avec un constructeur automobile
francais, nous avons pu analyser 1’activité des architectes systémes sur deux projets de
conception I’un portant sur un moteur diesel, et I’autre sur une boite de vitesse robotisée.

Conformément a I’IS, les architectes manipulent des vues externes et internes du produit.

La vue externe du produit est représentée par 1’espace des exigences (appelé aussi espace des
prestations). La vue interne du produit, quant a elle, se compose des deux domaines que nous
avons identifiés dans le premier chapitre, a savoir le domaine des Fonctions systémes (vue

fonctionnelle interne) et le domaine des composants (vue organique).

Les exigences sont des contraintes que le produit doit satisfaire. Ces exigences sont satisfaites
a travers la réalisation des fonctions du produit. Ces fonctions quant a elles sont portées par

les constituants du produit.

Nous considérons que les exigences sont des données du projet pour I’architecte systeme.
Face a ces données, ’architecte doit garantir tout au long du projet la cohérence d’un coté
entre la strate fonctionnelle et la strate organique du produit (face aux aléas et aux
modifications) et d’un autre c6té la cohérence de ces deux strates avec les exigences du

produit.

En travaillant sur les architectures des domaines du produit, I’architecte systéme peut d’un
coté piloter la cohérence de ces architectures et de ce fait garantir la propagation des
contraintes et des modifications et d’un autre c6té utiliser les architectures pour figer certains

parametres du produit tels que les modules fonctionnels ou organiques et leurs interfaces.

Dans [D’entreprise, les architectes systémes sont les garants du passage de la strate
fonctionnelle a la strate organique. C’est pourquoi ils ont montré un grand intérét pour un
outil qui permet de simuler les architectures des domaines du produit et de formaliser les

représentations des couplages et des architectures par des MI et des DSM.

2.1.2. Reégles pour la construction de la matrice d’incidence

Dans ce paragraphe nous proposons un guide pour la construction des matrices d’incidence.

Nous avons utilisé, affiné et validé ce guide lors de nos entretiens avec les ingénieurs de PSA.

L’écriture de ce guide est une nécessité pour les raisons suivantes :
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Méme si les matrices d’incidence sont déja utilisées pour la projection des
spécifications, la fagon de les remplir avec des valeurs numériques n’est pas usuelle

pour les ingénieurs ;

Les matrices d’incidence sont ['unique entrée sur laquelle se base la méthode que nous
proposons dans la partie 4 (situation 2). De ce fait, leur consistance et leur cohérence

doivent permettre d’assurer la qualité des résultats de notre méthode ;

Les matrices d’incidence sont des matrices remplies par les acteurs du projet et non le
résultat d’une quelconque opération logique ou automatique. De ce fait, le guide sert a
uniformiser et harmoniser cette étape de construction pour réduire et prendre en compte

des biais provenant de 1’estimation humaine.

Le guide est composé de 5 étapes :

créer la liste des éléments, appartenant a chacun des domaines, qui seront liés par la
matrice d’incidence. Selon 1’état d’avancement du projet, le niveau de décomposition

utilisé dans les listes peut étre plus moins fin.

utiliser le méme niveau de décomposition avec une granularité semblable dans les deux
domaines comme représenté dans la figure IV-4 montrant la décomposition de deux
produits A et B.

Niveau
Systeme A Systeme B
—10

Sous-systém Sous-system| ......... Sous-systtm| —f— 1 |Sous-systém Sous-system|......... Sous-systém
e Al e A2 e An e Bl e B2 e Bm
Composant |... | Composant Composant |. .. Composant
A21 A2p —_1 2 B21 B2k
(. ——

Figure IV-4. Coordination des niveaux de décomposition

construire une matrice d’incidence avec en ligne la liste des €éléments d’'un domaine et

en colonne la liste de I’autre domaine.

adopter une caractérisation sémantique bidirectionnelle pour qualifier I’interaction entre
deux éléments appartenant a deux domaines différents. Par exemple : il y a interaction
lorsqu’on propage des contraintes dans un sens ou dans I’autre ; ou il y a interaction

lorsqu’il est nécessaire d’arbitrer ou de négocier entre deux éléments.
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¢ identifier les paires d’éléments qui interagissent pour renseigner la matrice d’incidence,
d’abord de fagon binaire (0/1). Nous rappelons a cet effet que seules les interactions
directes doivent étre identifiées. Dans le cas contraire, et selon la complexité du projet,
nous allons obtenir une grande densité dans la matrice d’incidence. Il faut savoir alors,
et nous le présenterons ultérieurement, que plus la matrice d’incidence est dense'®,

moins les résultats de notre méthode sont pertinents.

e construire, a partir de la matrice binaire, une matrice d’incidence numérique en donnant

une évaluation aux interactions. Nous considérons alors les hypothéses suivantes :
¢ la valeur d’une interaction est un entier appartenant a |0, 10]

e la valeur d’une interaction évalue I’intensité du couplage entre les éléments. Si
le couplage est fort et que la dépendance est forte alors la valeur est proche de

10, dans le cas contraire elle est proche de 0.

e ]I est possible de considérer les éléments comme un ensemble d’attributs et
d’évaluer ainsi la densité des couplages entre les attributs d’un élément en ligne

et un autre en colonne.

e Nous ne proposons pas de contraintes sur le nombre d’interactions fortes ou
faibles, mais nous rappelons qu’un élément intervenant avec un grand nombre
d’interactions ou avec des interactions toujours fortes influencera plus
fortement la solution proposée par notre méthode. Alors si la position de
I’élément n’est pas aussi importante, il faut limiter le nombre d’interactions ou

diminuer le poids de ces interactions.

La matrice d’incidence ainsi construite est préte a étre utilisée comme donnée d’entrée pour la

construction des architectures des domaines du projet.

2.1.3. Exemple : matrice d’incidence FS-COMP

Dans le cadre de ce travail de thése, nous avons eu la possibilité de collaborer avec un
constructeur automobile leader mondial des moteurs Diesel. Ce constructeur est PSA Peugeot
Citroén. Le projet de développement qui a joué le role de cadre applicatif a notre travail est un

moteur Diesel en cours de développement.

L’information nécessaire pour la création et le remplissage des matrices d’incidence existe
dans D’entreprise, que ce soit sous forme matricielle ou sous forme de graphes. Plus
spécifiquement, dans le cadre d’une action de reconception, ces informations existent
nécessairement a travers la modélisation antérieure du produit et du projet. Ceci nous amene a

caractériser la situation de conception rencontrée chez PSA de la maniére suivante :

' La densité est le rapport du nombre d’interactions non nulles par le nombre d’interactions possibles
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e Les domaines du projet ainsi que les éléments qui les composent sont clairement

identifiés.

e Les concepteurs et plus précisément les architectes systémes manipulent des graphes qui
permettent de lier des éléments du projet entre eux, ces graphes peuvent étre formalisés

par des DSM binaires (O pour inexistence d’interactions et X pour le cas contraire).

Dans la pratique, la génération des matrices d’incidence se fait de deux maniéres qui peuvent

étre combinées :
e Par des interviews pour créer les matrices lorsque la modélisation n’existe pas.

e Par traduction et transformation des modeles déja créés (sous forme de graphes ou de

matrices).

La figure IV-5 montre un exemple de graphe utilisé chez PSA, appelé « schémas bulle » ainsi

que sa traduction en matrice d’incidence.

Se

GeomD

COMPi | COMPj | COMPk | COMP1 | COMP m

\ |
wn
b

FS X X X X

Figure IV-5. Traduction des schémas bulle en MI

La matrice d’incidence binaire construite a partir des graphes obtenus chez PSA est

représentée dans la figure IV-6.
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ES Resp AlM ol Comb CPC PLV EFF CES ACY IES THE cou O
Comp carb Fonc
EGR X 0 X 0 0 0 0 0 X X X 0 X

Injection 0 X 0 X 0 0 X 0 X X X 0 X
Carburant
Culasse X X X X 0 X X X X 0 X 0 X
Assemblée
Admission X X X X 0 0 X X X X X 0 X
d’air
Echappement X 0 X 0 0 X X 0 X X X 0 X
Distribution X X 0 0 0 X 0 X X 0 0 0 X
Attelage X 0 0 X X X X 0 X 0 X X X
mobile
Carter 0 0 0 X X X X 0 X 0 X X X
Lubrification ' 0 0 0 X X 0 X X X X 0 X
et Blow-by
Entrainement 0 0 0 X 0 X X X 0 X 0 X
accessoires
Entrainement 0 0 0 X X 0 X X 0 X 0 X
synchrone
Circuit vide X 0 0 0 0 X 0 X 0 0 0 0 X
Circuit 0 0 0 0 X X X X 0 X 0 X
caloporteur
GES 0 0 0 0 X X X X 0 X 0 X
CcC X X X X 0 X 0 0 0 X X X X
Figure IV-6. MI binaire FS-COMP
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e R EGR E)Vc.hqust'Gas Recycle, syfteme p?rmetFaqt la
réinjection des gaz brulés dans I’admission
Alim carb Alimentation Carburant GES Générateur et stockage d’énergie
Dépol Dépollution Injection Carburant
Comb Combustion Culasse Assemblée
CPC Conversion Pression Couple Admission d’air
PLV Pertes par frottement, Lubrification et Ventilation Echappement
EFF reprise d’EFFort Distribution
CES Conversion et dérivation des Energies Secondaires Attelage mobile
ACV ACoustique Vibratoire Carter
1IES Sensorique et controle Lubrification et Blow-by
THE Thermique Entrainement accessoires
COU Couplage Entrainement synchrone
Vol Fonc Volumes fonctionnels Circuit vide

Circuit caloporteur

CC Capteurs et Commande

Tableau IV-1. Liste des FS et des composants avec leurs abréviations

Sur la base de cette matrice binaire et en se servant du guide de construction des matrices
d’incidence, I’équipe de conception du moteur a construit la DSM numérique représentée
dans la figure IV-7. Apres discussion sur I’intensité de certaines valeurs, le choix définitif a
été fait par I’architecte systeme.
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ES Resp AlM ol Comb CPC PLV EFF CES ACY IES THE cou O
Comp carb Fonc
EGR 8 0 9 0 0 0 0 0 6 8 7 0 6

Injection
P 0 8 0 8 0 0 7 0 7 8 5 0 8
Culasse
Aseomblde 5 5 6 5 0 8 7 5 7 0 8 0 8
Admission 9 9 6 9 0 0 4 5 6 9 3 0 7
d’air
Echappement 8 0 9 0 0 6 5 0 6 6 8 0 6
Distribution 9 9 0 0 0 7 0 8 8 0 0 0 7
Attelage 5 0 0 7 9 7 7 0 8 0 8 9 8
mobile
Carter 0 0 0 8 6 8 9 0 8 0 8 9 9
Lubrification
s Blowby 5 0 0 0 8 9 0 4 5 3 8 0 7
LD TS TG R 0 0 0 6 0 8 9 5 0 6 0 8
accessoires
LD TSI 0 0 0 8 9 0 9 8 0 6 0 7
synchrone
Circuit vide 8 0 0 0 0 8 0 9 0 0 0 0 8
i 0 0 0 0 5 8 5 6 0 9 0 7
caloporteur
GES 0 0 0 0 0 4 5 9 5 0 5 0 7
cc 7 9 7 8 0 6 0 0 0 9 9 8 4

Figure IV-7. MI FS-COMP numérique

Dans la suite de ce document, les autres matrices d’incidence seront considérées comme étant

données, le processus de construction ayant été appliqué de la méme maniére.

2.2. Construction directe des DSM

A travers les scénarios de construction des architectures des domaines du projet, on remarque
que la premiére et la quatriéme situation sont caractérisées par la disponibilité d’une ou deux

DSM comme donnée pour I’identification des architectures.

Ces DSM utilisées comme données sont des DSM qui ont été construites —quand c’est
possible- avec la participation des acteurs du projet. Les régles de construction qui régissent le
remplissage de ces DSM sont les mémes que celles qui ont été présentées pour la construction
des matrices d’incidences. L’unique différence réside dans le fait qu’on a la méme liste

d’éléments en ligne et en colonne.

2.2.1. Exemple : DSM FS

La DSM FS numérique, construite manuellement, est présentée dans la figure IV-8. Cette
DSM est relativement dense : 73% (la densité est le rapport entre le nombre d’interactions et

le nombre d’interactions possibles), mais cette DSM ne subira aucune modification.
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Resp 1:;1;‘1)1 Dépol Comb CPC PLV EFF CES ACV IES THE COU F?:; ?llc
RESP 1 9 7 8 6 5 6 8 7 6
ALIM CARB 9 2 9 9 7 7 8 5 7
DEPOL 7 9 3 9 8 8 7 7 9 7
COMB 8 9 9 4 8 4 8 9 8 4
CPC 8 5 9 9 8 8 7 8 8
PLV 8 4 9 6 7 8 5 6 8 6
EFF 6 7 8 9 7 7 8 8 8 9 8
CES 3 8 8 8 8 3 5 6
ACV 6 7 7 8 5 8 3 9 5 7
IES 8 8 7 6 5 10 5 5
THE 7 5 9 7 8 8 5 5 11 8
Ccou 8 9 7 8 12 8
VOL FONC 6 7 7 4 8 6 8 6 5 8 13

Figure IV-8. DSM FS construite par les acteurs du projet

Cette DSM sera utilisée dans les situations suivantes :

e dans la premicre situation, pour analyser l’architecture de la DSM construite

directement par les acteurs du projet,
¢ dans la deuxiéme situation, pour analyser le résultat de la méthode proposée,

e dans la quatriéme situation, pour propager les contraintes d’architecture d’un domaine

Vers un autre.

3. Premiere situation : Identification d’une architecture a partir d’une
DSM donnée

Cette situation est décrite sur la figure IV-9. Elle correspond a une DSM construite

directement par les acteurs du projet.

Données A

Traitement flou
et
Conditionnement

Clustering Architecture

A

Figure IV-9. Schéma de la premiére situation
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Pour illustrer cette situation, nous disposons de la DSM FS présentée précédemment. Avec un

IC=0.8, nous obtenons I’architecture représentée dans la figure IV-10.

Elerment
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1 2 3 4 5 6 7 8 9 10 11 12 13
RESP AV DEPOLCOMB CPC PLV EFF CES ACV [ES THE COU (O

Figure IV-10. Architecture de la DSM FS

Cette architecture nous suggere les remarques suivantes :
e [ ’algorithme de clustering a identifi¢ deux modules et quatre fonctions intégratrices ;

e [e premier module est composé des FS: Respiration, Alimentation carburant,
Dépollution, Combustion et Sensorique. Les quatre premicres fonctions forment la
phase de précombustion et de combustion du moteur. A coté de ces fonctions nous
retrouvons la sensorique, ceci nous renseigne sur la présence indispensable du contrdle

dans cette phase du fonctionnement du moteur.

e Le deuxiéme module est composé¢ des FS: Conversion pression couple, PLV,
Conversion énergies secondaires et Couplage. Ces fonctions se situent toutes dans la

phase de postcombustion.

e Les FS intégratrices identifiées sont: Reprise d’effort, Acoustique vibratoire,
Thermique et Volumes fonctionnels. Parmi ces fonctions, les acteurs confirment le
caracteére intégral des trois dernieres fonctions puisqu’elles sont connues pour impacter
la plupart des autres fonctions. Le caractere intégrateur de la reprise d’effort s’explique
a travers I’importance de cette fonction dans la réalisation de la cohésion du moteur,
cohésion qui s’explique si on considére que le carter, ’attelage mobile et la culasse sont

les composants porteurs de cette fonction dans I’architecture organique.
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4. Deuxiéme situation : Construction de deux DSM a partir d’une MI

Dans cette partie, nous présentons la méthode utilisée pour générer les DSM de deux
domaines a partir de la matrice d’incidence numérique (figure IV-11). La méthode adoptée se
base principalement sur un traitement flou des données contenues dans les matrices

d’incidence [Harmel et al., 2007] pour générer deux matrices DSM.

Données

Traitement flou
et
Conditionnement A B

Architecture
B

Architecture
A

Clustering

Figure IV-11. Schéma de la deuxiéme situation

4.1. Présentation globale du processus de génération des DSM

Le processus permettant de passer d’une matrice d’incidence numérique liant les éléments de
deux domaines différents a deux DSM représentant les interactions internes a chaque domaine
est basé sur deux étapes principales. La premiere régit et explique le passage d’une matrice
d’incidence a deux DSM, elle prend la forme de régles. La deuxiéme représente la mise en

ceuvre des principes énoncés dans les régles et prend la forme d’un traitement flou.
4.2. Les regles et leurs applications

4.2.1. Introduction : les graphes

Considérons le graphe présenté dans la figure IV-12. Ce graphe a la particularité de
représenter des liens (des arétes) entre deux types de sommets (ou deux espaces), les A et les
B. Une aréte lie un élément de A a un élément de B (on ne peut pas trouver deux ¢léments de
A ou de B liés par une aréte). Lorsque ’aréte existe, elle a un poids non nul, appartenant a
I’intervalle 0, 10].
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Figure IV-12. Exemple de graphe avec deux domaines

Ce graphe peut étre représenté d’une maniere différente, sous la forme d’une matrice

d’incidence. On obtient alors la matrice d’incidence présentée dans la figure IV-13.

A Ay A3 Ap As Ag A7 Az Ay Ay A App Ags
B; X X X
B, X X
B, X X X
By X X
Bs X X
B X X X
B, X X X X X
X

Figure IV-13. Traduction du graphe en MI

Notre objectif dans cette partie est de proposer une méthode qui permet de représenter les
deux sous-graphes des A; et des B; en partant du graphe initial. En utilisant les outils
matriciels que nous avons présentés dans le chapitre II, cet objectif devient : proposer une
méthode qui permet de construire la DSM des A; et la DSM des B; en partant de la matrice

d’incidence présenté en figure IV-13.

Dans la théorie des graphes, la notion de chemin est importante. Nous allons ’utiliser pour

introduire la méthode que nous proposons.

Nous avons déja muni les arétes de poids, nous savons que la théorie des graphes permet de
réaliser le passage présenté dans la figure IV-14. Cependant, la question est comment
exprimer la valeur du lien direct entre A; et A;. L’intensité des interactions n’étant pas une
distance, nous ne pouvons pas utiliser la somme pour estimer I’intensité 1’interaction entre A;
et A,.
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o | A BY Y\ 1AL BY N

Y

?I(A;, A))

Figure I'V-14. Modélisation de la problématique de distance

En réponse a cette derniere remarque, nous introduisons des régles qui nous permettent
d’évaluer les interactions entre les éléments d’un méme domaine en partant d’une matrice

d’incidence.

4.2.2. [Enoncé général des régles

Dans ce qui suit, nous allons utiliser la terminologie propre aux DSM ainsi que la notation

précédente, pour les formuler :
Régle 1. Si A; et A; interagissent avec By, alors A; et A;j sont couplés.

Régle 2. L’intensité du couplage entre A; et A; dépend de I’intensité des couplages entre A; et
By et Aj et By.

Régle 3. Les interactions entre les éléments de B se construisent symétriquement a ceux des A
La mise en ceuvre de ces regles nécessite I’explicitation de la Reégle 2. Auparavant, nous

allons mettre en situation nos régles en les appliquant a 1’architecture du produit.

4.2.3. Formulation des regles sur un exemple

Pour expliciter le principe de ces régles, considérons par exemple le cas d’une MI

\

Composants-Fonctions Systémes a partir de laquelle nous souhaitons obtenir la DSM

Composants et la DSM Fonctions Systemes.
Nous présentons sur la base de cet exemple la formulation des régles adoptées :

Régle 1. Si deux Fonctions Systemes FS1 et FS2 interagissent avec un composant C alors FS1

et FS2 sont couplées a travers ce composant.

Régle 2. L’intensité du couplage entre FS1 et FS2 est liée a I’intensité de leur couplage avec

le composant C.

Régle 3. Le domaine des composants peut étre construit symétriquement aux fonctions

systemes.

Dans ce qui suit, nous allons essayer d’expliquer les fondements de ces régles en nous

référant a I’exemple proposé.
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Considérons un composant caractérisé¢ par un ensemble d’attributs ou de parameétres [X;, Xo,

.., Xn], on distingue alors deux cas :

e (Cas 1 : FS1 et FS2 impactent en commun un sous-ensemble non vide des parametres
caractérisant C. Dans ce cas, le processus de conception nécessite pour spécifier le
composant de C de fixer les parametres qui le caractérisent et donc de propager les
contraintes de FS1 et de FS2 sur ces parametres, il s’en suit clairement que FS1 et FS2

sont couplés.

e Cas 2 : FSI et FS2 ne contraignent pas les mémes parameétres de C, cela ne doit pas
nous faire oublier que les parameétres caractérisant un composant sont rarement
indépendants. Nécessairement alors, FS1 et FS2 sont couplées a travers le couplage

entre les parametres caractérisant le composant C.

Concernant la regle 2, nous rappelons qu’elle affirme seulement que les intensités sont liées et
qu’elle ne précise pas comment. Il est nécessaire pour lier les intensités de se munir d’un

formalisme adapté. Dans ce travail, nous avons opté pour I’utilisation d’un traitement flou.

4.3. Le processus flou

Les matrices d’incidence sont toutes construites par les acteurs du projet selon leur perception

et interprétation des données disponibles dans 1’entreprise.

Par ailleurs, le principal objectif de la logique floue est de pouvoir modéliser, imiter et simuler
les fonctionnalités du raisonnement humain dans des situations incertaines ou imprécises. La
logique floue permet ainsi de manipuler des données qualitatives plutdt que quantitatives
[Zadeh, 1975].

I1 apparait ainsi judicieux de proposer un traitement flou pour construire les architectures des
domaines du projet en partant des matrices d’incidence. Cette méthode permet de limiter
I’effet des imprécisions sur les estimations fournies par les acteurs du projet pour caractériser
les interactions inter-domaines. On retrouve le méme type de traitement flou dans la

modélisation des systémes experts [Graham, 1991; Kandel, 1992].

Le processus flou doit permettre de mettre en ceuvre toutes les reégles de construction
permettant le passage d’une matrice d’incidence a deux DSM. Afin d’expliciter le processus

flou, nous reprenons I’exemple de la matrice d’incidence FS-COMP (figure IV-7).

Selon la troisieéme regle, les deux domaines sont construits d’une fagon symétrique. De ce fait,
nous allons expliquer la construction de la DSM FS, la DSM COMP sera construite avec le

meéme processus.

Le processus flou permet de calculer la valeur de I’interaction entre deux fonctions F; et Fy qui

interagissent avec un composant C;. Le systéme flou a la structure présentée dans la figure
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IV-15. Le traitement flou que nous proposons permet de générer une DSM FS pour chaque
composant C;.

=
Uy
H
Iy

- I EMFERT xr

e W N 4 pimn |! 1 L

Wy -T2
AT
SFICCN

Figure IV-15. Architecture du traitement flou
Le traitement flou retenu est de type Mamdani [Dronkov et al., 1993] et comporte 3 étapes
principales (figure IV-16) :

e Fuzzification des valeurs des interactions selon la modélisation adoptée pour les

variables d’entrée (choix des variables linguistiques et de leurs ensembles flous);

e Utilisation des regles d’inférences pour caractériser la sortie par une des variables

linguistiques ;

e Défuzzification de la sortie pour obtenir une valeur numérique.

Entrées | | Sorties
' I
Matrice : :
D’incidence 1 Fuz- _r"'-. J'\"xl Défuz- - s
s : f— s Gi
zification _|J" Inferences | N zification | i

FS-COMP

L
—

e~
L

Valeurs Domainea Valeurs
MUMErgues flciu NUMErgUues

Figure IV-16. Les étapes du traitement flou

Concernant les autres caractéristiques du traitement flou adopté dans ce travail, la figure
IV-17 nous donne un apergu sur les plus importantes d’entre elles. En particulier, la méthode

de défuzzification adoptée est celle du barycentre.
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Figure IV-17. Caractéristiques du traitement flou

4.3.1. Caractérisation des variables d’entrée

Les MI sont été construites par les acteurs du projet. Nous leur demandons en plus de
caractériser l’intensité des couplages en construisant des fonctions d’appartenance. Ces
intensités appartiennent a ]0, 10], nous avons alors opté pour le choix des variables

linguistiques les plus utilisées a savoir: Faible, Moyen et Fort.

Arrivé a ce point, nous avons fait face a un dilemme concernant la construction de la variable
linguistique Faible. Ce dilemme est lié¢ au traitement a appliquer aux interactions nulles. En

effet, deux possibilités s’offraient a nous :

e [a premiere consideére les interactions a valeur nulle comme des interactions non
existantes et donc de ce fait la variable linguistique Faible ne couvre que les interactions

a valeur non nulle.

¢ La deuxieme considére que les interactions a valeur nulle existent. Alors le zéro est une

valeur possible de la variable linguistique Faible.
Notre choix dans ce travail s’est portée sur la deuxieéme possibilité car:

e cette possibilité nous permet d’appliquer le traitement flou a toutes les valeurs de la

matrice d’incidence,

e Jes valeurs nulles introduisent un biais dans le résultat du traitement flou, mais ce biais
sera facilement corrigé par un filtrage permettant d’adapter les DSM, issues du

traitement flou, a 1’algorithme de clustering.

Concernant le choix du type des fonctions d’appartenance, nous avons opté pour les fonctions

les plus utilisées a savoir les fonctions trapézoidales.

Reprenons I’exemple de la MI FS-COMP. Sous I’éclairage de ces dernieéres hypotheses,
toutes les FS interagissent a travers chaque composant C. On peut maintenant construire une

DSM ,F'S pour chaque composant C, .

La figure IV-18 montre les fonctions d’appartenance communes aux deux entrées. Ces
fonctions ont été¢ construites en coordination avec les concepteurs qui ont participé a la

construction de la matrice d’incidence.
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Figure IV-18. Les fonctions d’appartenance des variables d’entrée

Le choix des plages de définition de ces fonctions est motivé par la volonté d’étre sélectif

vis-a-vis des interactions fortes et moyennes d’ou le décalage apparent vers la droite.

4.3.2. Caractérisation de la variable de sortie

Nous avons opté pour la méme structure et les mémes variables linguistiques pour caractériser

la sortie, a savoir le couplage entre FS; et FS,.

Cependant, le choix des domaines des définitions pour les trois variables linguistiques dépend
du remplissage de la matrice d’incidence. En effet, nous cherchons a avoir un écart-type
important entre les valeurs obtenues. Cela est possible en défuzzifiant les sorties faibles et

fortes avec des centres de gravité ¢loignés.

Cette régle nous a permis de choisir les fonctions d’appartenance présentées dans la figure
IV-19. On remarque que contrairement aux fonctions caractérisant les entrées, la sortie se

caractérise par :

¢ une fonction « Faible » réduite qui permet de limiter au maximum la valeur résultante
de la défuzzification par centre de gravité. En effet, en réduisant la surface de la

fonction Faible, on obtient comme résultat pour des entrées nulles la valeur de 1,06.

e une fonction « Fort » réduite qui permet contrairement a la fonction faible d’avoir une
résultante par centre gravité élevée de I’ordre de 8,9. Cette valeur est comparativement
¢loignée de celle de 1,06.

¢ une fonction « Moyen » tres large centrée autour de 5.
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Figure IV-19. Les fonctions d’appartenance de la variable de sortie

4.3.3. Les régles d’inférences

Les regles d’inférences permettent de caractériser la variable de sortie d’une manicre floue.

Nous avons adopté dans ce travail pour les regles suivantes :
e SI(FS;-C; est Faible) OU (FSy-C;est Faible) ALORS (FS; - FSy est Faible)
o SI (FS;-C; est Moyen) ET (FSy-C; est Moyen) ALORS (FS; - FSy est Moyen)
e SI (FS;-Ciest NON Faible) ET (FSk-C; est Fort) ALORS (FS; - FSy est Fort)
e SI(FSk-C;i est NON Fuaible) ET (FS;-C; est Fort) ALORS (FS; - FSy est Fort)

La figure IV-20 montre une représentation en 3D de I’intensité de I’interaction entre FS; - FSy
obtenue a travers les régles d’inférences et en fonction des caractérisations adoptées pour les

variables d’entrée et de sortie.

Figure IV-20. Représentation de la sortie en fonctions des deux entrées

La figure IV-20 nous permet d’analyser et justifier la combinaison des choix réalisés

concernant les variables d’entrée, la variable de sortie et les régles d’inférence :
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¢ Premierement, les DSM obtenues vont faire 1’objet d’un « clustering » pour identifier
les modules et les éléments intégrateurs. L’algorithme de clustering utilisé est sensible a
la densité des matrices et aux écarts entre les valeurs. Ceci justifie le choix de pentes

avec une forte inclinaison.

® En cohérence avec I’hypothése qu’on a prise concernant les interactions nulles, on
remarque que pour deux valeurs d’entrée nulles et a travers la premicre regle
d’inférence, nous obtenons pour la sortie une valeur non nulle (1.06) correspondant au

barycentre du trapeze caractérisant la variable Faible.

¢ Si une fonction impacte faiblement un composant alors le couplage avec toute autre
fonction qui impacte ce méme composant ne peut étre que faible. Au-dela du fait que
cette affirmation est logique, on a voulu restreindre au maximum la propagation des
couplages ayant une intensité faible (inférieures a 3). Ainsi la valeur minimale de la
sortie (1.06) est atteinte pour 51% des couples des valeurs d’entrée. Ce choix aura pour

conséquence finale de limiter la densité de la DSM résultante.

e Le palier (en cyan) représentant les sorties ayant des intensités moyennes n’est atteint
que pour 4% des couples des variables d’entrée. Cette valeur est la plus faible par

comparaison aux sorties ayant les intensités faibles et fortes.
¢ [La sortie atteint son maximum pour 11% des couples des variables d’entrée.

On remarque alors que le traitement flou, tel que nous 1’avons paramétré, favorise 1’obtention
d’intensités faibles en sortie plutot que fortes. Ceci va nous permettre en utilisant le filtrage de

réduire la densité des DSM générées.

La méthode de génération de la DSM résultante ainsi que le filtrage sont présentés dans les

paragraphes suivants.

4.3.4. Génération de la DSM résultante

La méthode de traitement flou ainsi que les régles présentées précédemment nous permettent

de générer une DSM ., F'S pour chaque composant C,. En effet, si on considére une matrice

d’incidence avec 13 fonctions et 15 composants, on obtient avec la méthode présentée 15

DSM FS. Cela représente le couplage entre les FS a travers chaque composant.

Pour obtenir la DSM résultante pour chacun des domaines traités, deux méthodes

d’agrégation sont possibles :

e La méthode du maximum: si on considére DSM(i, j)C,c comme ¢tant la valeur

correspondant au couplage entre FS, et FS, dans la DSM générée a travers le
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composant C,, alors la DSM  résultante notée @ DSM,  s’écrit:

DSM (i, )= max DSM(i, j)., -

e [a méthode de la moyenne: la DSM résultante notée DSM,, s écrit:

C DSM(Z’])Ck

DSM (i, /)= ou n est le nombre de composants.

k=1

La comparaison entre ces deux méthodes se fera ultérieurement lors de 1’application de la

méthode a un exemple industriel.

4.3.5. Filtrage de la DSM résultante

Comme expliqué précédemment, I’un des inconvénients du traitement flou proposé est que les
matrices obtenues sont denses avec 1’impossibilité d’avoir des valeurs nulles méme pour des
interactions inexistantes. Etant donné que les matrices denses faussent les résultats attendus
par 1’algorithme de clustering, nous proposons dans ce paragraphe une méthode de filtrage

des données dans les DSM résultantes.

Le filtrage proposé agit comme un filtre passe haut, en annulant les valeurs les plus basses.
L’Eq.IV-1 montre la formalisation que nous avons adoptce.

Si DSM(i, j)< X alors DSM(i, j)=0 Eq.IV-1
La valeur du seuil X est a fixer en fonction de la densité de la matrice recherchée.

Le filtrage ne sera pas explicité a chaque fois que 1’on génére une DSM dans notre travail. 11
faut cependant garder en mémoire qu’il est systématiquement réalisé pour diminuer la densité

de la matrice et corriger le biais apporté par le traitement flou.

La détermination de la valeur du seuil est fixée par I’utilisateur, mais elle peut &tre

automatisée en prenant en compte les trois contraintes suivantes :

e Si la densité de la DSM agrégée est supérieure a 70%, augmenter progressivement le

seuil tout en respectant les deux conditions suivantes.
e Ne pas annuler toutes les valeurs d’une ligne ou d’une colonne.

e Appliquer un filtrage avec un seuil de préférence inférieur a 3 et qui peut étre au

maximum de 5 (valeur maximale pour caractériser une interaction faible).

La figure IV-21 montre le résultat du filtrage sur une DSM avec comme seuil X=2.9 et une
densité inférieure a 70%.
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Figure IV-21. Illustration du filtrage sur les DSM

Nous venons de justifier la nécessité de réaliser un filtrage. Cependant, nous devons aussi
vérifier que ce filtrage n’altere pas I’identification de I’architecture. Nous avons identifié deux

cas ou le filtrage pourrait influencer les résultats attendus :

e Le premier cas correspond a un élément qui interagit avec un grand nombre d’éléments
mais avec des intensités faibles. Le filtrage va réduire le nombre d’interactions de cet
¢lément et il va perdre de ce fait son caractere intégrateur. Cependant, nous avons prévu
dans I’algorithme de clustering de permettre a I’utilisateur de désigner directement les
éléments qu’il pense étre intégrateur. Ainsi, il est possible de corriger 1’effet du filtrage

correspondant a ce cas;

¢ Le deuxieme cas concerne un €lément -par exemple un composant- qui dans la matrice
d’incidence est couplé a un nombre limité de fonctions. Cet ¢élément peut se retrouver
dans la DSM agrégée avec de faibles et peu nombreuses interactions. Cet élément
n’étant pas intégrateur, il appartient nécessairement a un module. Nous avons
caractérisé le filtrage de telle sorte qu’il n’annule aucune ligne et aucune colonne. De ce
fait, cet élément aura toujours une interaction non nulle dans la DSM. Cette interaction

est suffisante pour le faire appartenir a un module.

Nous venons de justifier, que méme si le filtrage peut annuler certaines valeurs des
interactions, l’objectif de notre travail qui est I’identification des architectures et non

I’évaluation des interactions entre éléments, ne sera pas perturbé.

4.4. Application a la MI FS-COMP

Nous présentons dans ce qui suit, 1’application de la méthode sur ’exemple de la matrice
d’incidence FS-COMP.
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4.4.1. Construction de deux DSM a partir de la MI FS-COMP

La matrice d’incidence utilisée pour architecturer les domaines du produit est présentée dans
la figure IV-7. En partant de cette matrice, nous pouvons générer deux DSM, une pour chaque
domaine. Rappelons cependant que le processus flou permet d’obtenir ces DSM par
agrégation de plusieurs DSM intermédiaires. Nous avons proposé¢ deux méthodes
d’agrégations : par la moyenne ou par le maximum. Dans ce qui suit, nous allons comparer les
deux méthodes d’agrégation proposées sur la base de la DSM résultante du domaine des

composants.

4.4.1.1. lllustration de la méthode d’agrégation

Les deux DSM obtenues sont représentées, d’'une maniere graphique, dans les figure [V-22(a)
et IV-22(b). Nous notons DSM-moy, la DSM agrégée par la méthode de la moyenne et
DSM-max, celle obtenue par la méthode du maximum. La figure IV-23 montre, dans leur

forme numérique, les DSM calculées.
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Nous remarquons que les matrices générées a travers le traitement flou sont évidemment sans
valeurs nulles (nous rappelons que les éléments sur la diagonale n’ont aucun sens).

Cependant, on peut remarquer visuellement sur la représentation graphique des matrices que :

e [a méthode du maximum génere des valeurs relativement homogenes, nous
dénombrons trois valeurs différentes (1.06, 5.77, 8.94) mais avec un grand nombre de

8,9, ce qui signifie que cette méthode est peu discriminante.

¢ [a méthode de la moyenne génere des valeurs tres différentes s’échelonnant de 1.06 a
4.36.

Le constat est que si la méthode du maximum est celle qui fournit le plus grand écart, elle est
aussi celle qui uniformise le plus les valeurs des interactions, contrairement a la méthode des
moyennes qui certes rend des valeurs dans une plage plus restreinte mais ces valeurs ont une

plus grande variabilité.

En anticipant sur I’influence de ces données sur la qualité¢ du processus d’identification des
architectures par clustering que nous appliquons aux DSM obtenues, nous choisissons la

méthode de la moyenne qui donne plus de variabilité aux valeurs des interactions.

La comparaison entre la méthode de la moyenne et la méthode du maximum peut se faire

aussi par I’interprétation du principe de calcul de chaque méthode :

e L’intensit¢ d’une interaction entre deux fonctions, calculée par la méthode du
maximum, nous informe qu’il existe au moins un composant qui associe ces deux
fonctions. Il suffit alors d’un seul composant pour que le couplage entre ces deux

fonctions soit fort.

e [’intensité d’une interaction entre deux fonctions, calculée par la méthode de la
moyenne, prend en compte le nombre de composants qui participent a la création du

couplage entre les deux fonctions.

En prenant en compte I’influence de toutes les fonctions pour caractériser le couplage entre
deux composants, la méthode de la moyenne se rapproche beaucoup plus de nos attentes
vis-a-vis de la formalisation des régles de construction présentées au paragraphe 2.1.2 de ce
chapitre. La méthode du maximum en ne prenant pas en compte la fréquence d’occurrence
d’un couplage ne permet pas de distinguer 1’influence réelle des éléments d’un domaine sur

les interactions dans un autre domaine.

Dans la suite de ce travail, nous utilisons exclusivement la méthode de la moyenne pour
générer les DSM résultantes. Les DSM ainsi obtenues doivent étre filtrées pour limiter leur

densité.
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4.4.2. Identification des architectures fonctionnelle et organique

Apres avoir construit les DSM résultantes par la méthode de la moyenne, nous allons dans ce
paragraphe filtrer les DSM et proposer une architecture pour les domaines fonctionnel et
organique du moteur. L’identification de I’architecture est réalisée par 1’algorithme de

clustering que nous avons développé dans le chapitre III.

L’algorithme de clustering nécessite le réglage des parametres de fonctionnement. Le tableau
IV-2 résume les réglages indépendants des caractéristiques de I’exemple. Ces réglages sont

les mémes pour toutes les applications.

Paramétres Valeur
exp_taille 1
exp_int 2
qualité 4

Tableau IV-2. Réglage des paramétres de I’algorithme

Deux autres parameétres de la méthode d’identification, a savoir IC (Indice de Couplage) et le
seuil de filtrage, dépendent de I’exemple traité et seront précisés lors de la présentation de

chaque application.

4.4.2.1. Génération de [’architecture fonctionnelle

L’algorithme de clustering utilise en entrée une DSM filtrée et propose une architecture de
cette DSM. Le choix de ’architecture se fait sur la base de la minimisation d’une fonction
cout. Comme nous ’avons précisé dans le chapitre III, I’algorithme peut ne pas converger a
chaque fois vers la méme architecture, on peut obtenir des architectures avec des colts
supérieurs au minimum déja obtenu. Cependant, nous avons optimisé notre algorithme pour
avoir une haute fréquence de répétition de 1’architecture ayant le colit minimal. Dans la suite
de ce travail et a chaque fois que 1’algorithme de clustering est utilisé, 1’architecture présentée
est celle qui a réalisé le colt de couplage minimal et qui est en méme temps la plus

fréquemment obtenue.

En appliquant un filtrage de 2.6 a la DSM FS, nous obtenons une DSM (figure 1V-24) avec
une densité¢ de 65% (102 interactions pour (169-13) interactions possibles). En partant de la
DSM FS ainsi filtrée, 1’algorithme de clustering, avec IC égal a 0.9, simule ’architecture

représentée sur la figure [V-24.
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Figure I'V-24. Architecture fonctionnelle du moteur

4.4.2.2. Interprétation de I’architecture fonctionnelle

Apres avoir généré cette architecture, nous avons demandé a un architecte systéme de
I’analyser et de valider sa cohérence. Cette architecture présente les caractéristiques

suivantes :
¢ On obtient deux modules de taille comparable et 3 éléments intégrateurs.

e Le premier module est composé de 5 Fonctions Systémes : Respiration, Alimentation
carburant, Dépollution, Combustion et Sensorique (IES). Les 4 premicres fonctions
forment la phase de combustion et de précombustion. La FS sensorique regroupe la
fonction de commande et de détection (capteurs). L’algorithme de clustering propose de
rapprocher la sensorique de la phase de précombustion, ce rapprochement est validé par
les architectes systémes qui confirment le grand besoin en controle de cette phase du

fonctionnement du moteur.

¢ [e deuxieme module est lui aussi composé de 5 fonctions : Conversion pression-couple
(CPC), "Perte par frottement, Lubrification, Ventilation" (PLV), Reprise d’effort (EFF),
Conversion énergie secondaire (CES) et Couplage (COU). Toutes ces fonctions
appartiennent a la phase de postcombustion. Ces fonctions forment une chaine
mécanique qui transforme 1’énergie thermique obtenue par la combustion, en énergie
mécanique au niveau de la FS CPC a la boite de vitesse (FS COU).

e Les deux modules sont couplés. Ces couplages s’expliquent par la particularité du
fonctionnement du moteur qui utilise les FS mécaniques pour mettre en ceuvre les FS de
précombustion, ces couplages reposent sur des contraintes liées au choix de

I’architecture physique (distribution, entrainement accessoires).
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e Les FS intégratrices sont au nombre de 3: la FS Volumes fonctionnels, la FS
Acoustique-vibratoire et la FS Thermique. La premicre FS est « chargée » d’allouer les
volumes physiques a chaque composant du moteur, elle est de ce fait intégratrice parmi
les composants et donc parmi les FS. La deuxiéme FS est « chargée » de caractériser
chaque composant du point de vue vibratoire, elle aussi est de ce fait intégratrice. Enfin,
la FS Thermique caractérise et propage les contraintes thermiques entre les composants,

cette fonction est donc intégratrice.

Pour résumer, 1’architecture identifiée par I’algorithme de clustering repose sur deux modules
de fonctions qui correspondent aux deux grandes phases du fonctionnement du moteur, a
savoir la précombustion et la postcombustion. Ces deux phases méme si elles sont connues
par les architectes systémes, n’ont pas, jusqu’a maintenant, été¢ utilisées pour structurer le

domaine des FS du moteur.

L’analyse de I’architecture proposée par I’algorithme de clustering et sa comparaison par
rapport a la logique du produit et des attentes des acteurs ne suffisent pas pour conclure quant
a la pertinence de la méthode proposée. C’est pourquoi nous avons demandé aux acteurs du
projet de conception du moteur de construire directement la DSM FS. Cette DSM sera

appelée DSM FS construite ou attendue.

4.4.2.3. Comparaison des architectures obtenues a partir de la DSM FS
simulée et de la DSM FS construite

Pour pouvoir analyser objectivement la pertinence de la méthode de construction des
architectures et de 1’algorithme de clustering, nous avons voulu comparer la DSM FS obtenue
a partir de MI FS-COMP a une DSM FS construite directement par les acteurs du projet. La
figure IV-25 montre cote a cote les deux DSM FS: (a) DSM FS issue de la matrice
d’incidence FS-COMP, (b) DSM FS construite manuellement (introduite au § II1.).
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Figure IV-25. Comparaison de deux architectures fonctionnelles du moteur
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La comparaison des deux architectures suscite les remarques suivantes :

e Les deux architectures comportent deux modules de taille équivalente: I'un des
modules est le méme dans les deux architectures. Ce module est composé des fonctions
Respiration, Alimentation Carburant, Dépollution, Combustion et Contréle (IES). Ce
module a été¢ déja identifié comme celui correspondant a la phase de précombustion et

combustion du fonctionnement du moteur.

e Le deuxiéme module de l’architecture de la DSM FS attendue est inclus dans le
deuxieme module de la DSM FS simulée. Les fonctions en question sont: la
Conversion Pression Couple (CPC), la Lubrification (PLV), la Conversion d’énergie
secondaire (CES) et le Couplage (COU). Toutes ces fonctions font partie de la phase de
postcombustion. Dans la DSM FS simulée, nous retrouvons en plus la FS EFF. Dans la
DSM FS attendue, cette fonction est identifiée comme étant intégratrice par notre
algorithme et ce, a cause du grand nombre de couplages qui lient cette fonction aux
autres fonctions du moteur. En demandant 1’arbitrage des acteurs du projet, ils concluent
a I’'importance de la FS EFF mais ils préferent la voir comme faisant partie du module

de postcombustion.

e Les autres éléments intégrateurs sont en commun aux deux architectures. Il s’agit de
I’ Acoustique-vibratoire (ACV), la Thermique et la FS Volumes fonctionnels. Ces

fonctions font consensus concernant leur caractere intégrateur.

Les deux architectures analysées ci-dessus sont treés proches. Cela nous permet de conclure
quant a la pertinence de la méthode de construction des architectures en partant d’'une matrice
d’incidence. Cependant, les processus de conception de PSA n’utilisent pas la conception
modulaire et les acteurs du projet ne sont pas familiarisés avec les concepts que nous avons
introduits dans le chapitre 1 partie 3. Or, I'identification des éléments intégrateurs est
semi-automatis€ée dans notre algorithme de clustering et repose de ce fait en partie sur le
jugement des acteurs du projet. Dans cet exemple ainsi que dans les exemples suivants, il faut
garder en mémoire que I’identification des éléments intégrateurs est un consensus entre la

perception des acteurs du projet et notre méthodologie de clustering.

4.4.2.4. Génération de I’architecture organique du moteur

L’algorithme de clustering appliqué a la DSM COMP génére ’architecture présentée dans la

figure IV-26. Cette architecture a été obtenue avec un IC=0,65 et un seuil de filtrage a 2.2
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Figure IV-26. Architecture organique du moteur

Apres clustering, I’architecture obtenue est analysée comme suit :

e [’algorithme de clustering a identifié¢ 3 modules et 3 éléments intégrateurs ;

e [e premier module est composé des 6 constituants : EGR, Injection, Admission d’air,

Echappement, Distribution et le systeme de Controle-Capteurs. Ce module correspond
physiquement a la partie haute du moteur, sans la culasse qui est un composant
intégrateur. Cette partie du moteur est le siege des phénomenes physico-chimiques et
thermodynamiques, qui correspondent a la phase amont du fonctionnement du moteur
ou D’air et le carburant sont captés et acheminés a la chambre de combustion a travers
les moyens d’injection. Cependant, nous retrouvons dans ce module, la Distribution qui
achemine 1’énergie mécanique vers la partie haute du moteur pour permettre son
fonctionnement. Ce constituant est identifi¢ par les acteurs du projet comme étant plus

proche de la partie basse du moteur.

Le deuxieme module est composé de 5 constituants: la Lubrification, le circuit
caloporteur, les deux Entrainements et le systtme de Gestion et stockage d’énergie
(GSE). Tous ces constituants se trouvent en aval de la phase de combustion, pour
transmettre et transformer I’énergie mécanique en ¢énergie utile au fonctionnement
propre du moteur (les deux entrainements et la GSE) et pour faciliter la transmission de
I’énergie mécanique ou absorber les dissipations d’énergie par frottement
(Lubrification).

Dans I’architecture obtenue, le circuit du vide est un composant qui est relativement peu
couplé aux autres composants du moteur. Cela s’explique par le nombre limité de FS

qui interagissent avec ce composant. Le traitement flou, la méthode d’agrégation par la
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moyenne et le filtrage font alors que les interactions entre le circuit du vide et les autres
composants sont peu nombreuses et ont des intensités faibles. Selon les acteurs du
projet, le circuit du vide peut étre per¢gu comme un composant-module a cause de la
complexité réduite de ce composant qui fait qu’il participe a une unique fonction du

moteur : créer du vide.

e Les trois composants intégrateurs du moteur sont la culasse, 1’attelage mobile et le

carter :

o La culasse est le constituant support de la partie haute du moteur. C’est sur ce
composant que se fixent les éléments participant a la phase de précombustion et de

combustion. Il est de ce fait clairement intégrateur.

o Le carter, par symétrie avec la culasse, forme le composant support de la partie
basse du moteur. La culasse et le carter sont les principaux composants réalisant la

FS EFF qui est la fonction de protection et d’enveloppe du moteur.

o L’attelage mobile, quant a lui, est le constituant d’interface entre les deux phases de
fonctionnement du moteur. C’est a son niveau que 1’énergie thermodynamique de la
combustion se transforme en énergie mécanique. De ce fait, il joue le rdle de

constituant intégrateur interne au moteur.

4.4.2.5. Architecture globale du Produit

La méthode de conception des architectures que nous proposons dans ce travail permet de
capturer a la fois D’architecture d’un domaine et de ses sous-domaines. Dans les deux
paragraphes précédents, nous avons montré comment passer d’une matrice d’incidence
FS-COMP a I’identification de 1’architecture des fonctions systémes et des constituants du
produit. A partir de ces trois matrices (2DSM et une MI) nous pouvons aussi construire la
DSM globale du produit présentée sur la figure IV-27.

DSM FS (MI COMP-FS)"
[13X13] [13X15]

MI COMP-FS DSM COMP
[15X13] [15X15]

Figure IV-27. Modélisation de la DSM du produit
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La matrice obtenue est de dimension 28, il s’agit bien de la DSM P (Produit) étant donné que
les éléments en diagonale sont nuls et les valeurs de toutes les interactions sont comprises
entre 0 et 10. Cette DSM P peut étre utilisée directement en entrée de 1’algorithme de
clustering pour identifier I’architecture globale du produit. Cette démarche va nous permettre
de fournir aux architectes systemes des modules cohérents dont les fonctions sont couplées
prioritairement aux composants qui appartiennent au méme module. Si cette cohérence est
validée, il est possible d’identifier, avec des interfaces physiques et fonctionnelles bien

définies, des modules du moteur qui peuvent devenir des "modules sur étagere".

La figure IV-28 montre 1’architecture optimale identifiée par 1’algorithme de clustering avec
un 1C=0.9
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Figure IV-28. Architecture globale du moteur

L’architecture obtenue suscite les remarques suivantes :

e [’architecture globale du produit se compose de deux modules de taille comparable (12

et 10) et de 6 éléments intégrateurs ;

e e premier module du produit correspond, a un élément pres, a la réunion du modules
de fonctions {1, 2, 3, 4, 10} et celui de constituants {14, 15, 17, 18, 19, 28}, ces
modules correspondant a la phase de précombustion et de combustion. Nous retrouvons

en plus de ces éléments la fonction couplage {12}. Le fait de retrouver la fonction de
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couplage dans ce module peut s’expliquer par la nécessité de lier trés tot dans le
processus de conception les caractéristiques du couplage avec les caractéristiques de la
phase de précombustion. La phase de post-combustion a surtout la fonction de

transmettre 1’énergie créée et de fournir 1’énergie propre au fonctionnement du moteur.

e Le deuxieme module correspond en majorit¢é a la réunion de deux modules
précédemment identifiés : le module de fonctions {5, 6, 7, 8}, le module de constituants
{22, 23, 24, 25, 26, 27} participant a la réalisation de la phase de postcombustion du
moteur. Nous pouvons remarquer 1’introduction du constituant "circuit de vide" dans ce
module. La composition de ce module est tout a fait cohérente et correspond aux

attentes des acteurs du projet.

e Les ¢léments intégrateurs sont au nombre de 6. Ce sont les éléments intégrateurs
identifiés dans 1’architecture des fonctions et des constituants. A coté de ces éléments
intégrateurs, nous avons identifié deux éléments qui sont éligibles pour étre intégrateurs,
sauf que les interactions qu’ils mettent en ceuvre s’adressent majoritairement au
deuxiéme module. Ces deux éléments sont les fonctions systtme PLV et Reprise
d’effort.

A travers I’analyse qu’on vient de réaliser de I’architecture globale du moteur, nous pouvons
remarquer la grande complexité de ce systeme avec des éléments (fonctions et composants)
trés fortement couplés entre eux. La démarche d’identification des architectures appliquée au
moteur en partant de la MI FS-COMP montre qu’on identifie uniquement deux modules. Ces
deux modules sont relativement grands (avec de nombreuses interfaces) pour que 1’on puisse
envisager d’en faire des modules physiques réels. Cependant, nous pensons que notre
démarche peut aider a améliorer des processus de conception et a surmonter la complexité du
moteur. Notre méthode a montré que dans le processus de décomposition et de spécification,
il est intéressant de passer par une ¢étape dans laquelle on définit les deux modules et les six
éléments intégrateurs identifiés dans 1’architecture. Cette étape supplémentaire va permettre
de spécifier et de figer les interfaces externes puis ensuite les interfaces internes des modules,

et en paralleéle, de caractériser et d’intégrer I’ensemble en concevant les éléments intégrateurs.

4.5. Conclusions

La méthode permettant de construire deux DSM a partir d’une MI et d’identifier leurs
architectures a fourni des résultats pertinents selon I’interprétation et 1’avis des architectes
systemes. En effet, on retrouve le méme principe d’architecture autour des phases de
précombustion et de postcombustion. Cependant, nous pensons que ces architectures peuvent

étre améliorées en considérant les autres situations de conception.
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5. Troisiéme situation : L’architecture des domaines face a la redondance

5.1. Principe

Dans la deuxieme situation, nous avons montré qu’il est possible de construire a partir d’une
seule MI deux DSM. Il est possible alors d’avoir deux MI ayant un domaine en commun.

Dans ce cas, nous obtenons 4 DSM avec 2 DSM pour ce domaine en commun.

Dans I’application illustrant la deuxiéme situation, nous avons utilisé une M1 FS-COMP pour
générer une DSM FS et une DSM COMP. Ensuite nous avons comparé la DSM FS a une
DSM construite manuellement. Nous étions en présence alors d’une situation de redondance

avec deux DSM pour un méme domaine.

A travers les deux exemples précédents, nous avons réfléchi a une méthode qui profite de la
situation de redondance pour enrichir et affiner les architectures qu’on simule. Nous
modélisons la situation de redondance (figure IV-29) par I’existence de deux DSM d’un
méme domaine mais provenant de sources différentes. L’objectif est alors de proposer une
nouvelle DSM a partir de ces deux DSM.

D | DSM A DSM A
onnées 1) @)
Traitement flou /
et /ou DSM
Conditionnement A

Clustering Architecture
A

Figure IV-29. Schéma de la troisiéme situation

Les DSM sont des matrices, et donc des objets mathématiques, qui peuvent étre manipulées
par D’algebre. Nous proposons d’utiliser une combinaison linéaire pour générer la matrice

résultante. On écrit alors :

DSM =Y " a,DSM,
i=l Eq.1V-2

Zal.zl

I1 s’agit en réalité d’une pondération entre les DSM disponibles pour créer la DSM résultante.
Cependant, les matrices que 1I’on combine ont des origines différentes. De ce fait, il faut

respecter certaines regles lors de I'utilisation de la méthode de pondération :
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¢ (Certaines DSM redondantes peuvent avoir été construites directement par les acteurs du
projet. Dans ce cas, et si on suppose que le guide de construction des DSM a été
respecté (cf §2.1.), ces DSM prennent leurs valeurs entre 0 et 10. Ces DSM sont

utilisables directement dans la combinaison linéaire.

e D’autres DSM peuvent étre le résultat d’un traitement flou (situation 2 et 4).
L’utilisation de la méthode de la moyenne pour construire les DSM finales fait que les
interactions les plus fortes en sortie ne sont pas égales a 10. Pour que ces DSM puissent
étre comparables a celles construites manuellement, nous proposons de les normaliser

avec comme valeur maximale 10.

En rendant les DSM homogenes et comparables, il est possible d’utiliser la combinaison
linéaire pour proposer la DSM résultante. L algorithme de clustering qui permet d’identifier

I’architecture sous-adjacente du domaine est alors appliqué sur la matrice résultante.

Dans ce qui suit, nous allons étudier sur la base d’un exemple la mise en ceuvre de la méthode

de résorption de la redondance et les avantages qu’elle présente.

5.2. Mise en ceuvre

Pour illustrer la méthode de résorption de la redondance, nous allons reprendre I’exemple du
projet de conception du moteur diesel ou a la fois, la matrice d’incidence FS-COMP et la

matrice d’incidence EX-FS sont utilisées comme données.

La matrice d’incidence EX-FS est une matrice d’incidence numérique construite par les
acteurs du projet selon les mémes principes qui ont régi la construction de la matrice
FS-COMP.

La figure IV-30 montre la MI numérique EX-FS avec, en colonne, les sept exigences vis-a-vis

du moteur et en ligne les treize fonctions systémes présentées précédemment.

SF/EX Performance Démarrage Emission Agrément Vibration Consommation Fiabilité Sécurité Maintenabilité

Resp 9 8 9 8 7 8 9 7 8
‘:‘;ir‘l‘: 8 9 8 5 8 8 8
Dépol 7 8 9 5 4 8 8 6 8
Comb 0 5 8 5 8 8 g 9 6
CPC 8 5 5 0 5 5 9 8 4
PLV 6 8 0 0 8 G 8 8 7
EFF 0 8 0 0 8 5 7 5 0
CES 5 5 0 0 0 8 6 9 6
ACV 5 0 0 0 8 8 5 3 5
IES 8 8 0 0 5 0 8 8 8
THE 8 0 8 8 8 8 6 5 5
cou 9 0 5 8 6 5 6 9 6
F‘; (:1]c 5 5 5 5 5 5 3 3 E

Figure IV-30. MI EX-FS
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A partir de la matrice d’incidence EX-FS, nous pouvons générer par le processus flou
présenté dans la deuxiéme situation les deux DSM correspondantes a chacun des domaines.

Ensuite, a ’aide de 1’algorithme de clustering, nous identifions 1’architecture liée a chaque
DSM.

Etant donné que notre intérét se porte sur la résorption de la redondance, nous allons axer

notre travail sur les deux DSM FS obtenues.

5.2.1. Génération de la DSM FS a partir de la MI EX-FS

La DSM résultante a été générée selon la méthode de la moyenne avec un seuil de filtrage
X, =43etun IC=0.8.
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Figure IV-31. Architecture de la DSM FS issue de la MI EX-FS

L’architecture (Figure IV-31) identifiée nous amene a faire les remarques suivantes :

e [’architecture identifiée par 1’algorithme de clustering montre une architecture
déséquilibrée, avec un grand module composé de 7 FS, deux FS seules et 4 FS

intégratrices ;

e La DSM obtenue nous renseigne sur la criticit¢ des FS vis-a-vis des exigences qui
s’appliquent au moteur : ainsi les FS 1, 2, 3 et 6 sont celles qui sont les plus impactées

par les exigences et a I’opposé, les FS 7 et 13 le sont moins.

e La DSM FS générée a partir de la MI EX-FS est totalement différente de celle générée
de la MI FS-COMP, étudiée précédemment. 11 est évident alors que I’architecture issue
de la matrice d’incidence FS-COMP est celle qui représente le mieux 1’architecture

attendue du domaine des FS. Cependant, bien que les exigences ne soient pas
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structurantes pour les FS, nous pensons qu’elles peuvent donner un nouvel éclairage sur

I’architecture des FS.

5.2.2. Agrégation des deux DSM FS

La méthode d’agrégation des deux DSM FS étant une simple combinaison linéaire, nous

obtenons la formulation suivante :

FS DSM,, = ax FS DSM, c,» + bX FS DSM,

Eq.IV-3
a+b=1a,be ]
Ou:
FS DSM,, : La DSM résultante de I’agrégation
FS DSM, copp = La DSM FS obtenue a partir de la matrice d’incidence FS-COMP
FS DSM, ., - La DSM FS obtenue a partir de la matrice d’incidence FS-EXP

Le choix des valeurs des paramétres a et b peut étre guidé par la réflexion suivante. Les
interactions dans les MI utilisées dans ce travail sont toutes définies de telle maniére qu’on
peut générer d’une maniere symétrique les DSM des deux domaines liés par cette MI. Dans ce
cas, tous les domaines ont la méme importance et aucune hiérarchie n’existe entre les

domaines. Ainsi, logiquementona:a=b=0.5

Cependant, il est possible de considérer a différent de b, si on a plus confiance dans une

méthode de construction ou dans les valeurs d’une DSM.

La figure iv-32 montre le clustering obtenu sur la matrice agrégée avec a=b=0.5 et ou le seuil
de filtrage est fixé a X, =2.6 et IC est égale a 0.8
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Figure 1V-32. Architecture de la DSM FS agrégée
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Nous remarquons dans la figure IV-32 que ’architecture identifiée comprend deux ¢éléments
intégrateurs (THE et ACV). Etant donné que seule la matrice d’incidence FS-COMP a permis
d’obtenir une architecture admissible, nous décidons de désigner directement la FS VOL
FONC comme étant intégratrice, on obtient alors 1’architecture représentée dans la figure
IV-33.
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Figure IV-33. Architecture de la DSM FS agrégée avec FS VOL intégrateur

\

Nous analysons alors I’architecture obtenue par comparaison a celle issue de la matrice
d’incidence FS-COMP (Figure IV-24) :

¢ On obtient sensiblement deux architectures treés proches, la différence principale réside
dans le fait que la FS COU est passée du module postcombustion au module de
combustion et précombustion, le premier module ainsi constitué devient le groupement

des FS qui sont aussi les plus impactées par les exigences.

e [’enseignement que nous pouvons tirer a partir de I’architecture obtenue est que les FS
de la précombustion outre le fait de constituer un module homogene sont les plus
importants vis-a-vis de la satisfaction des exigences, et pour accomplir cette tache, il

faut prendre en considération la FS couplage dés les phases amont de la conception.

Pour conclure, on peut considérer que les deux architectures représentées en figure 1V-24 et
IV-33 correspondent a deux architectures des FS captées a deux instants différents de la vie
du projet. En figure IV-33, elle correspond a une phase transitoire quand on réalise la descente
des exigences vers les FS. Quant a I’architecture représentée en figure iv-24, elle correspond a

I’architecture des FS lorsqu’on ne prend en compte que 1’architecture organique du moteur.
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6. Quatrieme situation : Génération d’une DSM a partir d’une MI et
d’une DSM

6.1. Introduction

La méthodologie présentée dans cette thése repose sur I’hypothése que 1’on peut générer de
I’information sur I’architecture des domaines du projet méme si les DSM des domaines ne
sont pas accessibles. Ainsi, dans un premier temps, nous avons proposé de générer les DSM
en partant des MI. Dans un second temps, nous avons montré que 1’agrégation de DSM
permet d’aboutir a des architectures qui se rapprochent beaucoup plus fidelement de la réalité

du projet.

Dans ce paragraphe, nous allons envisager un nouveau cas de figure permettant la
modélisation par DSM d’un domaine et I’analyse de son architecture. Ce cas de figure répond
a certaines attentes des ingénieurs vis-a-vis de 1’utilisation de la méthode de construction des
architectures. En effet, nous avons présenté une méthode permettant de générer, a partir d’une
matrice d’incidence, deux DSM et ainsi de caractériser en méme temps 1’architecture de deux
domaines. La question qui se pose alors est : peut-on exploiter la situation ou on a comme

donnée la DSM d’un de ces domaines?

Nous proposons dans ce qui suit une méthode pour générer une DSM B connaissant M1 A-B
et DSM A (figure 1V-34).

e A
) DSM »| MI A-B
Données A
N\ J
. A
Traitement flou
et DSM

Conditionnement B
A 4 \ 4

Architecture
B

Architecture
A

Clustering

Figure IV-34. Schéma de la quatriéme situation

Pour illustrer cette situation, nous allons reprendre 1’exemple de la matrice d’incidence

FS-COMP et nous allons utiliser comme donnée la DSM FS construite manuellement.

6.2. Principe

Notre objectif dans cette partie est d’utiliser une DSM A comme donnée d’entrée pour affiner

I’architecture d’une DSM B, calculée a partir d’une matrice d’incidence A-B.
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Nous avons opté pour ’utilisation d’un traitement flou qui permet de générer la DSM du
domaine B. Ce traitement flou est la traduction de régles de construction qui permettent de
lier les interactions inter-domaines (DSM A) et intra-domaines (MI A-B) pour identifier et

évaluer les interactions dans la matrice B.

A T’image du traitement flou que nous avons proposé pour construire les DSM a partir de
d’une matrice d’incidence, le traitement flou de cette nouvelle méthode repose sur des regles

de construction.

6.2.1. Les régles de construction

Nous allons conserver la méme notation que celle utilisée dans le début de ce paragraphe avec
deux domaines : A (composé d’élément A;) et B (composé d’élément B;) et deux matrices :
une matrice d’incidence A-B (représentant les interactions A;-B;) et une DSM A (représentant

les interactions Aj-A;).
Les regles de construction de la DSM B sont les suivantes :

Régle 1. Lorsqu’un couple d’éléments (A;, A;) est couplé a un couple (B, B,) alors soit A; est

couplé a B, et A; est couplé B,, soit A; est couplé a B, et A; est couplé B,.

Reégle 2. Soit B, et B, deux ¢éléments de B, s’il existe deux éléments A; et A; qui interagissent
dans la DSM A et si en méme temps le couple d’éléments (A, Aj) est couplé au couple (B,,

B,) alors B, et B, sont couplés.

Régle 3. L’intensité du couplage entre B, et B, dépend de I’intensité du couplage entre A; et
A et des intensités de couplage entre les couples (A, Aj) et (By, By).

Régle 4. Nous considérons qu’un élément est couplé a lui-méme avec une intensité égale a 10.
Nous allons expliquer maintenant les régles que nous avons retenues :

e [a premicre regle précise que lorsque dans une matrice d’incidence on considére un
couple d’¢léments appartenant a un domaine A (A;, A;) et un autre appartenant a B (B,,
B,) alors il y a deux combinaisons possibles des couplages : soit A; avec B, et A;j avec
B, soit A; avec B, et A; avec B,. Dans la figure IV-35, nous avons choisi de

représenter A; couplé avec B, et A;j couplé avec B,.

e La deuxieme reégle reflete 1’idée que nous voulons propager les interactions d’un
domaine A vers un domaine B. Ainsi le couplage entre deux éléments de B provient de
I’existence de deux éléments de A qui sont couplés entre eux et qui interagissent
respectivement avec chacun des éléments de B. Dans la figure IV-35, I’existence du

couplage entre A; et A; implique I’existence d’un couplage entre B, et B,.

e Laregle 3 reprend la regle 2 et est affirme que les intensités sont liées entre elles.
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A A LA LA, B, ... B, ... By ... Bn
Ay A
A N X
A X A X
A, Ax
données \
B, B, ... \B, ... By
B,
DSM  |B, 9
générée | -
B, ?
B

Figure IV-35. Propagation d’une interaction de A vers B

¢ La regle 4 introduit une extension du concept de DSM en considérant que les éléments
en diagonal ont une valeur de 10. Cette regle nous permet de prendre en compte la
possibilité de créer un couplage entre deux €léments de B qui sont couplés au méme
¢lément de A. Pour conserver la méme formulation que dans le cadre général, on
considere alors que A; est couplé a lui-méme avec une intensité de 10. La figure IV-36

montre 1’application de cette régle.

A . A . A . A B, .. B, .. B, ... B,
A, 10 .
10
A 10 AT > X X
10
A 10 A,
10
A, 10| |Ax
données \
B, B. . v ... Bn
B,
DSM B, ?
générée i ,
B

Figure IV-36. Propagation des intensités en diagonale de A vers B

6.2.2. Préparation des DSM pour le traitement flou

Les regles d’inférence présentées dans ce processus flou s’appliquent a des valeurs
numériques allant de 0 a 10. Cependant, si la MI est toujours construite manuellement, la
DSM utilisée en entrée peut étre soit construite manuellement, soit obtenue par un algorithme

(par exemple, celui qui permet de générer des DSM a partir d’une MI). C’est le deuxiéme
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type de DSM qui peut poser probleme. En effet, avec la méthode d’agrégation par la
moyenne, les intensités ont un faible écart-type et I’interaction la plus forte peut étre de 5.
C’est pourquoi, nous proposons de normaliser les DSM en entrée pour avoir des valeurs allant
de 0 a10.

La normalisation se présente comme suit: soit DSM A, une DSM avec des valeurs

quelconques positives alors :

DSMA
DSMA, =
" max(DSMAC, /)
1,]

x10 Eq.IV-4

La normalisation a alors pour effet d’étaler les valeurs d’entrée entre 0 et 10 tout en

conservant le rapport entre les intensités.

6.2.3. Le processus flou

Comme nous 1’avons précisé pour le premier processus flou, ce processus va permettre de
formaliser la construction de la valeur des interactions en sortie en fonction des valeurs des
interactions en entrée (figure IV-37).

Toute caractéristique de ce processus flou qui n’est pas précisé ici est inchangée par rapport

au processus flou présenté dans la partie 4.3.

XX
AlE //
E ., E""'—i Eus-B

.2

EXFERT2

| Pl s

Figure IV-37. Architecture du traitement flou

Les variables d’entrée ainsi que la variable de sortie utilisent la méme caractérisation basée
sur 3 variables linguistiques : Faible, Moyen et Fort. Les fonctions d’appartenance sont les

mémes que pour [’autre traitement flou.

6.2.3.1. Les regles d’inférences

Pour les trois entrées, nous avons caractérisé 13 régles d’inférence:

o Si (A4i-A4;est Faible) alors (B,-B, est Faible)

e Si(Aj-Ajest Moyen) et (A;-B, est Faible) alors (B,-B, est Faible)
® Si(Aj-Ajest Moyen) et (Aj-B, est Faible) alors (B,-B, est Faible)

* Si(Aj-Ajest Moyen) et (Aj-B, est Moyen) et (Aj-B, est Moyen) alors (B,-By est Moyen)
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o Si (A4-A4; est Moyen) et (4;-B, est Fort) et (4;-B, est Moyen) alors (B,-B, est Fort)
o Si(4;-4; est Moyen) et (4i-B, est Moyen) et (4;-B, est Forf) alors (B,-B, est Fort)
o Si(A4-4; est Moyen) et (4;-B, est Fort) et (4;-B, est Fort) alors (B,-B, est Fort)

e Si(Aj-Ajest Fort) et (Aj-B, est Faible) et (Aj-B, est Faible) alors (B,-B, est Faible)

® Si(4;-4; est Fort) et (4B, est Faible) et (4;-B, n’est pas Faible) alors (B,-B, est Moyen)

® Si(A4-4; est Fort) et (A4i-B, n’est pas Faible) et (4;-B, est Faible) alors (B,-B, est Moyen)

o Si(A4i-4; est Fort) et (4;-B, est Moyen) et (4;-B, n’est pas Faible) alors (B,-B, est Fort)

o Si(4;-4; est Fort) et (4;-B, n’est pas Faible) et (4;-B, est Moyen) alors (B,-B, est Fort)

o Si(A4i-4; est Fort) et (4B, est Fort) et (4;-B, est Fort) alors (B,-B, est Fort)

Ces 13 regles d’inférence résument les 27 combinaisons possibles des entrées pour construire

la sortie. Nous présentons dans le tableau IV-3 toutes les relations entre les entrées et la sortie.

Ai'Ai
1 Faible
2 Faible
3 Faible
4 Faible
5 Faible
6 Faible
7 Faible
8 Faible
9 Faible
10 Moyen
11 Moyen
12 Moyen
13 Moyen
14 Moyen
15 Moyen
16 Moyen
17 Moyen
18 Moyen
19 Fort
20 Fort
21 Fort
22 Fort
23 Fort
24 Fort
25 Fort
26 Fort
27 Fort

Ai'Bn
Faible
Faible
Faible
Moyen
Moyen
Moyen
Fort
Fort
Fort
Faible
Faible
Faible
Moyen
Moyen
Moyen
Fort
Fort
Fort
Faible
Faible
Faible
Moyen
Moyen
Moyen
Fort
Fort
Fort

Ai'Bv
Faible
Moyen
Fort
Faible
Moyen
Fort
Faible
Moyen
Fort
Faible
Moyen
Fort
Faible
Moyen
Fort
Faible
Moyen
Fort
Faible
Moyen
Fort
Faible
Moyen
Fort
Faible
Moyen
Fort

B.-B,
Faible
Faible
Faible
Faible
Faible
Faible
Faible
Faible
Faible
Faible
Faible
Faible
Faible
Moyen
Fort
Faible
Fort
Fort
Faible
Moyen
Moyen
Moyen
Fort
Fort
Moyen
Fort
Fort

Tableau IV-3. Expression de la sortie en fonction des entrées

Les regles d’inférences que nous venons de présenter permettent ainsi de lier 1’intensité

d’interaction entre deux éléments B,-B, pour tout couple d’éléments 4;-4;.
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6.2.4. Construction de la DSM finale
Le processus flou nous permet de construire une DSM B pour chaque couple d’élément (4,
4;). Cependant, la premiere régle qui formalise la construction de la DSM finale stipule qu’il
est possible de coupler de deux maniéres différentes deux éléments de A et de B. C’est

pourquoi nous faisons le choix d’exprimer la valeur finale de DSM(, A/)(Bu , BV) comme suit :

DSM(4, — B,, 4, — B,)+ DSM(4, — B, 4, — B,)
2

DSM(A‘_,AI)(BM,BV): Eq.IV-5

Avec :

DSM(, A])(Bu ,B,) la valeur de !’interaction entre B,-B,en partant de A;-A;

DSM (A,. —B,4,—> Bv) la valeur de !’interaction entre B,-B, avec dans la matrice d’incidence A;
est couplé a B, et A; est couplé a B,

DSM(4, — B,, 4 = B.) lavaleur de l'interaction entre B,-B, avec dans la matrice d’incidence A;
est couplé a B, et A; est couplé a B,

Le choix de faire la moyenne est justifi¢ par le choix de la méthode globale d’agrégation qui

est aussi la moyenne.

Ainsi la valeur finale de I’interaction entre B,-B, est telle que représentée par 1’équation

Eq.IV-6. On remarquera qu’on divise par le nombre de couples (A;,A;) considérés.

ZZ DSM(AI»7A,)(BM >Bv)

DSM(B,,B,)=——

Eq.IV-6

u?d

taille(DSMA)*

6.2.5. Filtrage de la DSM résultante

Avec le processus flou proposé pour la construction des DSM a partir d’une seule matrice
d’incidence, nous avons identifié le biais li¢ a I’impossibilité¢ d’obtenir des valeurs nulles. Le
principe du traitement étant sensiblement le méme dans le processus actuel, on retrouve alors
le méme biais. Pour préparer la DSM résultante, nous utilisons le méme principe de filtrage

que celui présenté dans le paragraphe 4.3.5.

6.3. Application a ’architecture organique du produit

Nous allons reprendre I’exemple de la construction de 1’architecture du produit. Nous
proposons de construire 1’architecture organique du moteur connaissant 1’architecture du

domaine des fonctions systemes et la matrice d’incidence FS-COMP.

La matrice d’incidence est une donnée que nous avons déja utilisée dans la deuxiéme situation
de construction. Nous allons alors utiliser comme donnée la DSM FS construite directement

par les acteurs du projet (Figure IV-8)
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Dans

6.3.1. Construction de ’architecture organique

ce paragraphe, nous analysons I’architecture organique (figure IV-38 (b) ) obtenue a

partir de la DSM FS et de la MI FS-COMP en la comparant a 1’architecture obtenue avec la
DSM COMP (figure IV-38 (a)) construite dans la situation 2 (directement a partir de la MI

FS-COMP).
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Figure I'V-38. Comparaison des architectures organiques des situations 2 et 4

Nous comparons les deux architectures de la figure IV-38 comme suit :

Les deux architectures sont composées de deux modules et trois éléments intégrateurs.

Les modules sont trés proches par leur composition, de méme pour les éléments

intégrateurs.

Les éléments en commun dans le premier module sont: I’EGR, 1’Injection,
I’échappement et le Controle-Capteurs. Tous ces constituants appartiennent a la partie
haute du moteur. Dans la DSM issue uniquement de la matrice d’incidence, nous
trouvons en plus la distribution. L’algorithme a maintenant placé la Culasse, dans le
premier module de la nouvelle DSM. Cet élément a été identifié dans la premiere
comme ¢tant intégrateur. La réalité concernant cet élément d’apres les acteurs du projet
est que ce constituant fait partie physiquement de la partie haute du moteur. Cependant,
il a aussi un role intégrateur a la fois interne au module car les autres éléments se fixent
sur lui et externe en complément du carter. Mais c’est le carter qui réalise 1’intégration

de la majorité des composants du moteur.

Le deuxieme module est composé des éléments invariants suivants: les deux
entralnements et le circuit caloporteur. La lubrification qui a été identifiée comme

faisant partie de ce module est devenue intégratrice tout en conservant un grand nombre
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d’interactions avec ce méme module. Nous retrouvons dans la nouvelle DSM le circuit
de vide qui reprend une place attendue, tout en étant faiblement couplé aux autres

éléments de ce module.

e [ ’attelage mobile et le carter sont les intégrateurs invariants entre les deux architectures.
Ces deux éléments avec la contribution de la culasse constituent le squelette du moteur.
En plus, ils sont couplés avec un grand nombre d’éléments. Le troisieme élément

intégrateur est la lubrification.

7. Synthése

Apres I’amélioration d’un algorithme de clustering au chapitre 3, nous avons présenté une
deuxiéme contribution, portant sur une méthode de développement des architectures d’un
systeme. Cette méthode est fondée sur ’identification de différentes situations de conception

(cas d’utilisation d’un outil).

Les quatre situations inventoriées ont ét¢ accompagnées chacune par une démarche de
construction des architectures. Ces démarches exploitent le formalisme matriciel des matrices
d’incidence et des DSM en recourant a des opérations mathématiques et a un traitement flou

quand il était nécessaire.

Le choix du traitement flou comme méthode de construction des DSM dans les deuxiéme et
quatriéme situations est cohérent avec le caractére subjectif des données manipulées,

construites par les acteurs du projet.

La mise en ceuvre de la méthode de construction sur I’exemple d’un moteur diesel a montré
son utilisation possible et a permis une premiere validation. Rappelons a cet effet que
I’objectif principal de cette méthode est d’aider les architectes systemes a appréhender la
complexité des systemes dits complexes en leur permettant de simuler et d’analyser les
architectures des domaines du produit. On peut imaginer qu’a la suite de cette étape
I’architecte systéme puisse étre en mesure d’adopter les architectures proposées et ainsi de
considérer les modules comme des boites noires dont il figera les interfaces externes en

arbitrant avec les éléments intégrateurs.

On peut considérer aussi qu’a la suite de 1’application de cette méthode, 1’architecte puisse
identifier des incohérences en comparant les architectures de deux domaines couplés. Il
voudrait dans ce cas apporter des modifications a 'un de ces domaines et simuler des

architectures cohérentes pour chacun de ces domaines.

C’est en réponse a cette derniere problématique que nous exposons dans le chapitre suivant
une méthode de coévolution des architectures en I’illustrant sur la coévolution des
architectures du produit et de 1’organisation du projet avec comme moteur de ’évolution,

I’exploration des sources d’incertitudes.
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CHAPITRE V

VERS LA COEVOLUTION DES ARCHITECTURES
DES DOMAINES COUPLES

Un projet de conception d’une famille de produits ou d’un produit complexe comporte, lors

des phases préliminaires, des activités d’architecture critiques pour le colt et la qualité du
produit, car elles génerent des décisions qui vont fortement orienter ou contraindre les choix
ultérieurs en conception détaillée. Lors de ces phases, des itérations rapides entre différents
métiers seront réalisées pour vérifier la faisabilit¢ de choix d’architecture et prendre en
compte des évolutions dans I’architecture du produit. Ultérieurement, lors de projets de
reconception du produit permettant de prolonger sa vie commerciale, des activités semblables

devront étre menées.

Dans le cadre du pilotage organisationnel et en considérant la modélisation de 1’architecture
globale du projet, il est évident que la conception des architectures passe par la propagation
des modifications et des changements entre tous les domaines du projet. Ainsi, nous pensons
que toute modification impactant un domaine a d’abord des répercussions sur son architecture
et a cause du couplage entre les domaines, la propagation de ces modifications a pour
conséquence de faire évoluer les caractéristiques des autres domaines et par la méme leurs

architectures.

Plusieurs travaux de recherche se sont intéressés, a 1’évolution individuelle des architectures
de chacun des domaines du projet, on peut citer [Balachandra, 2002 ; Clarkson et al., 2004 ;
Chen et Liu, 2005 ; Keller et al., 2005 ; Avak, 2006] pour la modélisation de 1’évolution de
I’architecture du produit, Galbraith [1977; 1994] pour I’évolution de I’architecture de 1’équipe
de conception. Cependant, nous n’avons pas pu référencer des travaux modélisant a la fois la

coévolution de ces deux domaines du projet.

Dans ce chapitre, nous faisons 1’hypothése que pour toute fonction ou composant du produit
et ce, a n’importe quel niveau de décomposition, il existe une tiche de conception qui porte
sur la définition de cet élément du produit. Les domaines du produit et des processus sont

alors bijectifs ce qui aboutit a I’obtention des mémes DSM Produit et Processus. Le choix de
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cette hypothése est lié au traitement différent qu’aurait nécessité¢ ’analyse de la DSM
Processus (partionnement) et 1I’information qu’elle contient (enchainement des taches) si on
avait opté pour I’utilisation d’une DSM Processus temporelle. Cette DSM sort du cadre de

notre travail et de son objectif qui est I’identification des architectures sur des DSM statiques.

Dans la suite de ce travail, nous ne modéliserons pas dans sa globalité I’organisation du
projet. Nous nous limiterons a la modélisation du domaine organique de cette organisation par
I’utilisation d’'une DSM Acteurs. La DSM Acteurs est alors couplée au produit par une

matrice d’incidence MI-Produit-Acteurs.

DSM Produit DSM Organisation
du projet
e 2 Domaine des G 2)
DSM MI processus MI
Fonctions FS-COMP Proc-Acteurs
Systémes <:> DSM fonctionnelle
. 4 Allocation & J

Domaine des
acteurs

DSM

Composants
DSM organique

Figure V- 1. Modélisation des domaines du produit et de I’organisation du projet

Ce chapitre s’articule de la manicre suivante : d’abord nous présenterons le principe de la
méthode, ensuite nous détaillerons une par une les étapes qui la compose. Nous proposerons
une typologie des incertitudes qui nous permet de modéliser les changements introduits,
ensuite nous formaliserons la méthode de coévolution des architectures en nous basant sur le
traitement flou, I’outil DSM et I’algorithme de clustering. Enfin, cette méthode de coévolution
sera appliquée a un exemple industriel portant sur I’évolution d’une Boite de Vitesse (BV)

manuelle vers une BV robotisée.

1. La méthode de coévolution des architectures

Dans le chapitre précédent, nous avons présenté plusieurs méthodes pour la construction des
architectures des domaines du produit. Nous avons montré I’existence de couplages entre ces
domaines. Cependant, un projet de conception a aussi une dynamique temporelle et les
architectures des domaines qui le composent peuvent évoluer au gré des levées d’incertitudes
et des modifications demandées. Ainsi, vu que tous les domaines sont liés, toute modification

qui touche un domaine influence tous les autres domaines du projet.
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Nous entendons développer et mettre en ceuvre une méthode de propagation entre les
architectures de deux domaines A et B couplés a travers une matrice d’incidence A-B. Cette
propagation est modélisée comme 1’évolution d’une situation initiale (caractérisée par DSM
Ay, DSM By et la matrice d’incidence MI Ay-By) vers une situation finale (caractérisée par
DSM Ay, DSM Br et la matrice d’incidence MI Ap-By). La transition d’une situation initiale
stable vers une situation finale stable nécessite le passage par plusieurs étapes intermédiaires

ou les incertitudes sont introduites progressivement puis propagées.

La méthode de propagation que nous proposons est structurée comme suit :

1. Modéliser la situation initiale :
o Construire les DSM Ay et DSM By et la matrice d’incidence MI Ay-By
o Vérifier et réaliser la cohérence de la situation initiale

2. Explorer les incertitudes introduites par 1’évolution de la situation initiale : construction de
DSM A; et DSM B; et MI A;-B;

3. Simuler a partir de la situation intermédiaire les architectures finales avec la méthode de

coévolution.

2. Principe de cohérence entre les architectures couplées

Si les domaines du projet sont couplés alors leurs architectures le sont aussi. L’existence de ce
couplage sous-entend d’un c6té, que toute €volution dans I’architecture d’'un domaine doit
étre répercutée sur les architectures des autres domaines et d’un autre c6té, que 1’architecture
d’un domaine est le fruit de la propagation de toutes les contraintes d’architectures des autres

domaines.

Sur la base de cette derniére constatation, nous faisons I’hypothése que si on modélise
I’architecture de tous les domaines du projet a un instant donné et si ces architectures
n’évoluent pas, alors ces architectures sont en équilibre et elles sont cohérentes entre elles.
Autrement dit, lorsqu’aucune modification n’est introduite dans le projet, les architectures

sont stables et donc optimales vis-a-vis des propagations des contraintes entre les domaines.

Nous considérons que les méthodes développées dans le chapitre précédent concourent a
I’obtention d’architectures cohérentes et ce, parce qu’elles reposent sur [’utilisation des

matrices d’incidence pour identifier les DSM et donc les architectures.

La méthode de coévolution que nous introduisons dans ce chapitre n’a de sens que si les
situations initiales et finales du probléme sont cohérentes et optimales. Si par construction la
méthode que nous proposons garantit la cohérence des architectures finales, nous devons

proposer un test de cohérence sur les architectures initiales.
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2.1. Modélisation et Validation de la situation initiale

Pour valider la situation initiale du point de vue cohérence des architectures, nous proposons

une démarche en deux points :

2.1.1. Test de cohérence des architectures initiales

Pour tester la cohérence des architectures initiales, nous proposons d’utiliser le role pivot des
matrices d’incidence pour lier les architectures de deux domaines couplés. Puisque nous
avons affirmé que les architectures obtenues a partir d’une matrice d’incidence sont
cohérentes, nous proposons alors aux acteurs du projet de comparer les architectures
construites aux architectures simulées a partir de la matrice d’incidence. Nous avons opté
pour la non-automatisation de cette étape de comparaison qui permettra aux acteurs de projet

de confronter la réalité du projet aux architectures obtenues par simulation.

2.1.2. Modification de la situation initiale

Si le test révele un écart conséquent entre les architectures proposées et les architectures
simulées ou si les acteurs préferent les architectures simulées, nous proposons deux approches
pour proposer des architectures initiales cohérentes. Ces deux approches reposent sur les

méthodes proposées dans le chapitre précédent.

e Premiere approche : elle s’applique quand les DSM et les architectures identifiées ne
reflétent pas 1’existence d’une politique de 1’entreprise pour la propagation des
contraintes d’architectures entre les domaines du projet. Dans ce cas, il n’est pas
possible de considérer la situation initiale comme étant une situation optimale. La seule
donnée de confiance qui reste est la matrice d’incidence. Nous appliquons alors la
méthode de construction de deux DSM en partant d’une matrice d’incidence, méthode
exposée dans la partie 4 du chapitre 4. Si les architectures obtenues sont validées par les

acteurs du projet, ces architectures peuvent servir comme modele de la situation initiale.

e Deuxieme approche : elle s’applique quand I’architecture de ’'une des DSM décrivant
la situation initiale est validée par les acteurs du projet. Dans ce cas, nous pouvons
proposer une architecture cohérente de I’autre domaine en utilisant la méthode de
propagation introduite dans la partie 6 du chapitre IV. Cette méthode de propagation
utilise une DSM et une MI pour construire une nouvelle DSM. Les architectures
obtenues a I’issue de cette approche, si elles sont validées par les acteurs du projet, offre

des architectures cohérentes pour décrire la situation initiale.

Si dans la démarche de validation des architectures initiales, nous utilisons une des deux
approches de restructuration présentées ci-dessus, cela sous-entend que les architectures
observées ne sont pas cohérentes et que la situation initiale aurait pu étre améliorée avant de

subir les perturbations qui vont la faire évoluer.
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3. L’exploration des incertitudes

Notre démarche de simulation de 1’évolution des architectures couplées du projet est en
adéquation avec les objectifs du pilotage de projet de conception en matiere d’adaptation aux
incertitudes qui peuvent intervenir dans le projet. Ce positionnement fait que nous nous
sommes inspirés d’une part, des travaux de Ward et Chapman [Chapman et Ward, 1997]
[Ward et Chapman, 2003] en matiere de management de 1’incertitude pour définir un cadre au
mangement de I’incertitude et d’autre part, des travaux de Loch, Pich et De Meyer [Loch et

al., 2000 ; Pich et al., 2002] pour proposer une typologie de I’incertitude.
3.1. Les typologies références

3.1.1. Le management de I’incertitude selon Chapman et Ward

Chapman et Ward [2003] présentent le management de 1’incertitude comme une approche qui
a ¢t¢ initialement introduit pour donner un contrepoids a la gestion des risques en introduisant
la possibilité de considérer les aléas comme une opportunité. Cependant, ces chercheurs
affirment que le management de 1’incertitude a dépassé le cadre de cette opposition entre les
menaces et les opportunités pour s’intéresser aussi aux sources des incertitudes, avant

d’établir un plan d’action, pour les gérer et les classer en désirables ou non.

Dans ce cadre, I’incertitude définie par Chapman et Ward (et telle que nous 1’utiliserons)
s’apparente a une absence (ou un manque) d’informations autour de 1’entreprise et plus
précisément, dans les outils, modeles et données qui caractérisent I’entreprise et son
fonctionnement. Toutefois, la typologie que proposent ces auteurs est beaucoup plus

managériale et moins formelle que celle que nous visons, elle se résume comme suit :

¢ Incertitude sur la conception et la logistique : la nature des livrables en conception et
des processus qui les créent est un aspect fondamental de I’incertitude dans le projet. En
principe, une grande part de cette incertitude est éliminée dans les stades amonts du
cycle de vie du produit en spécifiant ce qui doit étre fait, quand, comment, par qui et a
quel prix. En pratique, une part appréciable de I’incertitude du projet persiste tout au

long du cycle de vie du produit.

¢ Incertitude sur les relations fondamentales : la multiplication des acteurs humains et des
types d’entités organisationnelles (internes ou externes a 1’entreprise) impliqués dans le
projet forment une réelle source d’incertitude dans I’entreprise. Les relations entre ces
différentes parties peuvent étre complexes et ne pas utiliser des canaux formels.
L’implication de plusieurs parties dans un projet introduit de I’incertitude (par
ambigiiité) autour des roles et des responsabilités ainsi que sur les interactions formelles

entre ces parties.
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¢ Incertitude autour des objectifs et des priorités : avoir comme objectif I’amélioration de
la performance du projet présuppose d’avoir une vision claire des objectifs du projet et
des concessions a faire entre les objectifs et les contraintes. Essayer de gérer un projet

quand cette vision manque est comme essayer de batir une tour sur du sable mou.

e Variabilit¢ : la caractérisation des paramétres de projet est une source réelle
d’incertitude. Par exemple, il est possible d’ignorer quelles ressources et quelle durée
sont nécessaires pour I’accomplissement d’une tache. Cette incertitude est souvent lice a
un manque d’information ou de I’imprécision, plutdt que liée a une méconnaissance des

risques et des aléas qui peuvent toucher le projet.

¢ Incertitude autour de la base des estimations : un champ important des incertitudes sont
les bases des estimations produites par les différentes parties du projet. Par exemple, il
est souvent nécessaire de se baser sur des évaluations subjectives et des probabilités en
absence de données statistiques appropriées qui permettent de déterminer
"objectivement" les probabilités. L’incertitude au sujet de la base des évaluations peut
dépendre de plusieurs facteurs méconnus ou inconnus : qui les a produites, sous quelles
formes, pourquoi, comment et quand ont-elles été produites, a ’aide de quelles

ressources ou sur la base de quelles expériences ?

¢ Incertitude associée a la nature conditionnelle des estimations. Les estimations produites
dans le cadre d’un projet sont toutes contraintes par des hypothéses et elles ne sont
vraies ou justes que dans le cadre de ces hypotheses. Une source particulicrement
importante d’incertitudes sur les estimations est liée a la non vérification et la non

validation des hypothéses.

3.1.2. La typologie d’incertitude selon Loch, Pich et De Meyer

Un projet est communément vu comme 1’agencement d’activités paralleles et séquentielles
qui permettent de créer de la valeur [Morris et al., 1987], [Meridith et al., 1995]. Loch et ses
coauteurs [Loch et al., 2000] conceptualisent le projet non comme un ensemble de taches a

réaliser, mais comme un ensemble de facteurs qui influent sur la création de valeur.

Ils définissent la valeur créée par II, qui est une fonction de N parametres w, caractérisant

I’entreprise et les projets qu’elle développe : 11 = H(Wl,...,WN).

Les auteurs affirment que la plus-value du projet ne peut étre prédite avec certitude, puisqu’il
faut caractériser un a un les parametres w, a qui on associe un domaine de définition D, . Les

sources d’incertitudes identifiés par les auteurs et liées a la caractérisation deIl sont au

nombre de 5 : la complexité, la variabilité, les risques, I’ambigiiité et le chaos.
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3.1.2.1. La complexité
Si on considére que les paramétres w, sont directement déterminés par les responsables de
I’entreprise. Ces parametres peuvent étre interdépendants et I'influence de cette
interdépendance sur I1 peut échapper a ces responsables. Plus les couplages sont nombreux,
plus la complexité du modele est grande. Ainsi, I’incertitude par complexité est lie a ces
couplages entre parametres. S’il y a incertitude par complexité surIl alors les responsables

sont incapables de spécifier tous les couplages entre les parametres w, impliquées dans la

caractérisation de IT.

3.1.2.2. La variabilité

Certains parametres déterminantIT peuvent ne pas étre accessibles individuellement un par un
et ce par manque de moyens (colit important) ou par incapacité technique. Par contre, il est
possible d’avoir acces a 1’effet global de ces parametres par une fonction de distribution F. les
auteurs proposent alors de transformer I1 en une fonction de distribution en fonction de F.

L’incertitude par variabilité peut alors étre estimée en calculant la variance deIl.

3.1.2.3. Les risques

Cette situation est caractérisée par ’existence de certains parametres sous la forme de
variables aléatoires. Les auteurs utilisent des mesures de probabilité pour chacun de ces
parametres et proposent d’estimer le risque introduit par ces variables en utilisant la variance
de II.

3.1.2.4. L ambiguité
L’ équipe projet peut occulter (ou ne pas connaitre) 1’existence de certains parametres. On
considere (WL+ M+1""’WN) ces parametres. Selon toute logique, 1’équipe ignore I’impact de ces

parametres sur la valeur du projet, ce qui revient a leur donner une valeur par défaut dans le

modeéle réel.

En effet, si on considére que 1’expression utilisée de ITest IT=X—Y —Z*. Cependant
I’expression réelle est II=X—-W*Y —Z>. Dans ce cas, implicitement et en ignorant
I’existence de W, les responsables du projet utilisent inconsciemment le modele réel avec W

toujours égale a 1. Alors que dans la réalité W peut prendre une autre valeur que 1.

Une estimation de I’influence de I’incertitude par ambigiiité¢ sur IT est réalisée en calculant

I’amplitude des écarts sur les valeurs observées de I1.

Par définition méme ’incertitude par ambigiiité ne peut étre anticipée puisqu’elle résulte de la
non connaissance de I’existence de ces parameétres. Dans ce cas 13, il est seulement possible de

I’explorer au cours du projet en identifiant de nouveaux parametres.
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3.1.2.5. Le chaos
Supposons que les parametres (WL+M+1""’WN) sont interdépendants par une fonction
hy,., .o )=c - Le projet est chaotique dans le sens ol un changement minime dans un

parametre peut causer une complete réévaluation de tous les parametres [Cohen et al., 1994].

Dans cette situation, il n’est pas possible d’estimer la valeur ITdu projet.

3.1.2.6. Récapitulatif

Le tableau V-1 résume la typologie adoptée par Loch, Pich et De Meyer, on y fait référence
aux outils de représentation utilisés dans 1’entreprise tels que les graphes et les arbres de
décision et les méthodes telles que PERT et GERT.

Représentation Type Structure
W
Complexité @=|... | connu
CPM flow Wy

network

(W1""’WL) ne sont pas
individuellement connus : seulement
leur influence collective peut étre
estimée par une fonction de

rime distribution

Variabilité

PERT. GERT,

Cnneal Chan

Degiios ires

Risques (WL,..., WL+M) sont des variables
I1; (s
; aléatoires.

L’équipe projet n’est pas consciente
de I’existence de (WL+M+1>~-’WN)‘ Le

projet est basé sur des parameétres

par défaut (W* W )
LM+’ N

Ambiguité

e —T1,
FaaEem® i dibe? redes recrpauss 3 e A

ligrsiwm | mew
propectsh .,I n Les parametres (WL+M+1""’WM)
Sont interdépendant. Leur influence
.,,I n Chaos _sur ’1a Valreur du proj et ne peut pas
étre évaluée et leur influence ne peut
étre étudiée un par un.

Tableau V-1. Typologie des incertitudes selon Loch et al. [2000]
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Cette typologie en cinq points se montre efficace pour une modélisation mathématique du
projet basée sur les parametres et attributs qui caractérisent tout élément impliqué dans le

projet.

3.1.3. Analyse des typologies de référence

Il est facile de remarquer que les deux typologies que nous avons référencées reflétent deux
niveaux de pilotage des projets en entreprise. La premicre typologie se situe a un niveau
managgérial et procédural tandis que la deuxiéme est beaucoup plus opérationnelle.

D’apres la typologie de Chapman et Ward (Chapman et al. 2003), I’incertitude peut étre issue
de:

e [a variabilité liée au choix de la valeur a attribuer aux parameétres ou informations
traités ;
e [’ambiguité liée au sens et a I'utilisation du parametre ou de I’information.

La typologie de Loch, Pich et De Meyer [Loch et al., 2000 ; Pich et al., 2002] nous la

résumons comme suit :

e [’incertitude par ambigiiité caractérise I'utilisation d’'un modele qui ne prend pas en
compte tous les parametres ou toutes les entités. L’ambigiiité dans son sens littéral
provient alors des singularités qui peuvent avoir lieu sans qu’elles puissent étre

expliquées par le modele tronqué.

e La complexité et le chaos sont liés a la difficulté de construire des modeles fideles

lorsque le nombre d’éléments ou le nombre d’interactions devient trés grand.

e [a variabilité et les risques sont liés a la variabilité des éléments qui caractérisent le

modele.

Dans notre cas, nous recherchons une typologie qui se situe entre les deux typologies de
référence, une typologie qui puisse Etre utilisée dans les phases amont des projets de
conception apres que les décisions managériales aient été prises au niveau de I’entreprise et

avant qu’on ait une connaissance approfondie de tous les paramétres caractérisant le projet.

3.2. Notre typologie de ’incertitude

Une typologie appropriée de I’incertitude peut orienter la démarche d’exploration des
incertitudes qu’on désire appliquer. Cette typologie sera considérée comme satisfaisante si

elle permet de couvrir toutes les sources d’incertitude.
L’interprétation que nous réalisons des deux typologies de référence nous amene a conclure :

e comparativement a la deuxiéme typologie, la premic¢re ne prend pas en compte la

complexité comme source d’incertitude.
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¢ la deuxieme typologie peut étre condensée en trois types d’incertitudes.

A la lumiere de ces remarques, nous proposons la typologie suivante en 3 points [Harmel et
al., 2006a ; 2006d] :

e [’incertitude par ambigiiité : elle est lide, soit a la non identification d’un élément
appartenant au systéme, soit a la prise en compte d’un élément qui ne doit pas appartenir

au systeme (introduction de E sur la figure V-2).

¢ L’incertitude par complexité : elle est lice, soit a la non identification d’un couplage ou
d’une interaction entre deux ¢éléments du systeéme (introduction des couplages B-A, A
-E et E-C sur la figure V-2), soit a la prise en compte d’interactions qui ne doivent pas

exister.

e [’incertitude par variabilité : elle est lide, soit a la non identification d’un attribut ou la
non prise en compte de certaines valeurs pour caractériser un élément ou une
interaction, soit a la prise en compte de valeur erronées ou impossibles (modification du

domaine de définition de C sur la figure V-2).

A B C
A X
A » B » C C=[2..7]
X
A B C E  ___e---=-_"_
/’— ~\
A X X v )
YA > == c | e
< » P .-
B X X 5 /7
I
\
C \\ [=== //
» g L-
E X Ll

Figure V-2. Illustration de notre typologie d’incertitude

L’intérét de cette typologie pour notre travail est accentué par le fait qu’une représentation
sous forme de matrices est possible. Nous utiliserons cette typologie pour faire évoluer les
matrices DSM.

3.3. La méthode d’exploration des incertitudes

Notre typologie des incertitudes énumere les classes d’incertitude dans un ordre qui reflete
une hiérarchie entre elles. En effet, I’exploration des sources d’incertitudes par ambigiiité
aboutit a I’identification de nouveaux éléments qui n’étaient pas pris en compte dans la
représentation du systeme. Tout nouvel élément ne peut appartenir au systéme que si on

identifie des couplages le liant aux autres éléments du systeme. Ainsi, la levée des incertitudes
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par ambigiiité fait appel a I’exploration des sources d’incertitudes par complexité. Cette
deuxiéme étape peut aboutir aussi a ’identification de nouveaux couplages entre les anciens
éléments du systéme. Pour finaliser la caractérisation du systéme, il est nécessaire d’identifier
les nouveaux €léments et les nouveaux couplages et de fixer la valeur des attributs de chacun.

I1 s’agit de I’exploration des sources d’incertitudes par variabilité.

La méthode d’exploration (représentée sur la figure V-3) garantit [’exploration des
incertitudes qui peuvent caractériser un systeme. Tout autre ordre dans I’exploration des
sources d’incertitudes ne peut pas étre efficace en raison de la filiation qui existe entre les

trois types d’incertitudes.

Levée des incertitudes par ambigiiité

Levée des incertitudes par complexité

Levée des incertitudes par variabilité

Figure V-3. Processus d’exploration des incertitudes

4. Méthode de coévolution des architectures

La méthode de coévolution des architectures débute aprés la levée des incertitudes et la

construction du modele de la situation intermédiaire.

La figure V-4 montre I’organigramme de la méthode globale de coévolution des architectures

de deux domaines A et B.
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Situation initiale DSMA,

MI By-Ay

DSMB,

Exploration des
incertitudes

Situation

. e DSMA;
intermédiaire

)

DSMB;

Propagation
mutuelle des

«

architectures

Combinaison avec

la situation

intermédiaire

DSMA;

DSMBy¢

Figure V-4. Détail de l1a méthode de coévolution des architectures

Dans la partie suivante, nous allons expliciter les deux derniéres étapes de 1’organigramme.

4.1. Propagation mutuelle des architectures

La propagation mutuelle des architectures repose sur la méthode de propagation d’une
architecture d’un domaine donné vers un autre. Dans la méthode de coévolution, nous allons

réaliser une double propagation. Ainsi nous partons de DSMA; (respectivement, DSMB;) pour

obtenir DSMB; (respectivement, DSMA.,).

La méthode de construction de I’architecture de B en partant de 1’architecture de A et de la MI

A-B repose sur un traitement flou présenté au chapitre précédent (Situation IV).

La figure V-5 montre le détail du traitement flou réalisé pour obtenir les DSMA, et DSMB..
Nous déroulons I’exemple de propagation de deux interactions (A;, A,’n) de DSM A, et (B,i,B;)

de DSM Bi.
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DSM4, DSMB,
(4.4) MIBrA; (B..B)

A 4

y
(4..B) (B..B)

(4.4 (4.B)

Les régles d’inférence

Les régles d’inférence

Agrégation par la moyenne

DSMB. DSMA,

(B;.B) (4 4)

Figure V-5. Détail de la méthode de propagation mutuelle des architectures

On remarque a travers la figure ci-dessus que les méthodes de construction des DSMA_ et

DSMB, sont symétriques et passent par les mémes étapes.

Pour justifier la nécessité d’utiliser cette méthode de coévolution lors d’une modification de la

situation de conception, nous insistons sur les points suivants :

e Apres exploration des sources d’incertitudes, les deux DSM et la MI obtenues ne sont
plus forcément cohérentes, étant donné qu’elles ont été construites manuellement et
d’une manicre indépendante avec la possibilit¢ que cela soit fait par deux équipes

différentes.

¢ [La méthode de coévolution permet de simuler I’architecture des domaines connaissant
leur dual. Ainsi DSMA, est I’image de 1’architecture de DSMB;. Nous obtenons ainsi
des architectures cohérentes croisées, d’un coté DSMA. avec DSMB; et de ’autre coté
DSMB, avec DSMA,.

¢ [a méthode que nous proposons n’impose aucune hiérarchie entre les domaines. Donc,
on obtient, a la fin de I"opération de coévolution, des architectures qui sont cohérentes

avec la situation intermédiaire mais croisées.
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Cette derniere remarque montre la nécessité¢ d’introduire une opération de construction des
architectures finales qui permet de lier, pour un méme domaine, I’architecture intermédiaire et

’architecture coévoluée.

4.2. Construction des architectures finales

Pour [I'utilisateur qui le juge nécessaire, nous offrons la possibilité de construire les
architectures finales de chaque domaine en les combinant aux architectures intermédiaires
(figure V-6).

-1 Dsma MIB-A; DSMB, [~"7
| |
1 ]
1 1
1 ]
] ]
] ]
1 ]
] ]
| A 4 |
1 1
1 ]
] ]
! DSMB, DSMA, !
| . : |
| \ , |
1 N < . 4 ]
1 SO g ]
1 S - [
1 -7 RS !
| s N |
1 7’ N ]
| 14 < |
1 1
1 1
i P DSMA, DSMB;, [®7777"0-- '

Figure V-6. Méthode de construction des architectures finales
La méthode de construction des architectures finales que nous proposons s’appuie sur une
combinaison linéaire dont les parameétres a et § sont a fixer par I’utilisateur (Eq.V-1).

DSMA, = aDSMA, + BDSMA,

Eq.V-1
a+p=1

Il est conseillé de recourir a la normalisation des DSM coévoluées pour qu’elles soient

comparables aux DSM intermédiaires construites manuellement.

Si les domaines sont réellement symétriques et qu’il n’y a pas de hiérarchie entre eux, il peut

étre souhaitable d’utiliser la moyenne pour construire les architectures finales.

5. Application de la méthode de coévolution des architectures

5.1. Présentation de la situation de conception

Pour mettre en ceuvre la méthode de coévolution que nous proposons, nous avons travaillé sur

la situation de conception d’une Boite de Vitesse (BV) [Harmel et al., 2006c].



Vers la coévolution des architectures des domaines couplés

La boite de vitesse en question est une BV manuelle. Le constructeur automobile a décidé de

lancer un projet de reconception sur cette BV pour proposer une BV robotisée.

Une BV robotisée est une boite de vitesse manuelle qui agit comme une BV automatique a
travers l’incorporation d’un actionneur réalisant automatiquement, selon un schéma de
commande prédéfini, les changements de vitesse. Ce projet est réellement un projet de
reconception étant donné que le projet n’est pas parti de la feuille blanche mais de la BV

manuelle pour réaliser les adaptations nécessaires pour en faire une BV robotisée.

Dans notre approche de modélisation de 1’évolution des architectures dans le projet de
reconception de la BV manuelle, nous avons opté pour la modélisation de la coévolution des

architectures du produit et de I’équipe de conception.

La situation initiale est décrite par les DSM P, et DSM Ay en figure V-7 et V-8 et par la
matrice d’incidence MI Py-Aj représentée sur la figure V-9. Ces matrices ont été remplies et
validées, a partir d’entretiens avec les différents acteurs du projet. Le tableau V-2 résume les

principales abréviations utilisées dans les matrices que nous avons construites.

FS VOL Fonction Systeme Volumes fonctionnels PAM Chef de projet
FS TPU Fonction Systéme Transmission de Puissance PMIV Responsable Intégration et validation
FS ELU Fonction Systeme reprise d’Effort et Lubrification AF Architecte fonctionnel
FS COU Fonction Systéme Couplage Cdp Chargé de projet de conception
FS COM Fonction Systéme Commutation
CDI Commande Interne
SYN Synchroniseur
TRI Tringlerie
PE Pédale d’Embrayage
EMB Embrayage
CIE Commande Interne d’Embrayage
DIFF Différentiel
MEI Meécanique Interne
CART Carter

Tableau V-2. Liste des éléments utilisées et leurs abréviations

FSVOL FSTPU FSELU FSCOU FSCOM CDI SYN TRI PE EMB CIE DIFF MEI CART

FSvoL Il 7 8 7 8 6 7 8 6 4 7 8 8
FS TPU 7 I 8 9
FS ELU 8 7 [ ] 7 8 5 6 9 9
FS COU 7 7 I 8 9 7
FS COM 8 8 I 7 8
CDI 6 7 Il 0 8 6
SYN 7 5 7 o I 8
TRI 8 8 8 ] 8
PE 8 [ ] 9
EMB 6 6 9 B 6
CIE 4 7 9 s 1l 5
DIFF 7 8 B 8
MEI 8 9 9 8 6 7 B
CART 8 9 6 8 5 8 o 1

Figure V-7. DSM P, : DSM Produit initiale
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PMIV
AF VOL
AF COM
CdP TRI
CdP SYN
CdP CDI
AF TPU
CdP DIFF
CdP MEI
AF COU
CdP PE
CdP EMB
CdP CIE
AF ELU

CdP CART
CdP LUB

FS VOL
FS TPU
FS ELU
FS COU
FS COM
CDI1
SYN
TRI
PE
EMB
CIE
DIFF
MEI
CART

PAM PMIV

PAM-9

9

7 7
7 7
6 8
6 8
6 8
7 7
6 8
6 8
7 7
6 8
6 8
6 8
7 7
6 8
6 8
PAM PMIV
5 5
5 5
5 5
5 5
5 5
5 6
5 6
S 6
5 6
5 6
5 6
5 6
5 6
5 6

AF

AF

CdP CdP CdP AF Cdp Cdp AF

VOL COM TRI SYN CDI TPU DIFF MEI COU

7
7

VOL COM

9

7
7

AF

7

~N 2 2 ©

6 6 6 7 6 6 7
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7 6

> o
-
> o

~N O O

Figure V-8. DSM A, : DSM Acteurs initiale
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Figure V-9. MI Py-A, : Matrice d’Incidence initiale

5.2. Vérification de la cohérence des architectures initiales

Pour vérifier la cohérence des architectures de la situation initiale, nous devons comparer les

architectures initiales a celles obtenues a partir de la matrice d’incidence.

La figure V-10 montre 1’architecture initiale du produit (a) et celle simulée a partir de la MI

(b).
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Figure V-10. Vérification de la cohérence de I’architecture initiale du produit

En comparant les deux architectures, nous remarquons :

e Les deux architectures comportent le méme nombre de modules mais pas le méme

nombre d’éléments intégrateurs ;

e Apres avoir construit la DSM Py avec les acteurs du projet, nous leur avons demandé
d’identifier les éléments intégrateurs du produit. C’est ainsi que les deux FS Volumes
fonctionnels (VOL) et reprise d’Effort et Lubrification (ELU) ont été désignées par les
AF. Concernant les composants, le Carter ne faisait pas consensus quant a sont rdle
d’intégrateur. Le clustering de la DSM P, identifie automatiquement les FS VOL et

ELU. Quant au carter, nous 1’avons désigné manuellement comme intégrateur ;

¢ Le clustering de la DSM P’ obtenue en partant de la matrice d’incidence montre que la
FS VOL a été identifiée automatiquement comme étant intégrateur. Quant a la FS ELU,
nous I’avons ajoutée manuellement. Nous avons choisi de ne pas caractériser le Carter
comme intégrateur. Cette décision est appuyée par le fait qu’il s’intégre parfaitement
dans un module bien spécifique. Ce dernier résultat nous a amené a simuler
I’architecture initiale construite manuellement en libérant le Carter, on retrouve alors la

méme architecture que celle simulée.

e Les modules identifiés sont parfaitement les mémes si on considere que le carter peut
faire partie d’un module. Les modules correspondent aux principales fonctions non
intégratrices de la BV. On trouve alors un module "transmission de puissance" avec FS
TPU, DIFF et MEIL un module couplage avec FS COU, EMB, CIE et PE et un module
commutation avec FS COM, TRI, SYN et CIE.
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Pour conclure sur la cohérence de ’architecture per¢ue du produit par rapport a celle simulée,

nous pensons (en accord avec les acteurs du projet) que les résultats sont satisfaisants et que le

role du composant Carter ne remet pas en question 1’architecture globale de la BV.

La figure V-11 montre ’architecture initiale de 1’équipe de conception (a) et celle simulée a

partir de la MI (b).
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Figure V-11. Vérification de la cohérence de ’architecture initiale des acteurs

Les deux architectures obtenues de 1’équipe de conception suscitent les remarques suivantes :

Les deux architectures sont identiques, les mémes modules d’acteurs (acteurs collectifs)

et les mémes acteurs intégrateurs.

Concernant la DSM A, construite manuellement, les entretiens ont fait ressortir que
trois acteurs peuvent étre considérés comme intégrateurs a savoir le PAM, le PMIV et
AF VOL. Nous remarquons déja que les acteurs intégrateurs ne peuvent pas étre des
concepteurs (CdP). Cela contredirait d’une part I’organisation hiérarchique (PAM, AF,
CdP) et la logique d’organisation qui fait des CdP des spécialistes d’un domaine bien
précis (dans notre cas, des composants). Le clustering de la DSM A, va dans le méme
sens que les attentes des acteurs, en identifiant le PAM et le PMIV comme étant
intégrateurs. Quant a I’AF VOL, il a été ajouté manuellement, mais les interactions qu’il
entretient avec les autres acteurs du projet révelent son caractére intégrateur puisqu’il

interagit avec toutes les équipes (modules) identifiées.

Sur la base de la DSM A’j, I’algorithme de clustering identifie automatiquement
(IC=0.7) les éléments intégrateurs. Ce sont les mémes que ceux identifiés dans DSM
Ay.
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e Les acteurs collectifs dans les deux architectures sont regroupés par FS avec des

couplages entre acteurs qui sont réalis€s exclusivement par les architectes fonctionnels.

En ce qui concerne les acteurs de conception, nous pouvons considérer que 1’architecture
pergue est cohérente avec celle qu’on pouvait obtenir a partir de la matrice d’incidence. Ceci
nous permet aussi de conclure quant a la cohérence des architectures de la situation initiale
dans sa globalité. Aucune correction n’est de ce fait nécessaire pour mettre en ceuvre notre

modele de coévolution.

5.3. [Exploration des sources d’incertitudes

L’exemple du projet de reconception mentionné plus haut va nous permettre d’illustrer les

incertitudes qui peuvent étre introduites par une innovation technologique dans un projet.

5.3.1. Exploration des incertitudes par ambigiiité

L’objectif est ici d’identifier, par comparaison a la situation initiale, les nouveaux éléments
qui doivent étre introduits dans le systéeme. Rappelons que nous nous sommes limités, dans la
modé¢lisation des domaines du projet, au couplage entre le produit et les acteurs de

conception.

La levée des incertitudes par ambigiité dans la situation de conception de la BV robotisée

conclut a :
e [’¢limination des composants TRI et PE,
e [’élimination des acteurs CdP TRI et CdP PE,

¢ [’introduction d’un actionneur (ACT). Ce composant agit comme un automate en

passant les vitesses et agissant sur I’embrayage selon des modes préprogrammés,
¢ L’introduction d’un acteur, Chargé de Projet de I’actionneur (CdP ACT).

Les figures V-12, V-13 et V-14 montrent les nouvelles listes d’éléments dans les DSM A;,
DSM P; et MI A;-P;.

FSVOL FSTPU FSELU FSCOU FSCOM CDI SYN ACT EMB CIE DIFF MEI CART

FSvoL [m

FS TPU [ ]

FS ELU [ ]

FS COU I

FS COM [ ]

co1 ]

SYN .

ACT .

EMB .

cIE C

DIFF [

MEI .
CART .

Figure V-12. Exploration des incertitudes par ambigiiité dans DSM P;
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AF AF CdP CdP  CdP AF Cdp CdpP AF CdP CdpP AF CdP CdP

PAM PMIV
VOL COM ACT SYN CDI TPU DIFF MEI COU EMB CIE ELU CART LUB

Pav
PMIV -
AF VOL -
AF COM -
CdP ACT -
CdP SYN -
CdP CDI -
AF TPU -
CdP DIFF -
CdP MEI -
AF COU -
CdP EMB -
CdP CIE -
AF ELU -
CdP CART -
CdP LUB -

Figure V-13. Exploration des incertitudes par ambigiiité dans DSM A;

et | vy AF AF CdP CdP Cdp AF CdP CdpP AF Cdp CdpP AF CdpP CdP
VOL COM ACT SYN Cbl TPU DIFF MEI COU EMB CIE ELU CART LUB
FS VOL
FS TPU
FS ELU
FS COU
FS COM /
CDI
SYN
ACT
EMB
CIE
DIFF
MEI
CART

Figure V-14. Exploration des incertitudes par ambigiiité dans MI P;-A;

5.3.2. Exploration des incertitudes par complexité

Apres avoir identifié la nouvelle composition de 1’architecture du produit et de I’équipe de
conception, nous pouvons rechercher les couplages qui accompagnent 1’introduction de ces
nouveaux ¢léments. Pour identifier les couplages, nous utiliserons des croix.

Les couplages mettant en ceuvre les nouveaux éléments sont en gris foncé.
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FSVOL FSTPU FSELU FSCOU FSCOM CDI SYN ACT EMB CIE DIFF MEI CART
FS VOL _ X X X X X X X X X X X X

FS TPU X _ X X X
FS ELU X X _ X X X X X X X
FS COU X X - X X X X
FS COM X X X _ X X X
CDI X X - X X X
SYN X X X X - X
ACT X X X X X - X X
EMB X X X - X X
CIE X X X X - X
DIFF X X X X
MEI X X X X X X X
CART X X X X X X X -
Figure V-15. Exploration des incertitudes par complexité dans DSM P;
meokmmsd A AF  CdP CdP CdP AF CdP CdP AF CdP CdP AF Cdap CdP
VOL COM ACT SYN CDI TPU DIFF MEI COU EMB CIE ELU CART LUB
PAM - X X X X X X X X X X X X X X X
PMIV X X X X X X X X X X X X X X X
AFVOL X X X X X X
AFCOM X X X - X X X X X
CdPACT | X | X X - X X X
CdPSYN X X X - X
CdPCDI X X X X X -
AFTPU X X X - X X
CdPDIFF X X X -
CdPMEI X X X -
AFCOU X X X X X - X X X
CdPEMB X X X - X
CdPCIE X X X X X -
AFELU X X X X X - X X
CdP CART X X X - X
CdPLUB X X X X -
Figure V-16. Exploration des incertitudes par complexité dans DSM A;
e — AF CdP  CdP CdP AF CdP CdP  AF CdP CdP  AF Cdp Cdp
VOL COM ACT SYN CDI TPU DIFF MEI COU EMB CIE ELU CART LUB
FSVOL X X X X X X X
FSTPU X X X X X
FSELU X X X X X X X
FSCOU X X X X X X
FSCOM X X X X X X X
cpl | X X X X X X
SYN X X X X X
ACT X X X X X X X
EMB X X X X X
CIE X X X X X X
DIFF X X X X
MEI X X X X X
CART X X X X X X X

Figure V-17. Exploration des incertitudes par complexité dans DSM P;-A;

175



Chapitre V

5.3.3. Exploration des incertitudes par variabilité

Apres avoir identifié tous les couplages dans cette situation intermédiaire, nous pouvons

passer a la caractérisation des couplages dans les deux DSM et dans la MI. La levée des

incertitudes par variabilité ne concerne pas uniquement les nouveaux couplages identifiés

mais aussi les anciens (effets systémiques possibles).

FSYVOL FSTPU FSELU FSCOU FSCOM CDI SYN ACT EMB CIE DIFF MEI CART

FS VOL - 7 8 7 9 6 7 9 6 4 7 8 8

FS TPU 7 _ 7 8 9
FS ELU 8 7 _ 7 6 5 5 6 9 9
FS COU 7 7 _ 5 5 9 7
FS COM 9 8 5 - 7 7 8
CDI 6 7 - 9 8 6
SYN 7 5 7 9 - 8
ACT 9 5 5 8 8 - 7 8
EMB 6 6 9 - 8 6
CIE 4 7 7 8 - 5
DIFF 7 8 - 7 8
MEI 8 9 9 6 7 - 9
CART 8 9 6 8 5 8 9 -
Figure V-18. Exploration des incertitudes par variabilité dans DSM P;
b A AF  CdP CdP CdP AF CdP CdP AF CdP CdP AF Ccap
VOL COM ACT SYN CDI TPU DIFF MEI COU EMB CIE ELU CART
PAM 9 7 7 8 6 6 7 6 6 7 6 6 7 6
PMIV 9 - 7 7 9 8 8 7 8 8 7 8 8 7 8
AFVOL 7 7 - 7 7 6 8
AFCOM 7 7 7 - 9 9 9 3 7
CdPACT = 8 9 9 - 9 5 5
CdPSYN 6 8 9 - 9
CdPCDI 6 8 9 9 9 -
AF TPU 7 7 7 - 9 9
CdPDIFF 6 8 9 -
CdPMEI 6 8 -
AFCOU 7 7 6 3 5 - 9 9 7
CdPEMB 6 8 9 - 8
CdPCIE 6 8 5 9 8 -
AF ELU 7 7 8 7 7 7 - 8
CdP CART 6 8 8 -
CdPLUB 6 8 8 9

Figure V-19. Exploration des incertitudes par variabilité dans DSM A;

CdP
LUB
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AF AF

VOL COM
9 8

PAM PMIV

FS VOL
FS TPU
FS ELU
FS COU
FS COM
CDI
SYN
ACT
EMB
CIE
DIFF
MEI
CART
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Figure V-20. Exploration des incertitudes par variabilité dans DSM P;-A;

5.4. Simulation des architectures coévoluées

Les DSM et MI obtenues a la suite de 1’exploration des incertitudes représentent des matrices

totalement indépendantes les unes des autres, remplies par les acteurs du projet.

En utilisant le double processus flou présenté auparavant, nous avons obtenu deux DSM

DSMP, et DSMA.. On a par la suite appliqué le programme de clustering sur ces DSM en les

filtrant au préalable.

5.4.1.

Architecture coévoluée du produit

La figure V-21 montre I’architecture obtenue avec un seuil de filtrage de 3.2 et un IC= 0.8
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Figure V-21. Architecture coévoluée du produit (DSMP,)
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12 13
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L’architecture visualisée ci-dessus suggere les remarques suivantes :

e [’algorithme a identifié trois modules et seulement deux éléments intégrateurs (FS
VOL et ACT). Au lieu d’abaisser le seuil d’IC, nous avons opté pour la caractérisation
manuelle de FS ELU et de CART comme intégrateurs.

e Concernant les éléments intégrateurs identifiés automatiquement, la FS VOL n’a pas
changé de réle comparativement a la situation initiale, ce qui sous-entend que les
modifications introduites ne remettent pas en cause le role intégrateur de FS VOL. Ce

résultat n’est pas étonnant puisque cette FS est toujours intégratrice.

e [’autre élément intégrateur identifié est 1’actionneur. C’est le composant qui a été
introduit pour réaliser une BV robotisée. A travers [’architecture obtenue, nous
constatons que I’actionneur acquiert une importance tres forte en devenant intégrateur
sur toute la BV. Les acteurs du projet ne remettent pas en question ce role central, vu
que le projet de reconception porte en majorité sur la conception de I’actionneur et des
interfaces qui le lient aux autres composants. Cependant, il y a des composants et des

fonctions qui n’interagissent pas avec I’actionneur.

e (Concernant les modules identifiés, nous retrouvons les modules fonctionnels de la BV.
Ce résultat est attendu puisque I’évolution technologique ne remet pas en cause le mode
fonctionnement de la BV.

L’architecture globale de la BV représentée sur la figure V-21 a été construite en propageant
les contraintes d’interaction entre les acteurs du projet représentées dans DSMA;. Etant donné
que les trois matrices construites apres la levée des incertitudes sont indépendantes, la DSMP,

que nous venons d’analyser est cohérente avec DSMA; et indépendante de DSMP;.

5.4.2. Architecture finale du produit

Nous allons utiliser la méthode d’agrégation pour construire I’architecture finale du produit.
Cette méthode calcule le barycentre entre les deux DSM du produit, celle construite

directement par les acteurs et celle propagée a partir de 1’organisation.

En utilisant a = B = 0.5, nous obtenons la DSMPy dont I’architecture est représentée sur la
figure V-22. Cette architecture est obtenue avec IC=0.75 et un seuil de filtrage a 2.6.
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Figure V-22. Architecture finale du produit (DSMPy)

Nous analysons cette architecture de la maniére suivante :

e [’architecture obtenue de la DSMPs est différente de celle obtenue dans DSMP,.. Ce qui
signifie qu’il y avait bien une différence entre 1’architecture percue directement par les

acteurs et celle obtenue par propagation de 1’architecture de I’équipe de conception.

e La différence principale que nous obtenons avec DSMPs est que 1’actionneur n’est plus
intégrateur sur tout le produit mais seulement entre les modules fonctionnels couplage et
commutation. Dans 1’architecture représentée ci-dessus, ’actionneur est identifié
comme faisant partie a la fois du module de commutation et de couplage. Ce rdle pivot
refléte bien la mission affectée a 1’actionneur, a savoir commander le changement de

vitesse et I’embrayage.

L’architecture finale (figure V-22), telle que nous 1’avons simulée, a re¢u un meilleur accueil
que celle obtenue directement par la coévolution (figure V-21). Cela appuie la nécessité de
prendre en compte dans I’architecture finale du produit, 1’architecture du produit simulée a

partir de 1’organisation et ’architecture intermédiaire du produit.

5.4.3. Architecture coévoluée des acteurs du projet

En partant de la DSMP; et de 1la MI P;-A;, nous obtenons la DSMA, représentée sur la figure
V-23 apres filtrage et clustering. Nous avons utilisé un seuil de filtrage de 2.3, un 1C=0.8 et

désigné AF VOL comme intégrateur manuellement.
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Figure V-23. Architecture coévoluée des acteurs (DSMA,)

L’architecture ci-dessus suggere les remarques suivantes :
e [ ’algorithme de clustering a identifi¢ quatre acteurs intégrateurs et quatre modules.

e Par comparaison a [’architecture initiale des acteurs de projet, nous retrouvons
globalement les mémes équipes de conception qui sont organisées par module
fonctionnel du produit. Nous avons souligné dans I’analyse de 1’architecture du produit
que I’architecture fonctionnelle de la BV manuelle est conservée, d’ou la conservation

de la méme organisation pour les acteurs du projet.

e La principale différence par rapport a I’architecture initiale est 1’identification de
I’architecte FS COM comme intégrateur sur toute 1’équipe projet. L’architecture
analysée ici est I'image de D’architecture intermédiaire du produit. Or dans cette
architecture, la FS COM est a la fois couplée aux composants qui réalisent la

commutation mais aussi aux autres fonctions systeémes de la BV robotisée.

e Nous remarquons aussi que le CdP ACT entretient un grand nombre d’interactions avec

les autres acteurs du projet. Cependant, il appartient toujours au module commutation.

Nous allons utiliser la méme méthode d’agrégation pour simuler 1’architecture finale des

acteurs du projet.

5.4.4. Architecture finale des acteurs de projet

En faisant la moyenne des DSMA. et DSMA,, et en filtrant avec un seuil de 1.4, nous

obtenons apres clustering 1’architecture représentée sur la figure V-24.
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Figure V-24. Architecture finale des acteurs (DSMAy)

En comparant I’architecture coévoluée et I’architecture initiale, nous remarquons qu’elles sont
semblables. Ainsi, en proposant aux acteurs du projet d’arbitrer entre les différentes
architectures obtenues, la réponse recue est que méme si les interfaces de certains composants
sont modifiées, cela influe peu sur 1’organisation des équipes mais cela engendre plus de
négociations et plus de collaboration en amont entre les architectes fonctions systémes (AF) et
le responsable du projet (PAM).

Il est évident qu’une modification dans I’architecture du produit sans remise en question de
son architecture fonctionnelle, n’est pas suffisante pour renverser la robustesse de
I’organisation des acteurs de conception, et de ce fait de la remettre en question. Cela nous
rappelle que les acteurs du projet partagent autre chose que le fait de travailler sur des
composants qui ont des interfaces communes, ils sont liés par des connaissances et des
compétences communes. Ce sont ces compétences qui donnent son identité a chaque module

d’acteurs (acteur collectif).

6. Synthése

Dans ce chapitre, nous avons proposé une méthode de coévolution des architectures des
domaines du projet. Cette méthode de coévolution repose sur I’hypothése qu’on parte d’une

situation initiale cohérente pour aboutir a une situation finale qui I’est aussi.

Entre les situations initiale et finale, nous proposons de modéliser le besoin d’évolution par
I’exploration des sources d’incertitudes. Cette exploration se base sur la typologie des
incertitudes que nous avons adoptée et qui les classe en trois types: Incertitudes par

Ambigiité, Incertitude par Complexité et Incertitude par Variabilité.
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L’exploration des incertitudes rompt la cohérence entre les architectures de la situation
initiale, nous proposons alors une méthode de coévolution qui permet de propager les
contraintes de couplage d’un domaine vers un autre. Cette méthode de coévolution repose sur

un traitement flou que nous avons présenté dans chapitre IV.

Pour appliquer la méthode de coévolution, nous avons étudié la situation de développement

d’une BV robotisée a partir d’une BV manuelle.

Les résultats obtenus ont été soumis a 1’appréciation de I’équipe de conception qui les a
trouvés satisfaisants. Ce résultat appuie la pertinence de mettre a la disposition des chefs de
projet et des architectes systemes des outils qui permettent de simuler 1I’évolution des

architectures en prenant en compte le couplage mutuel qui existe entre elles.
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CONCLUSION GENERALE

Dans cette partie, nous présentons les conclusions et perspectives de notre travail. Dans un

premier temps, nous porterons notre attention sur notre contribution a la problématique
traitée. Ensuite, nous tirerons un bilan de nos travaux du point de vue application Nous

ouvrirons finalement les perspectives de cette recherche.

Au premier chapitre, nous avons montré que, dans le cadre de 1’'Ingénierie Systeme, un
Produit a deux vues. L’extension de cette décomposition au projet de conception d’un produit,
nous a permis d’affirmer que le projet a une vue fonctionnelle qui est celle des processus et

une vue organique qui est celle des acteurs du projet.

Parallelement a ce travail sur I’IS, nous avons développé notre positionnement vis-a-vis du
concept d’architecture. Nous avons alors adopté comme typologie des architectures celle qui
est proposée par Ulrich [1995] tout en affirmant qu’il y a un continuum entre une architecture
totalement modulaire et une autre totalement intégratrice. Pour formaliser ce continuum, nous
avons abandonné la caractérisation de I’architecture du produit par ’allocation des fonctions
aux composants pour adopter une vision interne a chaque domaine, basée sur 1’identification
des interactions entre €léments d’un méme domaine. Dans ce cadre, nous avons défini le
concept de module comme un ensemble d’éléments fortement couplés les uns aux autres et le
concept d’intégrateur comme étant un élément qui ne peut appartenir a aucun module
puisqu’il est couplé a plusieurs d’entre eux. Le continuum se matérialise alors par 1’existence

d’architectures hybrides composées a la fois de modules et d’éléments intégrateurs.

En rendant la définition de 1’architecture indépendante du systeéme considéré, nous avons pu
la généraliser au produit et a I’organisation du projet. On a admis alors que 1’architecture du
produit se compose deux architectures: I|’architecture fonctionnelle et [D’architecture
organique. De méme, ’architecture de 1’organisation du projet est composée de I’architecture

des processus et de I’architecture des acteurs.

En avangant dans notre démarche de formalisation, nous avons introduit dans le chapitre II les
outils matriciels de représentation des architectures. Ces outils sont principalement les
Matrices d’Incidence et les DSM qui permettent de caractériser les couplages inter et

intra-domaines.
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Dans le chapitre III, nous avons présenté 1’algorithme qui va réaliser 1’identification des
architectures de tout domaine en partant de sa représentation matricielle sous la forme d’une
DSM. Notre algorithme de clustering se distingue de ses prédécesseurs par sa capacité a
identifier les éléments intégrateurs d’une facon semi-automatique, en relayant la vision de
I’architecture systeme. Il a 1’avantage aussi d’étre plus performant dans ’identification de
I’architecture « optimale » avec un fort degré de reproductibilité de la solution optimale.
Enfin, en incorporant des indicateurs de modularité initialement développée par Whitfield et
al. [2002], nous avons montré que notre algorithme est moins sensible a la valeur relative des

interactions.

En nous positionnant dans les phases amont du processus de conception des produits
complexes, nous avons voulu cibler les situations de conception ou I’information est limitée.
Ainsi, dans le chapitre IV, nous avons identifié quatre situations de conception de
I’architecture des domaines du produit. Dans ces situations, nous avons voulu mettre en avant
la capacité de la méthode que nous proposons a générer les DSM des domaines. Nous avons
développé alors un traitement flou qui permet de créer deux DSM en partant d’une MI et de

propager a travers une MI les contraintes de couplage d’un domaine donné vers un autre.

Afin de compléter les méthodes développées dans le chapitre IV et pour prendre en compte la
nécessité de faire évoluer ensemble les architectures des domaines couplés, nous avons
introduit dans le chapitre V le concept de coévolution des architectures. Nous avons formalisé
cette coévolution comme étant la transition d’une situation initiale caractérisée par des
architectures cohérentes vers une situation intermédiaire ou I’on perd la cohérence des

architectures pour arriver a une situation finale ou les architectures retrouvent leur cohérence.

Dans ce travail, la situation intermédiaire est le résultat de 1’exploration des incertitudes qui
accompagnent 1’introduction de changements dans le projet. Pour adapter 1’exploration des
incertitudes a nos outils, nous avons adopté une typologie des incertitudes qui s’applique aux
outils matriciels : MI et DSM.

L’outil de développement des architectures que nous avons présenté dans ce mémoire est
étroitement li¢ au cadre industriel. Les différentes situations de construction des architectures
du produit sont ainsi inspirées des difficultés que nous avons rencontrées dans la récolte des

informations nécessaires a notre méthode.

La méthode d’identification des architectures du produit a été appliquée a un projet de
conception d’un moteur diesel. Dans ce cas, nous avons pu adapter notre méthode aux
informations disponibles et nous avons ainsi pu fournir aux architectes systémes des

simulations des architectures fonctionnelles et organiques du moteur qu’ils ont validées.



Conclusion Générale

Quant a la méthode de coévolution, elle a été¢ appliquée a un projet de reconception d’une
boite de vitesse manuelle pour en faire une boite robotisée. Nous avons, dans ce cas, simulé la
coévolution de I’architecture du produit et des acteurs du projet aprés construction des

nouvelles DSM par exploration des d’incertitudes.

D’autres MI et DSM ont été construites au cours du projet, mais non représentées dans ce

mémoire (MI Produit-Taches, MI taches-Acteurs, DSM compétences).

Les travaux traitant de cette problématique sont trés rares dans la littérature. Nous pensons
que cela ouvre des voies de recherche intéressantes. Nous, présentons maintenant des limites

et des pistes d’amélioration de nos travaux.

Ainsi, concernant la typologie d’architecture, nous avons remarqué que rares sont les travaux
qui formalisent le réle et la place des éléments intégrateurs dans une architecture. Jusqu’a
aujourd’hui, ces ¢léments étaient considérés comme étant nuisibles et les algorithmes de
clustering sont construits pour la plupart dans le but de les éliminer. A notre niveau, nous
avons semi-automatisé 1’identification de ces éléments, mais nous pensons qu’a terme il est
possible de rendre automatique et dynamique la caractérisation et donc I’identification des

¢léments intégrateurs.

Dans ce travail, nous avons aussi considéré les couplages comme 1’existence de tout type de
contrainte entre un €lément et un autre. Il est possible dans des travaux futurs de réutiliser les
typologies d’interactions dans le produit [Pimmler et Eppinger, 1994] et celles de
I’organisation [Sosa et al., 2004]. Ce travail nous permettra de construire plusieurs vues des

contraintes entre les architectures des domaines du produit et de I’organisation du projet.

Une autre perspective liée au cadre conceptuel adoptée est la prise en compte des processus

sous une forme statique ou temporelle pour simuler et modéliser le projet dans sa globalité.

Concernant 1’algorithme de clustering, puisque d’une part une fonction objectif ne peut étre
qu'une approximation du raisonnement humain et que d’autre part, 1’identification des
éléments intégrateurs est encore subjective, nous pensons qu’il serait opportun de générer une
famille d’architecture k-optimale (a k% de I’optimum ou en nombre k). Ainsi, nous
considérons la situation ou I’architecte peut tenir compte d’autres contraintes ou critéres que

ceux formalisés dans 1’algorithme.

Pour rester dans le cadre de ’algorithme de clustering et de la méthode de construction des
DSM, nous pensons avec le recul qu’il est possible d’énoncer des régles plus restrictives
quant a la construction des MI et DSM. Ceci nous permettra alors d’éviter d’utiliser le filtrage
dans les DSM. Ce probléme peut étre considéré d’un autre point de vue aussi, en réduisant par
exemple la sensibilité de I’algorithme de clustering a la densité des DSM et en étudiant la

robustesse des architectures simulées.

187



Conclusion Générale

Enfin, nous pensons dans un futur trés proche développer une plateforme logicielle (cas

d’utilisation, scénarios, ...) a partir des algorithmes et méthodes développés.
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ANNEXES

Dans ces annexes, nous présentons une partie des algorithmes qu’on a développés. La

programmation de I’algorithme de clustering (chapitre I1I), des méthodes d’identification des
architectures (chapitre IV) et de la méthode de coévolution (chapitre V) a été réalisée sous
Matlab.

L’algorithme mettant en ceuvre la méthode de clustering est une évolution d’un algorithme
existant dont la derniére version est celle de Thebeau [2001]. Nous nous sommes basés sur cet
algorithme pour le modifier et développer les procédures propres a notre algorithme de

clustering.

L’algorithme de Thebeau est composé des fonctions suivantes :

run_cluster C’est la fonction principale de 1’algorithme, elle fait appel aux autres fonctions pour réaliser le
clustering et afficher les résultats

DSM C’est le fichier ou on saisit la DSM dont on veut identifier I’architecture
bid C’est une fonction qui calcule les enchéres des clusters vers un élément donné
cluster C’est la fonction qui réalise le clustering en faisant appel a une fonction cofit
coord_cost C’est la fonction qui calcule le colt d’une architecture proposée par cluster
delete_clusters Cette fonction supprime les clusters en double
reorder_cluster C’est la fonction qui trie les clusters selon 1’ordre décroissant des tailles

reorder_dsm_bycluster | C’est la fonction qui réordonne les clusters selon la matrice des clusters

dsm_autolabel C’est la fonction qui assigne un nombre aux ¢éléments de la DSM
place diag C’est la fonction qui place 1 sur la diagonale de la DSM
graph_matrix C’est la fonction qui dessine les DSM utilisées (initiale, finale, ...)
line_mult_cluster C’est la fonction qui fait afficher une ligne pour les éléments dupliqués dans la DSM finale
plot_cluster_list C’est la fonction qui imprime la liste des modules et des éléments qui les composent
likness_calc C’est la fonction qui permet de lancer plusieurs fois 1’algorithme de clustering pour comparer

les architectures obtenues

Dans ce travail, nous avons apporté des modifications aux fonctions DSM, run_cluster, bid,

coord cost et cluster.

Dans cette annexe, nous présentons uniquement les 4 premicres fonctions. La fonction DSM

dans notre travail se compose de deux fonctions. Pour chacune des situations de construction
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des architectures identifiées dans le chapitre IV, ainsi que pour la méthode de coévolution,
nous définissons une fonction pour présenter les données et une autre pour mettre en ceuvre le
traitement flou quand il existe et les différentes opérations (filtrage, normalisation, etc... )
qu’on réalise sur les DSM pour les préparer au clustering. Ces deux fonctions mettent en
ceuvre la construction des DSM dont on veut identifier I’architecture.

Dans cette annexe, nous détaillerons uniquement la méthode de construction dans la eme

situation du chapitre IV et la méthode de coévolution.

Dans la suite de ces annexes, les commentaires sur les algorithmes sont précédés de %.
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Construction de deux DSM a partir d’une MI

Deux fonctions (fichiers) :

e situation2 donnees.m : dans ce fichier, non saisissons les données relatives a la MI
FS-COMP

e situation2 DSM.m : dans ce fichier, nous mettons en ceuvre le traitement flou et les

autres opérations pour aboutir aux DSM finales
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96**************************************************************************
96**************************************************************************
96**************************************************************************
96**************************************************************************
96**************************************************************************
%

% Fichier: situation2 donnees.m

%

%

% Créé par: G. HARMEL

% LAB

% Besangon FRANCE

%

% Date: Juin 2006

%

%

96**************************************************************************
96**************************************************************************
96**************************************************************************
@6**************************************************************************

N_COMP = 15; % nous déclarons le nombre de composant dans la MI
N_FS=13; % nous déclarons le nombre de FS dans la MI

INCED = zeros(N_COMP,N_FS); % nous créons la MI

% nous saisissons la MI
INCED(1,1)=8;
INCED(1,3)=9;
INCED(1,9)=6;
INCED(1,10)=8;
INCED(1,11)=7;
INCED(1,13)=6;

INCED(2,2)=8;
INCED(2.,4)=8;
INCED(2,6)=0;
INCED(2,7)=7,
INCED(2,8)=0;
INCED(2,9)=7;
INCED(2,10)=8;
INCED(2,11)=5;
INCED(2,13)=8;

INCED(3,1)=5;
INCED(3,2)=5;
INCED(3,3)=6;
INCED(3,4)=5;
INCED(3,6)=8;
INCED(3,7)=7;
INCED(3,9)=7;
INCED(3,11)=8;
INCED(3,13)=8;

INCED(4,1)=9;
INCED(4,2)=9;
INCED(4,3)=6;
INCED(4,4)=9;
INCED(4,7)=4;
INCED(4,8)=5;
INCED(4,9)=6;
INCED(4,10)=9;
INCED(4,11)=3;
INCED(4,13)=7;

INCED(S,1)=8;

vi
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INCED(5,3)=9;
INCED(5,6)=6;
INCED(5,7)=5;
INCED(5,9)=6;
INCED(5,10)=6;
INCED(5,11)=8;
INCED(S,13)=6;

INCED(6,1)=9;
INCED(6,2)=9;
INCED(6,6)=7;
INCED(6,7)=0;
INCED(6,8)=8;
INCED(6,9)=8;
INCED(6,11)=0;
INCED(6,13)=8;

INCED(7,1)=5;
INCED(7.,4)=7;
INCED(7,5)=9;
INCED(7,6)=7;
INCED(7,7)=7;
INCED(7,9)=8;
INCED(7,11)=8;
INCED(7,12)=9;
INCED(7,13)=8;

INCED(8.,4)=8;
INCED(8,5)=6;
INCED(8,6)=8;
INCED(8,7)=9;
INCED(8,9)=8;
INCED(8,11)=8;
INCED(8,12)=9;
INCED(8,13)=9;

INCED(9,1)=5;
INCED(9,5)=8;
INCED(9,6)=9;
INCED(9,8)=4;
INCED(9,9)=5;
INCED(9,10)=3;
INCED(9,11)=8;
INCED(9,13)=7;

INCED(10,5)=6;
INCED(10,6)=0;
INCED(10,7)=8;
INCED(10,8)=9;
INCED(10,9)=5;
INCED(10,11)=6;
INCED(10,13)=8;

INCED(11,5)=8;
INCED(11,6)=9;
INCED(11,8)=9;
INCED(11,9)=8;
INCED(11,11)=6;
INCED(11,13)=7;

INCED(12,1)=8;
INCED(12,6)=8;
INCED(12,8)=9;
INCED(12,13)=8;

INCED(13,6)=5;
INCED(13,7)=8;

vil
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INCED(13,8)=5;
INCED(13,9)=6;
INCED(13,11)=9;
INCED(13,13)=7;

INCED(14,6)=4;
INCED(14,7)=5;
INCED(14,8)=9;
INCED(14,9)=5;
INCED(14,11)=5;
INCED(14,13)=7;

INCED(15,1)=7;
INCED(15,2)=9;
INCED(15,3)=7;
INCED(15,4)=8;
INCED(15,6)=6;
INCED(15,10)=9;
INCED(15,11)=9;
INCED(15,12)=8;
INCED(15,13)=4;

96***********************************************************

% Fin

96***********************************************************

viil
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96**************************************************************************

96**************************************************************************
96**************************************************************************
@6**************************************************************************
96**************************************************************************

%
%
%
%

%
%
%
%
%
%
%

Fichier: situation2 DSM.m

Créé par: G. HARMEL
LAB
Besangon FRANCE

Date: Juin 2006

96**************************************************************************

96**************************************************************************

96**************************************************************************

96**************************************************************************

situation2_donnees.m % on appelle les données du probleme

96*********************************************

%

traitement flou

96*******************************************

b=newfis('situation 2'); % le traitement flou est appelé situation 2

% Construction des fonctions d'appartenance pour la premiere entrée
b.input(1).name="SF1-C'; % déclaration du nom de la variable
b.input(1).range=[0 10]; % déclaration du domaine de définition
b.input(1).mf(1).name='"Faible'; % nom de la premiere variable linguistique
b.input(1).mf(1).type="trapmf’; % le type de fonction d'appartenance est trapézoidale
b.input(1).mf(1).params=[0 0 3 5]; % construction de la fonction trapézoidale
b.input(1).mf(2).name='"Moyen';

b.input(1).mf(2).type="trapmf’;

b.input(1).mf(2).params=[3 5 6 8§];

b.input(1).mf(3).name="Fort';

b.input(1).mf(3).type="trapmf’;

b.input(1).mf(3).params=[6 8 10 10];

% Construction des fonctions d'appartenance pour la deuxiéme entrée
b.input(2).name='SF2-C';
b.input(2).range=[0 10];
b.input(2).mf(1).name="IFaible";
b.input(2).mf(1).type="trapmf’;
b.input(2).mf(1).params=[0 0 3 5];
b.input(2).mf(2).name='"Moyen';
b.input(2).mf(2).type="trapmf’;
b.input(2).mf(2).params=[3 5 6 §];
b.input(2).mf(3).name="Fort';
b.input(2).mf(3).type="trapmf’;
b.input(2).mf(3).params=[6 8 10 10];

% Construction des fonctions d'appartenance pour la sortie
b.output(1).name='SF1-SF2';

b.output(1).range=[0 10];
b.output(1).mf(1).name="Faible';
b.output(1).mf(1).type="trapmf’;
b.output(1).mf(1).params=[0 0 1 3];
b.output(1).mf(2).name='"Moyen';
b.output(1).mf(2).type="trapmf’;
b.output(1).mf(2).params=[1 3 7 9];
b.output(1).mf(3).name='Fort';
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b.output(1).mf(3).type="trapmf’;
b.output(1).mf(3).params=[7 9 10 10];

bruleList=[ % définition des regles d'inférence
11112

3-1311

-13311

22211]

b=addrule(b,bruleList);

% fin du traitement flou

O kst sl stk stk stk sk kst skaiok sk kst skt sk R sk sl ks Rk sk R skl sk ok

% application du traitement flou
96***********************************************************************

DSMP = zeros(N_COMP);
DSMF = zeros(N_FS);

fori=1:N_FS
for j=1:N_COMP
for k=j+1:N_COMP
DSMP(i,j,k)=evalfis([INCED(j,i) INCED(k,i)], b); % pour chaque fonction nous construisons une DSM
COMP
end
end
end

for i=1:N_COMP
for j=1:N_FS
for k=j+1:N_FS
DSME(i,j,k)=evalfis([INCED(i,j) INCED(i,k)], b); % pour chaque composant nous construisons une DSM
FS

end
end
end

96***********************************************************************

% Filtrage et méthode de la moyenne
96***********************************************************************

DSMPM=zeros(N_COMP); % c’est la DSM résultante issue de 1’agrégation par la moyenne et du filtrage
DSMFM=zeros(N_FS);

BASFM=2.35; % définition du seuil de filtrage pour les FS
BASPM=2.0;

% application a DSMP
for j=1:N_COMP
for k=j+1:N_COMP
DSMPM(j,k)=0;
fori=1:N_FS
DSMPM(j,k)=DSMPM(j,k)+DSMP(i,j,k);
end
if DSMPM(j.k)/N_FS>BASPM;
DSMPM(j,k)= DSMPM(j.k)/N_FS;
else
DSMPM(j,k)=0;
end
end
end

% application a DSMFM
for j=1:N_FS
for k=j+1:N_FS
DSMFM(j,k)=0;
for i=1:N_COMP
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DSMFM(j,k)=DSMFM(j,k)+DSMF(i,j,k);
end
if DSMFM(j,k)/N_COMP>BASFM;
DSMFM(j,k)= DSMFM(j,k)/N_COMP;

else
DSMFM(j,k)=0;

end

end
end

96**********************************

% symétrie

96**********************************

% seule la partie triangulaire supérieure de DSMPM et DSMFM a été construite, nous complétons par symétrie les parties
triangulaires inférieures

forj=1:N_COMP
fori=j+1:N_COMP
DSMPM(i,j)=DSMPM(j,i);
end
end

forj=1:N_FS
fori=j+1:N_FS
DSMFM(i,j)=DSMFM(j,i);
end
end

96****************************************************************************

% FIN

0k sttt s ot ok skl ot sl ottt sk R s sk R sl R R sk R R s R R ok
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La Méthode de coévolution des architectures

Deux fonctions (fichiers) :

e coevo_donnees.m : dans ce fichier, non saisissons les données relatives a la MI Pi-Ai ; a
la DSMAi et DSMP1i

e coevo DSM.m : dans ce fichier, nous mettons en ceuvre le traitement flou et les autres
opérations pour aboutir aux DSM finales DSMAf et DSMPf
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96**************************************************************************

96**************************************************************************

96**************************************************************************

96**************************************************************************

O st s st s st sfese st s st e s st st ke st s st st s st sfe s st s st s st st st st st st stesostese st stestesiostesosteosloskosdeiotokokoskokoslolostokokoskoksolokokokolok

%
% Fichier:
%

coevo_donnees.m

% Crée PAR: G. HARMEL

%
%
%
%

LAB
Besangon FRANCE

% Date: Juin 2006

%

% Initialisation des données pour la méthode de coévolution:
% les matrices intermédiaires: DSM produit de la BV: DSMPi

%
%
%

DSM Acteurs: DSMAIi
et la MI: INCED

96**************************************************************************

96**************************************************************************

96**************************************************************************
96**************************************************************************

N_P=13; % N_P est le nombre de composants dans la DSM P
N_A=16; % N_A est le nombre d'acteurs dans la DSM A

DSMPi=zeros(N_P,N P);
DSMAi=zeros(N_AN_A);
INCED=zeros(N_A,N_P);

%Saisie de la matrice DSMPi

DSMPi(1,2)=7;
DSMPi(1,3)=8;
DSMPi(1,4)=7;
DSMPi(1,5)=9;
DSMPi(1,6)=6;
DSMPi(1,7)=7;
DSMPi(1,8)=9;
DSMPi(1,9)=6;
DSMPi(1,10)=4;
DSMPi(1,11)=7;
DSMPi(1,12)=8;
DSMPi(1,13)=8;

DSMPi(2,3)=7;
DSMPi(2,11)=8;
DSMPi(2,12)=9;

DSMPi(3,4)=7;
DSMPi(3,5)=8;
DSMPi(3,7)=5;
DSMPi(3,8)=5;
DSMPi(3,9)=6;
DSMPi(3,12)=9;
DSMPi(3,13)=9;

DSMPi(4,5)=5;
DSMPi(4,8)=5;
DSMPi(4,9)=9;
DSMPi(4,10)=7;

DSMPi(5,6)=7;
DSMPi(5,7)=7;
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DSMPi(5,8)=8;

DSMPi(6,7)=9;
DSMPi(6,8)=8;
DSMPi(6,13)=6;

DSMPi(8,10)=7;
DSMPi(8,13)=8;

DSMPi(9,10)=8;
DSMPi(9,12)=6;

DSMPi(10,13)=5;

DSMPi(11,12)=7;
DSMPi(11,13)=8;

DSMPi(12,13)=9;

%Saisie de la matrice DSMAI
DSMAI(1,2)=9;
DSMAI(1,3)=7,
DSMAI(1,4)=T7;
DSMAI(1,5)=8;
DSMAI(1,6)=6;
DSMAI(1,7)=6;
DSMAI(1,8)=7;
DSMAI(1,9)=6;
DSMAI(1,10)=6;
DSMAI(1,11)=7;
DSMAI(1,12)=6;
DSMAI(1,13)=6;
DSMAI(1,14)=7;
DSMAI(1,15)=6;
DSMAI(1,16)=6;

DSMAI(2,3)=7;
DSMAI(2,4)=7,
DSMAI(2,5)=9;
DSMAI(2,6)=8;
DSMAI(2,7)=8;
DSMAI(2,8)=7;
DSMAI(2,9)=8;
DSMAI(2,10)=8;
DSMAI(2,11)=7;
DSMAI(2,12)=8;
DSMAI(2,13)=8;
DSMAI(2,14)=7;
DSMAI(2,15)=8:
DSMAI(2,16)=8;

DSMAI(3,4)=7;
DSMAI(3,8)=7;
DSMAI(3,11)=6;
DSMAI(3,14)=8;

DSMAI(4,5)=9;
DSMAI(4,6)=9;
DSMAI(4,7)=9;
DSMAi(4,11)=3;
DSMAI(4,14)=7;

DSMAI(5,7)=9;
DSMAI(5,11)=5;
DSMAI(5,13)=5;

DSMAI(8,9)=9;
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DSMAI(8,10)=9;

DSMAI(11,12)=9;
DSMAi(11,13)=9;
DSMAI(11,14)=7;

DSMAI(12,13)=8;

DSMAI(14,15)=8;
DSMAI(14,16)=8;

DSMAI(15,16)=9;

%Saisie de la MI INCED
INCED(1,1)=5;
INCED(1,2)=5;
INCED(1,3)=5;
INCED(1,4)=5;
INCED(1,5)=5;
INCED(1,6)=5;
INCED(1,7)=5;
INCED(1,8)=9;
INCED(1,9)=5;
INCED(1,10)=5;
INCED(1,11)=5;
INCED(1,12)=5;
INCED(1,13)=5;

INCED(2,1)=5;
INCED(2,2)=5;
INCED(2,3)=5;
INCED(2,4)=5;
INCED(2,5)=5;
INCED(2,6)=6;
INCED(2,7)=6;
INCED(2,8)=9;
INCED(2,9)=6;
INCED(2,10)=6;
INCED(2,11)=6;
INCED(2,12)=6;
INCED(2,13)=6;

INCED(3,1)=9;
INCED(3,3)=7;
INCED(3,5)=7;

INCED(4,1)=8;
INCED(4,3)=5;
INCED(4,5)=9;
INCED(4,6)=8;
INCED(4,7)=8;
INCED(4,8)=9;

INCED(5,4)=5;
INCED(5,5)=9;
INCED(5,6)=5;
INCED(5,8)=9;
INCED(5,10)=7;
INCED(5,13)=5;

INCED(6,5)=8;
INCED(6,7)=9;
INCED(6,6)=5;
INCED(7,5)=8;
INCED(7,6)=9;
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INCED(7,7)=5;
INCED(7,8)=5;

INCED(8,1)=7,
INCED(8,2)=9;

INCED(8,11)=7;
INCED(8,12)=7;

INCED(9,2)=8;
INCED(9,11)=9;
INCED(9,12)=5;

INCED(10,2)=8;
INCED(10,11)=5;
INCED(10,12)=9;
INCED(10,13)=5;

INCED(11,1)=7;
INCED(11,4)=9;
INCED(11,8)=3;
INCED(11,9)=7;
INCED(11,10)=7;

INCED(12,4)=7;
INCED(12,9)=9;
INCED(12,10)=5;

INCED(13,4)=7;
INCED(13,8)=5;
INCED(13,9)=5;
INCED(13,10)=9;

INCED(14,1)=7;
INCED(14,2)=5;
INCED(14,3)=9;
INCED(14,13)=9;

INCED(15,3)=8;
INCED(15,13)=9;

INCED(16,3)=8:
INCED(16,12)=8;
INCED(16,13)=8;

%***************************************************************

% Symétrie
03 s ettt sl st R R RSO SORSORSOR SR sOR SRR R R R R R R R SRR SRS R SR o

%% dans la partie saisie, nous avons considéré seulement les parties
%% triangulaires supérieures. Dans cette partie on construit par symétrie les
%% parties triangulaires inférieures

forj=1:N_P
fori=j+1:N P
DSMPi(i,j)=DSMPi(j,1);
end
end

forj=1:N_A
fori=j+1:N_A
DSMAI(i,j)=DSMAI(j,i);
end
end

%initialisation de la diagonale a 10

fori=1:N_A
DSMAI(1,1)=10;
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end

for i=1:N_P
DSMPi(i,i)=10;

end

96**********************************************************************

% FIN

96*********************************************************************
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Oy skttt st st st st sttt solototsdokototsdokoiotosdoloiolsdoloioksdoloiolsdoloiodoloiosdokokok okl
96*************************************************************************
O et s st s st sfese st s st e s st s st s st sfe s st st s st sfe s st s st s st st seste st stestesostesesteste st sfesiostestosteosloskosteolkotokokoskorsloloskokokoskoksolokokoskokor

%

% File: coevo DSM.m

%

%

% Créé par : G. HARMEL

% LAB

% Besangon FRANCE
%

% Date: Juin 2006

%

% Ce fichier contient le traitement flou permettant de générer les DSM
% coévoluées et finales

%

%

96**************************************************************************
96**************************************************************************
96**************************************************************************

coevo_donnees.m % on appelle les données du probleme

96***********************************************************************

% PROCESSUS FLOUS

96***********************************************************************

fuzzy co=newfis('COEVOLUTION'); % Le TRAITEMENT FLOU est appelé COEVOLUTION

% Construction des fonctions d'appartenance pour la premiere entrée

fuzzy co.input(l).name='Ai-Aj'; % déclaration du nom de la variable

fuzzy co.input(1).range=[0 10]; % déclaration du domaine de définition

fuzzy co.input(1).mf(1).name='"FAIBLE'; % nom de la premiere variable linguistique
fuzzy co.input(1).mf(1).type="trapmf’; % le type de fonction d'appartenance est trapézoidale
fuzzy co.input(1).mf(1).params=[0 0 3 5]; % construction de la fonction trapézoidale
fuzzy co.input(1).mf(2).name="MOYEN";

fuzzy co.input(1).mf(2).type="trapmf’;

fuzzy co.input(1).mf(2).params=[3 5 6 §];

fuzzy co.input(1).mf(3).name="FORT";

fuzzy co.input(1).mf(3).type="trapmf’;

fuzzy co.input(1).mf(3).params=[6 8 10 10];

% Construction des fonctions d'appartenance pour la deuxiéme entrée
fuzzy co.input(2).name="Ai-Bk’;

fuzzy co.input(2).range=[0 10];

fuzzy co.input(2).mf(1).name="FAIBLE';
fuzzy co.input(2).mf(1).type="trapmf’;

fuzzy co.input(2).mf(1).params=[0 0 3 5];
fuzzy co.input(2).mf(2).name="MOYEN";
fuzzy co.input(2).mf(2).type="trapmf’;

fuzzy co.input(2).mf(2).params=[3 5 6 8];
fuzzy co.input(2).mf(3).name='"FORT";
fuzzy co.input(2).mf(3).type="trapmf’;

fuzzy co.input(2).mf(3).params=[6 8 10 10];

% Construction des fonctions d'appartenance pour la troisieme entrée
fuzzy co.input(3).name='Aj-Bv';

fuzzy co.input(3).range=[0 10];

fuzzy co.input(3).mf(1).name='"FAIBLE",

fuzzy co.input(3).mf(1).type="trapmf’;

fuzzy co.input(3).mf(1).params=[0 0 3 5];

fuzzy co.input(3).mf(2).name="MOYEN";

fuzzy co.input(3).mf(2).type="trapmf’;

fuzzy co.input(3).mf(2).params=[3 5 6 §];
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fuzzy co.input(3).mf(3).name='"FORT";

fuzzy co.input(3).mf(3).type="trapmf’;

fuzzy co.input(3).mf(3).params=[6 8 10 10];
% Construction des fonctions d'appartenance pour la sortie
fuzzy co.output(1).name="Bu-Bv';

fuzzy co.output(1l).range=[0 10];

fuzzy co.output(1).mf(1).name="FAIBLE";
fuzzy co.output(1).mf(1).type='trapmf’;

fuzzy co.output(l).mf(1).params=[00 1 3];
fuzzy co.output(1).mf(2).name="MOYEN";
fuzzy co.output(1).mf(2).type="trapmf’;

fuzzy co.output(1).mf(2).params=[13 7 9];
fuzzy co.output(1l).mf(3).name="FORT";
fuzzy co.output(1).mf(3).type="trapmf’;

fuzzy co.output(1).mf(3).params=[7 9 10 10];

fuzruleList=[ % définition des 13 regles d'inférence
100111
210111
201111
222211
232311
223311
233311
311111
31-1211
3-11211
32-1311
3-12311
3333117

fuzzy co=addrule(fuzzy co,fuzruleList);
% fin du traitement flou

96***********************************************************************

% application du traitement flou

96***********************************************************************

DSMP=zeros(N_A,N AN P,N P);
DSMA=zeros(N P,N PN AN A);

fori=1:N_A
for j=1:N_A
for k=1:N P
for u=k+1:N_P

DSMP(i,j,k,u)=evalfis([DSMAI(i,j) INCED(i,k) INCED(j,u)], fuzzy co);
% pour chaque interaction dans DSMAI (i,j) nous construisons

% une DSM du produit a travers le traitement flou
end
end
end
end

for i=1:N_P
for j=1:N_P
fork=1:N_A
foru=k+1:N_A

DSMA(i,j,k,u)=evalfis((DSMPi(i,j) INCED(k,i) INCED(u,j)], fuzzy co);
% pour chaque interaction dans DSMPi (i,j) nous construisons

% une DSM des acteurs a travers le traitement flou
end
end
end
end

0 3k sttt ot skl ot s s i R sk R R sl R R sl R R s s R ko

% construction des DSM coévoluées

96***********************************************************************
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% utilisation de la méthode de la moyenne
DSMPc=zeros(N_P,N P);
DSMAc=zeros(N_A,N A);

for k=1:N_P
for u=k+1:N_P
DSMPc(k,u)=0;
fori=1:N_A
forj=1:N_A
DSMPc(k,u)=DSMPc(k,u)+DSMP(i,j.k,u);
end
end
end
end

DSMPc=DSMPc/(N_A"2);

fork=1:N_A
for u=k+1:N_A
DSMAc(k,u)=0;
for i=1:N_P
for j=1:N_P
DSMAc(k,u)=DSMAc(k,u)+DSMA(i,j,k,u);
end
end
end
end

DSMAc=DSMAGc/(N_P*2);

% Normalisation des DSM coévoluées
DSMPc¢ = DSMPc/max(max(DSMPc))*10;
DSMAc = DSMAc/max(max(DSMAc))*10;

%filtrage des DSM coévoluées

BASA=2.3;
BASP=2.4;

for j=1:N_P
for k=j+1:N_P
if DSMPc(j,k)<BASP
DSMPP(j,k)=0;
end
end
end

for j=1:N_A
for k=j+1:N_A
if DSMAc(j,k)<BASA
DSMAc(j,k)=0;

end
end
end

96**************************************************************************

%CONSTRUCTION DES DSM FINALES

96*****************************************************************

DSMPf=zeros(N_P,N_P);
DSMAf=zeros(N_AN_A);

DSMPf= 0.5*DSMPc + 0.5¥*DSMP4;
DSMAf= 0.5*DSMAc + 0.5*DSMA;
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%filtrage des DSM finales

BASAF=2.3;
BASPF=2.4;

for j=1:N_P
for k=j+1:N_P
if DSMPf(j,k)<BASPF
DSMP((j,k)=0;
end
end
end

for j=1:N_A
for k=j+1:N_A
if DSMAf(j,k)<BASAF
DSMA(f(j,k)=0;

end
end
end

96*************************************************************************

% SYMETRIE

96**************************************************************************

% on a construit la partie triangulaire supérieure et nous complétons dans
% cette partie la symétrie des DSM
forj=1:N_P
fori=j+1:N P
DSMPc(i,j)=DSMPc(j,i);
DSMPA{(i,j =DSMPA{(j,1);

end

end

forj=1:N_A
fori=j+1:N_A

DSMACc(i,j)=DSMAc(j,i);
DSMACf(i,j)=DSMA(f{(j,i);
end

end
96*************************************************************************

O/ ok skt stttk skt sk b sk R sk kR SRR sk R sk R s R sk R ok
% FIN

O kst sl s ootk stk sk skt sk stk skt skt sk skt skt skt skt sk ks ks ks sk R sk skl skt ok
O kst sl sk otk sk ok stk ok sk ksl skkok sk kst skt sk R sk sk sk sk sk skl stk
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L’algorithme de clustering

Dans cette partie, nous présentons les fonctions qu’on a développées.

Algorithme initial Notre algorithme
run_cluster Architecture DSM
bid enchere
coord cost Cout Couplage

La fonction architecture DSM sera illustrée sur la DSMPM issue de situation2 DSM.m
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96**************************************************************************
96**************************************************************************
96**************************************************************************
96**************************************************************************
96**************************************************************************

%

% fichier:  Architecture DSM.m
%

% Crée par: G. HARMEL

% LAB

% Besangon FRANCE
%

% Date: Juin 2006

%

96**************************************************************************
96**************************************************************************
96**************************************************************************

@6**************************************************************************

% appeler la fonction qui donne la DSM résultante

% exemple : situation2_DSM.m
96**************************************************************************

%)**************************************************************************
% Initialisation des PARAMETRES

*
96**************************************************************************

% print_flag quand a 1 donne autorisation d’imprimer

% extract_elements permet a I’utilisateur d’identifier directement des éléments intégrateurs
96 *
%)**************************************************************************
print_flag = 0;

extract_elements = [];

1C=0.8; % choisir une valeur pour I’Indice de Couplage

% les parametres sont expliqués dans le paragraphe 3.5 du chapitre 111

Cluster param.exp_int = 2;

Cluster param.exp_taille = 1;

Cluster param.rand_accept = 15;

Cluster param.rand bid = 15

Cluster _param.times = 4;

Cluster _param.stable limit = 4

96**************************************************************************
96********************* Fhlsmsk:desparmnénes*******************************
96**************************************************************************

96**************************************************************************

% extraction des données
96**************************************************************************

DSM_matrix = DSMPM; % on spécifie la matrice a utiliser
DSM_matrix_original = DSM_matrix;
96*************************************************

% identification des intégrateurs par IC
96************************************************

if (IC>0) % si IC=0 alors on n’utilise pas la procédure

for i=1:DSM_size
inc2=0;
inc=0;
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ICD(1)=0;
for j=1:DSM_size
if (DSM_matrix(i,j)>0)
inc=inc+1;
end
end
ICD(i)=inc/(DSM_size-1);
if ICD(1)>=IC)
inc2=inc2+1;
extract_elements(length(extract elements)+inc2)=i;
end
end
end
extract_elements

% initialiser les parametres a zéro

for i = 1: length(extract_elements)
DSM_matrix(extract_elements(i),:) = 0;
DSM_matrix(:,extract elements(i)) = 0;

end
96****************** Fhlexnacdondesdonnées*************************

96**************************************************************************

% commencer le CLUSTERING

96**************************************************************************

[Cluster_matrix, cout_total couplage, historique cout, old data] = Cluster(DSM_matrix, Cluster param);

% Cluster est la fonction principale qui appelle toutes les autres fonctions réalisant le clustering
0f sk sk Rk i CLUSTERING %% st st ot sk o

96**************************************************************************
96**************************************************************************
%

% Gestion des graphiques
07 sttt sk s R sk R R s R R sk R R sl R s R R R ok

0, skt stk ksl e oot sl s st ok okl stk sl st etk kel e ek ok skl st ok ot ksl s ok ok ok

% appeler I'historique des cotts
[cost_g zero, cg] = find(historique cout);
max_run = max(cost_g zero);

% trier les matrices par la taille
[Cluster_matrix] = reorder cluster(Cluster matrix); % sort cluster by cluster size

% Placer 1 sur la diagonale
[graph. DSM_matrix] = place_diag(DSM_matrix_original, 1);
[graph New DSM matrix] = place diag(New DSM matrix, 1);

get_date = now;
current_date = datestr(get_date,0);

% Créer les titres des graphes

DSM title=['DSM ; '],

Cluster_title = ['Cluster Matrix; '];

New DSM title=['DSM ;"' Cout Total : ' num2str(cout_total couplage)];

% dessiner la matrice originale
graph matrix(graph DSM_matrix,'Element’,'Element',DSM _title, DSM_labels, DSM_labels, print_flag);

% dessiner 'historique de cout

figure;

plot(historique _cout(1:max_run));

title(['Clustering Historique des Cofts; ' current date]);
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xlabel('Change #');

ylabel("Cost');

orient landscape;

if print_flag ==
print;

end

% afficher la DSM avec I’architecture
graph matrix(graph New DSM _matrix,'Element','Element',New DSM title, New DSM labels, New_DSM labels,
print_flag, Cluster matrix);

96**************************************************************************

% Fin graphique

96***********************************************************************
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96**************************************************************************
96**************************************************************************
%

% Fichier : enchere.m

%

% Crée par: G. HARMEL

% LAB

% Besangon FRANCE

% Date: Juin 2006

%

%

%

%

96**************************************************************************
96*************************************************************************

96*

function [cluster enchere]=enchere(elmt, DSM_matrix, cluster_matrix, cluster size,exp_int,exp_taille);
%

%

% Fonction qui calcule l'enchére de tous les modules vers un élément elmt

%

%

%

% Données:

% elmt élément qui recevra les encheres des modules
% DSM_matrix la DSM analysée

% Cluster_matrix matrice (cluster,element)

% = si élément dans cluster, 0 = sinon
% cluster_size Tableau des tailles des clusters

% exp_int pour favoriser les interactions

% exp_taille pénalité associce a la taille des modules
%

% Sortie:

% cluster_enchere tableau des encheres

96************************************************************************
96***********************************************************************

% appeler le nombre de clusters et le nombre d'éléments dans la DSM
[n_clusters, DSM_size] = size(cluster_matrix);

% intialisation du tableau d'enchere
cluster_enchere = zeros(n_clusters,1);
CM(index)= zeros(n_clusters,1);

% on calcule la cohésion des modules déja existants
for (index=1:n_clusters)
in(index)=0;
if (cluster_size(index)>1)
for i=1:DSM_size
if (Cluster matrix(index,i)==1)
for j=i+1:DSM_size
if (Cluster_matrix(index,j)==1)
if(DSM_matrix(i,j)>0)
in(index) = in(index) + (DSM_matrix(i,j) + DSM_matrix(j,i));
end
end
end
end
end
CM(index)=((in(index))"exp_int)/(cluster_size(i)"exp_taille); %Eq. III-
end
end
CM_elmt=zeros(n_clusters,1); % CM_elment est CM(cluster+ elmt) la cohésion des modules si on leur associe elmt

for index=1:n_clusters

if (cluster_matrix(index,elmt)==1)
cluster_enchere(index)=0; % si elmt est dans le cluster, l'enchére est nulle
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else % on considére le cas ou elmt n'appartient pas a cluster
inter_elmt(index)=0; % cette variable contient la somme des interactions entre le cluster et elmt
for j=1:DSM_size
if((cluster_matrix(index,j)==1)&(j~=elmt))
if (DSM_ matrix(j,elmt)>0))
inter_elmt(index) = inter _elmt(index) + DSM_matrix(j,elmt)+ DSM_matrix(elmt,j);
end
end
end
CM_elmt(index)=((in(index)+inter elmt(index))"exp_int)/((cluster size(i)+1)"exp taille);
end
end
cluster_enchere=CM_elmt-CM,;

96****************************************************************
96****************************************************************

% Fin enchere.m
96****************************************************************

96******************************************************************
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function [cout_total couplage] = Cout Couplage(DSM_matrix, Cluster matrix, cluster_size);

%

%

% Données:

% DSM_matrix La DSM analysée

% Cluster matrix la matrice des modules(Cluster,Element)
% cluster_size(n) Tableau des tailles des clusters

%

%

% Sortie:

% cout _total couplage c'est le colt de la fonction objectif
%

% cette fonction classe les interactions en interactions internes ou

% externes aux modules. Pour chaque classe, nous associons un cotit de

o couplage. Ce cotit de couplage est ensuite corrigé par un indicateur MSIL.

%

=X

96**************************************************************************
96**************************************************************************
@6**************************************************************************

% File: cout_couplage.m

% Crée par: G. HARMEL

% LAB

% Besangon FRANCE
% Date: Juin 2006

%

96**************************************************************************
96**************************************************************************
96**************************************************************************

% appeler le nombre de clusters et le nombre d'éléments dans la DSM
[n_clusters, DSM_size] = size(Cluster_matrix);

% intialiser le cout total
cout_total couplage = 0;
cout_couplage= zeros(1,DSM _size);

% On réordonne la DSM selon la cluster_matrix

% REMARQUE: ce réarrangement va dupliquer les éléments qui appartiennent

% a plusieurs modules.

% siun élément appartient a trois modules, la nouvelle DSM aura trois

% entrées différentes pour cet élément. Le colit associé¢ a une telle architecture augmente
% avec cette duplication.

[New DSM matrix, New DSM labels] = reorder DSM_byCluster(DSM_matrix, Cluster matrix, DSM_labels);
New_DSM size = size(New_DSM_matrix,1);

% capter le nombre d'élément dans chaque module
Num_cluster elements = sum(Cluster_matrix,2);

n=1;

New_Cluster matrix = zeros(New_DSM _size, New_DSM size);

for i=I1:n_clusters
New_Cluster matrix(i,n:n+Num_cluster _elements(i)-1) = ones(1,Num_cluster _elements(i));
n=n+Num_cluster elements(i);

end

% obtenir le tableau “new cluster size” qui correspond a la nouvelle matrice new cluster matrix
New_Cluster size = sum(New_Cluster matrix,2);

% remplacer les données anciennes avec les nouvelles données pour le calcul
% des cofits

DSM size = New DSM size;

XXVviil



Annexes

DSM_matrix = New_DSM_matrix;
Cluster_matrix = New_Cluster matrix;
cluster size = New_Cluster size;

[n_clusters, DSM_size] = size(Cluster_matrix);
cout_total couplage = 0;

(e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
O, kit ettt etk il etk ksl e ot okl ot ksl e et ok ksl stk skl ko o
% CALCUL DU COUT DE L’ARCHITECTURE PROPOSEE

07 kR R R R R R R
07 3k R R R R R R R

96*****************************************

% Calcul des couts de couplage internes aux modules
96**************************************************

% la déclaration des variables n'est pas nécessaire mais cela aide a
% controler le bon fonctionnement de I'algorithme

cout_in=zeros(n_clusters,1);
MSIli=zeros(n_clusters,1);
cout_in_corrig=zeros(n_clusters,1);
cout_total in_corrig=0;

for (index=1:n_clusters)
somme(index)=0;
inc=0;
if (cluster_size(index)>1)
for i=1:DSM_size
for j=i+1:DSM _size
if (Cluster_matrix(index,i)==1)
if (Cluster_matrix(index,j)==1)
if(DSM_matrix(i,j)>0)
somme(index) = somme(index) + (DSM_matrix(i,j) + DSM_matrix(j,i));
inc=inc+2;
end
end
end
end
end
cout_in(index)=somme(index)*((cluster_size(index))"2); % Eq. III-7
MSTli(index)=inc/((cluster_size(index))"2-cluster size(index)); % Eq. I1I-13
cout_in_corrig(index)=cout in(index)/MSli(index); % Eq. III-15
else
cout_in_corrig(index)=0;
end
end

cout_total in_corrig = sum(cout_in_corrig);% Eq. I1I-17

96**************************************************************

% Calcul des colits de couplage internes aux modules
96****************************************************************

cout_out=zeros(n_clusters,n_clusters);
MSle=zeros(n_clusters,n_clusters);
cout_out_corrig=zeros(n_clusters,n_clusters);
cout_total out_corrig=0;

for (index=1:n_clusters)
for (index2=index+1:n_clusters)
inc2=0;
for i=1:DSM_size
if (Cluster matrix(index,i)==1)
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for j=1:DSM_size
if (Cluster matrix(index2,j)==1)
if(DSM_matrix(i,j)>0)
inc2=inc2+2;
cout_out(index,index2)=cout out(index,index2)+
(DSM_matrix(i,j)*DSM_matrix(j,i))*(DSM_size + cluster size(index) + cluster size(index2))"2;
% Eq. ITI-8
end
end
end
end
end
if (cluster_size(index)==0|cluster_size(index2)==0)
if (inc2==0)
MSIle(index,index2) =1;
end
else
if (inc2==0)
MSle(index,index2) =1;
else
MSle(index,index2) = inc2/(2*cluster_size(index)*cluster_size(index2)); % Eq. 111-14
end
end
cout_out_corrig(index,index2)=cout out(index,index2)*MSIe(index,index2); % Eq. l1I-16
end
end

cout_total out corrig=sum(sum(cout out corrig));% Eq. I1I-17

0 stttk s ot kol sttt sk sl R s R R R R R Rk ok

% CALCUL DU COUT TOTAL

96********************************************************************

cout_total couplage = cout_total in_corrig + cout_total_out_corrig; % Eq. I1I-17

96**************************************************************************
96******************** an(hlcakulducoﬁt*******************************
96**************************************************************************
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Vers une conception conjointe des architectures du produit et de I’organisation du
projet dans le cadre de I’Ingénierie Systeme

Résumé

Lorsqu’une entreprise prend la décision stratégique de lancer une nouvelle famille de produits ou de reconcevoir
un produit existant, 1’architecte systéme a pour mission de concevoir ou de faire évoluer I’architecture de ce
produit. L’architecte joue aussi le role de chef de projet et doit concevoir ou faire évoluer en méme temps,
I’organisation du projet pour la rendre plus performante. Dans ce mémoire, notre objectif est de développer des
modeles et méthodes permettant d’aider les architectes systéme dans cette double activité.

Dans le cadre de I’Ingénierie Systéme, notre méthode se base sur la définition de nos propres concepts
d’architecture et de conception modulaire pour les étendre a la définition de 1’architecture de I’organisation du
projet. Nous proposons ensuite en cohérence avec notre positionnement, un algorithme de clustering utilisant
I’outil DSM comme méthode de représentation, cet algorithme a pour fonction de révéler 1’architecture d’un
domaine en partant de sa représentation matricielle (DSM).

L’application de notre méthode de développement des architectures est liée aux quatre situations de conception
identifiées. Pour chacune de ces situations, nous proposons une méthode de conception des architectures, faisant
appel a un traitement flou et/ou a des opérations matricielles. Chacune de ces situations est ensuite illustrée par
une application a la conception d’un moteur thermique dans 1’industrie automobile. La démarche présentée dans
ce chapitre est une vision statique de la conception des architectures.

Face cette vision statique, nous montrons la nécessité¢ de faire « coévoluer » les architectures couplées. Nous
proposons alors 1’exploration des incertitudes comme méthode pour suivre I’évolution des systémes
(perturbations) étudiés. Nous développons une méthode basée sur un traitement flou pour faire coévoluer les
architectures perturbées et pour les rendre cohérentes.

Mots-clés : Architecture, conception modulaire, DSM, logique floue, algorithmes de clustering, gestion des
incertitudes.

Identifying Product and Organization architectures in the context of System
Engineering

Abstract

When a company makes the strategic decision of launching a new product family or redesigning an existing
product, the system architect is in charge of designing and making evolve the architecture of this product. The
system architect is also the Development Project (DP) manager and thus he is in charge of conceiving or making
evolve at the same time the DP organization (Design Teams).

In this memory, our objective was to develop models and methods making it possible to help the system
architects in this double duty. In short, we propose in this work a method for designing both product and
organization architectures in the preliminary phases of the DP. In Engineering System context, our method is
based on the definition of our own concepts of product architecture and modularity and in their extension to DP
organization. We propose then in coherence with our positioning, a clustering algorithm using DSM
representation tool, the algorithm objective is to reveal project domains architectures starting from their matrix
representation (DSM).

The use of our method is tightly related to the design situations that the architect can face. In this memory, we
identified four of them. For each one of these situations, we propose a method for architectures designing,
calling upon a Fuzzy Logic treatment. Each one of these situations is then illustrated by an application to the
design of a thermal engine in the car industry. The step presented in this chapter is a static vision of the design of
architectures.

By opposition to this static vision, we show the need for making co-evoluate coupled architectures. We propose
then the exploration of uncertainties to model systems evolution. We develop a method based on a Fuzzy
treatment to make co-evoluate disturbed architectures in order to obtain coherent ones.

Keywords: Product architecture, modular design, Design Structure Matrix, Fuzzy Logic, Clustering algorithm,
uncertainty management.



