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Les travaux présentés dans ce mémoire portent sur ’existence et ’étude qualitative
des solutions des équations aux dérivées partielles non linéaires, et tout particulierement
des solutions ayant une structure spatiale et temporelle bien définie, appelées suivant les
cas ondes stationnaires, ondes progressives, ondes solitaires, ou de maniere générale ondes
non linéaires. Ces structures sont bien observées expérimentalement et numériquement,
et tres souvent jouent un role majeur dans la dynamique des systémes correspondants.

Les systemes considérés sont des modeles concrets issus de la mécanique des fluides,
de la superfluidité, de la superconductivité ou de la physique des transitions de phase.
A titre d’exemples, on peut citer les tres nombreux modeles représentant différentes
approximations de la propagation des ondes a la surface libre d’un fluide (équations de
Benjamin-Ono, de Kadomtsev-Petviashvili, ou de Benney-Luke). D’autre part, il convient
de mentionner les différentes variantes de I’équation de Schrédinger non-linéaire (comme
I’équation de Gross-Pitaevskii, I’équation de Hartree ou 1’équation de Schrodinger avec
nonlinéarité de type "1 — 1/°”) qui interviennent dans 1’étude des condensats de Bose-
Einstein, la supraconductivité et la superfluidité.
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1 Travaux de recherche pendant la these

1.1 Régularité et décroissance

Dans un premier temps, je me suis intéressé aux propriétés qualitatives des ondes non
linéaires pour quelques équations issues de la mécanique des fluides, plus précisément a
leur régularité et a leur taux de décroissance a I'infini. On a utilisé la théorie classique des
multiplicateurs de Fourier pour obtenir la régularité dans les espaces de Sobolev WHP,
respectivement la théorie de Paley-Wiener pour démontrer I'analyticité des solutions.

Les propriétés de décroissance ont été prouvées en utilisant une technique générale
qui consiste a transformer une équation aux dérivées partielles en une équation de convo-
lution. Pour donner un exemple, considérons une équation de la forme P(D)(u) = F(u)
dans RY. En utilisant la transformation de Fourier cette équation est équivalente &
P(i&)u = F(F(u)). Si l'opérateur P(D) est elliptique, on peut écrire u = %}"(F(u))
ou encore u = k x F(u), on k = fﬁl(%). Dans beaucoup d’exemples concrets, le
noyau k est une fonction qui décroit assez rapidement lorsque |x| tend vers I'infini. Si
|F(u)| < Clu|" pour u proche de zéro, ou r > 1, et si 'on dispose d’une estimation sur la
vitesse de convergence de u vers 0 a I'infini, en utilisant I’équation de convolution on peut
améliorer successivement cette estimation. Dans la plupart des applications on obtient
que u tend vers zéro (au moins) aussi rapidement que le noyau k.

Cette technique avait été utilisée dans [LiBo96] et [BoLi97]| pour des problemes uni-
dimensionnels et dans [dBS97] pour les ondes solitaires de I’équation de Kadomtsev-
Petviashvili en dimension 2 et 3. Elle a été utilisée par la suite par P. Gravejat pour les
ondes progressives de I’équation de Gross-Pitaevskii.

On a montré dans [1] que les ondes solitaires de ’équation de Benney-Luke (dont
lexistence avait été prouvée en 1998 par R. L. Pego et J. L. Quintero) sont des fonctions
analytiques et on a trouvé leur taux algébrique optimal de décroissance & 'infini. Dans [2]
on a montré 'existence, 'analyticité et on a trouvé le taux optimal de décroissance des
ondes solitaires d’une généralisation bidimensionnelle de I’équation de Benjamin-Ono.

1.2 Existence des ondes non-linéaires

A. Une équation de Schrodinger non-linéaire avec potentiel en dimension 1.
Dans [4] on a étudié I’équation

(1.1) iA —ivAy = —Age — A+ |[APA+U()A, z€R, teRy,

qui décrit ’écoulement derriere un obstacle fixe d’un fluide injecté avec une vitesse
constante v a l'infini. Le potentiel U est une mesure positive qui modélise 'obstacle.
L’équation (1.1) a été étudiée a 'aide des développements asymptotiques formels et des
simulations numériques par V. Hakim pour quelques types particuliers de potentiel.

On a cherché des solutions stationnaires (i.e. indépendantes de ¢) dont le module tend
vers £1 a 'infini. On a réussi a montrer que, si le potentiel U n’est pas trop grand, deux
telles solutions existent : I'une est obtenue comme un minimiseur de I’énergie associée
a (1.1), Pautre est un point selle de ’énergie. L’existence d’un minimiseur est classique.
La preuve de l'existence d’'une deuxieme solution est beaucoup plus délicate et repose
sur une variante du Lemme du Col due a Ghoussoub et Preiss. La difficulté majeure est
d’obtenir des informations assez précises sur les suites de Palais-Smale afin de déduire
leur convergence et de montrer que leur limite est différente de la solution obtenue par
minimisation.



B. Existence des bulles instationnaires. L’objectif de 'article [3] a été d’étudier
Iexistence des ondes progressives (appelées également “bulles instationnaires”) de petite
vitesse pour I’équation de Schrodinger non-linéaire

O 2 N
(1.2) za—FAw—i—F(WJ! )Y =0 dans R",
ou ¢ est une fonction complexe qui satisfait la “condition aux limites” |¢| — r9 > 0
quand |z| — oo et la nonlinéarité est de type "% — 4", Les bulles sont des solutions
de la forme ¢ (x,t) = ¢p(x1 — ct,xa,...,zN). L'existence de telles solutions en dimension
un d’espace a été prouvée dans [BaMa88|.

On a utilisé une approche variationnelle : les bulles sont des points critiques d’une
fonctionnelle E.(u) = E(u) + cQ(u), ou E est "Iénergie” associée a (1.2) et @ est le
moment. Une technique classique pour montrer ’existence des points critiques consiste
a mettre en évidence un changement de topologie entre deux ensembles de niveau de la
fonctionnelle, et ensuite a prouver une propriété de compacité des suites de Palais-Smale.
Cependant, les ensembles de niveau de E. ont une structure bien compliquée et il semble
tres difficile de montrer un changement au niveau global dans leur topologie. D’autre
part, il est également difficile de montrer la compacité des suites de Palais-Smale. Pour
surmonter ces difficultés, nous avons prouvé une variante locale du Lemme du Col. Ce
résultat abstrait permet de trouver des suites de Palais-Smale bornées lorsqu’on dispose
d’une information concernant un changement dans la structure des ensembles de niveau
uniquement localement, au voisinage d’un point. D’autre part, nous disposons d’'un état
fondamental ug de E qui possede des propriétés tout a fait remarquables : il est un
point critique de F et il est un minimum local strict de F sur un sous-espace fonctionnel
de codimension 1. D’une maniére heuristique, il existe une ”cuvette” autour de wugy sur
un sous-espace de codimension 1. En dimension au moins égale a 4, la hauteur de la
”cuvette” est strictement positive et cette structure subsiste lorsqu’on rajoute a E une
"perturbation” ¢@Q) avec ¢ suffisamment petit. Cette observation ainsi que le résultat
abstrait mentionné nous ont permis de montrer ’existence des bulles instationnaires de
petite vitesse.



2 Symétrie des solutions des équations aux dérivées par-
tielles

Le fait de savoir que les solutions d’'une EDP présentent des symétries est tres im-
portant a la fois pour leur étude théorique que pour leur approximation numérique. Les
symétries peuvent aussi s’avérer tres utiles pour 1’étude de la stabilité des ondes soli-
taires ou des ondes stationnaires de certaines EDP d’évolution. En général, la symétrie
constitue la premiere étape dans la preuve de l'unicité des solutions de certaines EDP
elliptiques.

Jusqu’a présent il existe dans la littérature trois méthodes générales pour montrer de
telles symétries. La premiere a été développée par Gidas, Ni et Nirenberg a la fin des
années ‘70 et est basée sur les "moving planes” et le principe de maximum. Elle est ap-
plicable aux solutions positives dans des problemes qui font intervenir le Laplacien. Une
autre méthode repose sur I'utilisation de la symétrisation de Schwarz d’une fonction. Elle
permet de montrer qu’il existe des solutions symétriques pour un probleme de minimisa-
tion. (Notons, par ailleurs, que dans beaucoup de situations les ondes non-linéaires sont
obtenues en minimisant une certaine fonctionnelle, avec ou sans contrainte). En général,
cette méthode n’implique pas directement que foutes les solutions sont symétriques.
L’utilisation de ces deux méthodes dans le cas des systemes est parfois possible, mais elle
reste assez limitée car, d’une part, le signe de chacune des composantes de la solution doit
étre constant, d’autre part on a besoin de conditions assez fortes (et souvent irréalistes)
sur les nonlinéarités. Afin d’éviter ces inconvenients, O. Lopes a proposé en 1996 dans
[Lopl, Lop2] une méthode étonnament simple et efficace pour montrer la symétrie des
minimiseurs. Nous présentons ci-dessous le résultat de [Lopl].

Théoréme 2.1 ([Lop1]) Soit u € HY (RN ,R™) un minimiseur de la fonctionnelle

V(u) = /RN |Vu|2dx+/RN F(u)dx

sous la contrainte I(u) := G(u)dx = X # 0. On suppose que les fonctions F et G
RN

sont CY, qu’il existe p < 2* tel que |F(u)| < Clu

que G'(u) Z0 si u # 0.

Alors la fonction u est a symétrie radiale (aprés une translation dans RY ).

et |G(u)| < Clul* pour |u| > 1 et

Preuve. On va d’abord montrer que la fonction u présente une symétrie par rapport
a la variable z1. Apres une translation dans la direction de x7 on peut supposer que

/ G(u)dx = / G(u)dx = \/2.
{z1<0} {z1>0}

On définit

u(xz, 2’ siz; <0 u(—x1,2") sixz; <0
1) )= { uE—xl,;’) sixzg >0 et vy(w) = { u(arl,x’) : si 1 > 0.
1 est facile de voir que vy, v2 € HY (RN, R™) et on a I(u) = I(v1) = I(v2) = X\. Come u
est un minimiseur, ceci implique V' (v1) > V(u) et V(v2) > V(u).
D’autre part on a V(vy) + V(ve) = 2V (u).
On en déduit que nécessairement V(v1) = V(va) = V(u) et v; et vy sont aussi des
minimiseurs. Par conséquent, il existe des multiplicateurs de Lagrange « et 3 tels que

—Au+2F'(u) + aG'(u) =0 et

(2.2) —Avy +2F'(v1) + BG'(v1) =0  dans RV,



En utilisant (2.2) et la théorie de la régularité elliptique, on déduit que les fonctions u et
v1 sont bornées et régulieres.

On ne peut pas avoir v1 = 0 car I(v1) = X # 0. Par conséquent, il existe z* tel que
xzy <0 et G'(v1(z*)) # 0. Comme u = v1 dans {z1 < 0}, de (2.2) on déduit que o = f3.
11 est alors facile de voir que la fonction w := u — v7 satisfait une équation de la forme

(2.3) —Aw+ A(z)w =0 dans RV, ot A € L(RY,R™ x R™).
On utilise ensuite le

Théoréme 2.2 (Théoréme de Prolongement Unique) Supposons que ® € HL (RN, R™)
satisfait

AP+ A(x)® =0 dans RN, on Ac L®RN,R™xR™).
Si ® =0 dans un owvert Q C RY, alors ® =0 dans RV.

Comme w = 0 dans le demi-espace {1 < 0}, on déduit du théoréme de prolongement
unique et de (2.3) que w = 0 dans R", c’est-a-dire u = v1. Donc u est symétrique par
rapport a xj.

De la méme fagon, apres translation u est symétrique par rapport a chacune des
variables xa,...,zy. En particulier, u(x) = u(—=z). Par conséquent, tout hyperplan II
qui contient 'origine O coupe la contrainte en deux quantités égales. Le méme argument
que ci-dessus implique alors que u est symétrique par rapport a tout hyperplan contenant
O, donc u est a symétrie radiale. O

2.1 Un résultat général de symétrie

Dans un travail récent [7], nous avons étudié la symétrie des solutions d’un probléme
(P) qui consiste & minimiser une fonctionnelle

B(u) = /Q F(j), u(x), |Vu(x))) de
avec un nombre fini de contraintes
Qi) = [ Gyllal. @), [Vu(@))de =Xy, 5= Loooorky

ott © C R est un ensemble ouvert invariant par rotations. On suppose que :

A1l. On travaille dans un espace X de fonctions ayant la propriété que pour tout
u € X et pour tout hyperplan II de R™ contenant le centre de 2, les deux fonctions
up+ et up— obtenues de u par symétrie miroir par rapport a II (comme dans (2.1))
appartiennent encore a X.

A2. Le probléeme (P) admet des solutions dans X et toute solution est de classe C'*
sur €.

Notons que ces hypotheses sont tres générales, donc les résultats obtenus s’appliquent
a un grand nombre de situations concrétes. Par exemple, la condition (A1) est vérifiée par
tous les espaces de Sobolev W1P(€). Sous des hypotheses de régularité et de croissance
raisonnables sur F,G1,...,Gg, les fonctionnelles F, Q1,...,Q sont différentiables sur
X et les minimiseurs de (P) satisfont des équations d’Euler-Lagrange. Trés souvent,
ces équations sont des systemes elliptiques quasi-linéaires. La théorie de la régularité



des solutions de tels systemes a connu un développement spectaculaire les 50 dernieres
années. Dans des situations tres générales, elle permet de montrer que les solutions des
équations d’Euler-Lagrange sont (au moins) C!, donc (A2) est satisfaite.

Le résultat obtenu est le suivant :

Théoréeme 2.3 Supposons que (A1), (A2) sont satisfaites et 0 <k < N —2. Soitu e X
un minimiseur de (P). Alors il existe un sous-espace vectoriel V- de RN de dimension k
tel que u est a symétrie radiale par rapport a 'V (c’est-a-dire u(x) dépend uniquement de
la projection orthogonale de x sur V' et de la distance de x a V).

Dans le cas ou © = RY, les fonctionnelles E, Q1,...Q} sont invariantes par trans-
lations et (Al) a lieu pour tout hyperplan affine II de R” (et non seulement pour les
hyperplans contenant 'origine), on a montré :

Théoreme 2.4 Si u € X est un minimiseur de (P) et 1 < k < N — 1, alors il existe
un sous-espace affine V- de RN de dimension k — 1 tel que u est & symétrie radiale par
rapport a V.

En particulier, dans le cas d’une seule contrainte, tous les minimiseurs sont a symétrie
radiale par rapport a un point. Notons que tous ces résultats sont valables pour des
minimiseurs a valeurs vectorielles et on ne demande aucune hypothese sur les signes des
composantes des minimiseurs. D’autre part, les exemples présentés dans [7] montrent que
les résultats ci-dessus sont optimaux méme pour des minimiseurs a valeurs scalaires.

Afin de donner une idée des preuves des résultats énoncés plus haut, nous allons
présenter la démonstration du Théoreme 2.4 dans le cas particulier ou N =2 et k = 1.
Le probleme (P) devient

Minimiser F(u) = / F(u(zx),|Vu(z)|)dx sous la contrainte
R2
Q) = [ Glute). [Fu@))ds =2 0.

(P")

Lemme 2.5 Soit u un minimiseur de (P"). On suppose que toute droite 11 passant par
O a la propriété :

A
(2.4) Gu(w), [Vu(@)) do = | Glu(@),|Vu()]) do = 5.
I+ - 2

Alors u est a symétrie radiale par rapport a O.

Preuve du Lemme 2.5. Soit II une droite quelconque contenant O. On choisit un
systeme de coordonnées tel que II = Oy. On définit

| u(z,y)siz <0 | u(=z,y)siz <0
@, y) = { u(—x,y) si x>0, va(®,y) = u(z,y) stz > 0.
Alors vi,v9 € X et on a Q(v1) = Q(v2) = A ce qui implique E(vy) > E(u) et E(ve) >
E(u). D’autre part, on a E(v1) + E(v2) = 2E(u). Donc vy, ve sont aussi des minimiseurs
et en utilisant (A2) on déduit que vy, vy € C1(R?).

La symétrie de vy et de ve par rapport a x; implique a;1(0,y) = a;2(0,y) = 0 pour
T i
tout y. Comme u = v; pour x < 0, on a
8u . 6u . 62}1 8’01
o5 (0y) =lim 5 (s,y) =1lim 5~ (s,y) = 5 2(0,4) =0



Ainsi on a montré que pour toute droite II contenant O,

ou

(2.5) =

0 sur II, ou n est la normale & II.

ou
En coordonnées polaires x = 7 cosf, y = rsin 6, ceci implique — = 0 sur R?\ {O} et on

en déduit que u ne dépend pas de 6, c’est-a-dire u est une fonction radiale. O

Démonstration du Théoréme 2.4 pour N =2 et k= 1.
Soit u un minimiseur de (P’). Aprés translation, on peut supposer que

/ G(u,\VuDdxdy:/ G(u, |Vu|)dzdy = i
{e<0} {2>0} 2

Soient u; et ug les deux fonctions obtenues de u par symétrie miroir par rapport a Oy.
Alors uy et us sont aussi des minimiseurs et, de plus, sont paires en x.
Apres translation en y, on peut supposer que

/ G(u1,|Vu1|)dxdy:/ G(uq,|Vuy|) dx dy = i
{y<0} {y>0} 2

Soient u1,1 et u1 2 les deux fonctions obtenues de u; par symétrie miroir par rapport a Oz.
Il est évident que uy,1 et uy 2 sont aussi des minimiseurs et sont paires en = et en y. Par le
Lemme 2.5 on déduit que ug 1 et u; 2 sont des fonctions radiales par rapport a O. Comme
u1,1(2,0) = u1(z,0) = up2(x,0) pour tout z, on a nécessairement uj; = uj 2 = u; sur
R?, donc u; est une fonction radiale.

De la méme facon, il existe k € R tel que

/ G(u2,|Vu2|)dxdy:/ G(uz, |Vus|) dz dy = i
{y<k} {y>k} 2

Comme ci-dessus on déduit que ug est radiale par rapport a (0, k).

Nous allons montrer que k = 0. Supposons, par 'absurde, que k # 0. Alors la fonction
d’une variable y — u(0,y) = u1(0,y) = u2(0,y) est une fonction symétrique par rapport
a 0 et par rapport a k, donc c¢’est une fonction 2|k|—périodique. Donc G(uq, |Vui|) est
une fonction radiale dont le profil est 2|k|—périodique. On en déduit que si l'intégrale

/ G(u1,|Vu1|) dx dy converge, sa valeur est nécessairement 0, ce qui implique A = 0,
R2

absurde.

Par conséquent, on a k = 0 et alors u;, us sont deux fonctions radiales par rapport
a O. Comme u1(0,-) = u(0,) = u2(0,-) on en déduit que u; = ug = u, c’est-a-dire u est
radiale. 0

Pour démontrer les Théoremes 2.3 et 2.4 dans le cas général, on utilise le Théoreme
de Borsuk-Ulam pour trouver des hyperplans qui ”coupent les contraintes en deux”, un
résultat analogue au Lemme 2.5, et un peu de géométrie élémentaire et de combinatoire
pour "recoller les morceaux.”

2.2 Symétrie et monotonie des solutions d’énergie minimale

Dans [9], nous étudions le comportement des solutions d’énergie minimale du systéme

(2.6) —div(|Vug|P2Vu;) = gi(u), i=1,...,m,



p
ot u = (ug,...,up): RY — R™, 1 <p<oo, [(y1,...,yn)]P = (Z;yzly]z>2, gi(0) =0
et il existe G € CH(R™ \ {0}, R) telle que g;(u) = g—uGi(u).
Ce systeme, notamment dans le cas p = 2, intervient dans un nombre important de
problémes issus de la physique. La fonctionnelle d’énergie associée est

1 m
Su:/ Vuipdx—/ G(u)dz.
= [ vt [ 6w

11 est facile de voir que les solutions de (2.6) sont précisément les points critiques de S.
On appelle solution d’énergie minimale une solution qui minimise S dans ’ensemble de
toutes les solutions.

L’existence des solutions d’énergie minimale a été prouvée dans une série de travaux
classiques (le lecteur pourra consulter les articles [BeLi83], [BeGK83], [BrLieb84] et les
références qu’ils contiennent). Cependant, dans le cas des conditions générales sur la
nonlinéarité g, la symétrie de telles solutions et la monotonie de leur profil dans le cas
scalaire (m = 1) ont été des problemes longtemps non résolus.

Nous avons trouvé une caractérisation variationnelle équivalente des solutions d’énergie

1 m
minimale de (2.6). On introduit les fonctionnelles J(u) = / Z |Vu; [P dz et V(u) =
PJRN

G(u)dx. On a :
RN
Proposition 2.6 On suppose que 1 < p < N. Soit u une solution d’énergie minimale de
(2.6). Alors u est une solution du probléme de minimisation

(2.7) minimiser J(v) sous la contrainte v # 0 et V(v) = V(u).
En utilisant la Proposition 2.6 et le Théoreme 2.4, on déduit :

Corollaire 2.7 Siu est une solution d’énergie minimale de (2.6), alors u est a symétrie
radiale (modulo une translation dans RN ).

Dans le cas scalaire (m = 1) nous avons montré le résultat de monotonie suivant :

Proposition 2.8 Soit m =1 et soit u une solution d’énergie minimale de (2.6). Alors :
i) La fonction u a un signe constant sur RV,
it) Le profil radial de u est une fonction monotone sur [0, 00).

La preuve de (i) est assez simple (et présente un lien évident avec le fait que le
principe de concentration-compacité peut étre utilisé pour montrer la compacité des suites
minimisantes du probleme (2.7)) : si u change de signe, on peut considérer séparement
les fonctions uy et u_. Alors J(uy) + J(u_) = J(u) et V(uy) + V(u_) = V(u), ce qui
implique que la dichotomie se produit pour les suites minimisantes de (2.7).

La preuve de (ii) repose sur un résultat de [BroZi88| qui affirme que pour une fonction
positive v € DMP(RY) on a toujours J(v) > J(v*) (ol v* est le réarrangement de Schwarz
de v) et on peut avoir J(v) = J(v*) uniquement si les ensembles de niveau v—!(¢) sont
des spheres pour presque tout ¢ > 0. Or, si u est une solution d’énergie minimale, on
sait déja que u est positive et radiale, u(x) = a(|z|), ou u(r) — 0 quand r — oo. Si @
n’est pas décroissante, il existe 0 < a < b < ¢ tels que a(a) < u(b) et u(b) > u(c). Soit
my = min(@(a), @(c)) et ma = (b). Alors pour tout ¢ € [mq,ms], u~!(t) contient au moins
deux spheéres concentriques, donc ce n’est pas une sphére. Par le théoreme de [BroZi8s]
on déduit que J(u*) < J(u). Comme V(u*) = V(u), on obtient une contradiction avec le
fait que w est un minimiseur de (2.7).



2.3 Symétrie dans des problemes non-locaux

La symétrie des minimiseurs dans des problemes qui font intervenir des opérateurs
non-locaux a été étudiée dans [6]. Nous décrivons ci-dessous quelques exemples.

A. Problémes qui font intervenir les puissances fractionnaires du Laplacien.
On considere I'équation de Benjamin-Ono généralisée

A+ aAA, — B(-A)2A, =0  dans R%,  a, 3> 0.

Les ondes progressives de cette équation sont des solutions de la forme A(zx, y, t) =
u(x — ct, y). Apres changement d’échelle, on trouve que le profil u satisfait

uw=u? dans R%

D=

u+ (—A)

L’existence des ondes progressives a été démontrée dans [2] en minimisant

V() ::;/RQK—A)iu\de—F/ 2d

R2
sous la contrainte I(u) = / uddx = constant. Plus généralement, dans [Lop3] on a
R2
montré 'existence des minimiseurs des fonctionnelles de type
28|70 ¢ |2

(28) V= [ lePla©Pd+ [ Fluds

RN RN
sous une contrainte I(u) = / G(u)dr = X # 0. Il est évident que ce probleme de

N
minimisation ressemble a celui considéré dans le Théoreme 2.1. La question qui se pose
naturellement est de savoir si les minimiseurs de (2.8) présentent aussi une symétrie. Le
résultat suivant permet d’apporter une réponse affirmative a cette question.

Lemme 2.9 Soit s € (—3,3) et soit u € H*(RN). On définit vi,vy comme dans (2.1).

Si V' est donné par (2.8), on a

(2.9) V(or) + Vi(va) — 2V (u) = — 20T oy -y e (—%, g),

™

ot f(z) = L(u(z1,2') — u(—z1,2")) et

2
<2 / &1 /
| feerzSgaa)

(2.10) Ng(f) = /RN_I /lfjo (t2 _ ’6/‘2)8

De plus, Ny est une norme sur Hiodd(RN) = {u e H*(RN) | u est antisymétrique en x1}

et cette norme est continue par rapport a la norme usuelle de Hs.

Supposons que s € (0,1) et que u est un minimiseur de (2.8) sous la contrainte
I(u) = X # 0. Apres une translation dans la direction de z1, on peut supposer que
G(u)dr = G(u)dz = A/2. On définit v; et vy comme dans (2.1). 11 est

{z1<0} {z1>0}
clair que I(v1) = I(v2) = X et (2.9) implique que Ng(f) = 0 (car sinon on aurait V' (vy) +
V(vg) — 2V (u) < 0, donc V(v1) < V(u) ou V(vy) < V(u), en contradiction avec le fait
que u est un minimiseur). Comme Ng(f) est une norme, on en déduit que f = 0, donc u
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est symétrique par rapport a x1. De la méme facon, u est symétrique par rapport a toute
direction (modulo translation) et finalement on obtient que u est une fonction radiale.

Notons que dans le cas s € (1,3), (2.9) implique V(v1) 4+ V(v2) — 2V (u) > 0 (avec
inégalité stricte si u n’est pas symétrique) et la méthode n’est plus applicable. La symétrie
des minimiseurs dans ce cas reste un probleme ouvert.

Preuve du Lemme 2.9 dans le cas N=1.
On va démontrer que (2.9) a lieu pour V(u) = ||u|%,, = / 1€]%%||? d¢ quelque soit
RN

s € (—3,2). Onnote f(z) = 3(u(z) — u(—z)).
—f(:C), €T S Oa

Etape 1 : u € C>°(R). On note g(z) = (u(z) +u(—2)), fu(z) = { (@) >0
de sorte que g, f. sont paires, f est impaire, u =g+ f, u1 =g — fx, us =g+ f«. On a

7o) = /0 (e ) () dr = 2 /O " sin(26) () d,

ﬁ(f) = /Ooo(eixg + €8 f(z) dx = 2/000 cos(x) f(x) du.

On obtient ensuite

el + ol = 2ully, = [ 1P (6= L.+ g+ E.P =26+ 7F) a

=2 [ Je (1712 - 177) ae
|5|25( cos(a€) f(x) da

—5 /R P f

2

| sinGe) ) d

2
!
(2.11)
cos(x§) f (x)cos(y€) f(y) dudy
/ / sin(z€) f (x)sin(y) f (y )da:dy) (Fubini)

= [16Pe [ [ costla 00 ) ) dady e

On définit h(z / / e @Yz (1) f(y) dady et on prouve que :

e La fonction h est holomorphe sur C et bornée sur {z € C | Im(z) > 0}.

e Si z € R, alors h(—z) = h(z) et Re(h(2)) = [3° [~ cos((z + y)&)f( ) f(y) dzdy.

e Onalh(z)] < |4 silm(z) >0 car [j° emzf(:c) do = —2%5 (f'(0) + 57 €= f"(x) du).
e Pourte Ry on a

h(it) = | / e f(@) del? = (e " Lig 0y () 12|

’<f F(e” 1[000)())>L2\2 (Plancherel )

_2’/f

(2.12)

/\

1 RPN
2t = | [ ozt el
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On définit m(z) = (22)* = es108(z*) = ¢2sInlzltisars(z*) T4 fonction m est holomorphe

sur C\ {it | t € R}. En intégrant la fonction holomorphe z —— h(z)m(z) sur un chemin

bien choisi, on obtient que pour tout s € (—%, %) on a

/OO m(z)h(z)dz = i/ooo m(e + it)h(e + it) dt.

On passe a la limite lorsqeue ¢ — 0 et on trouve
o0 [e.9] .
/ m(2)h(z) dz = i / 125557 it) L.
0 0

On a aussi

0 o0 o0 )

/ 22h(2) dz = / P TE) de = —i / 125e=i57 i) di.
o 0 0

Par conséquent,

/OO 2| (z) dz = —2sin(sT) /OO t25h(it) dt.

—00 0

D’ou finalement, en utilisant (2.11) et (2.12),

a1 + llualfye — 2]l = 8/ [€**Re(h(€)) d€
R
= —16i ity de
SIH(ST()/O (it)

_16sin(sm) [ o | [ 4 13
- |l fomsgae

T2

(2.13)
2
dt.

16 sin(s7
_ 16sn(s) o gy,

s

Etape 2 : argument de densité. On a montré lidentité (2.13) pour tout s € (-3.2)

et pour tout v € C°(R). Pour étendre cette identité & H*(RYN), il suffit de prouver que
Ny(f) < C| fll s avec C indépendant de f. On a :

N( / 2 / fle
/ / / 52 2 + 2 /() A( ) d€ dndt (Fubini)

/ / €1l (& e FOlnl* Tl de

/ / K (€ n)El* F)lnl*F(n) de dn,
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ou Ks(&,m)) = 1&]°In|~°Is(&, n). I suffit de montrer que

/ K€ me(€)dn) de dn| < Clloleldle, Yo € L2(0, 00).

2s—1_ ,2s—1 . 3
2coS7‘T(S7r)£ anZQ si s # %7 respectivement I(&,7) =

Par calcul, on trouve I4(£,n) =

Inn—In& _. 1
S1 8§ = 5.
2—¢2 D)

Notons que ni les résultats généraux sur les opérateurs de Hilbert-Schmidt, ni I'inégalité
de Hardy-Littlewood-Sobolev n’impliquent que le noyau K définit un opérateur borné sur
L2(RN ). Pour montrer ceci, on effectue les calculs en coordonnées polaires £ = rcos¥,
n = rsind et on trouve une fonction Ly(6) telle que Ky(&,n) = 1Ly(0).

Pour ¢, € L?(0,00) on a :

[ s [ sz

< /2 lo(-cosO) || 2]|¢(-sinB)|| 12| Ls(0)] dO (Cauchy-Schwarz)
0

5 |Ls(6)|
= 2 2 ——df.
feols s | * =2
Pour s € (—%, %) on montre par calcul direct que / : M df < oo. Par conséquent,
) 0 Vsinfcosf
on peut étendre (2.9) par densité a H*(R). O

B. Le probléeme de Choquard généralisé.
Ce probleme consiste & minimiser

1
E(u ::/ Vu dm—/ / y) dz dy
() 2 R3‘ | R3 JR3 |x—y| )

sous la contrainte Q(u) := / ulde = \.
R3

Il a été prouvé dans [Lieb77] qu’il existe un minimiseur v € H'(R3). De plus, ce
minimiseur est radial et unique (modulo translations). La démonstration repose sur des
inégalités strictes pour les réarrangements sphériques.

Nous avons considéré le probleme (CG) qui consiste & minimiser

E(u) := ;/RN |Vu\2da:—/RN /RN F(T;(:U))j’]\(fugy)) dx dy + . H(u)dx

sous la contrainte Q(u / G(u)dx = A. L’intérét de ce probleme vient du fait que

les minimiseurs sont des ondes stationnaires pour 1’équation de Hartree

. F(u
iug + Au + 2 (/RN |m_(y(|$}/\f)12 dy) F'(u(z)) — H' (u(z)) = 0.
Théoréme 2.10 On suppose que N > 3 et

o F, G, H sont C?, F(0) = G(0) = H(0) =0, F'(0) = G'(0) = H'(0) =0 et F, G,
H ont un comportement sous-critique a l’infini,

e G’ # 0 sur un voisinage de 0.

Alors tout minimiseur v € HY(RN) du probléme (CG) est a symétrie radiale.
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Preuve. On définit I(p) = HN% * ¢. Il est bien connu que I/(E) = ﬁ(ﬁ(f)
—A(I(p)) = en - ¢. Le terme nonlocal peut alors étre écrit sous la forme

o ) s Pt de dy

—

= (I(F(u)), F(u)) = %(I(F(u)) , F(u)) (Plancherel)

2m)N
_CN/ L
(2m)N Jra €2

Apres translation, on peut supposer que / G(u)dr = / G(u)dr = A/2. On
{z1<0} {z1>0}

définit vy, vo comme dans (2.1) et on trouve

—

2
F(u)(&)| dE.

E(vi) + E(v2) — 2E(u)

(2.14) dey / S &1
- N S €] €7 + €3

On obtient E(v1) + E(v2) < 2E(u). Donc v et vy sont aussi minimiseurs et l'intégrale
du membre de droite de (2.14) est nulle. Le fait que cette intégrale s’annulle équivaut
a a%I(I(F(u)))((), ') = 0, Vo' € RV~L. Contrairement & l’exemple précédent, cette
information n’implique pas directement la symétrie de wu.

L’équation d’Euler-Lagrange pour un minimiseur est

de’.

d&

| (Fe.e) - Fui-6.¢)

(2.15) —Au —2I(F(u)) - F'(u) + H (u) + aG'(u) = 0.

Nous ne connaissons pas de théoreme de prolongement unique pour cette équation. On a
le résultat de régularité suivant :

Lemme 2.11 Soit v € H'(RY) une solution de (2.15). Alors u € W3P(RN), Vp €
[2,00). En particulier, u € C?*(RY).

On a ainsi montré que

e Pour tout minimiseur u et tout hyperplan II qui ”coupe la contrainte en deux”, up+
et ur- sont aussi des minimiseurs.

e Tous les minimiseurs sont réguliers.
On peut alors conclure en utilisant la méme technique que dans le Théoreme 2.4. O

C. Le systeme de Davey-Stewartson. On considere le systeme

iug+Au = f(|ul?)u — uv,
dans R x R3.
_ 0 2
Av = 5 ([uP)
Ce systéme peut étre écrit sous la forme
(2.16) iug = —Au+ f(Jul*)u+ BT (Jul*) u
ou Ry est la transformation de Riesz donnée par E;O ’Ecp L’équation (2.16) est

Hamiltonienne, deux quantités conservées étant

Blu) = ;/ IVl + Fi(lul )dx—/ B P ar et Q(u):/R3 luf2da.
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Les minimiseurs de E sous la contrainte ) = constant sont des ondes stationnaires de
(2.16). On a le résultat suivant concernant la symétrie de ces minimiseurs :

Théoréme 2.12 Soit u € HY(R3) un minimiseur de

1

1 2
B(u) = 2/R3 Vul? + F(u)dz — 4/}{3 [y (juP) [ da

sous une contrainte Q(u) = / G(u)dxr = X. On suppose que F,G € C1(C), F(0) =
3

R
G(0) =0, VF(0) = VG(0) =0 et F', G ont un comportement sous-critique pour |u| > 1.
Alors modulo translation, u est a symétrie radiale dans les variables (z2, x3)  (i.e.
u est a symétrie aziale).

Preuve. On peut supposer que /
{:E2<0}
v1, v par symétrie miroir par rapport & xo. Alors on a l'identité

G(u)dr = / G(u)dr = A\/2. On définit
{x2>0}

E(v1) 4+ E(va2) — 2E(u)
(217) -1 2
m(2m)% Jre\/E} + €2

Comme u est un minimiseur, on obtient que vy et vo sont aussi des minimiseurs et
I'intégrale du membre de droite de (2.17) s’annulle, ce qui implique %([(]uﬁ))(ml, 0, z3) =

2
d&y dé€s.

/ (luP (1. &2.8) ~ [uP (&1 ~62.) ézad&
0

0 pour tout (x1, z3) € R2 Comme pour les minimiseurs du probleéme de Choquard
généralisé, seule cette information ne suffit pas pour montrer la symétrie.
L’équation d’Euler-Lagrange satisfaite par les minimiseurs s’écrit

(2.18) —Au+ VF(u) + R (Ju*)u + aVG(u) = 0.

On a le résultat de régularité suivant :

Lemme 2.13 Soitu € H'(R?) une solution de (2.18). Alorsu € W2P(R3), Vp € [2,00).
En particulier, u € C1(R3).

On a ainsi montré que :

e Pour tout minimiseur uw et tout hyperplan Il parallele a Oz; et qui coupe la
contrainte en deux, up+ et up- sont aussi des minimiseurs.

e Tous les minimiseurs sont réguliers.

En utilisant le Théoreme 2.4, on en déduit que tout minimiseur est radial par rapport
aux variables (z2, x3). O
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3 Ondes progressives pour des équations de Schrodinger
non-linéaires avec des conditions non-nulles a I’infini

Une partie importante de mon activité de recherche a été consacrée a 1’étude des
équations de type

(3.1) i%f+A<I>+F(|<I>]2)<I>:0 dans RY,
ot ® est une fonction complexe qui satisfait |®| — 79 > 0 quand |z| — oo et F(r3) = 0,
F'(r3) < 0. Deux cas particuliers importants de (3.1) ont été tres étudiés par les physiciens
et par les mathématiciens : I’équation de Gross-Pitaevskii (ou F'(s) = 1 —s) et I’équation
appelée ”cubique-quintique” (ott F(s) = —ay + azs — ass?, ai,az,as > 0 et F admet
deux racines réelles positives).

L’équation (3.1) est hamiltonienne. L’énergie correspondante est

(3.2) E(®) _/RN yv¢>\2dx+/RN V(|®|?) de, ot V(s) _/TO F(r)dr.

Cette quantité est conservée par la dynamique associée a I’équation (3.1).

Des équations de type (3.1), avec les conditions aux limites non-nulles considérées ci-
dessus, apparaissent dans la modélisation d’un grand nombre de phénomeénes en plusieurs
domaines de la physique, comme la supraconductivité, la superfluidité dans Hélium II, les
transitions de phase et les condensats de Bose-Einstein. Dans une longue série de travaux
(v. [GR74], [JR82], [JPR&G6] et les références de ces articles), J. Grant, C.A. Jones, S.J.
Putterman, P.H. Roberts et al. ont étudié formellement et numériquement des équations
de type (3.1). Une attention particuliére a été accordée a une classe spéciale de solutions
de (3.1), les ondes progressives. Une onde progressive de vitesse ¢ est une solution de la

forme ®(z,t) = Y (x1 — ct,xa,...,xN). La fonction ¢ satisfait alors ’équation
. (91/1 2 _ N
(3.3) —icg — + Ay + F(|Y|*)y =0 dans R™.
1

Des développements asymptotiques formels et des simulations numériques ont conduit
a la formulation d’un ensemble de conjectures (parfois appelé le programme de Roberts)
concernant l'existence, les propriétés structurelles et la stabilité des ondes progressives.
La démonstration rigoureuse de ces conjectures conduit a des problemes mathématiques
intéressants et souvent tres difficiles. Malgré de nombreux efforts qui ont été faits pendant
les vingt dernieres années, beaucoup de ces conjectures restent encore non résolues.

Notons que ’équation (1) admet une formulation hydrodynamique : en utilisant la
transformation de Madelung ® = ﬁeie, elle est équivalente a un systeme en (p,6) qui
est semblable au systeme d’Euler pour un fluide non-visqueux compressible de densité
p et de vitesse 2V#. Dans ce contexte, on peut calculer la vitesse du son a linfini :
vs = roy/—2F'(r3). Il a été conjecturé que des ondes progressives de vitesse ¢ existent
si et seulement si |¢| < vs. Nous avons tenté de donner une preuve rigoureuse a cette
conjecture.

3.1 Non-existence des ondes progressives subsoniques

Dans le cas de I'équation de Gross-Pitaevskii, en utilisant une identité intégrale as-
tucieuse, P. Gravejat a réussi a montrer la non-existence des ondes progressives superso-
niques d’énergie finie ([Gr03]). Il a également prouvé la non-existence des ondes soniques
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en dimension 2. En simplifiant les arguments de P. Gravejat, dans [8] nous avons généralisé
son identité intégrale et nous avons montré la non-existence des ondes progressives su-
personiques de (3.1) pour une large classe de nonlinéarités (qui inclit les nonlinéarités de
type Gross-Pitaevskii et de type “y®—1°"), ainsi que la non-existence, en toute dimension
d’espace, des ondes soniques ayant une énergie finie et une phase intégrable.

Nous allons décrire plus en détail les résultats de [8]. Dans cette section on suppose
partout que les conditions suivantes sont vérifiées :

C1l. La fonction F est continue sur [0,00), C! au voisinage de r3, F(r}) = 0 et
F'(r}) <o0.

C2. Il existe C,a > 0 tels que pour s suffisamment grand on a F(s) < —Cs®.

Le premier résultat de [8] concerne la régularité des solutions d’énergie finie de (3.3).
Par solution d’énergie finie nous entendons une fonction ¢ € Ll L (RN qui vérifie (3.3)
dans D'(RY) et qui a la propriété que Vi € L2(RN) et V(|¢|?) € LY(RY).

Proposition 3.1 On suppose que les conditions C1 et C2 sont satisfaites. Soit ¢ une
solution d’énergie finie de (3.3). Alors :

i) On a+ € L NW] ’p(RN) pour tout p € [1,00).

it) On a V¢ € Wl’p(RN) pour tout p € [2,00) et il existe R, > 0 tel que sur
RN\ B(0, R,), ¥ admet un relévement 1 = pe® avec p,0 € VVif(RN), p € [1,00).

i) Si, de plus, ' € C*([0,00)), alors ¢ € V[/ZIZZFZP(RN) pour tout p € [1,00).

Notons que le schéma classique pour obtenir la régularité des solutions des équations
elliptiques (et qui consiste a utiliser I’équation, les estimations elliptiques standard et
les injections de Sobolev pour améliorer successivement la régularité de la solution) ne
s’applique pas car dans la plupart des applications la nonlinéarité a une croissance critique
ou surcritique a l'infini. On a utilisé une méthode développée par A. Farina dans [Fa98,
Fa03] pour des systemes de type Ginzburg-Landau (et basée sur I'inégalité de Kato, voir
[Ka72]) pour montrer que les solutions de (3.3) sont bornées. Ensuite la théorie classique
de la régularité elliptique permet de montrer les autres assertions de la Proposition 3.1.

Au moins formellement, les solutions de (3.3) sont des points critiques de la fonction-
nelle E.(¢)) = E(Y)+Q(1), out E est donnée par (3.2) et Q est le “moment” par rapport &
la direction Oz (une définition plus précise sera donnée plus tard ; pour I'instant, notons
que c’est une fonctionnelle dont la différentielle est Q'(1)) = 2ith,1). Cette caractérisation
variationnelle nous permet de montrer des identités de type Pohozaev :

Proposition 3.2 Soit ¢ une solution d’énergie finie de (3.3). Alors on a

oy |? )
(3.4) —/RN o it 2o da:+/RNV(|¢] YAz =0 et
o |2 N
(3.5) /RN B kz Jo, d +/ V([¥)?) dz + Q) =

Les identités de Pohozaev découlent du comportement de E, par rapport aux dilata-
tions de R™V. Plus précisément, pour = (x1,22,...,2x) € RY onnote 2’ = (x3,...,zy)

et pour A, o > 0 on note ¥ () =1 (L/\l, %) Alors (3.4) et (3.5) expriment le fait que
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si ) est point critique de E., on a %‘ Ec(wx,l) = 0, respectivement %‘ EC(¢1 s) =0.
Bien str, cet argument est purement formel car, en général, %| (Yr1) = —x1 a;ﬁl et

%| (P15) = — ZjVZQ mj% n’appartiennent pas & I'espace fonctionnel sur lequel /(1))
J

o=1
est définie.

Pour démontrer (3.4) et (3.5) rigoureusement, on multiplie (3.3) par x (£) xjg%, ol
X € C°(RY) est une fonction qui est égale & 1 dans un voisinage de zéro, on effectue des
intégrations par parties, puis on passe a la limite lorsque n — oo. Pour pouvoir intégrer
par parties on a besoin de connaitre que 1 est une fonction suffisamment réguliere. La
régularité donnée par la Proposition 3.1 (¢ € L™ N I/Vlif(RN) et Vyp € WHP(RN) pour
p € [2,00)) suffit pour obtenir les identités de Pohozaev.

Théoréme 3.3 Supposons que ¢

Alors 1 satisfait l'identité

> v2 et 1 est une solution d’énergie finie de (3.3).

2 ~
(3.6) /RN VoI = F(1 ) = = (191* = 76) do + e(1 — S)Q(¢) =

78
2
Preuve. On note 11 = Re(v)), 12 = Im(v)). L’équation (3.3) équivaut au systeme

KL

o S AP+ PP =0 et

(3.7)

oY

81+A¢2+F\¢\) —0.

(3.8)

On multiplie (3.7) par 9 et (3.8) par 11, ensuite on soustrait les égalités obtenues. On
trouve

c 0

(3.9) 292,

— ([0 = r§) = div(1h1 Vipg — 12 Vehy).

On multiplie (3.7) par v et (3.8) par 12, puis on rajoute les égalités obtenues. On obtient :

(310)  |VeiP + [Val® — F()wf? — wl%—wz%) SAP ).

Soit R, comme dans la Proposition 3.1 (ii). Alors sur RV \ B(0, R.) on a un relévement
Y = pe'. Soit x € C°(RY) une fonction telle que xy = 0 sur B(0,2R,) et x = 1 sur
RN\ B(0,3R.). On note G; = wlaw ¢2% - ga%(xe) j =1,...,N. On peut
montrer que G; € L' N L¥(RY) et que le moment Q(1) par rapport & la direction de x;
est donné par

02 % 20 _
/ wl 8%1 ¢2 08901 (X@) dl’ = . G1 d.l‘.

De (3.9) et (3.10) on déduit

(3.11) (|¢|2 — 1) = div(y1 Vha — 2V — 1§V (x0)) + 15 A(x0),

2(9$

18



respectivement

1 2
SAYP =) = (1w - rd)
2
(3.12) = [V + [Vl — F(a, [ — 2 ([l ~ 73)

0 0 0 0
<¢1¢2 — ¢2ﬂ - 283:1(X9)> - 07"(2)87610(9)-

On note

2 0 0
= [V [V = Pl WP = 2012 = rd) — clr 52 — a5 — 13 x0))

On prend la dérivée de (3.11) par rappport & 1 et on la multiplie par ¢, ensuite on prend
la Laplacien de (3.12). En rajoutant les égalités obtenues on trouve

(3.13) (M —0lA P 2)(\¢|2 3 = AH + cail(dlv(G))

En prenant la transformation de Fourier de (3.13) on obtient

N
(Il +v31g? = %) F (Wl = 78) = —[€*H = e 3 616G
k=1
Soit I={¢cRN||¢g* + 022 — 2 = 0}. Sic? <v?onal ={0}. Dans le cas ol
¢ > 2, T est une sous-variété de RV et en utilisant (3.14) on obtient

(3.14)

DO | =

(3.15) IE2H (&) + chlkak pour tout { € T

N est clair que I' = {(£1,€') e Rx RN | €2 = L(—02 =263+ \/v} + 4c2€3)}. Soit

f(t) = \/é (—vg — 22 + /v + 4C2t2>. La function f est définie sur [—+/c? — v2, \/c2 —
on a f(0) = figt) =1+ 5—2 Pour j € {2,...,N} et t € (0,+/c® — v2], on note

£(t) = (¢,0,...,0, f(t),0,...,0) et g(t):(t,O,...,0,—f(t),0,...,0),01‘1 f(t), respective-
ment —f(t) sont & la jleme place. Il est évident que &(t),£(¢t) € T'. De (3.15) on obtient

(3.16) (2 + FA(t)H(E()) + ct®Gr(E(1) + et f(1)G,(£(t) = 0, respectivement

(B17) (£ + PEDHER) + e’ Cr(E(r) — et f(OT;(E() = 0.
On multiplie (3.16) et (3.17) par t%, on prend la limite lorsque ¢ | 0 et on trouve

2 . —~ 2 _

3.18 ‘i 0)+cG1(0) + ey [ —1+ C—G- 0) = 0, respectivement
02 02
S S
2 . 2
(3.19) EH(0) + ¢G(0) — ¢y [—1+ 5G;(0) = 0.
US US

De (3.18) et (3.19) on déduit que %ﬁ(()) e (0) = 0, et cette égalité est exactement
(3.6). 0
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Théoréme 3.4 On suppose que N > 2, les conditions (C1) et (C2) sont satissfaites et

Vs

2
c? > 2. De plus, on suppose qu’il existe a € [—1 + %(1 - 3); Z—g] tel que

v2 2 vi
SF(S)—F?(S—TO)-F(1—a—§>V(S)§O pour s > 0.

Soit 1 une onde progressive d’énergie finie et de wvitesse ¢ de (3.1). Alors 1 est
constante.

Preuve. On multiplie (3.5) par 1 — Zé et on soustrait I’égalité qui en résulte de (3.6).

Oll ()l)lien
/ Us
RN 02
v

Flw12) 02 s 22 1 v? V(12 de = 0
- [ PR + S =)+ (1= F) V(o) e =0,

£

2 v2 N -3 al 2
|+ (0= 1) X o] ©

o
2 ox k

(3.20)

Si «v vérifie la condition du Théoreme 3.4, on multiplie (3.4) par a et on rajoute le résultat
a (3.20). On trouve

2
o (=) 3

02 v2
= / F(lpP) el + ;(WJ\Q —75) + (1 —a— 5)V([¢]?) da.
RN C

2 2

2 N-3\ &
+(a+1—(1—7;2)N_1>kZ:2

9y

2
d
al’k v

(3.21)

On observe alors que le membre de droite de (3.21) est négatif ou nul, alors que les
coefficients qui apparaissent dans le membre de gauche sont positifs (et au moins un est
strictement positif). Comme Vi € L2(R"), on en déduit que 1) est constante. O

Remarquons que les hypotheses du Théoreme 3.4 sont vérifiées aussi bien par F(s) =
1 — s que par F(s) = —aj + ags — azs?, oit ; > 0 et F admet deux racines positives. La
conclusion du Théoreme 3.4 est donc valable pour ’équation de Gross-Pitaevskii comme
pour ’équation de Schrodinger avec non-linéarité cubique-quintique.

3.2 Existence des ondes progressives pour toute vitesse subsonique

Beaucoup d’efforts ont été consacrés a la démonstration de ’existence des ondes pro-
gressives pour (3.1). La plupart des résultats portent sur I’équation de Gross-Pitaevskii.
Dans [BS99], I'existence de telles solutions a été prouvée en dimension deux d’espace
et pour toute vitesse ¢ €] — e,¢[, ou € est petit. En dimension N > 3, il a été prouvé
dans [BOS04] qu'il existe des ondes progressives pour une suite de vitesses ¢, — 0. Le
meéme résultat a été obtenu pour toute vitesse ¢ €] — ¢, e[ dans [Ch04]. Dans un travail
récent [BGS09], I'existence a été obtenue en dimensions 2 et 3 pour une plage plus large
de vitesses (qui contient des vitesses proches de v en dimension 2). Cependant, méme
en dimension 2 les résultats de [BGS09] ne couvrent pas toutes les vitesses subsoniques.
Pour des nonlinéarités de type ”cubique-quintique” il a été prouvé dans [3] qu’il existe
des ondes progressives de petite vitesse en dimension N > 4.

Dans [10], mon objectif a été a la fois de donner une preuve de I'existence des ondes
progressives pour toute vitesse subsonique et de trouver une approche qui soit valable
pour les différents types de nonlinéarité qui peuvent apparaitre dans (3.1).
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Notons que, si les conditions (C1) et (C2) dans la section précedente sont vérifiées,
la Proposition 3.1 nous donne une estimation uniforme pour la norme L* des solutions
d’énergie finie de (3.3) : on sait qu'il existe une constante M > 0 (qui dépend uniquement
de F') ayant la propriété que toute solution v satisfait |¢)(x)| < M sur R. On peut alors
remplacer la fonction F par une fonction F telle que F = F sur [0, My], ot My > M, F
satisfait (C1) et (C2) (eventuellement avec une constante 3 € (0, «) au lieu de «) et, de
plus, F a une croissance sous-critique a 'infini. On peut donc supposer que la condition

suivante est satisfaite :
C3. 1l existe pg < % —2=+%5 et C >0 tels que |F(s)| < CsPo pour s > M.

Si F est comme ci-dessus et si ¢ satisfait 'équation (3.3) avec F ala place de F, par
la Proposition 3.1 on sait que || < M, donc ¢ est bien une solution de (3.3).

Le résultat principal de l'article [10] est le suivant :

Théoréme 3.5 Soit N > 3. On suppose que (C1) et une des conditions (C2) ou (C3)
sont vérifiées. Alors pour toute vitesse ¢ € (—vs,vs) il existe des ondes progressives de
(3.1) de vitesse ¢ et d’énergie finie.

Nous allons décrire les idées qui ont conduit a la preuve de ce résultat. Compte tenu

des conditions aux limites & l'infini, on a cherché des solutions de la forme ¥ = rg — u,
ou u — 0 quand |z| — oco. Alors u satisfait I’équation

(3.22) icug, — Au+ F(jrg —ul?)(ro —u) =0 dans RV,
Formellement, les solutions de (3.22) sont des points critiques de la fonctionnelle

(3.23) E.(u) = /RN \Vaul|? dz + eQ(u) + /RN V(|ro — ul?) dz,

ou () est le moment par rapport a x1. On considere également les fonctionnelles

Al — N ou 2d
= [ Tl

(3.24) Bu(u) :/RN aazl‘de+cQ(u)+/r{N V(|ro—u|2)d:c,
P.(u) = %A(u) + Be(u),

en sorte que E.(u) = A(u)+ Be(u) = 27 A(u) + Pe(u). D’aprés la Proposition 3.2, toute
solution de (3.22) satisfait l'identité de Pohozaev P.(u) = 0. Par conséquent B.(u) =
—%A(u) < 0, ce qui implique B.(u) < 0 si N > 4, respectivement B.(u) = 0si N = 3.
Pour toute fonction v, en utilisant la notation vy ,(z) = v (%1, %/), on trouve

E.(v14) = oV 3A(W) + oN1B.(v) et
(3.25)

% (Be(v1)) = (N = 3)oV 4 A(v) + (N — 1)V 2B, (v).

En dimension N > 4, si la fonction v qui satisfait B.(v) < 0 il existe un unique o, > 0 tel
que P.(v14,) = 0. De plus, (3.25) implique que la fonction o — E.(v1,4,) est croissante
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sur (0, 0,] et décroissante sur [o,,00). Cette observation suggere qu’il est intéressant de
minimiser F, sous la contrainte P. = 0. C’est exactement la démarche que nous avons
suivie pour trouver des points critiques de E..

Soit a = y/—3F'(r). Alors v, = 2arg et la condition (C1) implique que pour s dans

un voisinage de 73 on a
1
(8:26) V(s) = SV"(r5)(s = 15)" + (s = 75)%e(s = 1) = @*(s = 75)* + (s = 1) (s — 7),

ou e(t) — 0 lorsque t — 0. Par conséquent, pour u proche de zéro, on peut approximer

V(Iro — ul*) par a?(|ro — uf? —r§)*.

On fixe une fonction ¢ € C°([0,00), R) telle que ¢(s) = s pour s € [0,2r], ¢ est
croissante et (p(s) = 3rg pour s > 4rg. Pour un domaine € R", on considere Iénergie
de Ginzburg-Landau

E2, (u) = /Q ]Vu\de—i-aQ/Q (@2(!7"0 — ) —r%)z dx.

On note Egr(u) = Egg (u). Compte tenu de (3.26), I’espace naturel de fonctions sur
lequel on doit étudier la fonctionnelle E. est

X ={uecDRY) | Egr(u) < oo}.

Par l'injection de Sobolev on a X ¢ L? (RY). Soit u € X. Lorsque u(z) se trouve dans
un voisinage de zéro, on pout majorer |V (|rg — u(x)|?)| grace & (3.26); lorsque u(z) est
"loin” de zéro, par (C3) on obtient une majoration |V (|rg — u(x)|?)| < Clu|?* (x). Donc
V(|ro —ul?) € LYRN) pour tout u € X.

Nous allons indiquer comment définir le moment () pour toutes les fonctions de X.
Remarquons que pour tout v € H'(RY) on doit avoir Q(u) = {1y, , u) dz, alors que

. RN

pour toute fonction u qui admet un relevement ro—u = pe'’ on a (au moins formellement)

Qu) = —/ p°0,, dx = —/ (p* = 18)0y, dz, ot p* — 12, 0,, € L2(RN).
RN RN
On observe que pour tout u € X on a (iug,,u) € L'RN) + Y, o0 Y = {0,,0 | ¢ €
DL2(RN)}. En posant L(v +w) = / vdx pour v € LY(RY) et w € Y, on vérifie sans
RN

peine que L est définie sans ambiguité et constitue une forme linéaire sur L'(RY) + V.
Ceci nous permet de définir

Q(u) = L((iug,,u)) pour tout u € X.

On vérifie ensuite que la fonctionnelle ) a les propriétés convenables pour notre approche
variationnelle.

Un outil technique essentiel dans la démonstration du Théoreme 3.5 est une procédure
de "régularisation” pour les fonctions de X qui a pour but d’éliminer les défauts topo-
logiques a petite échelle des fonctions. Plus précisément, pour u € X', h > 0 et pour un
domaine Q C RY on considére la fonctionnelle

U 1 |U B u|2
ho(v) = EgL(v) + hg/QSO <32r0> dx.

On montre que G} , admet des minimiseurs dans ’ensemble

fveX|v=usur RM\Q, v—uec H(Q)}.
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De plus, les minimiseurs vy, de cette fonctionnelle ont des propriétés remarquables. Ainsi,
o |lvn — ul|2mgny — 0 quand h — 0,

e pour tout compact w C §2 on peut estimer || [vy, — 70| — 70 |[o0 () en termes de h et
de EZ; (u) et on trouve que || [v, — ro| — 7o || Lo (w) est arbitrairement petite si I'énergie
E2, (u) est suffisamment petite.

On peut alors montrer les résultats suivants :

c

Lemme 3.6 On suppose que 0 < ¢ < vs. Alors pour tout € € (0,1 — E) il existe K >0
tel que pour tout u € X avec Egp(u) < K on a

Ec(u) > EEGL(U).

Nous allons tenter de donner une idée de la démonstration.
Soit 0 > 0 suffisamment petit, tel que § < % et m < 1—¢ (un tel ¢ existe car
0—0)

<
Vs
ro — 6 < |ro —v| < 7o+ 6 sur RV, Si v est une telle fonction, il existe un relévement

ro —v = pe? et on a |Vo? = |Vp|2 + p?|VO)? et Q(v) = —/ (p? — 18)0,, dz. Par
RN

I'inégalité de Cauchy-Schwarz on obtient

vs = 2arg et € < 1 — £). Considérons d’abord le cas d'une fonction v € X qui vérifie

c
1—¢

< (7"0—5)2/ |9x1\2dx+a2/ (0? —12)" du
RN RN

Q(v)] < 2a(ro — 8)|Q(v)| < 2a(ro — &[0y |l 2 @) |l0* — 1l 2 @)

2
< /N P*|VO|? + a* (p2 - 7’8) dr < Egr(v).
R

Par conséquent, Egr(v) — c|Q(v)| > eEgr(v). Si Egr(v) est suffisamment petite, alors
/ V(|ro — v|?) dz est "proche” de a2/ (*(ro — v|) — r%)g dx et on en déduit que v
RN RN

satisfait la conclusion du Lemme 3.6.

Dans le cas général : si u € X est une fonction quelconque, on choisit A > 0 petit
et on prend un minimiseur v, de GZ7RN' Si I'énergie FEgr(u) est suffisamment petite,
on a || lvp — 1ol =70 |[Leomry < 6, donc vy, vérifie la conclusion du lemme. Si h a été
choisi suffisamment petit, v, est "proche” de u et on peut montrer que u vérifie aussi la

conclusion du Lemme 3.6.
En utilisant le Lemme 3.6, il est assez facile de voir que pour tout k£ > 0, la fonction-
nelle E, est bornée sur {u € X | Egr(u) < k}. On définit alors
Ecmin(k) = inf{E.(u) |ue X, Eqr(u) = k}.

Lemme 3.7 On suppose que 0 < ¢ < vs. La fonction E¢min a les propriétés suivantes :
i) Il existe ko > 0 tel que Ecpmin(k) > 0 pour tout k € (0, ko).
it) On a klim E¢min(k) = —00.
—00
iii) Pour tout k >0 on a Ecpmin(k) < k.

La partie (i) découle directement du Lemme 3.6. Notons que pour ¢ > v, les Lemmes
3.6 et 3.7 (i) ne sont plus valables. Plus précisément, on peut montrer que la fonction
k — Ec¢min(k) est strictement décroissante (et négative) sur (0, 00).
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Le Lemme 3.7 nous permet de déduire que
(3.27) Se :=sup {E¢min(k) | k> 0} > 0.
Lemme 3.8 L’ensemble C ={u € X |u#0, P.(u) =0} est non vide et on a
T :=inf{E.(u) |lueC}>S.>0.

Preuve. Soit w € X une fonction telle que E.(w) < 0 (une telle fonction existe par
le Lemme 3.7 (ii)). Alors Pu(w) = E(w) — 27 A(w) < 0. On a

1 2 N —
(3.28) Pe(won) = / ‘a—w’ dzr + 30A(w) + cQ(w) + 0/ V(|ro — w|?) de.
g JRN 833’1 N -1 RN

Comme P.(wy,1) = P.(w) < 0et lin%Pc(wg,l) = 00, il existe o € (0,1) tel que Pe(wy,,1) =
0, donc wg, 1 € C.

Pour la seconde partie, supposons d’abord que N > 4. Soit v € C. Alors A(v) > 0 et
B.(v) = —%A(v) < 0. En utilisant (3.25), on obtient que ¢ —— E.(v; ) est croissante
sur (0, 1] et décroissante sur [1, 00), donc atteint son maximum en o = 1. Soit k > 0 fixé.
On voit facilement qu'’il existe un unique o(k,v) > 0 tel que EgL(v1 (k) = k. Alors

Ec,min(k) < Ec(vl,a(k,v)) < EC(ULl) = EC(U)'
En prenant le sup pour k£ > 0 dans cette inégalité on obtient S. < E.(v).

Considérons maintenant le cas N = 3. Soit v € C. Alors E.(v1,) = E.(v) = A(v) =
constant pour g > 0. Soit k > 0. On distingue deux cas :

e Si A(v) > k,on a E.(v) = A(v) > k > E¢min(k) par le Lemme 3.7 (iii).

e Si A(v) < k, il existe un unique o(k,v) > 0 tel que Egr(visk,v)) = k. Alors
Ee(v) = Ec(v1,0(kv)) 2 Eemin(k).

Dans les deux cas on obtient E.(v) > E¢ min(k) quelque soient k > 0 et v € C et le
lemme est prouvé. O

Lemme 3.9 Soit T, comme dans le lemme précedent. Alors :
i) Pour tout w € X qui satisfait P.(w) <0 on a A(w) > YT,
i) Soit (un)n>1 C X une suite telle que (Egr(un)),>; est bornée et lim Pe(up) =

o N n—00
1< 0. Alors liminfA(uy) > YT,

n—oo

Preuve. Nous démontrons seulement (i). Pour tout o > 0, P.(wy,1) est donné par
(3.28). Comme dans la preuve du Lemme 3.7, il existe og € (0,1) tel que P.(wg,,1) =0,
donc w1 € C. Par la définition de T, on a E.(we,,1) > T¢, et on en déduit que A(we,,1) =
N (Be(Wog ) — Pe(wog1)) > Y52, Ceci implique A(w) > ¥ LT, > N=LT, O

a0

Pour prouver le Théoreme 3.5, on montre que la fonctionnelle E,. admet un minimiseur
dans C. Ensuite on prouve que tout minimiseur satisfait (3.3). La démonstration est assez
différente dans le cas N = 3 par rapport au cas N > 4. Nous commengons par le cas
(plus facile) N > 4.

Théoréme 3.10 On suppose que N > 4. Soit (up)n>1 C X\ {0} une suite telle que
(3.29) P.(u,) — 0 et E.(uy) — T lorsque n — oc.

Il eziste une sous-suite (un, )k>1, une suite de points (zg)r>1 C RY et une fonction u € C
telles que

Vg, (-+x) — Vu et gpz(\ro—unk(-+mk)])—r8 — wz(lro—u\)—rg dans LQ(RN).

De plus, on a E.(u) =T, donc u est un minimiseur de E. dans C.

24



Résumé de la preuwve. Comme A(u,) = Y52 (E(un) — Pe(un)) — Y52T,, par (3.29)
on déduit que (A(up))n>1 est bornée. Ensuite on montre que (Eqr(u,))n>1 est bornée.
On utilise la méthode de concentration-compacité de P.-L. Lions [Lio84] pour montrer la
convergence d’une sous-suite de (up)n>1-

En passant a une sous-suite, on peut supposer que Egr(u,) — «ag > 0 lorsque

n — o00. Soit g (t) la fonction de concentration de Eqr(uy,), ¢’est-a-dire

qn(t) = sup Eggc’t)(un).
zeRN

Pour chaque n, g, est une fonction croissante sur [0,00) qui tend vers Egp (uy) lorsque
t — oo. Alors il existe une sous-suite (encore notée (uy),>1) et une fonction croissante
q:10,00) — R telles que ¢, (t) — ¢(t) quand n — oo pour presque tout ¢ € [0, c0).
On note a = tlif& q(t). Il est évident que « € [0, o). L’objectif est de prouver que
I’énergie de u,, ”se concentre”, c’est-a-dire o = .
Le fait que a > 0 résulte du lemme suivant.

Lemme 3.11 Soit (up)pn>1 C X une suite ayant les propriétés suivantes :
a) My < Egr(u,) < Ma, ot My, My sont deuz constantes strictement positives, et

b) lim P.(u,)=0.

Alors il existe k > 0 tel que sup / Vun|*+a? (9*(|ro — unl) — r%)z dx >k pour
yeRN JB(y,1)
tout n suffisamment grand.

La preuve du Lemme 3.11 est délicate. Elle repose sur la procédure de régularisation
des fonctions décrite plus haut ainsi que sur le lemme de Lieb. L’idée de base de la
démonstration est la suivante :

1. On suppose, par I'absurde, que lim sup Egéx’l)(un) =0.
On montre alors qu’il existe une suite h,, — 0 et pour chaque n il existe un minimi-

U
seur v, de h:,RN tel que

(3.30) I [on — 10| — 7ol Loemvy — 0 quand n — oo.

2. Soit € € (0,1— 7). En utilisant (3.30), on montre comme dans la preuve du Lemme

3.6 que pour tout n sufisamment grand on a

Ay, |2 N-3 2
/RN e B e e G /RN Vilro = val") o + cQlun)
(3.31)
vy, |2 N -3 2 2 22
§ N-3 o) —
=° (/RN 8$1) do N — 1A(vn) o /RN (&%(Iro = val) = o) de)

3. Comme h,, — 0, pour n grand v,, est proche de u,, donc (3.31) a lieu pour (u,)
a la place de v, et pour un ¢; € (0,¢) a la place de €. On obtient ainsi une contradiction
car P.(up) — 0 et Egp(uy) > M; > 0.

L’étape suivante est de montrer qu’'on ne peut pas avoir a € (0, ag). On procede a
nouveau par I'absurde et on supose que « € (0, ag). Par un argument général on déduit
qu’il existe une suite R,, — oo et une suite (z,)p>1 C RN telles que :

RN\B(meRn)(

(3.32) Egéx"’R")(un) —« et Eqp Up) — Qp — Q.
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Il est évident que (3.32) implique

EgéanRn)\B(xn,Rn)(Un) 0.
Comme 'énergie de u,, sur la couronne B(zy,2R,,) \ B(zy, Ry) est petite, en utilisant
a nouveau la procédure de régularisation on montre que pour chaque n il existe deux
fonctions w1 et up o telles que 19 — up1 = e (rg — up) sur B(z,, Ry) (ot 6, est
constante), supp(tn,1) C B(Zn, 2Ry), Un2 = up sur RN \ B(zp, 2R,,) , upn 2 est constante
sur B(xy, R,) et

(3.33) Eqr(un1) — « et Eqr(un2) — ap — a,
(3.34) |A(up) — A(un1) — A(up2)] — 0,
(3.35) |Pe(un) — Pe(un1) — Pe(un2)| — 0 lorsque n — oo.

Il est facile de voir que les suites (P.(un,i))n>1 sont bornées, i = 1, 2. En passant & nouveau
a une sous-suite, on peut supposer que

P.(un1) — p1 et P.(un2) — p2 lorsque n — oo,

ou p1, p2 € R. Par (3.35) on a p; + p2 = 0 et on distingue deux cas :

a) Un des p; est négatif, par exemple p; < 0. Par le Lemme 3.9 (ii) on déduit que
lmng(Un,l) > NZLT. Alors (3.34) implique 1inrrii£fA(un) > NZLT, et en utilisant le

fait que P.(u,) — 0 on trouve liminf E.(u,) > T, ce qui contredit I'hypothese du

n—oo
Théoreme 3.10.

b) On a p; = p2 = 0. Dans ce cas on utilise le

Lemme 3.12 Soit (up)n>1 C X une suite qui satisfait les propriétés suivantes :
a) Il ezxiste Cp, Cy > 0 tels que C1 < Egr(uy) et A(u,) < Cy pour tout n > 1.
b) P.(un) — 0 lorsque n — oo.

Alors on a linnlgf Ec(up) > T,, ot T, est comme dans le Lemme 3.8.

Dans le cas (b), par le Lemme 3.12 on obtient liminf E.(uy, ;) > 1. pour i = 1, 2.
n—oo
En utilisant (3.34) et (3.35) on trouve liminf E.(u,) > 27,, ce qui est a nouveau une
n—oo

contradiction.
De ce qui précede on déduit que tlim q(t) = ap. Il est alors classique de montrer qu’il
—0Q

existe une suite (7,),>1 C RV telle que, en notant @, = u,(- + x,), on a :

pour tout € > 0, il existe R, > 0 et n. € N* tels que

ERN \B(0,R;)

(3.36) 3
GL (Unk) < € pour tout n > n..

Comme (Egr(tn))n>1 est bornée, il existe une sous-suite (i, )r>1 telle que

Up, — U faiblement dans D2(RY),

Up, — U fortement dans Lf o C(RN ) et presque partout sur R,

(3.37)

On en déduit que u € X et p?(|rg — @n,|) — 15 — ¢*(|ro — u|) — r3 faiblement dans

L2(RV).
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On prouve ensuite que

(3.38) lim V(|ro — tin,,|*) dz = / V(|ro — ul?) dz
k—oo RN RN

et

(3.39) linm Q(iin,) = Q(u).

En utilisant (3.37), (3.38), (3.39) et le Lemme 3.9 (i) on montre que la sous-suite
(Tin,, )k>1 satisfait la conclusion du Théoreme 3.10. O

Proposition 3.13 On suppose que N > 4, 0 < ¢ < vs, (C1) et une des conditions
(02) ou (C3) sont vérifiées. Soit u un minimiseur de E. dans l’ensemble C. Alors u €
W2PRN), Vu € WHP(RN) pour p € [2,00) et u est une solution de (3.22).

loc

Preuve. 1l est évident que v minimise la fonctionnelle A sous la contrainte P. = 0
et il est facile de voir que u satisfait une équation d’Euler-Lagrange A'(u) = aP.(u).
On ne peut pas avoir a > 0. En effet, supposons par I’absurde que o > 0. Soit w
tel que Pl(u).w > 0. Alors pour t < 0 et ¢t proche de zéro on a P.(u + tw) < 0 et
Au+tw) < A(u) = XZLT,, en contradiction avec le Lemme 3.9 (i). De méme, on ne
peut pas avoir a = 0 (car ceci impliquerait A’(u) = 0, donc u = 0). Par conséquent, on a
a < 0 et 'équation d’Euler-Lagrange équivaut a

(3.40)

52 N-3 1)< %
4 < ) —5 + icuy, + F(|jro — u] )(rg —u) = 0.
2

“o22 \N-1 a

Comme dans la Proposition 3.2 on montre alors que wu satisfait une identité de Pohozaev
analogue a (3.5) qui s’écrit

(3.41) % (%:i’ - 1) A(w) + Bo(u) = 0.

«
De (3.41) et du fait que P.(u) = 3=2A(u) + B.(u) = 0, on en déduit que 1= F et
u satisfait (3.22). La régularité de u résulte de la Proposition 3.1. O

Dans le cas N = 3 la preuve suit les mémes étapes, avec quelques difficultés techniques
supplémentaires (dont la plupart sont dies & I'invariance des fonctionnelles A et B, par
dilatations par rapport aux variables (z, $3) et au fait qu’en dimension 3 on a P. = B,

dz et ‘d
6172‘ $€/RS v

2 . Y
83:1‘ dx + a* /R3 (©*(Jro —v|) = 15)” da.

donc P.(v) ne contient pas de termes /
R3

8373

Pour v € X on note

D(U)Z/RS

Il est évident que pour tout v € X et ¢ > 0 on a

(3.42) A(vi o) = A(v), B.(v15) = 0°Be(v) et D(v1,) = *D(v).

Contrairement au cas N > 4, (3.42) implique qu'il existe des suites (up)n>1 C C telles
que E.(uy) — T et D(u,) — 00, et par conséquent Fgr,(u,) — 0o. Cependant, par
(3.42) on déduit qu’il existe des suites (up)p>1 C C telles que E¢(uy) — Te et D(uy) =1
pour tout n.
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On considere 'ensemble

A. = {Ne R il existe une suite (uy)n>1 C X telle que
D(uy) > 1, Be(un) — 0 et A(u,) — A lorsque n — oo}.

Soit A, = inf A.. 1l est facile de voir que T, € A., donc A. < T.. On peut montrer que
Ae > Se, ou S, est donné par (3.27) (mais on ne sait pas si S, = T¢).
Le résultat principal est le suivant :

Théoréme 3.14 On suppose que N = 3. Soit (up)n>1 C X une suite telle que
(3.43) D(up) — 1, Be(un) — 0 et A(u,) — Ac  quand n — oo.

Il existe une sous-suite (un, )g>1, une suite de points (z)r>1 C R? et une fonction u € C
telles que

Vg, (- +2r) — Vu et |ro— tn, (- +ap)> — 18 — |ro —ul* — 73 dans L*(R?).
De plus, on a E.(u) = A(u) =T, = A\c et u est un minimiseur de E. dans C.

Si u est un minimiseur de E. dans C, comme dans la preuve de la Proposition 3.13 on
montre qu’il existe o < 0 tel que A’(u) = aB.(u). Ensuite il est facile de voir qu’il existe
o > 0 tel que uy, satisfait (3.22). La régularité des solutions découle de la Proposition
3.1.

Finalement remarquons que le Lemme 3.9 implique que tous les minimiseurs de F,
dans C sont aussi des minimiseurs de la fonctionnelle — P, sous la contrainte A = %Tc.
En utilisant les résultats de [7] (décrits dans la section 2.1) on déduit que ces minimiseurs
sont & symétrie axiale par rapport a Oz (apres une translation).

3.3 Un systeme de Gross-Pitaevskii-Schrodinger

Dans [5] on a étudié le systeme

20y = —Ap+ (WP + Sl -y,
(3.44) reRY, teR,
2idp, = —Ap+ H(PW? -3¢,

ou 1 et ¢ sont des fonctions complexes et vérifient les conditions aux limites || — 1,
¢ — 0 lorsque  — =£o00. Le systeme (3.44) modélise le mouvement d’une impureté
dans un codensat de Bose. Il a été étudié par J. Grant et P. H. Roberts ([GR74]). En
utilisant des développements asymptotiques formels et des calculs numériques, ils ont
trouvé le rayon effectif et la masse induite de 'impureté.

Notons que la vitesse du son a l'infini associée a (3.44) est vy = —L

eVv2'

Les solutions de type onde progressive (x,t) = (x1 —ct,2’) , p(z,t) = §(x1 —ct, 2’)
semblent jouer un role important dans I’étude du systéme (3.44). On a montré dans [8]
qu’en toute dimension N > 2, ce systeme n’admet pas d’onde progressive de vitesse
supersonique et d’énergie finie.

En dimension un d’espace, on a montré ’existence des ondes progressives et on a ob-
tenu une déscription assez précise de la structure globale de ’ensemble de telles solutions.

Compte tenu des conditions aux limites, on a cherché des ondes progressives de la
forme

Y(z) = (1+ f(x))eiwo(x), o(x) = a(x)eisoo(x)_
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Apres calcul, on trouve ¢ = ¢(1— ﬁ), et ¢f, = ¢d. On effectue le changement d’échelle

@(z) = Lu(Z) et F(z) = r(%) et on obtient que les fonctions r et u satisfont les équations

—r" — (1 47)+ (1 +7)3 —02€2<1+7"— ﬁ) + (1 +ru*=0,
(3.45)
—u" + (¢®(1 +7)% — (262 + k?))u = 0,

avec les conditions aux limites 7(z) — 0, u(x) — 0 lorsque |z| — oo. Comme |¢)|(x) =
1 +7(%), on doit avoir r(z) > —1 sur R. On note

Vi={rec H(R) | a}.rellgr(:v) > —1}.

Avec la notation g(s) = goee(s) = —(1 + ) + (1 + 5)3 — c2e? (1 + s — ﬁ) et
A = e2(c26? + k?), le systeme (3.45) s’écrit sous la forme

—1" + goee (1) + (1 +7)u? = 0,
(3.46)
—u" + (1 +7)%u— lu=0.

Si u = 0, la premiere des équations (3.46) admet uniquement la solution triviale r = 0
pour |cg| > % Lorsque |ce| < %, elle admet aussi la solution

(3.47) () = Toce(z) = —1 + \/20252 + (1 — 2c2e2)tanh?(y /3 — c2e2z).

On appelle (0,0) et (7., 0) les solutions triviales de (3.46). Une solution non-triviale est
un triplet (A, 7, u) qui vérifie (3.46) et tel que u # 0.

L’objectif de 'article [5] est de montrer I'existence des solutions non-triviales et
d’étudier le structure de I'ensemble de telles solutions. Tout d’abord, on a le résultat
de non-existence suivant :

Proposition 3.15
a) Quelque soit A € R, le systéme (3.46) n’admet pas de solution (r,u) # (0,0) si
el > -5
b) On suppose que |c| < ﬁ et que (\,r,u) € R x V3 x HY(R) est une solution
non-triviale de (2). Alors :
i) 2c?e%> < A< ¢ et
ii) —1 4 +/2ce < r(x) <0 pour tout x € R.

Pour montrer l'existence des solutions non-triviales de (3.46) on a utilisé la théorie
des bifurcations. On considere les espaces fonctionnels

H={fcHR)| f(z)=f(-2)} et L={feL’R)|[f(z)=f(-z) pp}.
On note V = V1 N H et on introduit les opérateurs

S:VxH-—L, S(r,u) = —1" + goce (1) + (1 + 1r)u?,

(348) T:RxHxH-—L, T\ 7ru)=—u"+q¢*(1+r)*u— \u.

Il est évident que (A, 7, u) est solution de (3.46) si et seulement si S(r,u) = 0et T' (A, r,u) =

0. L’égalité T'(A\, 7, u) = 0 exprime le fait que A est une valeur propre de 'opérateur linéaire
—% + ¢*(1 +7)? et u est un vecteur propre associé.
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Afin de prouver I'apparition des branches de solutions non-triviales, on étudie les
opérateurs S et T' dans un voisinage d’une solution triviale (A, r2.¢,0). On montre que les
propriétés suivantes sont vérifiées :

1. L’opérateur D, S(r2c,0) = —% + ¢'(roce) : H — L est inversible.

2. L'opérateur Au = —u” + ¢*(1 + roee)?u : H — L satisfait

i) A > 2c%e2¢?

ii) 0ess(4) = [g°, 00),

iii) toute valeur propre A < ¢* est simple, et le vecteur propre correspondant est a
décroissance exponentielle,

iv) le nombre de valeurs propres est strictement inférieur & 1 + (2v/2)¢?,

v) le nombre de valeurs propres tend vers +o0o quand ¢ — o0.

Les propriétés ci-dessus et le théoreme des fonctions implicites impliquent que pour
A < ¢? il existe des solutions non-triviales au voisinage d’une solution (\,ra.,0) si et
seulement si A est valeur propre de l'opérateur A.

En utilisant une variante du théoreme de bifurcation a partir d’'une valeur propre
simple de Crandall et Rabinowitz [CR71], on prouve :

Théoreme 3.16 Soit Ao une valeur propre de A et soit ug un vecteur propre correspon-
dant. Il existe une fonction

s+ (A(s),7(s),u(s)) € R x Hx HN {up}*
définie sur (—n,n) telle que r(0) =0, u(0) =0, A(0) = Ao et

S(roce + sr(s), s(up + u(s))) =0,
T(A(s),r2ee + s7r(s), s(ug + u(s))) = 0.

De plus, il existe un voisinage U de (Ao, T2ce,0) dans R x H x H tel que toute solution
du systeme (3.46) dans U est soit de la forme (A(s), roce + sr(8), s(ug + u(s))), soit de la
forme (A, ¢, 0).

Pour obtenir une information globale sur la structure de I’ensemble des solutions, on
travaille dans des espaces de Sobolev a poids. Plus précisément, on choisit une fonction
W : R — [1,00) continue, paire, croissante sur (0,00) et qui se comporte comme |z|*®
au voisinage de I'infini pour un s > 0. On considere les espaces

Lw={peL|WpelL} et Hy ={p e H|Wp, Wy W¢" € L}.

Le résultat de décroissance suivant montre qu’il n’y a pas de perte de solutions lorsqu’on
remplace I'espace H par Hyy.

Lemme 3.17 Si (\,r,u) est solution du systéme (3.46) dans (—oo,q?) x V x H, alors
r € Hy et u € Hyy.

On note w = r — 1y et on écrit le systeme (3.46) sous la forme

(3.49) <Z>——<§£A><Z)>_<Hlj(1§wwuz)t)>

N

ou
-1
Anw) = A ) = ¢ (= +¢* = A) [+ 2re)ul,

Bw) = (= 4 050 (0)) " [(Ghee(raee) — ghec (0]
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sont des opérateurs linéaires, compacts de Hyy dans Hyy et Hy, Hs sont continus, com-
pacts sur les ensembles bornés de  := (—o00, ¢?) x ((V — raee) N Hyy) x Hyy et satisfont
les estimations

[1H 1 (w, w1y, = o(|lwllay + [|ullEw ),

respectivement
[1Ha (A, w, w1y, = ofl|wl[my, + [[ulle,)

lorsque w, wu sont proches de zéro dans Hyy, uniformément par rapport a A lorsque
A€ [d,e] C (—o0,q?).

En utilisant une variante du théoréme de bifurcation globale de Rabinowitz ([Ra71]),
on montre :

Théoréme 3.18 Soit S l’ensemble des solutions non-triviales du systéme (3.46) dans
R x V x H. Pour toute valeur propre \,, < ¢*> de A, Uensemble SU{(Am,7+,0)} posséde
une composante connexe Cp, dans (—oo, q?) x Hyy x Hyy qui contient (Am, +,0) et qui a
au moins une des propriétés suivantes :

i) Cpy est non-bornée.

i1) Cp, contient une suite (A, Ty, uy) telle que nlin;o An = 2.

Remarquons que le nombre de branches de solutions dans le Théoreme 3.18 est le
méme que le nombre de valeurs propres de I'opérateur A. On a donc une seule branche
si q est suffisamment petit et le nombre de branches tend vers l'infini lorsque ¢ — oo.

Nous pensons que les informations obtenues en dimension un seront utiles dans I’étude
des cas bi— et tridimensionnels, plus intéressants d’un point de vue physique.
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Abstract

For a large class of variational problems we prove that minimizers are symmetric
whenever they are C'.
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1 Introduction and main results

In this paper we study the symmetry of minimizers for general variational problems of
the form

minimize E(u) := / F(|z|, u(z), |Vu(z)|) dx under k constraints
Q
(P)
Qi) = [ Gillel @) [Vul@)hdr =2, =100 k.

The solutions of many partial differential equations are obtained as minimizers for
problems like (P). Knowing in advance that such solutions are symmetric is very im-
portant for their theoretical study as well as for their numerical approximation. If the
minimizers of (P) are standing or solitary waves for an evolution equation, symmetry
could be very useful to investigate the stability properties of such solutions. Note also
that in many problems, symmetry is the first step in proving the uniqueness of special
solutions.

Given the motivation above, many important particular cases of (P) have already
been considered in the literature. In [11, 12], O. Lopes has developed his reflection
method - a very efficient tool to prove symmetries for minimizers of functionals E;(u) =

/%|Vu]2 + Fi(|z|, ) dr under the constraint Q(u) = / G(|z|,u) dx = constant, where
Q Q

2 is a domain invariant by rotations. This method is based on a device of "reflect-
ing” a minimizer with respect to hyperplanes that ”split the constraint in two” and
on the use of a unique continuation principle for the Euler-Lagrange equations satisfied
by minimizers. Note that the method can be used for vector-valued minimizers whose
components eventually change sign and no additional assumptions are made on the func-
tions F; and G (except the usual growth and smoothness assumptions that ensure the



existence and the regularity of minimizers). Up to now this method has been used for
problems involving only one constraint. Its main restriction is that it can be used only
when the minimizers satisfy an Euler-Lagrange system for which a unique continua-
tion theorem is available. However, we have to mention that the reflection method has
been successfully used in [13] for minimizers of some nonlocal functionals of the form

Es(u) = /RNm(g)m(g)Pdg + /RNFg(u) dx. The class of functionals considered in [13]

include the generalized Choquard functional, the Hamiltonian for the generalized Davey-
Stewartson equation as well as functionals involving fractional powers of the Laplacian.
Instead of unique continuation results, some new and quite unexpected integral identities
for nonlocal operators were used to get symmetry results.

In a recent paper [4], F. Brock studies the symmetry of minimizers of the functional

/ N Z |Vu;|P + F(|z|,u1,...,u,)dr under several constraints /RNGi’j(ui) dx = ¢; ;. He
i=1

uses two-points rearrangements and a variant of the strong maximum principle due to
Pucci, Serrin and Zou ([16]) to prove symmetries. Assuming that F' is nonincreasing in
the first variable and that is nondecreasing in the variables uy, for k # i (a cooperative
condition), he shows that the superlevel sets {u; > t} for t > 0, respectively the sublevel
sets {u; < t} for t < 0, are balls. Under more restrictive conditions (F' strictly decreaing
in the first variable or an assumption that depends on Lagrange multipliers associated to
minimizers - assumption that could be quite difficult to check in applications, as already
mentioned in [4]), he proves that any component of the minimizer is radially symmetric
about 0, has constant sign and is monotone in |z|. Note that whenever the arguments in
[4] lead to symmetry, they also imply monotonicity. On the other hand, in [4] there is an
example of sign-changing minimizer for a particular functional of the type considered. It
is remarkable that the results of F. Brock are valid for an arbitrary number of constraints.
However, these constraints must have a special form (because they have to be preserved
by rearrangements of functions). For instance, one cannot allow constraints of the form

NG(ui, uj) dx = constant.

We have to mention that in a series of recent papers (see [2], [15], [17] and refer-
ences therein), different new techniques were developed to study the symmetry of so-
lutions for some classes of elliptic problems. These techniques are essentially based on
foliated Schwarz rearrangements and on polarization of functions and can be used for
sign-changing solutions. They also give some monotonicity properties.

The aim of the present paper is to prove symmetry of minimizers for problem (P)
under general assumptions. We use the device of reflecting minimizers with respect to
hyperplanes introduced by O. Lopes, but we do not need unique continuation theorems.
Instead, we use in an essential way the regularity of minimizers. (To our knowledge, sym-
metry results for minimizers that may be nonsmooth were obtained only in the case of
convex functionals.) We are able to deal with several constraints, but each additional con-
straint produces the loss of one direction of symmetry; we will see later (Examples 6 and
7) that under the general conditions considered here, this is a very natural phenomenon.

In the sequel 2 denotes an open set in RY invariant under rotations (and centered at
the origin). It is not assumed that € is connected or bounded. We denote Aq = {|z| | x €
Q}. We consider vector-valued minimizers u : @ — R™ of (P) that belong to some
function space X. Throughout F,G1,... G} are real-valued functions defined on Ag %
R™ x [0,00) in such a way that for any v € X, the functions x — F(|z|,v(x),|Vv(x)]|)
and © — G,(|z|,v(z),|Vv(x)]), 1 < j <k, belong to L' ().



Let V be an affine subspace of RY. For € RY we denote by py(z) the projection
of z onto V and by sy (x) the symmetric point of x with respect to V, that is sy (z) =
2py (z) — x. We say that a function f defined on R" is symmetric with respect to V/
if f(z) = f(sy(z)) for any z. We say that f is radially symmetric with respect to V' if

there exists a function f defined on V' x [0, 00) such that f(x) = f(py(x), |z — py(z)]).
Let II be a hyperplane in RY and let It and II~ be the two half-spaces determined
by II. Given a function f defined on R”, we denote

i +
fo+ () = { ;Efr)[(x)) ii i E g_7U I, respectively
(1)
_ ) f(2) if ¢ ell” UITLL
Ju- (@) { flsu(z)) if = eTIt.

If f is defined on a rotation invariant subset € centered at the origin,  # R, the above
definition makes sense only if IT contains the origin. We say that II splits the constraints
in two for a function v € X if

(2) /mmGj(!a:\,v(x>,\w<x)y)dx:/Q Gj(|z|,v(z), |Vo(z))dz  for j=1,.... k.

NII—

We make the following assumptions.

A1l. For any v € X and any hyperplane II containing the origin, we have v+, vp- € X.

A2. Problem (P) admits minimizers in X and any minimizer is a C'! function on .
We can now state our symmetry results.

Theorem 1. Assume that 0 < k < N —2 and Al, A2 are satisfied. Let u € X be
a minimizer for problem (P). There exists a k—dimensional vector subspace V in RN
such that u is radially symmetric with respect to 'V .

If © = RY and the considered functionals are invariant by translations, Theorem 1
can be improved. More precisely, consider the following particular case of (P):

minimize E(u) := / F(u(x), |Vu(z)|) dx subject to k constraints
RN
(P')
Qiw) = [ Gut@), [ Vu@de =X, G =1k
In this case assumption A1 is replaced by
A1, For any v € X and any affine hyperplane II in R we have v+, vp- € X.
The following result holds.

Theorem 2. Assume that 1 < k < N —1, A1’ and A2 are satisfied and there exists
Jj€{l,...,k} such that \j # 0. Let uw € X be a minimizer for problem (P’). There exists
a (k — 1)—dimensional affine subspace V in RN such that u is radially symmetric with
respect to V.

If (P’) involves only one constraint, Theorem 2 implies that any minimizer is radial
with respect to some point.



In applications, assumptions A1l or A1’ are usually easy to check. On the con-
trary, assumption A2 requires much more attention. In most applications, under suit-
able growth and smoothness assumptions on the functions F, Gy, ..., G, the functionals
E Q1,...,Q are differentiable on X and the minimizers satisfy Euler-Lagrange equa-
tions (however, this is not always the case: see [1] for examples of minimizers that do not
satisfy Euler-Lagrange equations). Very often the Euler-Lagrange equations are, in fact,
quasilinear elliptic systems. Many efforts have been made during the last 50 years, since
the pioneer work of de Giorgi, Nash and Moser, to study the regularity of solutions of
such systems and there is a huge literature devoted to the subject. Important progress
has been made and various sufficient conditions that guarantee the regularity of solutions
have been given. It would exceed the scope of the present paper to resume these works, or
even to give here a significant list of conditions that ensure the regularity of minimizers.
For these issues (and also for historical notes) we refer the reader to the standard books
[5, 7, 8,9, 10, 14] and references therein.

In the next section we give the proofs of Theorems 1 and 2. We end this paper by
some remarks and examples which show that, under the general conditions considered
here, our results are optimal even for scalar-valued minimizers.

2 Proofs

Proof of Theorem 1. Consider first the case 1 < k < N—2. Forv € RN, v # 0, denote
={zeRY |2zv =0} 1} = {z € RV | z.v > 0} and I —{xERN]xv<O} For
]—1,...,k:,wedeﬁneg0 .SN I Rby

o) = [ Gyl u@), Vu))dr— [ Gillal, u(w),[Vu(z) do-

It is obvious that ¢;(—v) = ¢;(v) and it follows immediately from Lebesgue’s dominated
convergence theorem that each ¢; is continuous on SN=1 We will use the following
well-known result (see, e.g., [18], Theorem 9 p. 266):

Borsuk-Ulam Theorem. Given a continuous map f : S™ — R"2 withn; > ng > 1,
there exists x € S™ such that f(x) = f(—x).

Equivalently, any continuous odd map f : 5™ — R™, ny > ny > 1, must vanish.

We use the Borsuk-Ulam theorem for the odd continuous map ® = (¢1,...,¢k) :
SN=1 — RF and we infer that there exists e; € SV~ such that ®(e;) = 0, that is II,,
splits the constraints in two for the minimizer wu.

Our aim is to show that u is symmetric with respect to Il.,. We denote u; = Uy

and ug = uy+ the two reflected functions obtained from u as in (1). By A1 we have
uy, ug € X. Since Il splits the constraints in two, a simple change of variables shows

that / Gj(|z], ui(x), |Vui (x dm—2/ Gj(|z|, ui(x), |Vui(x)]) de = A; for any j €

{1,...,k}, that is u; satisfies the constramts In the same way us satisfies the constraints.
Since w is a minimizer for (P), we must have E(u;) > E(u) and E(ug) > E(u). On the
other hand, we get

E(u1) + E(us) _2/ F|z|, ui(2), [V (2 d:v+2/ F(lz|, w1 (2), |Vu (2)]) de
= 2E(u).



Thus necessarily F(u1) = E(u2) = E(u) and uy, ug are also minimizers for problem (P).
Moreover, they are symmetric with respect to I, .
Now let us consider the minimizer u;. We define 1); : SN=1 _, R by

) = [ Gllalu@.[Va@hd = [ G (adu@). V(@) da.

As previously, it is not hard to see that 1; is a continuous odd mapping on SN,
1 < j < k. In particular, the restriction of ¥ = (31, ...,9y) to SN~1NIl,, is a continuous
odd mapping from this space to R¥. Since SN~! N 1I,, can be identified to SV~2 and
k < N — 2, we may use the Borsuk-Ulam theorem again and we infer that there exists
es € SN NI, such that ¥(ey) = 0, i.e. I, splits the constraints in two for the
minimizer u;. We denote uj 1 = (“1)1'[;2 and uy 2 = (ul)njz the functions obtained from

up by the reflection procedure (1). Arguing as previously, we infer that w;; and wuj 2
belong to X, satisfy the constraints and are minimizers for problem (P). Moreover, they
are symmetric with respect to Il., and with respect to Il.,. Next we use the following:

Lemma 3. Let w € X be a minimizer for (P). Assume that A1, A2 are satisfied and
there exists a vector subspace V of RN of dimension m < N —2 such that any hyperplane
containing V' splits the constraints in two for w. Then w is radially symmetric with
respect to V.

Proof. Let By = {b1,...,by} be an orthonormal basis in V. Fix a hyperplane II
containing V. We extend B; to an orthonormal basis B = {by,...,bxy} in R in such a
way that IT = II;,, = bﬁ. We denote by (x1,...,zxN) the coordinates of a point z with
respect to B. Let w; = Wy and wy = W - Clearly wi,wy € X by Al. By the

assumption of Lemma 3, II; ];plits the constraints in two for w and this implies that w;
and wq satisfy the constraints. As before we have F(w;) > E(w), E(ws) > E(w) and
E(wi) + E(wz) = 2E(w), thus necessarily E(w;) = E(w2) = E(w) and w;, wy are also

minimizers. By A2 we have w,wy,ws € C'(Q). Since wy is symmetric with respect to
the xn variable, we have a{%(% ..., ZN-1,0) = 0 whenever (z1,...,2x-1,0) € Q. But

w(z) = wi(x) for xn < 0, therefore

ow ow
— . _ =lim — e _
axN(wh ,ZN-1,0) 81%18xN($17 ,TN-1,S)
(3) 5 5
. w1 w1
- 1 - “e e — = “ e _ =
sl%@x]\;(xl’ TN-1,8) (%N(I‘l, ;ZN-1,0) =0
for (z1,...,2n-1,0) € Q, i.e. the derivative of w in the direction orthogonal to II vanishes
on 2N II. Thus we have proved that for any hyperplane II containing V', we have
ow . )
(4) 6—(:5) =0 for any x € QN 1II, where n is the unit normal to II.
n

We pass to spherical coordinates in the last N — m variables in R, i.e. we use vari-
1

ables (r,01,...,0N_m—1) instead of (zy,41,...,2N), where r = (x?\,,mﬂ +...+ x?\,)i
and 01,...0N_,—1 are the angular variables. Then (4) is equivalent to %‘; =0 on N
for j = 1,...,N —m — 1. We infer that w does not depend on 6i,...,0N_n+1, i.€.
there exists some function @ depending only on z1,...,zy,,r such that w(xy,...,zN) =
W(x1, ..., Tm,r) on  and Lemma 3 is proved. O



Now come back to the proof of Theorem 1. Clearly, any « € R has a unique
decomposition z = x1e; + x9es + 2, where x1, 29 € R and 2’ € {ey, e}, Since w1 and
w12 are symmetric with respect to Il., and with respect to Il.,, we have u; ;(z1e1 +z2e2+
') = uyi(x1e1 — xoea + ') = uy i(—x1e1 — x2e2 +2’). Let II be a hyperplane containing
{61,62}J‘. It is obvious that the transform zie; + z2es + &' — —x1e; — T2e9 + 2’ is a
one-to-one correspondence between II™ and II~ and a simple change of variables gives

/ Gj(|m],u17i(x),]Vulyi(a:)|)d:z::/ Gj(|z],u1i(z), |Vuii(z)])dz, j=1,...,k,
+nQ N

hence II splits the constraints in two for u1;, ¢ = 1,2. By Lemma 3, we infer that u, ; are
radially symmetric with respect to {e1, ea}+, i.e. u1i(w1e1+a0ea+a’) = 1y (/23 + 23, 2')
for some functions @ ; and @ 2. On the other hand, u1(z) = ui(z) = ui2(z) for any
z € I, N Q, that is ;1 (|z1],2") = @1 2(]x1], ") whenever z1e; + 2/ € Q . We conclude
that necessarily @11 = @12 and wi1(z) = uwi(z) = wi2(x) for any x € Q, thus u; is
radially symmetric with respect to {e1, es}".

Similarly there exists vo € SN~ N ef such that II,, splits the constraints in two for
us and we infer that wus is radially symmetric with respect to {el,vg}L. We use this
information together with the fact that u; = u = uz on Q N1l to prove the symmetry
of u.

If v9 is colinear to es, i.e. v9 = £eo, we may assume that vo = eo. Using the symmetry
of uy, up and the fact that u; = v = us on QN 1L, , we obtain as above that u; = us = u
on €, hence u is radially symmetric with respect to {e1,ea} .

If vo and e are not colinear, Span{ej, ez, v2} is a three-dimensional subspace. Let
{e4,...,en} be an orthonormal basis in {ej,es,va}+. We choose ez and v3 in such
a way that B = {ej,ea,e3,...,en} and B = {ej,va,v3,€4,...,en} are orthonormal
basis in RY with the same orientation. Then there exists # € (0,7) U (,27) such
that vy = cos@es + sinfes and v3 = —sinfes + cosfes. Given a point z € RV, we
denote by (x1,x2,...,2xxN) its coordinates with respect to B. It is clear that (x1,y2 =
cosfxy + sinfxs,y3 = —sinfxe + coshxs, xy,...,xy) are the coordinates of x with
respect to B'.

Fix res + Z;-V:z; zje; € QNei and denote

N
©(t) = @y, an(t) =u(rcostes +rsintes + Za:jej).
j=4
Clearly, ¢ is C' and 2m—periodic on R. Since the restriction of u = u; to Q Nef is
symmetric with respect to Reo, we get

N
(5) o(t) = u(—rcostey —I—TSinteg—i—ijej) = p(m —1).
j=4
The restriction of u = us to QN e is also symmetric with respect to Ruws, therefore

o(t) = u(r(costcosf + sintsin @) vy + r(sint cos § — costsin f)vs + Z;V:4 xje;)
= ug(r cos(t — ) vg + rsin(t — 0) vs + E;-Vﬂl xje;)

(6)  =wua(—rcos(t —0) vy +rsin(t —0) vs + Z;-V:zl zje;)
= ug(rcos(m — (t — 0)) va + rsin(r — (t — 0)) vz + Z;-V:4 zje;)

=@(m+20 —t) = p(t — 20) by (5).



Hence any of the functions ¢, 4, .
tions may occur:

Case 1: % € R\ Q. The set {2n0 + 2kn | n,k € Z} is dense in R and any number
in this set is a period for ¢, 4, . 4y Since @z, . 5 is continuous, we infer that it is

oy admits 2 and 26 as periods. The following situa-

constant. This is equivalent to u(zyﬁ zje;) = u(y/23 + 23 e + Z;Ll xje;) whenever
Z;-V:2 zje; € QN et. With the above notation, using the symmetry properties of u1 and
ug we have for any = € €,

N N
ui(z) = ur1 (/22 + 23 ea + Z:J:jej) =u(\/2? + 2%+ 22 ey +ijej)

J=3 Jj=4

and

ug(x) = ug(\/x] + Y3 v2 + y3vz + Zév:4 zjej) = u(y/x7 4 y3 va + yavs + Zé-v:4 zj€;)

=u(y/2f + 43 +v3 2 + Tl wje;) = uly/27 + 23 + af er + T, wje;).

Consequently u = u; = us on Q and u is radially symmetric with respect to {ey, ea, e3} .

Case 2: % = % where k,n are relatively prime integers, k is odd and n is even, say

k =2k; +1 and n = 2ny. Then m = 2n10 — 2k;7 is also a period for ¢, 4, 5 and this
implies

N N N
(7) U(Z zje;) = u(—woes — x3e3 + Z zje;) whenever Z zje; € QNet.
j=2 j=4 J=2

From the symmetry of u; and (7) we get for x; < 0:
N N
u(Y5sy wjeg) = u(y/ai + 23 ex + 2 i3 wje;)

= u(—\/2? + a3 ey — w3e3 + LN, wje;) = u(wier — waez — w3e3 + Y0, xj€5).

Using the symmetry of up and (7), we infer that (8) also holds for z; > 0. Let II be
a hyperplane containing {ej,ey,,...,en}. It is clear that the mapping Zé\[:l rje; —

(8)

T1€1 — Toes — T3e3 + Zé\fjl zje; is a linear isometry between II™ and II7. Then (8) and
a simple change of variables show that

. Gellal @), Vu@)) dz = [ Gillal,u(), [Vu(z)) da.
II+nQ I-nQ

for/ =1,...,k,ie. Il splits the constraints in two for u. Since u is a minimizer, by Lemma
3 we infer that u is radially symmetric with respect to Span{ei, ey, ...,ex}. In particular,
the restriction of u to QNe;i is radially symmetric with respect to Span{es,...,en}. As
in case 1, this implies that u is radially symmetric with respect to Span{ey,...,enx}.

Case 3: % = % where k,n are relatively prime integers, k is even and n is odd, say

k = 2k; and n = 2n; + 1. Then 0 = 2k;m — 2n160 is a period for ¢, 4, . 2. By (5)
we get Yray o an(t) = Oragaon (T —1) = @ray. 2oy (@ + 7 —t). This means that for
Zj-vﬁ zje; € {2 we have

N N
9) U(Z zje;) = u(—(x2cosf + xgsinfh)eg + (—xosin b + x3 cosf)es + Z xje;).
j=2 Jj=4



In other words, for fixed " € Span{ey,...,ex}, the function zoey + x3es — u(x2e9 +

z3e3 + x'") is symmetric with respect to Rw, where w = cos(%5T)es + sin(%5%)es. Note

that the symmetry of Span{ej, es, e3} with respect to Rw is a linear isometry of matrix
—1 0 0

A= 0 —cosf —sinf | with respect to the basis {e1,es,e3}. We show that for
0 —sinf cosb

any x € () we have

(10) u(z) = u(Sx),

where Sx = —z1e1 — (x3 cos 0+ x3sinf)eg+ (—xo sin 0+ x3 cos f)es + Zévjl xje;. It suffices

to consider the case z1 < 0. By using the symmetry of ui, us and (9) we get
w(x) = ur(z) = u(y/23 + 2des + SN g 2je))

= u(—(y/2? + 23 cos O + z3sinf)ey + (—y/23 + 24 sin 0 + x3 cosO)es + Z;-V:4 xje;)

and
u(Sw) = ug(Sx) = up(—x101 — T2V2 + T3V3 + Zé‘vﬂx zje;)
= Uz(—mvz + z303 + X)Ly wje))
= u(—y/2% + 23(cos ey + sinfez) + x3(—sinfes + cosd 3) + Z;yﬂl zje;),
hence u(x) = u(Sz). Let II be a vector hyperplane containing w, ey, ..., en. It is easy to

see that S is a linear isometry of R mapping Q NII~ onto Q NIIT. Using (10) and a
change of variables, we find that II splits the constraints in two for u. By Lemma 3 we
infer that v is radially symmetric with respect to Span{w,ey,...,en}.

In fact, since u; is radially symmetric with respect to Span{es,eq4,...,eny} and
Span{w, ey4,...,en}, it can be proved that w; is radially symmetric with respect to
Span{ey,...,ex}. Similarly ug is radially symmetric with respect to Span{ey,...,en}
and then it is clear that u has the same property. We omit the proof because we will not
make use of this observation.

Case 4: % = % where k,n are relatively prime odd integers, say k = 2k; + 1 and

n = 2n; + 1. Then 6 — 1 = 2k;m — 2n16 is a period for ¢, 4, . By (5) we have
Prza,...,oN (t) = Praa,....xN (m—1) = Prozg,...xy (0 — 1), that is

N
(11) u(x) = u((xg cosh + xgsinfh)es + (xosinf — x3cosb)es + Z xje;)
j=4
for any x = Zéy:Q xzje; € QN et. Proceeding as in case 3, we prove that u is radially
symmetric with respect to Span{w’,eq,...,en}, where w’ = cos g es + sin g es. (In fact,
it can be proved that u is radially symmetric with respect to Span{ey,...,en}).

Note that in either case it follows that u is symmetric with respect to 1l.,. Thus we
have proved that whenever e; € S™V~! satisfies ®(e;) = 0, u is symmetric with respect
to Il,. Assume that e1,...,e; € SV~ are mutually orthogonal, satisfy ®(ej) = ... =
®(ey) =0and £ < N —k — 1. It is clear that Sy = SN~ N {ey,..., e/} can be identified
to SN=t=1 and the restriction of ® to S; is an odd, continuous function from S; to



R”. Using the Borsuk-Ulam theorem we infer that there exists e;1q € Sy such that
®(ep41) = 0. By induction it follows that there exist N — k mutually orthogonal vectors

e1,...,en—p € SV such that ®(e;) = ... = ®(ey_) = 0. We complete this set to
an orthonormal basis {ej,...,ex} in RY. We already know that u is symmetric with
respect to any of the hyperplanes Il ,...,Il., ,. In particular, for x = Z;-V:l zjej € Q
we have

N N—k N
(12) u(z) = u(—z1e1 + ijej) =...=u(— Z xje; + Z zje;).

=2 j=1 J=N—k+1
Let IT be a (vector) hyperplane containing ey_g11,...,en. It is clear that the mapping

Zé.v:l Tjej — — Z;V:Ek xjej + Zé‘va—k:-&-l zje; is a linear isometry between It and II™.
Using (12), we infer that II splits the constraints in two for u. By Lemma 3, u is radially
symetric with respect to Span{ey_g41,...,€en}.

The case k = 0 is much simpler. Problem (P) consists in minimizing F on X without
constraints. Assume that « is a minimizer. Let II be a hyperplane containing the origin
and let up-, ug+ be the two functions obtained from u as in (1). By A1l we have
um—, urp+ € X, thus E(up-) > E(u) and E(up+) > E(u). On the other hand, E(up-) +
E(up+) = 2E(u), thus necessarily E(up-) = E(up+) = E(u) and up-, up+ are also
minimizers. As in the proof of Lemma 3, this implies g—g(a:) = 0 for any z € QNII, where
n is the unit normal to II. Then passing to spherical coordinates, as in Lemma 3, we see

that v does not depend on the angular variables, i.e. u is a radial function. O

Proof of Theorem 2. Forv € SN~!and t € R we denote by IL,+ the affine hyperplane

{r € RV | (z —tv).v = 0} and by I}, = {z € R | (z — tv).v > 0}, respectively

I, = {z € RN | (# — tv).v < 0} the two half-spaces determined by Il,;. It is clear that
ot = HIt. For j =1,...,k, we define zﬁj : SV xR — R by

Gt = [ | G, Vu@de— [ G, V() da.

v,t v,t

Since Gj(u,|Vu|) € LY(RY), it is a simple consequence of Lebesgue’s dominated con-

vergence theorem that ¢; is continuous on SN=1 x R. It is obvious that 1/73-(—1;, —t) =
—% (Ua t)
We claim that ltlim P;(v,t) = —/ Gj(u(z), |Vu(z)|) de = —\; uniformly with re-
— 0 RN
spect to v € SV=1. Indeed, fix € > 0. There exists R > 0 such that
€

|Gj(ul(@), [Vu(z)])ldz < 5

/RN\B(O,R)

For any v € S¥~! and t > R we have II;, € RN \ B(0, R), therefore

<e€

0+ [ Glu@).[Vu()de

— 2‘/Hjtc:j(u(m), Vu(z)|) dz

and the claim is proved. It is clear that tlim @Z;j(v, t) = A; uniformly in v € SN—1,
——00

We denote P = (0,...,0,1) € R¥*1 § = (0,...,0,—1) € R¥*! and we define
wj:SN—>Rby

~ <‘(x1,...,xN) TN41 )

V(@1 .., TN, TN1) = Uy
3@ e EN) = Y5 T e T



if (z1,..., 2N, 2N4+1) € {P, S}, respectively ¢;(P) = —\; and ¢;(S) = Aj. Then ¢, is an
odd, continuous function on SV,

Consider first the case 1 < k < N — 2. It follows from Theorem 1 that there exist
two orthogonal vector subspaces Vi and V5 such that dim(Vy) = &k, Vi3 @ Vo = RN
and w is radially symmetric with respect to V3. The set S = {(y1,...,yn,yn+1) €
SN | (y1,...,yn) € V1} can be identified to S*. Since the restriction of ¥ = (31, ..., )
to S ~ S* is continuous, odd, R*¥—valued, by the Borsuk-Ulam theorem we infer that
there exists y* = (y7,..., %N, ¥~n4+1) € S such that ¢(y*) = 0. We cannot have y* = S

or y* = P because ¥(S) = —¢(P) = (A1,...,An) # 0. Denote e, = (3’1"7’?4*1\1)' and

. [T
t = % Then e, € Vi, leg] = 1 and (e, t) = 0 for j = 1,...,k, ie. Il ¢
splits the constraints in two for u. Choose e;, i = 1,..., N, i # k in such a way that
{e1,...,ex_1,€ex} and {ext1,...,en} are orthonormal basis in Vi, respectively in V5.

Denote uy(x) = u(x — teg). It is clear that u, is a minimizer for (P’), it is radially
symmetric with respect to V; and the hyperplane ekL = II, o splits the constraints in two
for u.. Arguing exactly as in the proof of Theorem 1, we see that u, is symmetric with
respect to e%. Using this fact and the radial symmetry with respect to V;, we get

N k N k—1 N
(13) u*(z xie;) = u*(z Tie; — Z xie;) = u*(z Ti€; — inei).
i=1 i=1 i=k+1 i=1 i=k
By (13) we infer that any (vector) hyperplane containing ej,...,ex_1 splits the con-
straints in two for u,. Then Lemma 3 implies that u, is radially symmetric with respect
to Span{ej,...,ex_1}, consequently u is radially symmetric with respect to the affine
subspace tey + Span{ei,...,ex_1}.
Now consider the case k = N — 1. As above, there exists y* = (y1,...,yN,Yny1) €
SN\ {8, P} such that ¥(y*) = 0. Denoting e1 = W) and t] = N this means
(W] syx)] I-[ypq]
that Il¢, ¢+, splits the constraints in two for u. Let u1 = up- ) and ug = up+ = It is clear
€1,t1 €1,t1
that uy, ug are also minimizers for (P’). Since {(y1,...,yn+1) € SN | (y1,...,yn) Ler}
is homeomorphic to S™V~! and there are exactly N — 1 constraints, it is possible to

restart the prevoius process with u; instead of u. We infer that there exists ey € e%,

leo] = 1 and ¢ € R such that Il splits the constraints in two for u;. Putting

up1 = (u1)-  andwuyp = (up)g+ , wesee that up 1 and uy 2 are minimizers for (P’) and
eg,to eg,to

are symmetric with respect to Il ;, and I, 4,. It follows that @11 = w1 1 (- —ti1e1 —tae2)
and @2 = u12(- — t1e1 — taez) minimize (P’) and are symmetric with respect to et and
ey . Therefore any (vector) hyperplane in RV containing {e;, e} splits the constraints
in two for @ ; and for @; o and using Lemma 3 we infer that @, and @2 are radially
symmetric with respect to {e;, ea}. Since Uy,1 = U2 on g, 0 = ey, we have necessarily
U1, = Uj2 on RY. Therefore u; = U1,1(- +ti1e1 +taez) is radially symmetric with respect
to the affine subspace tie; + taes + {e1, ea}t.

Similarly we prove that there exist vy € ei, |va] = 1 and s3 € R such that uy is
radially symmetric with respect to the affine subspace tie; + sqva + {eq, vg}L. Of course,
nothing guarantees a priori that (es,t2) = +(va, s2). The following situations may occur:

Case 1: e and vy are colinear. Then we may assume that es = ve. There are two
subcases:

a) tg = s9. Then u;(- —t1e; — taea) and ug(- — t1e; — taey) are both radially symetric
with respect to {e1, e2} and are equal on e;. We conclude that u1 (- —t1e1 —tzes) = ug(-—
tie1 —toeg), thus u = u; = ug is radially symmetric with respect to t1e; +toes+{e1, eg}L.
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b) ty # s9, say so > to. The symmetry of u; and ug imply that there exist some
functions 1, @z defined on [0, 00) x {e1, ea}* such that

ur(xrer + zoea + ') = a1 (/(x1 — t1)2 + (w2 — t2)%,2)

(14)

ug(wre1 + zoea + ') = Ga(y/(x1 — 11)2 + (22 — $2)2,2)
for any x1, 20 € R and 2’ € {e1, e2}*. Since u; = up on e, 4, = tie1 + et it follows that
(15) (|22 — ta] ,2") = t2(|22 — 52, 2")
for any 5 € R and 2’ € {e1, e2}+. In particular, (15) implies that for fixed 2’ € {e1, ea}+,
@1 (-, 2') and @y(-,2’) are periodic of period a = 2(sg — t2). Passing to cylindrical coordi-
nates v1 = t; +rcosf, ro =ty + rsinf, ' and using Fubini’s theorem we have

[ G, Vu@hde= [ Gyw(@). V() da
IT

e1,t1 e1,tq

o 37
(16) :/ /2 / Gi(u(r,2"), |V (r,2")|) dz’ df r dr
0 5 {e1,e2}+

— / / G, (@ (r,2'), |V (r, 2')]) dz' r dr.
0 {e1,e2}+

Let h;(r) = / Gj(u(r,2"), |V (r,2’)]) dz’. The function h; is well-defined for

{e1,e2}t
o0
a.e. r > 0, measurable, periodic of period a, and 7r/ rhi(r)r = X\j/2. By period-
0

(n+1)a
icity we have /

na

rh;(r)dr = na/ hj(r)dr +/ rh;(r)dr, thus / rh;(r)dr =
0 0 0

@a/o hj(r)dr + n/o rhj(r)dr. It follows that necessarily /0 hj(r)dr = 0 and

/ rhj(r)dr = 0 and this implies / rhj(r)dr =0, i.e. A\j = 0 for any j, contrary to

0 0

the assumptions of Theorem 2. Consequently the case 1 b) may never occur.

Case 2: ez and vy are not colinear. It is then clear that the space Span{ej, ez, va} is
3—dimensional (thus N > 3). Let {es,...,ey} be an orthonormal basis of {e1,ea, v2}+.
We choose e3 and vz in such a way that B = {e1,...,en} and B = {e1,v2,v3,€4,...,en}
are orthonormal basis in RY with the same orientation. There exists § € (0, 7) U (, 27)
such that vs = cosfey + sinfes and v3 = —sinfey 4+ cosfes. Since sinf £ 0, there
exist some «, 3 € R such that tees + aes = squg + [vs. Let y = tieq + toes + aesz. We
denote u* = u(- — y), ui = u1(- — y) and us = ua(- — y). It is obvious that v*, u} and u3
are minimizers for (P’), uj is radially symmetric with respect to Span{es,...,en}, ub
is radially symmetric with respect to Span{vs,eq4,...,en}, u* = uj on g, g Ulle, o and
u* = uj on Hjl,o UIle, 0. Proceeding as in the proof of Theorem 1 we show that either u*
is radially symmetric with respect to Span{ey,...,en}, or there exists w € Span{esz, e3},
such that u* is radially symmetric with respect to Span{w,ey,...,ex}. In any case it
follows that w is radially symmetric with respect to an affine subspace of dimension at
most k —1 = N — 2. This completes the proof of Theorem 2. O

3 Remarks and examples

Remark 4. If Q is connected and a unique continuation principle is available for
minimizers, the proofs in the preceding section can be considerably simplified. Moreover,
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it is possible to deal with N —1 constraints in Theorem 1, respectively with N constraints
in Theorem 2 (but this is of quite limited interest in applications because we get only
symmetry with respect to a hyperplane).

For example, consider the problem (P1) of minimizing

E(u) = /Q %|Vu|2 + F(u) dx in H'(Q,R™) (or in H}(Q,R™))

under the constraints Q;(u / Gj(u)dzr = \j, 1 < j < k and the following standard

assumptions:
H1l. F,Gy,...,G € C*(R™ R), F(0) = G;(0) =0, VF(0) = VG;(0) = 0, and

N +2
N -2

|[VE(u)| < Clul?, VG (u)| < Clul? for |u| > 1, where p <

H2 Ifue HI(Q R™) (respectively u € H (£, R™)) is nonconstant and
1043VG (u) = Z] 18;VG(u) on Q, then o = g for j=1,... k.

Suppose that v is a minimizer for (P1) and a hyperplane II (with 0 € II if Q # R")
splits the contraints in two for u. As before, it follows easily that the functions up- and
ur+ are minimizers for (P1). Thus v and up- satisfy the Euler-Lagrange equations

(17) —Au+ VF(u —}—ZaJVG u) = in Q, respectively
7=1
(18) —Aup- + VF(up- +Zﬁ]VG (up-) =0 in O
Jj=1

for some ay,...,a,B1,...,0: € R. By standard regularity theory we get u, up- €
W24(Q) for any q € [2,00). In particular, u, up- € CH*(Q) for a € [0,1), and u, up-
as well as their derivatives are bounded on €. If w is constant on QN II7, it follows form
(17) and the unique continuation principle (see [11]) that u is constant on 2. Otherwise,
from (17) and (18) we obtain Z;?:l a; VG (u) = Z?ZI BiVGj(u) on QNII~ and by H2
we infer that o; = B, j = 1,..., k. Denoting w = u — up—, (17) and (18) imply that w
satisfies
—Aw+ A(z)w =0 in €,

where A € L>°(Q, M,,(R)). Since w =0 in QNII~, by the unique continuation principle
we find w =0 in Q, i.e. u = u- and u is symmetric with respect to II. Hence we have
proved that u is symmetric with respect to any hyperplane that splits the constraints in
two. The rest of the proof is as in the preceding section.

Note that a nondegeneracy hypothesis like H2 is needed to use a unique continuation
principle.

Remark 5. In Theorems 1 and 2, any supplementary constraint in the minimization
problem produces the loss of one direction of symmetry for minimizers. Under the general
assumptions made there, this loss of symmetry cannot be avoided, as it can be seen in
the following simple examples.

Example 6. i) Let © be either a ball or an annulus in RY, centered at the origin.
Consider F,G € C?(R,R) satisfying assumption H1 in Remark 4 and such that the
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problem (P;) of minimizing Fy(u) = [, 5|Vu|? + F(u) dz in H(€2) under the constraint
Jo G(u) dz = X\ admits a nonconstant solution wu,. It has been shown in [12] that u,
cannot be radially symmetric about 0 (but, of course, u, is radially symmetric with
respect to a line passing through 0). Consider the problem

1
minimize Ey(u) = / §|Vu\2 + F(u) + ...+ F(ug)dz,
Q
(Pr)
under the constraints / G(uj)dr = A, i=1,...,k,
Q

where u = (u1,...,ux) € H' (2, RF). Tt is clear that u = (u1,...,uy) is a solution of (Py)
if and only if each u; is a solution of (Py). If Ry, ..., R, are rotations in RY, the function
u(z) = (ux(R12), ..., us(Rix)) is a solution of (Py). We infer that there are minimizers
of (Py) that are not radially symmetric with respect to any (k — 1)—dimensional vector
subspace of RV.

ii) Consider two functions F,G € C%(R,R) satisfying assumption H1 in Remark 4
and A € R* such that the problem (P}) consisting in minimizing Ey(u) = [gn $IVul? +
F(u)dz in H*(R") under the constraint [z~ G(u)dz = A admits a nonconstant solution
. It folows immediately from Theorem 2 that « is radially symmetric with respect to
a point; we may assume that it is radially symmetric about the origin. It is easy to see
that u = (uy,...,ux) € H'(RY,RF¥) is a solution of the problem

minimize Ej(u) = /RN %’VuP + F(uy) + ...+ F(ug)dz,
(Pr.)

under the constraints /RN G(uj)dx = A, 7=1,....k,
in H1(RY,R") if and only if each wu; is a solution of (P}). Therefore for any yi,...,yx €
RY, the function u = (u1(- + v1),...,ux(- + yx)) is a solution for (Pj). Obviously, this
minimizer is radially symmetric with respect to some (k—1)—dimensional affine subspace
but, in general, it is not radially symmetric with respect to any affine subspace of lower
dimension.

In Example 6, the loss of symmetry comes from the fact that problems (Py) and (P},)
are decoupled: they can be decomposed into k£ independent scalar problems, each of them
being rotation (respectively translation) invariant. It is then natural to ask whether in
general problems like (P) or (P’) the loss of directions of symmetry could exceed the
number of components of minimizers. The answer is affirmative, as it can be seen in the
next example which shows that, in general, the result of Theorem 2 is optimal even for
scalar-valued minimizers.

Example 7. We construct here a minimization problem of the form (P’) involving two
constraints and whose real-valued minimizers are not radial with respect to a point (of
course, these minimizers are axially symmetric). This example relies on the existence of
a nonnegative minimizer with compact support for a problem involving one constraint.
A similar construction has already been used in [4].

Let f € C(R)NC(0, ) be a real-valued function satisfying the following conditions:

Cl. f(s)=0on (—00,0] and f(s) = s* for s € (0,1], where o € (0,1).
C2. The function F(s) := [; f(7)dr has compact support.
C3. There exists ¢ > 0 such that F'({) < 0.
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Let N > 3 and & = DM2(RN) N L**(RYN). We introduce the functionals T'(u) =
/ N |Vu|*dz and V (u) = / . F(u(z)) dz. It is clear that F'(u) € L'(RY) for any u € X
R R

and T, V are well-defined, C! functionals on X. We consider the minimization problem:
(My) minimize 7'(u) in X’ subject to the constraint V(u) = —1.

We denote I = inf{T(u) | u € X,V (u) = —1} and we proceed in several steps.

Step 1. We have I > 0 and problem (M) has a minimizer u, € X. The proof of this
fact is a straightforward modification of the proof of Theorem 2 in [3] or of the proof of
Theorem 1 in [6], so we omit it.

Step 2. Any minimizer u of (My) is nonnegative, bounded, C', has compact support
and satisfies the equation —Au+ Bof(u) =0 in D'(RN), where By = 5321

Let vt = max(u,0) and v~ = max(—u,0). Then ut,u~ € X, V(u') = V(u) = —1
and T'(u) = T(u™)+T(u") > T(u"). Since u is a minimizer, we must have T'(u™) = T'(u)
and T(u~) = 0, hence u~ = 0 in DV2(RY), that is u > 0 a.e. Take C > 0 such that
supp(F) C [0,C] and denote uy = min(u,C), uc = max(u — C,0). It is obvious that
up, uc € X, u = ug +uc, V(ug) = V(u) = -1 and T'(u) = T(up) + T (uc). As above we
infer that T'(uc) = 0, consequently uc = 0 in DV2(RY) and u < C a.e.

Since T and V are C! functionals on X, it is easy to see that u satisfies an Euler-
Lagrange equation 7" (u) + 26V/(u) = 0 in X’ for some (3 € R and this implies

(19) —Au+ Bf(u) =0 in D'(RY).

Since u € L>®(RY) and f is continuous, by standard elliptic estimates it follows that
u € VVlif(RN) for any p € (1,00), thus u € C'llo’g(RN) for v € [0,1). In particular, u is
Cct.

It is standard to prove that u satisfies the Pohozaev identity (N —2)T(u)+28NV (u) =
0 (to see this, it suffices to multiply (19) by x(£) SN, :Ui(%‘i, where y € C°(RY) is such
that x = 1 on B(0, 1), to integrate by parts and then to pass to the limit as n — o0).
Since V(u) = —1 and T'(u) = I, we find 8 = 521 = ) > 0.

Let v(z) = u(—%). Then v € C*(RY), v > 0 and v satisfies the equation

NES

—Av+ f(v) =0 in D'(RY).

[N

|
/ —7 ds < 0co. Thus we may use Theorem

1 1
Moreover, we have / -ds = (a+1)
0 (F(s))2 0 s 2
2 p. 773 in [16] and we infer that v has compact support. Hence u has compact support.

Step 3. Any minimizer u of (My) is radially symmetric with respect to a point.
Indeed, steps 1 and 2 show that (M) satisfies assumptions A1’ and A2 in Introduction,
hence the radial symmetry of minimizers follows from Theorem 2. Note that the unique
continuation principle is not valid for minimizers of (M), therefore the method in [11]
cannot be used to prove their radial symmetry.

Step 4. Construction of nonradial minimizers for a minimization problem involving
two constraints.

We introduce the functional W (u) = / N F(—u(z))dz. Clearly, W is well-defined
R

and C' on X. We consider the minimization problem:

(Mj3)  minimize T'(u) in X subject to the constraints V(u) = —1 and W(u) = —1.
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We claim that u € X is a solution of (Ms) if and only if u™ and ™ are solutions of
(My).

To see this, let u, be a minimizer of (M), radially symmetric with respect to the
origin. Let R > 0 be such that supp(u.) € B(0,R). For y € RN \ B(0,2R), we
put uy(z) = u(xz) — us(r + y). It is obvious that V(uy) = V(u,) = —1, W(u,) =
V(u(- + 1)) = —1 and T(uy) = T(us) + Tl + ) = 2I.

For any u € X satisfying V(u) = W(u) = —1 we have V(ut) = V(u) = —1 and
V(u™) = W(u) = —1, hence T'(u™) > I and T(u~) > I, consequently T'(u) > 2I. We
conclude that for any |y| > 2R, u, is a minimizer of (My). Moreover, a function u € X
can solve (My) if and only if V(u™) =V (u™) = -1 and T(u") =T (u") = I, i.e. if and
only if u™ and u~ solve (My).

As in step 2 we infer that all minimizers of (Ms) are C'. Thus (Ms) satisfies the
assumptions A1’ and A2 and Theorem 2 implies that all minimizers of (Ms) are axially
symmetric. Since u, is radial with respect to the origin, it is clear that any of the
minimizers u, is axially symmetric with respect to the line Oy, but is not radial about a
point. Hence (M3) admits nonradial minimizers.

In fact, with some extra work it can be proved that the suport of any minimizer of
(M) is precisely a ball. If u is a minimizer of (Ms), supp(u) = supp(u™) U supp(u~)
is the union of two balls with disjoint interiors. Therefore no minimizer of (Ms) can be
radially symmetric.

In some particular cases, however, minimizers may have more symmetry than provided
by Theorems 1 and 2, as it can be seen in the following example.

Example 8. Consider the problem of minimizing F(u) = / ' (z)? + F(u(z)) dz in
R

H'(R), under an arbitrary number of constraints / Gj(u(z))dx = Xj, 1 < j < k. We

assume that the functions F,G1, ..., G} satisfy the assumption H1 in Remark 4.

In this case Theorem 2 gives no information about the minimizers. However, if the
problem above admits minimizers, any of them must be symmetric with respect to a
point. Indeed, let u be a nonconstant minimizer. Then it satisfies an Euler-Lagrange
equation

(20) —u" + F'(u) + a1 G (u) + ... + Gl (u) =0 in R.

It follows easily from (20) that u € C?(R,R). Since u(z) — 0 as + — 400, u achieves
its maximum or its minimum at some point ¢ € R and consequently u'(a) = 0. Let
@(z) = uw(2a — x). Then @ satisfies (20) and u(a) = wu(a), @' (a) = u'(a) = 0. Since
the Cauchy problem associated to (20) has unique solution, we have u = w, i.e. wu is
symmetric about a. Moreover, we see that © must be symmetric with respect to any of
its critical points. Since u cannot be periodic, we infer that there are no other critical
points, thus v is monotonic on (—oo, a] and on [a, 00).

We have discussed in the first section an example of problem where arbitrarily many
constraints were allowed and the symmetry properties of minimizers did not depend on
the number of constraints (see [4]). This fact is due to the assumptions made on the
nonlinear term (monotonicity in |z| and cooperativity condition), that imply a strong
coupling between the components of the minimizers and prevent situations like those in
Examples 6 and 7 to occur.

Remark 9. Our results can be extended in an obvious way to minimization problems
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on cylinders. To be more specific, consider the problem (P.) consisting in minimizing

B = [ [ F(al.y.uw9), [Vou(@.)|. Vyule.p), . Vy(o,y) dedy
under the constraints
Qj(u):/A/QGj(|xl,y,u(x,y),\qu(x,y)\,vyu(x,y),...,Vf;(:c,y))dxdy, =1,k

where z € Q ¢ RM, y € A ¢ R™, Q is an open set invariant by rotations in RN and
A is a measurable set in R™2. We assume that problem (P.) admits minimizers in a
functional space X and the following assumptions hold:

Al.. For any w € X and any hyperplane II in R™ containing the origin, we have
WIxRN2)— W(IIxRN2)+ e X.

A2,.. For any minimizer « € X and any y € A, the function u(-,y) is C*! on €.

Note that the minimization problem may involve derivatives of any order in y and we
do not need more regularity of minimizers with respect to y than provided by the fact
that v e X.

We have the following results, the proofs being similar to those of Theorems 1 and 2.

Theorem 1°. Assume that u is a minimizer for problem (P.) in X, assumptions Al.
and A2, are satisfied and 0 < k < N — 2. There exists a k—dimensional vector subspace
V of R such that u is radially symmetric with respect to V- x RN2,

Theorem 2°. Assume that @ = RM, 1 < k < N — 1 and the functions F, Gj
in (P.) do not depend on x. Assume also that A2. is satisfied and Al. holds for any
affine hyperplane 11 in RN, If u is a minimizer for problem (P.) in X, there exists a
(k — 1)—dimensional affine subspace V. C RN such that u is radially symmetric with
respect to V- x RN2.
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Symmetry and monotonicity of least energy
solutions
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Abstract

We give a simple proof of the fact that for a large class of quasilinear elliptic
equations and systems the solutions that minimize the corresponding energy in the
set of all solutions are radially symmetric. We require just continuous nonlinearities
and no cooperative conditions for systems. Thus, in particular, our results cannot
be obtained by using the moving planes method. In the case of scalar equations,
we also prove that any least energy solution has a constant sign and is monotone
with respect to the radial variable. Our proofs rely on results in [15, 6] and answer
questions from [3, 12].

1 Introduction
We consider the system of partial differential equations

—div(|Vu|P2Vu;) = gi(u), i=1,...,m, (1)

D

where u = (u1,...,uy) : RY — R™, 1 < p < N, |(y1,...,yn)|]P = (ijzly]z)Q,

gi(0) = 0 and there exists G € CL(R™\ {0}, R) N C(R™, R) such that g;(u) = g—i(u) for
u # 0.

Formally, solutions of (1) are critical points of the following energy functional

1 m
S —_7/ N [Vl d —/ G(u) dz.
(u) , Ni:l] u;|P dx N (u) dz

The aim of this note is to prove, under general assumptions, that those solutions of
(1) which minimize the energy S in the set of all solutions are radially symmetric (up to
a translation in RV). In the scalar case we also study the sign and monotonicity of these
solutions. We do not consider here the problem of existence of solutions (respectively of
least energy solutions) for (1). We believe that our results cover all situations where the
existence of a least energy solution is already known in the literature.

We begin with some definitions. Let IT be an affine hyperplane in RY, let II* and
II™ be the two closed half-spaces determined by II and s;; the symmetry with respect
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to IT (i.e. su(z) = 2pn(z) — =, where pr is the orthogonal projection onto II). Given a
function f defined on RY, we define

_ ) f(=) if z € I ) f(z) ifzell”
fo (@) _{ fGn() trem @ @ _{ fon@) fzemr. 2

For 0 > 0, we denote fo(x) = f(Z). We say that a space X’ of functions defined on RV
is admissible if X' is nonempty and

(i) X c L, . (RY,R™) and measure({z | |u(z)| > a}) < oo for any u € X and a > 0;
(i) gi(u) € L, (RY) for any u € X and i = 1,...,m;

(iii) 3", |[Vuyl? and G(u) belong to LY(RY) if u € X;

(iv) uy € X for any u € X and o > 0;

(v) up+, up- € X whenever v € X and II is an affine hyperplane in RV,

Let X be an admissible function space. We note that from (i) and (iii), G(0) = 0. A
function u € X is a solution of (1) if it satisfies (1) in D/(RY). If (1) admits solutions in
X, we say that u is a least energy solution if u is a nontrivial solution of (1) and

S(u) = inf{S(u) | u € X\ {0}, w is a solution of (1)}.
We introduce the functionals
1 m
Ju:f/ Vu; P dx and Vu:/ G(u)dx.
@)= 5 fo 2170 W= [ o

Clearly, these functionals are well-defined on any admissible function space. As we will
see, the least energy solutions of (1) come from the following minimization problem:

minimize J(u) in the set { v e X | V(u) = A} (Pr)

We shall prove that under some general conditions (see (C1)-(C3) or (D1)-(D3) below),
all least energy solutions of (1) in the set X are radially symmetric, up to a translation
in RV,

It is easy to see that J(uy) = oV PJ(u) and V(u,) = oV V (u). If V(u) > 0 for some
u € X, we have V(uy,) =1 for 0 = V(u)fﬁ. Then, denoting

T =inf {J(u) |u € X and V(u) = 1},
we see that

N—p

J() =T (V(v) ¥

for any v € X satisfying V' (v) > 0. (3)

It is clear that w is a minimizer for problem (Py) above (A > 0) if and only if u,, is a

e . _1
minimizer for (P;), where 01 = A"V,

We assume first that 1 < p < N and the following conditions are satisfied.

(C1) T > 0 and problem (P;) has a minimizer u, € X’;



(C2) Any minimizer u € X of (Py) is a C! function and satisfies the Euler-Lagrange
system of equations

—div(|Vu; P2 V) = agi(u) in D'(RY) (4)
fori=1,...,m and some o € R;

(C3) Any solution v € X of (4) (and not only any minimizer!) satisfies the Pohozaev
identity
(N =p)J(u) = aNV(u). ()

A few comments are in order. Clearly, the most important of the conditions above is
(C1). To our knowledge, the existence of a minimizer for (P;), under sufficiently general
assumptions on the functions g; and for arbitrary m € N* and p € (1,00), is still an
open problem. However, several particular cases have been extensively studied in the
literature. A series of papers has been devoted to the case p = 2 and fairly optimal
conditions on g; that guarantee (C1) have been found by Berestycki-Lions [1] for m =1
and by Brezis-Lieb [3] for m > 1. In the case m = 1 and 1 < p < N the existence of
a minimizer for (P;) has also been proved in [9] under general assumptions on g = ¢;
(similar to the assumptions in [1]). Under the conditions considered in [1] and [2], the
functionals J and V are well defined on H!(R”) and this is clearly an admissible function
space. The settings in [3] and [9] also correspond to our assumptions.

If T > 0 and (P;) admits minimizers, in most applications it is quite standard to prove
that (C2) and (C3) hold. This is indeed the case under the assumptions in [1, 3, 9].

Next we consider the case p = N. Note that in this case the Pohozaev identity (5)
becomes aNV (u) = 0; hence any "reasonable” solution u of (1) should satisfy V(u) = 0.
Since we are interested in nontrivial solutions, we consider the minimization problem

minimize J(u) in the set {ue X\ {0} |V (u) =0}. (Pg)
We assume that the following conditions are satisfied.
(D1) Tp:=inf{J(u)|ue X,u#0,V(u)=0} >0 and (P)) admits a minimizer uo;

(D2) Any minimizer u € X of (P}) is C! and satisfies the Euler-Lagrange equations (4)
for some a > 0;

(D3) Any solution u € X of (4) (with o > 0) satisfies the Pohozaev identity V (u) = 0.

For p = N = 2, fairly optimal conditions on g; that guarantee (D1)-(D3) have been
found by Berestycki-Gallouét-Kavian [2] for m = 1 and by Brezis-Lieb [3] for m > 1.

In the next section we show that least energy solutions are minimizers of (Py) for
some particular choice of X if 1 < p < N, respectively minimizers of (P})) if p = N. Then
we obtain the radial symmetry of such solutions as a direct consequence of the general
results in [15] (in the case N = p, we need some extra-argument in addition to the results
in [15]).

In the third section we consider the scalar case m = 1 and we prove that least energy
solutions have constant sign and, if they tend to zero at infinity, then they are monotone
with respect to the radial variable.

In the final section we make some connections with related results of symmetry and
monotonicity in the literature. Let us just mention that, especially in the scalar case, the
symmetry and monotonicity of solutions of (1) have been studied by many authors, see



e.g. [11, 16, 8, 7] and references therein. In most of these works it is assumed that the
solutions are nonnegative and some further assumptions on the nonlinearity g are made.
They require, at least, g to be Lipschitz continuous and to satisfy a cooperative condition
in the case of systems.

In the present work, we do not make any additional assumptions on g, except those
that guarantee the existence of least energy solutions (basically, we need g to be merely
continuous and to satisfy some growth conditions near zero and infinity, but we do not
need any sign or monotonicity assumption; see [3] and [9]). We prove that our solutions
have constant sign and our results are valid as well for compactly supported solutions
and for solutions that do not vanish. Of course, there is a price we have to pay: our
method works only for least energy solutions, not for any nonnegative solution of (1).

2 Variational characterization and symmetry

We begin with the case 1 < p < N.

Lemma 1 Assume that 1 <p < N and the conditions (C1)-(C3) hold.
(1) Let u be a minimizer for (P1). Then uq, is a least action solution of (1), where
oo = (%T)i, and S(ugs,) = p(N —p)%_lN_%T%.
(ii) Let v be a least energy solution for (1). Then v is a minimizer for (Py), where
A= (%T)%.
Proof. (i) By (C2) we know that u € C' and u satisfies (4) for some o € R. Then
(5) implies (N —p)J(u) zlaNV(u), which gives a = %T > 0. It is easy to see that

Uy, satisfies (1) for o9 = ar and

3|2

_N N
p'['p

S(tay) = o PI(u) — o' V(u) = 0 PT — o) =p(N—p)» "N~ »T

Let w € X, w # 0, be a solution of (1). By (C3) we have (N —p)J(w) = NV (w). If
J(w) = 0, we have Vw = 0 a.e. on R", hence w must be constant. Since measure{xr €
RY | |w(z) > a} < oo for any a > 0, we infer that w = 0, a contradiction. Thus .J(w) > 0
N—
and V(w) = %J(w) > 0. On the other hand, by (3) we get J(w) > T(V(w))Tp, ie.
N—

P

J(w)>T (%J(w)) N, which gives

N—p

Tz (SE) 7T (6)
Combined with Pohozaev identity, this implies
p N_ 1 _N_ N
S(w) = J(w) =V(w) = =J(w) 2 p(N —p)r N 7T+ = 5(uq,) (7)

N

and we infer that us, is a least energy solution for (1).

(ii) Conversely, let v be a least energy solution for (1). Then (N — p)J(v) = NV (v)
by (C3), hence S(v) = £ J(v). It is obvious that the inequalities (6) and (7) above are
satisfied with w = v. On the other hand, S(v) = S(us,) and we infer that v must satisfy
(7) with equality sign, that is,

N-p N
I3

J(v) = <N§p)pﬁ and V(v):N];pJ(v): (N];p) 5




NN
A simple scaling argument shows that v is a minimizer for (Py), where A = (%) P T

equivalently, vy, is a minimizer for (P;), where o1 = (%T)ig = 05 '. This completes
the proof of Lemma 1. O
The symmetry of least energy solutions will follow from Lemma 1 and a general

symmetry result in [15]. For the convenience of the reader, we recall here that result.

Theorem 2 ([15]) Let N > 2. Assume that u : RN — R™ belongs to some function
space Y and solves the minimization problem

minimize / N F(u(x), |Vu(z)|) dx
R

P
in the set {uey’ /RN H(u(x),]Vu(x)\)d:U:)\;éO}. )

Suppose that the following conditions are satisfied:
(A1) For any v € Y and any affine hyperplane I1 in RN we have v+, vp- € V.
(A2) Problem (P) admits minimizers in' Y and any minimizer is a C* function on RY.

Then, after a translation, u is radially symmetric.

Lemma 1 implies that least energy solutions solve the minimization problem (P)) for
some A > 0. Conditions (C1), (C2) and property (v) in the definition of admissible
spaces imply that (P)) satisfies the assumptions of Theorem 2. Thus we get:

Proposition 3 Assume that 1 < p < N and (C1)-(C3) hold. Then (1) admits a least
energy solution and each least energy solution is radially symmetric (up to a translation
in RY).

Now we turn our attention to the case p = N.

Proposition 4 Assume that p = N and (D1)-(D3) hold. Then (1) admits a least
energy solution and any least energy solution solves (P)).

Moreover, if we assume that G is either negative or positive in some ball Bgm (0,¢) \
{0} and u € X is a least energy solution such that u(x) — 0 as x| — oo, then w is
radially symmetric (up to a translation in RV ).

Proof. Let up be a minimizer for (Pj). By (D2) and (D3) we have V(up) = 0 and
1

ug satisfies (4) for some o > 0. Let u; = (ug)s, where o = ar. It is easy to see that
up solves (1) and S(u1) = J(u1) — V(u1) = J(ug) — oV (ug) = J(up) = Tp. For any
solution u € X', u # 0 of (1) we have V(u) =0 by (D3) and S(u) = J(u) > Ty = J(uy).
Hence u; is a least energy solution.

If v is a least energy solution, then V(v) = 0 by (D3) and J(v) = S(v) = S(u1) = T,
thus v solves (P})).

Although Theorem 2 does not apply directly to minimizers of problem (P) (because
the value of the constraint in (7)) is zero), its proof can still be adapted to those mini-
mizers. Indeed, the only place where the assumption A # 0 is needed in Theorem 2 is to
show that for any e € SV~! there exists an affine hyperplane II orthogonal to e such that

A

/H* H(u(z), |Vu(x)|) de = /H+ H(u(z),|Vu(z)|) de = 5 (8)



From (8) it follows then easily that up+ and up— are also minimizers. (In fact, if N =2
the assumption A # 0 was also used in the proof of Theorem 2 to show that a minimizer
u of (P) could not be of the form u(x) = @(|z|) on R?, with @ : [0,00) — R™ periodic
and nonconstant. In our setting it is clear that no minimizer u of (P§) could be of this
form because J(u) is finite.)

In the present case we will use the fact that G(u) has a constant sign in a neighborhood
of oo to find hyperplanes that “split the constraint in two equal parts.” A similar idea
has already been used in [14]. Henceforth we assume that u is a least action solution,
u(zr) — 0 as |z| — oo and, say, G(§) < 0 for 0 < |¢] < e. For e € SV~! and
t € R, we denote Iy = {x € RN [ z-e =1}, I, = {x € RN | 2-e < t} and
7, ={z € RN | z-e > t}. We claim that for any e € SV~!, there exists t. € R such
that

G(u(x))dx = . G(u(x))dx =0 and ug- Z0, ugr #£0. (9)
He_,te He,te e,te e,te

To see this, fix e € SV~ and define = (t) = /i G(u(z)) dx, respectively. It follows
He t

that ¢} and ¢_ are continuous because G(u) € L'(RY). Since u is continuous, u # 0,
limp, oo u(x) = 0 and G < 0 on Brm(0,¢) \ {0}, it is not hard to see that there exist
t—,tT € R, t~ < t* such that

e, (t7) <0, @ftt)<0 and ug- #0, ug+ L 70
e, t™ e,t
Since ¢ (t7) = V(u) — ¢, (t7) = —¢p. (t7), it follows that pF(tT) < 0 < @F(t7).
From the mean value property, we see that there exists t. € (¢t7,t") satisfying (9).
It is clear that U, s U, € X\ {0} because X is admissible and (9) implies that

Viug- ) = Viug+ ) =0, hence J(ug- ) = Ty, J(up+ ) > Tp. On the other hand, it
e,te e,te ete ete
is easy to see that J(uy- )+ J(upg+ ) = 2J(u) = 2Ty. Thus J(uy- ) = J(ug+ ) =Tp
e,te e,te e,le e,te
and Up-, s Uph o are also minimizers for (P(). Then arguing exactly as in the proof of

Theorem 2 in [165], it follows that after a translation, u is radially symmetric. a

Remark 5 The situation is different for p > N. The system (1) may still have solutions
in some cases, and least energy solutions may also exist. For instance, if N = 1 and
p = 2 it can be proved, under suitable assumptions on g, that (1) admits a finite energy
solution which is unique up to translations; hence it is a least energy solution (and it is
symmetric with respect to a point).

The existence and the symmetry of least energy solutions for (1) in the case p > N > 2
would be interesting problems to consider.

Note that whenever (1) admits finite energy solutions in the case p > N, they cannot
admit a variational characterization as in Lemma 1 or Proposition 4 above. Indeed, any
reasonable solution u of (1) should satisfy the Pohozaev identity (N — p)J(u) = NV (u);
if u is nontrivial, then necessarily V(u) < 0. It turns out that in any admissible function
space X, a condition like (C1) cannot hold for p > N, no matter what the nonlinearity
g is. More precisely, denote

Ty :=inf{J(u) | u € X and V(u) = A}

Let A # 0. We claim that either the set {u € X | V(u) = A} is empty (thus T\ = —c0), or
we have T = 0. To see this we argue by contradiction and we assume that there is some



A # 0 such that Ty > 0. Let u € X be such that V(u) = A and J(u) < 2T). Choose € > 0

sufficiently small, so that ¢ < 1 and 261 < 1. Let o(t) = / G(u) dz. The function
{z1<t}
¢ is continuous, . lim ¢(t) = 0 and tlim ©(t) = A, hence there exist t1, t2 € R, t1 < t2
——00 —00

__ ¢ _ € _ u(:n) it 21 <y,
such that ¢(t1) = §A and p(t2) = (1 — §)A. Let ui(z) = { w2t —21,2)) i3 > b,
ug(z) = { ZE;?Q S ii ii ziz’ where 2/ = (x9,...,2xn). A simple change of
variables shows that V(u;) = 2 G(u)dr = eX and V(ug) = 2 G(u)dr =
{x1<t1} {I1>t2}
2 m
eX. Since J(up) + J(uz) = p/{ et }Z |Vu;|P de < 2J(u), we see that J(up) <
Tr1<ltl1 T1>t2y5 ;-1

J(u) or J(ug) < J(u). Assume that J(u;) < J(u) < 2T). For o = £~N we have
V((u)e) = oV (uy) = A and J((u1)s) = oV PJ(uy) < oV PJI(u) < eNTI2Ty < T,
contradicting the definition of T). Our claim is thus proved.

3 Monotonicity results

Throughout this section we assume that m = 1. Given a measurable function f : RV —
[0, 00) such that measure({z € RY | f(z) > a}) is finite for any a > 0, we denote by f*
the Schwarz rearrangement of f. We consider the following additional conditions for an
admissible space X.

(vi) For any v € X and t > 0, s <0, we have min(u,t) € X and max(u,s) € X.

(vii) If v € X and is a radial function and v > 0 (respectively u < 0), then u* € X
(respectively —(—u)* € X).

Note that assumption (vii) is needed only in the proof of Theorem 8 below.

Proposition 6 Let X be an admissible function space such that for any v € X the
functions vy = max(v,0) and v— = min(v,0) belong to X. Assume that 1 < p < N and
(C1) holds. If u € X is a solution of (Py) for some X\ > 0, then u does not change sign.

Proof. This is a simple consequence of scaling. Indeed, let u be as above. It is clear
that V(uy) + V(uo) = V(u) = X and J(uy) + J(u—) = J(u). If V(u_) < 0, then

1
necessarily V(uy) > . For o = (ﬁ)l\’ € (0,1) we have V((uy)y) = oV (uy) =
Aand J((ug)y) = oNPJI(uy) < oNPJ(u) < J(u), contradicting the fact that u is
a minimizer. Thus necessarily V(u_) > 0. In the same way V(uy) > 0, therefore
V(u—),V(uy) € [0, A]. Using inequality (3) (which trivially holds if V' (v) = 0), we get

N—p N—p N—p

TN =J(u)=J(us) +J(u) 2TV (ug) ¥ +TV(u_) v,

which gives

2

Since V' (u4)+V (u—) = A, (10) implies that either V(uy) =0o0r V(u_) =0. If V(u_) =0
and V' (us) = X we see that u satisfies the constraint and

J(us) = J(w) = J(u_) < J(u). (11)

EN|



Since v is a minimizer, we must have equality in (11) and this gives J(u—_) = 0, hence
u_ =0 and v = uq > 0. Similarly V' (u4) = 0 implies v = u_ < 0. O

Proposition 7 Let an admissible space X satisfy the condition (vi). Assume thatp = N
and (D1) holds. We have:

(a) if G <0 on [—&,0) U (0,e] for some e > 0, then u € X is a minimizer of (Py) if
and only if it solves the problem

minimize J(v) in the set { v e X | v #0,V(v) > 0}; (P

(b) if G > 0 on [—¢,0) U (0,¢], then u € X solves (P}) if and only if it solves the
problem
minimize J(v) in the set { ve X | v # 0,V (v) <0} (Py")

Moreover, any minimizer of (Py) or (Py’) does not change sign.

Proof. It clearly suffices to prove (a).

Consider v € X such that v > 0 a.e. and V(v) > 0. For ¢t > 0 we define v'(z) =
min(v(z),t). By (vi) we have v € X. We claim that there exists t, > 0 such that
V(vt) = 0.

The continuity of G, properties (i) and (iii) in the definition of admissible spaces and
the dominated convergence theorem imply that the mapping t — V (v!) = /R NG (v'(x)) da

is continuous on (0,00). Since G(v°(x)) < 0 whenever v(z) # 0 and we cannot have
v(xz) = 0 a.e. because V(v) > 0, we infer that V(v%) < 0.
We claim that there exists tg > e such that V(v) > 0. Two situations may occur:

Case 1. There exists an increasing sequence t,, — oo such that {G(t,)}°2; is bounded
from below. Let m = inf,,>; G(t,). By dominated convergence we get

V() =V (v) :/

{v=tn}

G(tn)—G(v(z))dx > / m—G(v(z))de — 0 as n — oc;

{v=tn}

hence V (v'") > 1V (v) > 0 for n sufficiently large.

Case 2. G(s) — —oo as § — oo. Then, since v > 0 a.e. and V(v) > 0, we see
that the set A = {s > 0| G(s) > 0} is nonempty. Let M = sup A < co. It follows that
G(s) <0 for s > M. It is clear that M > ¢ and V(v™) > V(v) > 0. The claim is thus
proved.

Now the continuity of the mapping ¢ — V(v!) implies that there exists t. € (e, o)
such that V(v*) = 0. Similarly, if w € X, w < 0 a.e. and V(w) > 0 there is some ¢ > 0
such that V(—(-w)!) = 0.

Next let ug € X be a minimizer of (Pj). Suppose V(u) > 0 for some u € X. Then at
least one of the quantities V(uy) and V(u_) is positive. If V(uy) > 0, take ¢, > 0 such
that V(u'y) = 0. We have v’y € X\ {0} and

J(u) 2 J(us) 2 J(uf) 2 J(uo) = To. (12)

Hence inf{J(u) |u € X,u#0,V(u) > 0} = J(up) = Tp and ug is a solution of (Py).
Conversely, assume that u is a solution of (P(). We prove that

V(ug) =V(u-) =V(u) =0. (13)



We argue again by contradiction. If (13) does not hold, the inequality V(uy) + V(u_) =
V(u) > 0 implies that at least one of the quantities V(u4) and V(u_) must be positive.
Suppose that V(uy) > 0. As above we find ¢, > 0 such that V(u%) = 0 and then
(12) holds for u. Moreover, since u is a minimizer of (P}) we have J(u) < T and
therefore all inequalities in (12) are in fact equalities. But J(uy) = J(u%) implies

/ |Vu|P dx = 0, hence Vu = 0 a.e. on {u > t.} which gives V((u —t.)4+) = 0 a.e.
{u>t.}

and we infer that (u — t.); = 0 a.e., that is v < ¢, a.e. Then we have uy = utj and
consequently V(uy) = V(uy) = 0, contrary to our assumption. We argue similarly if
V(u—) > 0 and (13) is proved. Since V(u) = 0 and J(u) = Ty = J(ug), we see that u
solves (Py).

Lastly we show that if w is a minimizer of (P{), then either uy = 0 a.e. or u_ =0
a.e. (but we cannot have uy = u_ = 0 a.e. because J(u) = Ty > 0). Indeed, if u™ # 0

and u~ # 0, (13) would imply J(u4) > Ty and J(u—) > Tp and this would give
To = J(u) = J(ug) + J(u_) > 2Ty > 0,

which is a contradiction. This completes the proof. O

Next we prove the monotonicity of scalar minimizers.

Theorem 8 Let X' be an admissible space satisfying the conditions (vi) and (vii). We
assume that conditions (C1)-(C3) hold if 1 < p < N, respectively conditions (D1)-(D3)
hold if p= N. In the case p = N, we also assume that there exists € > 0 such that either
G >0 o0orG<0on[—¢0)U(0,e]. Then any least energy solution u of (1) such that
lim,| oo u(x) = 0 is, up to a translation, radially symmetric and monotone with respect
tor =|z| €[0,00).

Proof. Symmetry follows directly from Propositions 3 and 4. Hence there is a function
@ : [0,00) — R such that u(z) = a(|z|) = @(r). From Lemma 1 and Proposition 4 we
know that any least energy solution is a minimizer of (Py) for some A > 0, respectively of
(P}). We will show that whenever u(x) = a(r) solves one of these minimization problems
and tends to zero at infinity, @ is monotone on [0, c0). The proof relies on Lemma 9 below.
The first part of this Lemma is well known and the second part is a simple consequence
of Lemma 3.2 p. 163 in [6].

Lemma 9 ([6]) Let w be a nonnegative measurable function defined on RN such that
for any t > 0 the function (w —t)y belongs to WP(RYN) and has compact support. Then
we have

/ N |[Vw*|P dz < / N |\Vw|? dx. (14)
R R

Moreover, if equality holds in (14) then for any t € (0,supess(w)) the level set {z €
RY | w(z) >t} is equivalent to a ball.

Now let u be as above. From Proposition 6 and Proposition 7, we know that u has
constant sign; hence we may assume that v > 0. Since u € C! and lim, oo u(x) = 0,
we see that u is bounded and (u — t); belongs to W1P(R”Y) and has compact support
for any ¢ > 0. By assumption (vii) we have u* € X. It is clear that V(u*) = V(u),
u* # 0 if u # 0, and Lemma 9 implies that J(u*) < J(u). Since u is a minimizer of (P))
(respectively of (P§)), we have necessarily J(u) < J(u*), and hence J(u) = J(u*). Using
Lemma 9 again we infer that for any ¢ € (0,sup(u)), the set E; = {x € RN | u(z) >t} is
equivalent to a ball.



If 4 is not nonincreasing, there exist 0 < r; < r9 such that 0 < a(r1) < a(re). Since
t(z) — 0 as |z| — oo, there exists r3 > ry such that u(rs) = u(r1). Denoting a = u(r;)
and b = u(re), we see that for any ¢ € (a,b), E; is nonempty and is not equivalent to a
ball, which is a contradiction. This completes the proof of Theorem 8. a

4 Some remarks and examples

Remark 10 In the scalar case m = 1 it is well known (see for example the Introduction
of [5]) that if g is odd then any least energy solution has a constant sign. In Remark
I1.6 of [12], Lions raised the question (for p = 2 and N > 3) whether this remains true
without assuming g odd. Proposition 6 gives an affirmative answer for any 1 < p < N
and Proposition 7, under some mild additional assumptions, for p = N. Previous partial
results were obtained by Brock [5], using rearrangement arguments, assuming that 1 <
p < 2, the minimizer u satisfies u(x) — 0 as |z| — co and g € C*?~1(R). Nothing was
proved for p > 2.

Remark 11 If N > 3, p = 2, m = 1 and under the assumption that ¢ is odd, the
existence of least energy solutions for (1) has been proved in [1] by showing that problem
(P1) admits a minimizer. The minimizer found in [1] was radial by construction, but it
was not known whether all least energy solutions were radially symmetric. The existence
of a minimizer for (P;) without the oddness assumption on g has also been proved in
[12], but nothing was known about the symmetry or the sign of such minimizers. Our
results imply that any least energy solution is radially symmetric, has constant sign and
is monotone with respect to the radial variable, no matter whether g is odd or not.

In the case N > 2, p = 2, m € N, the existence of least energy solutions is also
known (see [3] for general results, historical notes, comments and further references). If
N > 2, the existence of a minimizer for (P)) and the existence of least energy solutions
have been proved in [3] under very general assumptions on the functions g;. It has also
been shown that the solutions are smooth (Theorem 2.3 p. 105 in [3]) and satisfy the
Pohozaev identity (Lemma 2.4 p. 104 in [3]). However, as already mentioned in [3] p.
99, the existence of radially symmetric least energy solutions was not clear. Indeed, the
Schwarz symmetrization that lead to a radial minimizer in [1] could not be used in [3]
because of the general assumptions on the nonlinearity made there. In fact, it is known
that the Schwarz rearrangements may be used for systems only if the nonlinearity satisfies
a cooperative condition.

Proposition 3 above implies that all least energy solutions of the system considered
in [3] are radially symmetric.

If N =2and G(§) < 0 for 0 < [{| < ¢, the existence of least energy solutions and
the existence of minimizers for (P)) have been proved in [2, 3]. It has also been shown
that such solutions are smooth, satisfy the Pohozaev identity and tend to 0 as |z| — oo.
Therefore Proposition 4 implies that any least energy solution is radially symmetric.

We have to mention that if p = 2 and if the minimizers of (P,) satisfy a unique
continuation principle, it has already been proved in [13] that any minimizer is radially
symmetric (modulo translation). In [13] no cooperative condition is required when m > 2
but using a unique continuation principle require in particular g to be C'*. Our results are
still valid when a unique continuation principle fails (e.g., for minimizers with compact
support). Note that compactly supported minimizers may occur in some applications
(cf. Theorem 3.2 (ii) p. 111 in [3]; see also [15] for such an example). In the scalar case
m = 1, [13] does not say anything about the sign of the minimizers.
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However, in the case p = 2 and N > 3, the symmetry, positivity and monotonicity
of minimizers for problem (P,) have been proved in [10] in the ”zero-mass case” (that
is, when g(0) = ¢’(0) = 0). The proofs in [10] rely on some sharp estimates of the decay
of solutions at infinity (which are a consequence of the ”zero-mass” condition) and on
a result in [6]. Note that in [10] it is not assumed that g is continuous on R, but it is
assumed that g > 0 on (0,00) and g < 0 on (—o0,0), respectively.

Remark 12 If 1 < p < N and m = 1, it has been proved in [9], under general condi-
tions on g, that problem (P,) admits minimizers (thus (1) has least energy solutions).
The minimizers found in [9] were radially symmetric by construction. It follows from
Proposition 3 that any least energy solution is radially symmetric.

If, in addition to the assumptions of Theorem 8, it is assumed that g is locally Lipschitz
on (0,00) and non-increasing on some interval (0, sp) and 1 < p < 2, it has been proved
in [8] that any nonnegative solution of (1) is radially symmetric and that u(x) = a(|z|)
satisfies 4/(r) < 0 whenever r > 0 and @(r) > 0. The same result is true when p > 2 if it
is assumed in addition that the critical set of the solution wu is reduced to one point (see
[16]). These assumptions are not necessary for us but, of course, we only deal with least
energy solutions.

Remark 13 (i) The symmetry results in Section 2 hold without any change if we replace
the functional J by a functional of the form / N Z Ai(u, Vu;)dr where £ — A;(u, €) is
RY =1

p-homogeneous for any ¢ = 1, ..., m.

(ii) Our method still works for more general functionals of the form
- 1 m .
Ju:f/ z|* A;(w)|Vu,; [P do and Vu:/ 2|PG(u) dx.
()pRNHl;()\ | (w) = |, [#17G )

In this case, using Theorem 1 in [15], we obtain that minimizers (and the corresponding
minimum action solutions) are axially symmetric.
Functionals of this type appear, e.g., in the Caffarelli-Kohn-Nirenberg problem (which

consists in minimizing N |Vul?z|~* dx under the constraint / N \ulP|z| = dz = const.,
R R

where ¢ > 1, p>1,a <b< % and 0 < % — % = %H’) It has been proved that min-
imizers for this problem exist and, in general, are not radially symmetric (see [4] and

references therein).
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Abstract

We present a new approach to study the symmetry of minimizers for a large class of
nonlocal variational problems. This approach which generalizes the Reflection method is
based on the obtention of some integral identities. We study the identities that lead to
symmetry results, the functionals that can be considered and the function spaces that
can be used. Then we use our method to prove the symmetry of minimizers for a class
of variational problems involving the fractional powers of Laplacian, for the generalized
Choquard functional and for the standing waves of the Davey-Stewartson equation.
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1 Introduction

Many important partial differential equations arising in Physics are Euler-Lagrange equations
of variational problems. Among the solutions of these equations those who correspond to a
minimum of the associated functional (e.g. the “energy”) subject to some constraint are of
particular interest. For example in many situations the set of such solutions is orbitally stable
(see [9]).

In this paper we address the general question of whether, or not, the fact that the underlying
problem has some symmetries is reflected on the minimizers. Namely if a problem is invariant
under the action of a group of transformations, is it true that the corresponding minimizers are
also invariant under the action of this group (or, perhaps, a subgroup of it) ? As it is shown

n [14], this may not be the case.

A classical approach to radial symmetry of minimizers is Schwarz symmetrization (or
spherical decreasing rearrangement, see [16]). For a nonnegative function u € H'(RY) its
symmetrization u* is a radially-decreasing function from R into R which has the property
that meas({z € RN | u(z) > A} = meas({zx € RN | u*(x) > A} for any A > 0. It is well-known



that u* satisfies (among others) the following properties:

(1.1) /RN V()2 de g/RN Vu(z)2dz and /RN F'@)de = [ Plu())de,

where F is, say, a smooth function from R into itself such that F(u) € L'(RY) (see [16]). As
a simple application of symmetrization, consider the problem of minimizing

B(u) = ;/RN \Vu(x)|2dac+/RN Flu(z)) da

subject to the constraint
G(u(z))de = A,
RN

where F, G € C'(R,R) have the property that F(u), G(u) € L'(R”Y) whenever u € H'(RY).
If u € H'(R") is a nonnegative minimizer, then from (1.1) it follows that u* also satisfies the
constraint and F(u*) < E(u); therefore, u* is also a minimizer. To show that u = u* except
for translation is a more delicate question and this follows from a result in [6] and the Unique
Continuation Principle.

The case of nonlocal functionals also arises in applications. For instance, the Choquard
problem consists in minimizing

u?(z)u?

subject to

/R3 u?(z) de = \.

The radial symmetry of minimizers of Choquard problem has been proved in [15] by using
Riesz’ inequality for rearrangements :

12 [ @ -ph@dedy < [ (@)@ =gk (o) dady,
RNV xRN RN xRN

where f,g and h are nonnegative functions. Moreover, if ¢ is strictly symmetric-decreasing
then equality holds in (1.2) if and only if f(z) = f*(x — y) and h(x) = h*(z — y) for some
y € RN,

In the vector case symmetrization can also be used because of the inequality
(1.3) Fu*(z),v"(x))de < | F(u(z),v(z)) dr,

RN RN

which holds provided that the function F' is C? and satisfies the cooperative condition % (u,v) <
0 for u,v > 0 (see [5]). Therefore, consider the problem of minimizing

E(u,v) = ;/RN(|VU(33)|2 + |Vo(x)|?) dz + /RN F(u(z),v(z))dx

subject to the constraint

[ (Gru@) + Gafo(w) dz = A
R

where %(u,v) < 0 for u,v > 0. If (u,v) is a nonnegative minimizer, then from (1.1) and
(1.3) we see that (u*,v*) is also a minimizer. Notice that the function defining the constraint



must have a special form because we want the value of the constraint to be preserved by
symmetrization.

Another tool to prove radial symmetry of minimizers is the result by Gidas, Ni and Niren-
berg [11] about the radial symmetry of positive solutions of the semilinear elliptic equation

—Au+ f(u) =0.

In the case of systems, an extension of that result has been proved in [7] and [25] assum-
ing a cooperative condition for the nonlinearity. In [11] as well as in its generalizations the
nonlinearities are also allowed to depend on the space variable in a radial and monotonic way.

As we can see, in the vector case, besides the need to know in advance that the components
of the minimizer are positive, both methods described above require the nonlinearity to satisfy
a cooperative condition and the function defining the constraint to have a special form. To
avoid these two restrictions, the Reflection method has been developed in [18] and [19]. We
now briefly describe this method.

Consider the problem of minimizing

E(u,v) = ;/RN(|VU(3:)|2 + |Vo(z)|?) dz + /RN F(u(z),v(x))dx

subject to
G(u(z),v(z))dxr =X #0.
RN
To show that any minimizer (u,v) is symmetric with respect to x; (except possibly for a
translation), we first make a translation in the x; variable in such way that

A
(1.4) [{x1<0} Glul(z), v(z)) dz = /{mo} Glu(z), v(z)) dr = 5.

Next, setting x = (21,2'), where 2’ € RY~!, we define the functions u; and uy by

u(xy,2’) if 1 <0,

u(—zy,2") if x1 >0 and

uy(z) = uy (1, 2) = { us(z) = { u(—xy,2') if 21 <0,

| w(zy, ) if 1 > 0.

In a similar way we define v; and vy. According to (1.4), the pairs (uj,v;) and (ug,ve2) also
satisfy the constraint (i.e. they are admissible). Moreover, a change of variables shows that

(1.5) E(ui,v1) + E(ug2,v2) = 2E(u,v).

Thus (u1,v1) and (ug, v2) are also minimizers. This shows that there exist minimizers which are
symmetric with respect to z1. In fact, by using the Euler-Lagrange equations and the Unique
Continuation Principle we can show that necessarily (u1,v1) = (u,v) = (ug,v2). Clearly, this
implies that any minimizer (u,v) is symmetric with respect to the first variable. Replacing the
x1—direction by any other direction in R" and repeating the same argument, we can show
that (u,v) is radially symmetric except for translation (details will be given later). Notice that
to use this argument there is no need to know the sign of components of the minimizers.

The main point of this paper is to extend the Reflection method to a class of nonlocal
functionals. To be more specific, consider the problem of minimizing

(1.6) Eu, v) :/RN(;](—A)SUF—F;]Vv|2)dx+/RN Flu, v) da



subject to the constraint

(1.7) Q(u,v) = G(u,v)dx =X #0,
RN
where 0 < s < 1. Defining
]. S 2
W(u) = 2 e |(—A)2ul” dx

and (u1,u2) and (vi,v2) as above, instead of (1.5) we have
E(U1,U1) + E(UQ,UQ) — 2E(u, U) = W(ul) + W(’u,g) — 2W(u)

Therefore, to show that the pairs (u;,v1) and (ug,v2) are also minimizers we need to know
that the following inequality holds

(1.8) W(uy) + W(ug) — 2W(u) <O0.

The key to the method developed here is to show that inequality (1.8) holds true (see
Theorem 2.8). Moreover, we have equality in (1.8) if and only if u is symmetric with respect
to x1. As we will see, this gives the desired radial symmetry of minimizers. More general
multipliers m(§) and more regular nonlocal functionals like the one appearing in the Choquard
problem above are also considered. In this article we will use this extended Reflection method
to show the symmetry of all minimizers of the following problems:

e the Hamiltonian of a coupled system between a multidimensional Korteweg-de Vries
equation and a Benjamin-Ono equation (this is precisely problem (1.6)-(1.7) with s =
1/2). Here the minimizers correspond to solitary waves;

e the generalized Choquard problem. In this case the minimizers give rise to standing
waves for the generalized Hartree equation;

e the Hamiltonian of the generalized Davey-Stewartson equation. Here again, minimizers
correspond to standing waves.

The existence of minimizers for these problems can be proved by using the concentration-
compactness method [17] or the alternative method presented in [20] and will not be discussed
here.

Notice that the symmetrization approach, in general, does not apply to the problems above.
Indeed, in the first two examples, symmetrization cannot be used to prove the existence of a
radially symmetric minimizer under the general assumptions on the nonlinearities made in
this paper. Furthermore, with the tools available at the present time, it is not clear how to
prove the radial symmetry of all minimizers, even in the cases where symmetrization can be
used to prove the existence of a radially symmetric minimizer. Finally, in the last example,
symmetrization cannot be used because one term of the Hamiltonian of the Davey-Stewartson
equation is a singular integral operator whose kernel changes sign.

This paper is organized as follows: in the next section we present some integral identities
for functionals of the form W(u) = / . m(€)|a(€)? d¢. These identities are first proved for
R

functions v € C2° and are crucial for our approach to symmetry. It will also appear clearly
what kind of symbols m(£) we may consider. In section 3 we search for appropriate function
spaces on which our method can be applied. It will be proved that we may work on H*® (RN )
or on H*(RN) if —% <s< % We will extend the integral identities obtained in section 2 to
these function spaces. In section 4 we apply our results to the concrete problems presented
above. We end this article with some open problems.



2 Some identities

In what follows, = (21, 72,...,2x) = (z1,2') denotes a point of RV, 2/ = (29,...,2x) €
RN € = (6,&,...,&6n) = (&,€) € RN with & = (&,...,6y) € RY7L. We denote the

Fourier transform either by = or by F.

The aim of this section is to prove an identity for some functionals of the type

(2.1) W= [ m(©la©)? de

which will play a very important role in proving symmetries.

Consider a function u € C°(RY). We define the reflected functions u; and ug as follows :

B n ) ou(z,2’) iz <O, ) (=, 2) if 2y <0,
(22) w(z) = w(w, o) = { u(—zy,2") if 21 >0 and us(z) = u(zy, ') if 21 > 0.

We also define

(23) @) = Sluler,a!) +uera)  and () = L (u(en,a!) — (-1, 7).

Clearly, f,g € C°(RY), g is even and f is odd with respect to 21 and v = f + g. Let

2.0 ro = { G e <o

Then f, is even with respect to x1, uy = g — f« and us = g + fs.
We want to study the quantity

(2.5) W(ur) + W(u2) — 2W (u)

where W is given by (2.1). Later in Theorem 2.8 we specify the class of multipliers under
consideration but, at this early stage, besides integrability conditions, we assume that

(2.6) m(€) is real and m(—£&1,¢&") = m(&,€).
We have :
(2.7) §(—§1,§/) _ /RN eixlé‘lfim/.ﬁ'g(xhx/)dx _ /RN e*iylﬁlfiz’.é’g(_yl?x/)dyldx/
= ./g\(glafl)
and
(2.8) J?(_flyfl) _ /RN eix:fl—ix'.f'f<m17$/)dm _ /RN e—iylfl—ix'f’f(_yh x')dyld:c’
= —f(&1,€)-
Therefore
W(u1) + W(ug) — 2W (u)
= /RN m(&1,€)(13(€) — F(&1* +13(€) + F(&)I* — 213(&) + F(©)I?) dg
(2.9)

=

= [ & CIFOF ~ 2FOF - 4Re(@(€) ) d

=2 [ mle IR ©F - 1FOP ds =2W (1) —2W ()
R
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=

because / N m(&1, &) Re(g(€) f(€)dé = 0 in view of (2.6), (2.7) and (2.8).
It is easy ?0 see that

~

f(&,f’) = /R/RNi1 efixlﬁlfix’.g’f(th,) da’ dzy
* ] 3 o
:/0 ‘/RNil(eimlél _eleél)efm £ f(l'l,l'/) da’ day

= —2i/ / sin(z1£1)e” € fxy, 2') da’ dy
0 N—1

and

~

f* (51’ 5/) N /R /RN—1 e_irlgl_m/‘glf* (1'17 $,) dx’ dSUl
= A /RN—I(e—imEl + eiml&)e—ix’{/f(gch :C/) da’ dz;

oo s !
= 2/ / cos(z1&1)e % f(xy, 2') da’ day.
0 RN—l
We denote by Fn_1 the partial Fourier transform in the last N — 1 variables, that is

Fnoif(z1,€) = / e_m/'gf(xl, 2')da’.
RN-1

Since f € C°(RYN) we may use Fubini’s theorem to get

=

1F(&1, )% = f&1,€) f(&,€)

- 4/00 /00 sin(21£1) sin(y1&1) (Fn—1.f) (21, &) (Fn-1f)(y1, &) day dyy
o Jo

and similarly

|fe€1, €)1 = ful1, &) fu(6r,€)

= 4/00 /OO cos(z1&1) cos(y1&1 ) (Fn-1f)(x1, &) Fn_1f)(y1,&) day dy;.
o Jo

Consequently,
(2.10)

W) =W = [ (& )17 €)1 = |6, €)P) de

= 4/ m(&1, &) /Oo /OO[COS(ﬂflfl)COS(ylil) — sin(x1&1) sin(y1£1)]
RN 0 0
(Fnoa )@, &) Fn=af) (v, &) dey dyy d§

= 4/ m(&1,¢) /oo /oo cos((z1 4+ y1)&1) (FN-1.f) (@1, &)V (Fn-1f)(y1,€) day dys dE.
RN o Jo
For an arbitrary (but fixed) ¢ € RV~ we define g (t) = (Fy_1f)(t,&). Since f €

C>(RYN), it is clear that g € C°(R). If supp(f) C Bgrw (0, R), then supp(pg) C [-R, R].
For z € C, we define

(2.11) he (2) = /0 /0 @7 o () oer (gr) day dy.

6



Since ¢ is bounded and has compact support, hg is well-defined and is an holomorphic
function on C. For any z € R we have

hg/ / / —i(z1ty1)z ©er (551)%05/ (yl) dl‘l dy1 = hf/(*Z)

and

Re(he () = g (he (2) + (@) = [ [ cosl(ar +m)2)e (o) pelon) dan .

From (2.6), (2.9) and (2.10) we get

(212) War) +Wlu) = 2W(w) = 2W(£) —2W(H =8 [ [ mer¢he() dea de’

Some properties of the function hes are given in the next lemma. To simplify the notation, we
shall write h instead of her.

Lemma 2.1 For any fized ', the function h = hg given by (2.11) has the following properties:
i) h is bounded in the upper half-plane {z € C | Im(z) > 0}.
i1) There exists a constant C > 0 (depending on f and &') such that for any z # 0 with
Im(z) > 0 we have:
<«

L and
z

(2.13) |h(2)] <

(2.14) W (2)| < ﬁ

Proof. i) If b> 0 and x > 0 then |ei‘”‘_bx] <1 and we have

(a +ib)| = eil@ityr)a—( r1+y1)b¢£,(m)%,(yl) dx1 dy

s(/0 . I%'()Idt) < ([ reewra)

i1) It is clear that
(2.15) W) = [T e pglon) don [T e el dyn = W (2)0a(2),
where U1 (z) and Wy (z) are defined in an obvious way. Notice that ¢ (0) = (Fy—1f)(0,£) =0
because f(0,2’) = 0 (recall that f is odd with respect to x1). Moreover, for any k € N,

" 4" e
ﬁ@&’(t) = gk /RN_1 e f(t,z) dx

ok f
Oxk

o OF F
—_ —ix'€ t /d F
RN-  © 3:51( ) = (Fn-1gr

)(€)

is a C2° function of ¢, uniformly bounded for (¢,¢') € R x RN ™!, Integrating by parts, we get:

> itz 1 itz
\111(2’) :/0 et (pg(t)dt: fet gagl(t)

(74

> 1 o itz |
o — E 0 (& gﬁgl(t) dt

eitz ! > 1 > itz I
:_(iz)2¢§/(t)‘t:0+(i2)2/o e cpg,(t)dt

|: + / eztz S016/ ]



It is clear that a similar estimate is true for Wo(z); hence (2.13) holds.
In a similar way we have

_*A ¢i* % (tper (1)) dt

1
i :/ it itz () dt = = ztzt ,
1(2) = [ iteTpet)dt = —eTtoe(t)] -2 p

1 ,.d oo 1 [ . d?
= ——e" —(tpe (t — toe (t)) dt
iz2° dt( ve ))’to - iZ2/0 ¢ dt2( e (t)

1, d?

00 1 00 d3
=~ gl ®)| 45 [ sl ar

[wg +/ ﬁSWA»ﬁ}

Since an analogous estimate is valid for U5 (z) and h/(z) = ¥} (2)Wa(2)+ V1 (2)Ph(z), inequality
(2.14) holds. O

0

8—f(0,x’) does not vanish identically; hence Fn_1f(0,&") # 0 for
€1

some ¢, i.e. there exists §’ such that ¢, (0) # 0. For such ¢', the functions ¥ and W2 do not

Remark 2.2 In general,

1
decay faster than W and then the estimate (2.13) is optimal.

Remark 2.3 Note that for any ¢t € R we have

2
Zt ’/ (p;;ﬂ a:l)dxl S [0, OO)

Suppose that for any fixed & € RN m(&,¢) admits an holomorphic extension z +—
m(z,&’) to the upper half-plane {z € C | Im(z) > 0}, with possibly some singularities on the
imaginary axis {it | t € [0,00)}. If |m(2,¢’)| increases more slowly than |z|? as |z| — oo, then
o0
m(&1,&)h(&r) d€y should depend only on the values of h on the singular set of m(-,£’). This

simple idea will enable us to prove the identities that will be crucial in symmetry problems.

In order to clarify what kind of symbols may be considered, we start with some auxiliary
technical results about holomorphic functions in a half-plane and their boundary values.

Given a function a € LP(R), 1 < p < oo, we recall that its Hilbert transform is defined by

(Ha)(z) = lim - alz —y)

dy or equivalently Ha(¢) = —isgn(€) a(s).
=0T Hlyl>ey Y

It is well-known that H is a bounded linear mapping from LP(R) into LP(R) (see, e.g., Chapter
IT in [23], or inequality (2.11) p. 188 in [24]).
In the next two lemmas we collect some classical facts that will be very useful in the sequel.

Lemma 2.4 Consider o € LP(R), 1 < p < 00, and let § = Ha. For x >0 and y € R define

a(r,y) = i/zmmt)dt = o:OP(y—t,:n)oz(t)alt and
b(z,y) = —i/o:oﬂ_i_y(;t_t)Za(t)dt = — O:OQ(y—t,x)a(t)dt,



1 k 1
where P(s, k) = Sy and Q(s, k) = —
T

S
T s2 + k2
conjugate Poisson kernel.
Then we have:
i) b(z,y) = —/ P(y —t,x)B(t) dt for any x >0 and t € R.

are the Poisson kernel, respectively the

i) |la(z, )lrwr)y < llellewy, 106z, )o@y < I1Bllrw) and |la(z, ) — allpw) — 0,
I[b(z,-) + Bllrrr) — 0 as © — 0. Moreover, a(x,y) — a(y) for any y in the Lebesgue set
of a (hence almost everywhere) and b(x,y) — —B(y) for any y in the Lebesgue set of 3.

iii) The functions a and b are harmonic in {(z,y) € R? | z > 0} and r(2) = r(z +iy) :=
a(x,y) + ib(z,y) is holomorphic in {z € C | Re(z) > 0}.

iv) For any 6 > 0 we have

\(x,y)|1ggo,x25a($’y) 0 and |(x,y)|lggo,x25 b(z,y) = 0.

v) Suppose in addition that « is even and there exists ¢ > 0 such that o« = 0 on [—¢,¢].
Then a and b are well-defined, bounded and harmonic in the strip {(x,y) € R? -5 <y<5},
r is well-defined and holomorphic in this strip and r(0) = 0.

Proof. 1) is exactly Lemma 1.5 p. 219 in [24] and ) follows from Theorem 2.1 p. 47 in
[24]. Since the Poisson kernel is a harmonic function, it is straightforward that a and b are
harmonic. It is easy to check that the Cauchy-Riemann conditions % = g—z and g—; = —% are

satisfied; then r is holomorphic in {z € C | Re(z) > 0} and i) holds.
iv) Using Lemma 2.6 p. 51 in [24] we infer that there exists a constant A > 0 such that

A
(2.16) oo,y < Az ) <

Allel|ze
T "L’%

for any z > 0 and y € R.

We fix € > 0. It follows from (2.16) that there exists M > 0 such that |a(z,y)| < e and
|b(x,y)| < € for any (x,y) with x > M. Let ¢ € (1,00) be the conjugate exponent of p, i.e.
%—I—é = 1. It is easy to see that [|P(-,z)||,1r) = 1 and |[P(-,2)|[por) = L. consequently,

1 1 11
HP(-,x)HLq(R) < ||P(-,a;)|]zl(R)HP(-,x)Hzm(R) = prx r. Also, for any B > 0 we have

[PC @) L1 ((Boo)) = = (% — arctan %) and ||P(-, )| ((B,00)) = 7 7757 hence

1 1
1 T » (1 1 B\«
(2.17) 1PCausan < () (5 5 oetan )"
A similar estimate holds on (—oco,—B]. For any = € [0, M] and any y > 2B we have

[1P(2)||La((y—ByrB)) < [P 2)|[La((B,00)) and

la(z, )| < ‘/j; Ply —t,2)a(t) dt’ + ‘ /{WB} Ply —t,2)a(t) dt‘

< + [P 2)l[Law) - ]| Lo (o0, BIUIB o0))

y+B
/ P(s,z)a(y —s)ds
y

(2.18) < IPCs2)lraqy-Byrn)  llalle@) + [1PC ) Lam) - el Le((—oo,B1UB,00))

1 1

1z \r/1 1 B\
< lled[ o (w) T2 B 5 Arctan — + el ze (oo, BlUB0o) T PT P

1 1

M » (1 1 B\ _1 1
<|la||rr) 021 BY) 5—;arctanﬂ + ||| o ((—o0, BIUB,0o)T PO 7.

9



We may choose B = B(¢) sufficiently large so that the right-hand side term in (2.18) is less
than . Then for any = € [§, M] and y > 2B(e) we have |a(z,y)| < e. Clearly the same
inequality is true if y < —2B. Therefore |a(z,y)| < e if 2 > M or if |y| > 2B and z € [§, M].
Since € was arbitrary, we infer that |a(z,y)] — 0 as |(z,y)| — oo and x > §. A similar proof
is valid for the function b and 4v) is proved.

v) For any y € [-5, 5] and ¢ € supp(a) we have |t — |>€ hence 22 + (y t)ZZ%and
X

|P(y —t,x)| = 1‘m| < L4 ||, therefore |P(y — t,2)| < L min (62|x\, 5T tl) Similarly

IQ(y — t,x)| = 1]m\ < Llmin (—\y t|, = t‘>. Thus P(y —+z) and Q(y — -, x) are
uniformly bounded in LI(R) for (x,y) € [-1,1] x [=5,5]. It follows that a and b are well-
defined for any (z,y) with |y| < § and bounded near the origin. It is straightforward to check
that a and b are twice continuously differentiable, Aa = Ab = 0 and r(x+iy) = a(z,y)+ib(z,y)

is holomorphic. Clearly, a(0,y) = 0 for any y € [-5, 5] and b(z,0) = ma(t) dt =0
o x
for any x € R because t — tuﬁ is odd and t — «(t) is even. Hence r(0) = 0. O
Lemma 2.5 Let i be a finite Borel measure on R. For x > 0 and y € R define
1 [ T o
a(z,y) = W/Oowd#(t) = [00 Py —t,z)du(t) and
o) = — [ A = - [T Q- tadu)
7y - T 7oox2+(y_t)2 ,UJ - e y ) M )

where P(s,k) and Q(s,k) are the Poisson kernel, respectively the conjugate Poisson kernel.
Then:
i) The functions a and b are harmonic in {(z,y) € R? | x > 0} and r(2) = r(z +iy) :=
a(x,y) + ib(z,y) is holomorphic in the right half-plane {z € C | Re(z) > 0}.
it) For any © > 0 and any p, 1 < p < oo, we have

1
(2.19) a(z, Nrr@w) < ——llpll;

mTaxd

where q is the conjugate exponent of p and ||p|| is the total variation of u. Furthermore,

(220) tim [ alw.y)é(y)dy = [ o(y) diy)
R R

z—0

for any function ¢ which is continuous on R and tends to zero at +oo.
iii) For any x > 0 we have [b(z,y)| < 5||ul|.
iv) For x > 0 we have b(x,-) = —Ha(z,-) and for any z1, x2 > 0,

(2.21) a(@1 + 79,7) = /O; Ply — t, 21)a(ws, £) dut),
(2.22)  b(z1 + x2,y) = /_O:O P(y —t,z1)b(xe, t) du(t) = — /_O:O Q(y — t,z1)a(za, t) du(t).

v) For any p € (1,00) there exists A, > 0 such that
_p=1
oz, )lr ) < Apz 7 [l
vi) For any 6 > 0,

i -0 d i b _ o
(e, e 7 Y) M e azs " Y)

10



vii) Suppose in addition that pu(S) = u(—=S) and pu(SN[—e,e]) = 0 for any Borel measurable
set S. Then a and b are well-defined, bounded and holomorphic in the strip {(z,y) € R? | -5 <
y < 5}, the function r(x +iy) = a(x,y) + ib(x,y) is holomorphic in that strip and r(0) = 0.

Proof. i) If x > 0, the functions ¢t — P(y—t,x) and t — Q(y—t, x) are continuous on R and
tend to zero at +oo; hence a(z,y) and b(x,y) are well-defined. Using Lebesgue’s Dominated
Convergence Theorem it is easy to check that a and b are twice continuously differentiable

and Aa = Ab = 0. Moreover, a and b satisfy the Cauchy-Riemann conditions % = g—z and

g—; = —%, and then r = a + ¢b is holomorphic in the right half-plane.
i) It follows from Theorem 2.3 p. 49 in [24] that ||a(x, -)||;1(r) < ||p|| and that (2.20) holds.
It is obvious that || Py — )| |=(r) < 2: hence [a(z, )| < [[P(y —2)] |1y Il = 25l lul

T’

1 1 11
Finally, for 1 < p < oo we have ||a(z,-)||r» < |la(z, )|} - lla(z,)|[]. <7 a2 af|p]].

iii) It is obvious that |Q(y — t,z)| < 5-— and this implies
b(z, ) < 1Qy — - )|yl < gz llell.

iv) We have just proved that a and b are harmonic in the right half-plane and bounded
in each proper sub-half-plane {(z,y) € R? | # > §}, where 6 > 0. Then (2.21) and the first

equality in (2.22) follow directly from Lemma 2.7 p. 51 in [24]. Fix 9 > 0. We introduce the
function

ri(z) =ri(x +iy) = /_O:O Py —t,x)a(xo,t) dt — z/_o:o Q(y —t,x)a(we,t) dt.

It is not hard to see that a(za,-) € LP(R) for any p € [1,00], a(ze,-) is C*° and Ha(xe,-)
is continuous. It is clear that r; is bounded and by Lemma 2.4 i) and 4ii) we infer that
r1 is holomorphic in the right half-plane, lin% Re(ri(z,y)) = a(xe,y) and lir% Im(ri(z,y)) =
T— T—s
—(Ha(xa,))(y) for any y € R. Let ro(z) = r(x2 + 2) — r1(z). It is easy to see that rg is
well-defined, bounded and holomorphic in the right half-plane and ﬁH(l) Re(ra(x,y)) = 0. Using
xTr—

Schwarz’ reflection principle (see, e.g., [8] p. 75), we may extend r3 to a holomorphic function 79
defined in the whole complex plane so that we have 75(2) = —r2(—%) for any z with Re(z) < 0.
Since 79 is also bounded, from Liouville’s theorem it follows that 79 is constant. From i)
and 74) we infer that Jim r(z) = 0 and from Lemma 2.4, part iv), we get Jim 7y (x) = 0;

hence leHSO ro(xz) = 0. Consequently 79 is identically zero on C, that is ri(z) = r(z2 + 2).
This proves the second equality in (2.22). Moreover, we have Im(r(xs + iy)) = b(x2,y) and
lin% Im(ri(z +iy)) = —H(a(x2,-))(y); we conclude that b(z2,-) = —H (a(z2,-)).

v) We know that there exists C), > 0 such that ||H¢||rr < Cpl|d||rr for any ¢ € LP(R).
Using 4i) and iv) we get

1 _1
[b(2, )L = [|Ha(z,)[Lr < Cpllalz,)[[Lr < Cpm a3 ]|ul]

for any x > 0, Where%—i—%: 1.

vi) is a direct consequence of (2.21), (2.22) and Lemma 2.4, part iw). The proof of vii) is
very similar to the proof of part v) of Lemma 2.4 and we omit it. |

Remark 2.6 Under the assumptions v) of Lemma 2.4 (respectively vii) of Lemma 2.5) an
easy computation gives

1

Oa 0b 1 [ ot ob 1

. Oa
%(0,0) = ({Ty(O,O) = /_OO e dt, respectively 8—33(0,0) = a—y(0,0) = /_OO

11



or

If « is nonnegative and o # 0 (respectively if p is a positive measure) we have 8—(0) =
z
da

dx

(0,0) > 0; hence z = 0 is a simple zero of .

After this preparation, we come back to the study of the integral / m(&1, & )he (1) d&
R
which appears in the right hand side of (2.12).

Lemma 2.7 Suppose that for a given &' € RN™1 the symbol m(£1,€') can be written as

m(&1, &) = Ao(&) + AL(&)[] + A2(€)EF

_ —duer o(t 2/ e due 4 (t 4/ e ot
(2.23) +7r {/R £%+t2 He ,0( )+ &1 Rﬁ%'ﬁ‘tz 1273 ,1( )+ & Rf%+t2 s 72( )

1 1
+= /7a/ t)dt,
ﬂ]§)|§1| RETE ¢ k(1)

where :

a) Ao(§), Ai(£), Ax(¢) ER,

b) pe i are finite Borel measures on R such that pe i(S) = per i(—=S) for any Borel mea-
surable set S C R, 1=0, 1, 2.

c) ag i, € LPE(R) for some py € (1,00) and ag , are even functions, k=0, 1, 2, 3, 4.

d) There exists n > 0 such that ag g = 0 on [—n,n] and pe o(S) = 0 for any Borel
measurable set S C [—n,n].
Let Ber1 = Hogry and Ber 3 = Hogr 3, where H is the Hilbert transform. If h = he is given by
(2.11) then we have the identity:

5| miaemenda = —ane) [ enin) a

(2.24) + /0 - h(t“) dpero(t) - /0 b h(it) duer 1 (8) + /0  Bhit) dug o (1)
+ / (af/ + B 1 (1) — tag a(t) — 26 3(1) +t30¢£'74(t)> h(it) dt.

Proof. Fori=0,1, 2 and z =z + iy € C with Re(z) > 0 we define
1 T ) y—t
i = — ———dper (1) — — ———————dpuer ;(t).

In view of Lemma 2.5, p; are well-defined and holomorphic in the right half-plane {z €
C | Re(z) > 0}. Moreover, by assumption d) and Lemma 2.5, part vii), pp admits an
holomorphic extension to the domain {z € C | Re(z) > 0 or [Im(z)| < 2}, and po(0) = 0.

Consequently, Po(z)
z
For k=0, 1, 2, 3, 4 we define

1 T 1 y—t
=— | ———agp(t)dt — — | —F——=ag (1) dt.
s(2) Tr/qu(ytyaf’k() W/f{x2+(yt)2a§’k()

is holomorphic in this domain and is bounded in a neighbourhood of zero.

12



It follows from Lemma 2.4 that rp are well-defined and holomorphic in the right half-plane.
Furthermore, ro admits an holomorphic extenion to {z € C | Re(z) > 0 or [Im(z)| < 2} and

ro(z)

r0(0) = 0; therefore,
Finally, we define

is holomorphic in this domain and bounded near zero.

4
(2.25)  me(2) = Ao(&) + Ai1(&)z + Ao (€22 + poiz) + 2p1(2) + 2pa(2) + Z zkilrk(z).
k=0

It is obvious that mg is well-defined and holomorphic in the right half-plane. Since oy,

and g ; are “even” and t — éﬁ is odd, for any & > 0 we have Im(mg (§1)) = 0 and
1

me:(€1) = Re(mg (€1)) = m(&1, ).

For e, R > 0, consider the closed continuous path 7. g composed by the following pieces :

Yer(t) =1, ‘ t € e, e+ RJ
v2er() =e+ R’  0€0,5]
Yaer(t) =c+i(R—1t), t€l0,R)]

The function z — mg/(2)h(z) being holomorphic in the right half-plane we have
/ me (2)h(2) dz = 0, that is
Ye,R

(2.26) / e, €h(E)) dér + /

5 Y2,e,R

me(2)h(2) dz + / me(2)h(2)dz = 0.

V3,6, R

It follows from (2.25), Lemma 2.4 part 7v) and Lemma 2.5 part vi) that lim e ?Ez) =
|z]—00, Re(z)>e 2

. . mgl (E -+ Rew)
O hence, iy (e Re®)? A and,
Lemma 2.1 part i), we have |h(e + Re®)| < m and then |(g + Re?)3h(e + Re') -iRe'?| <

= 0 uniformly with respect to § € [0, 7]. On the other hand, from

|E+CTIEW| < Igi < 2C for any R > 2¢. We infer that Rlim me (2)h(2)dz = 0.
o0 Y2,e,R

From (2.16) and (2.19) it follows that |m(&,&)| < CJ& |~ for 0 < & < 1 and
Im(&1,€)| < Cl€|>7% for large & and some C, 61, 62 > 0. Since h is continuous and

|h(&1)] < ﬁ (see(2.13)), the integral /0 m(&1, €)h(&1) d€1 converges absolutely.

Clearly we have
R
/ me (2)h(z) dz = —z’/ mer (e +1y)h(e + iy) dy.
¥3,e,R 0
o0
Passing to the limit as R — oo in (2.26) we infer that / mgr (e+iy)h(e+iy) dy converges and
0

(2.27) | mineniends =i [ mete +ighie +iv) dy.

£

Since m(&1,&’) is real and symmetric with respect to & we have

| migeminda = [T mi-n-6)de = [ mer, )R e,

13



and then, taking (2.27) into account, we get

228) [ m(e¢)he)dé + / m(€1,€h(er) dés = =2 [ Im(me (e + iy)h(e + i) dy
hence
(2.29) | mie€mie) der = —2lim [~ Tm(me (e + in)he + i) dy.

—00 e—=UJo

Since h(iy) € R for y € [0,00), using Lemma 2.1 and the Dominated Convergence Theorem
we find

limy [ 1 [(Ao(€) + A1(€) = + i) + Aa(€)(e + i) e + )] dy
(2.30) =Jo

o0 .
=A1(£’)/0 y h(iy) dy.
Let x € C&(R,Ry) be such that supp(x) C [~7,7] and x = 1 on [, ¥]. Since the

function z — P22 p(2) is uniformly continuous on [—1,1] x [—7. 7] we have

tim [ T [Mh(ﬁﬂy)x(y)} dy = /oo Im (po@y)h(zy)x(y)) dy

e—0Jo €+ Zy 0 ZZ/
(2.31)

© Re(po(iy )
= —/0 (;())h(w)x(y) dy = 0.

By Lemma 2.1 we infer that there exists C; > 0 such that |h(e+iy)—h(iy)| < eCimin(1, ﬁ)

for any y € (0,00) and € € [0,1]. It is easy to see that |( ;tlyy) - %yy)) (1 —x(y)] <

Cae min(%, 1) for any y € (0,00) and some Cy > 0. Consequently there exists Cs > 0 such
that
R
(2.32) H < e +iy) (zy)> (1—x(v)) < Cse for any p € [1, 00].
ety vy LP(0,00)

Using the Cauchy-Schwarz inequality, Lemma 2.5 parts i) and v) and (2.32), we get

’/Ooopo(5 +iy) (h(e ﬂy) - h(.iy)) (1 —x(v)) dy‘

e+y 1Y
(2.33) < (IIRe(po(e + i)l 2 + ||1m<p+o<s +i))llz l *(®))
e+iy)
H ( ety ) (1- X(y))‘ L2(0,00)
§C4e% —0ase — 0.
We also have by (2.20) and assumption d),
[ _h(i
im [~ 1m [pole -+ )™ (1 - x(9)] dy
e=0Jo Y
o0 L h(i
(2.31) =t [ Re(m(e +i9) "2 (1~ )y
0 h(iy) /°° h(iy)
= 1— dpero(y) = — dpero(y).
/0 ) (1= x(v)) dpe o(y) L,y e 0(y)
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From (2.31), (2.33) and (2.34) we get

[ [pole +iy) . } /°° h(iy)
2. lim Im h dy = dpigr .
(2.35) lim | [ ey et dy .y o)

This proof can be slightly modified to show that

> h(iy)
y

ro(e +iy)
€+y

o
(2.36) lin% Im [ h(e + zy)} dy = —/ ag o(y) dy.
e—0.Jo 0
(All we have to do is to use Holder’s inequality to obtain an analogous of (2.33) and to use
Lemma 2.4 part 4) instead of (2.20) to get an analogous of (2.34)). Moreover, it is easy to
see that |(c + iy)’h(e + iy) — (iy)’h(iy)| < Csemin(1, y%) for y € (0,00), ¢ € {0,1,2,3} and

e € [0,1]. Therefore, there exists Cg > 0 such that
(2:37) 16 + i)™ (e + i) — ()" h(iy)l o (0.00) < Coe

for any € € [0,1], k € {1, 2, 3, 4} and p € [1,00]. This implies that

/OOO Im ((5 + iy)* " h(e + iy)rp(e + zy)) dy — /Ooo Im ((iy)k_lh(iy)rk(s + ZZJ)) dy‘

< (IIRe(rk(e + i)l Lo + [Mm(ri(e + i))llzes ) [|(€ + i) * (e + iy) — (i) hiy)l| Lo (0,00)

§ (||Oé€/7k||LPk + ||HO[€/,]€||LP}€) 068 — 0 as e — 0.

Consequently we have

o0

lim Im ((a—: +iy)* e (e +iy)h(e + iy)) dy
e—0 Jo
(2.38)
= lim Im ((iy)k_lrk(S + Zy)h(zy)) dy,
e—0Jo

where the latter limit exists by Lemma 2.4 i) and (2.13). Using (2.38) and Lemma 2.4 i) we
obtain :

(2:39) tim [t (1 (e + ig)h(e + i) dy = = [ (Hag ) w)hiy) dy
240)  lim [T (e i)rae+inh(e +i9) dy = [ aga(w) - yhiiy) dy,
@4l [T (e igPrale + iph(e + i) dy= [ (Haea)(w) - y*hiiy) dy.
—vJo 0
(242)  dim [ (e i)+ inh(e+ i) dy = - /O aea(y) - v*hiiy) dy.
Similarly we find
lim [ 1 (e + ig)pa(e + i)he + i) dy = lim [~ I (pa(e + i) @)h(iy) dy

(2.43)

= lim - Re (p1(e + iy)yh(iy)) dy = /0 yh(iy) dpg 1 (y)

15



and

[e.9]

lim Im ((5 + iy)>pa(e + iy)h(e + zy)) dy

e—0Jo

(2.44) = lim - Im (pg (e + zy)(zy)gh(zy)) dy

e—0Jo

= —liny [ Re (pale + in)y*h(iv) dy = = [ (i) dug ().

e—0Jo

Since mg/(2) is given by (2.25), replacing (2.30), (2.35), (2.36) and (2.39)-(2.44) into (2.29) we
obtain the conclusion of the lemma. m

Now we are ready to state and prove the main result of this section.

Theorem 2.8 Suppose that for any & € RN™Y, m(&1,¢') satisfies the assumptions of Lemma
2.7. For u € C®(RY) define ui, us, f and g as in (2.2)-(2.4) and for a given function

© € CURN), let W(yp) = / N m(&)|G(€)|> dé. Then we have the identity:
R

2
(W (uy) + W(ug) — 2W (u))

16
:_/RNlAl(.f’)/Ooot
A R e

Jor

(2.45) S [T [ R e
.
Jus

&1

2
- dt d¢’
t2+ & .

&1

dpigr o(t) d€’

dusxl (t)de’

3
e[ Rene g e aueatn e

/ [% + Ber1(t) — tag o(t) — 28 3(1) + a4 (t)

2
dtde’.

- / &1
[ e g e

Proof. Since Fy_1f € S(RY), the integral / Y Fn_1f)(z1, &) dy is well defined for
all t > 0 and ¢ € RN~!. Using Plancherel’s theorem we get

/OOO e (Fno1f) (@1, &) dry = (Fn-1f(,€) . e DX 0.00) () 12R)

(2.46)
= (2m) N FU(Fn-1f(E)), AL (6_(')tX[0,oo)('))>L2(R)-

Moreover, we have

1

67(t+7,§1)w1
t 41

x1=0 B t+ igl

Fi (X000 () (€1) = /0 e e M dyy = —

16



and then, using (2.46) and the oddness of fwith respect to £ we get :

) 2 o 1 2
heit) =| [ e @) dn| = @0 [T Fene) e da
o 1 1 2
e =en?| [T fad) (m - )
_ 1 <o / &1 2
- o| [ fee) gipd
Identity (2.45) is a simple consequence of (2.12), (2.24) and (2.47) and Theorem 2.8 is proved.

|

Remark 2.9 It is worth to note that we can prove an identity analogous to (2.45) whenever
we work with a symbol m(&) = m(&1,&") symmetric with respect to & and such that for any
¢ € RN71, m(-,¢') admits an holomorphic extension mg (z) to the domain {z € C | Re(z) >
0, Im(z) > 0} having the following properties :

P1: li (z) = &N,
zafl,}%(z)>0 e (Z) m(§1 ¢ )

= 0.

P2 : For any € > 0, lim mg?fz)
|z| =00, Re(z)>e %

e—0

oo
P3: lim / mgr (€ +it)he (e 4 it) dt exists (and depends on & and the values taken by hes
0
on the imaginary axis).

Note that assumption P1 implies that m(-,&") admits an holomorphic extension to the
whole right half-plane. Indeed, it follows from Schwarz’ reflection principle ([8], p. 75) that
the function

me(z) if  Im(z) >0,
ﬁlg/ —

me(Z) if  Im(z) <0
is holomorphic in {z € C | Re(z) > 0}.
Assumption P2 is needed in the proof of Lemma 2.7 to show that
Rlim mg/(2)he (z) dz = 0 (where Yo r(0) = € + Re®, 6 € [0, Z]). We recall that |he (2)]
o0 Y2,e,R
behaves like ﬁ( as |z] — oo (see Lemma 2.1 and Remark 2.2). This assumption could be

replaced by a weaker one that guarantees at least that nhngo mg(2)he(2)dz = 0 for
- V2,e,Rn,
some sequence R, — oo.

In Theorem 2.8 assumption P3 is satisfied because of the special form of m(-,¢’) given by
(2.23).

In this context, the hypotheses of Theorem 2.8 are almost optimal. Indeed, suppose that
a function m(z) has the properties P1, P2, P3 above. Let m be the holomorphic extension

of m to the right half-plane and define ¢(z) = mz(f ), Clearly, ¢ is an holomorphic function in

the right half-plane and lim q(z) = 0 for any € > 0. Thus for any x > ¢ we have the

|z| =00, Re(z)>e
Poisson representation formulae

q(z +iy) = i/_o; @ 8)32: ;?t — y)QRe(q(s +it)) dt

(2.48)

R t—vy .
e L G e i

17



and

o(z + iy) = _71 /O:O = g;?zt —alm(a(e + i) ds
(2.49) |
N xr—€ .
e a e i)

Multiplying (2.48) (respectively (2.49)) by (z + iy)3, we find the expression of m(x + iy) in
terms of Re(q(e + it)) (respectively in terms of Im(q(e + it))). If Re(q(e + it)) — a(t) as
e — 0 and if it is possible to pass to the limit as ¢ — 0 in (2.48) then we obtain, at least
formally,

mg'(fl) 51Q(§1) 51 glagf)ﬁ

However, as it will be seen later in applications, the function ¢ may be singular at the origin. In
this case it is not possible to pass to the limit as ¢ — 0in (2.48) or in (2.49) in order to express
the function ¢ (hence the function m) in terms of its “boundary values” on the imaginary axis.

This is the reason why we have introduced “lower order terms” in the expression of mg (z) in
(2.23).

dt.

We give now some examples illustrating several situations that may be encountered in
applications. Throughout v € C°(RY) and we keep the notation introduced in (2.2)-(2.3).

Example 2.10 If the symbol m is of the form m(&;,¢') = Al(f’)|§1|, then Theorem 2.8 gives

(2.50) W(u1) + W(uz) —2W(u) = _g RN-— 1 /

5 d&1 dt de’.
51
This kind of symbol appears in problems involving operators of the type
Hy 52~ 0_p(2- Do) %), where Hj is the Hilbert transform with respect to the z1 variable and
Pis a pseudo differential operator in the last N — 1 variables.

Example 2.11 i) Consider the symbol m(§) = appearing in Choquard’s problem. It can

. [3 !2
be written as )

, 1 1
m(fhf):{%_‘_wz/#&g thﬂfo()

where pigr g = 5(d_jer| + ) and d, is the Dirac measure with support {a}. From Theorem
2.8 we get the identity

(2.51) W) + W (ug) — 20 () = > /R

/ flene |§,|§+§2d51 ae'.

1
22 + | 6/‘2
meromorphic in C and has exactly one pole in the upper half-plane, namely i|¢’'|. Using
Residue’s Theorem it is not hard to see that

/ mg/(z)hgz(z) dz = 2mi Res(mghgl, Z’£I|),

w1 T8

The same identity could be obtained by observing that the function me (2) = is

and integrating this identity over RV~! we get (2.51).
1 1

i1) Consider the symbol m(&) = ot a? = et a corresponding to the operator

(—A +a?)~L. It is obvious that

1 1
N== | ——=dugot
)=+ g trea)

18



where jigr g = g(é_\/w + 5W) From Theorem 2.8 we get the identity

*® o / 51

2
(2.52) W(u1) + W(uz) —2W(u f(&, € )m déy| dg'.

RN-1 £/|2

The same identity could be obtained by applying Residue’s Theorem to the meromorphic
1

function z — mhgz(z).
c(§')
g+

iii) More generally, consider a symbol of the form m(&;,&") = It can be written

1 1
=— | 5——=dueolt

where pierg = 5¢(&')(0_p(ery + 0p(ery). Using Theorem 2.8 we obtain the identity

as

23) W)+ W) =28 = 2 [ G| [ €t e

x1 7(€) @)+ 8

£2k
=2,
grierva’”

(= A +a?)™1)), we get

In particular, for the symbol m(&;,¢') =

an
D2k

.., N (corresponding to the

operator (—1)F
J

250 W) + W) -2 = [ ] [ ) S e e
| 7w v @ TS aepeg

&
& + 1€ + a?

5
m(&1, & 1/ 21 dper 1 (1),

where pigr 1 = %(5_\/‘£,|2+a2 + 5\/‘5,‘2+a2). From Theorem 2.8 we find the identity

iv) The symbol m(&,&") =

can be expressed as

/OOA / fl 2 /
; [&.8) 5 m = da| d€.

8
(2.55) W(u1)+W(ug)—2W(u) = e /RN—l €']? + a? a® + &2 + &

Notice that the right-hand side in (2.55) is negative, while in (2.54) it is positive.
&

& + 1€ + a?

——(—=A+a*)"") can be written as

v) The symbol m(&1,¢') =
84
8$1

(corresponding to the operator

4
m(er,€) = [ o duatt).

where figr 5 = g(é_\/w + 5W) By Theorem 2.8 we have the identity

/Oo" / 51 2 /
; [6,8) 35— d| d€.

8 , 3
(2.56) W(u1) + W(ug) —2W(u) = */ (1'% +a®) a® + €2 + &

T RNfl
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Obviously all the identities in (2.53)-(2.56) could be obtained by using the Residue Theorem.

S

Example 2.12 Consider the symbol m(¢) = [£]?*, corresponding to the operator (—A)®.
It is well-known that the argument of a complex number, arg(z), can be defined analytically
on C )\ (—o00,0] in such a way that

vVt € (0,00), arg(t) =0,
Vt € (—00,0), liln(f)l arg(t +ic) =m and liTrJ(f)l arg(t + ie) = —m.
£ )

The complex logarithm log(z) = In |z|+i arg(z) is well defined and holomorphic on C\ (—o0, 0].
For z € Qg == C\ {it | t € (—oo, —|¢[JU[|¢|, 00)}, we have 22 +[¢'|? &€ (—o0, 0]; hence we may
define

ms/(z) _ eslog(z2+|€’\2) _ ‘22 + ‘5/’2‘seisarg(z2+|£’\2)_
The function myg is holomorphic in Q¢ and |mg ()| = |22 + |¢/[?|® for any z € Q.

If s < % and & # 0, the function z —— mi%g(z) is holomorphic in ¢ \ {0}, tends to zero as
|z| — oo and has a third order pole at the origin. It is easy to see that

1|28
(2.57) mer(2) = €| (1 +S|§/‘2 + Z ‘5/’%)

where C* = W and the series converges in the open ball Be(0,|¢']). Consider the
function r¢(z) = J5(me(2) — €% — s|¢'[**722%). According to (2.57), re is a holomorphic
function in Qg. If s < %, we have r¢(z) — 0 as |z| — oo. Consequently, the Poisson
representation formula (2.48) holds for r¢. Since r¢/(Z) = re/(2), the function ¢ — Re(re(e +
it)) is even and we have, in particular,

megr(&1) = [€'[*° + 8!€’|28_2€1 +&fre (&)
1125 1125—2 §1 §1—¢
‘g ’ + S|§ ‘ gl / (gl o 5) (t _ y)2

It is clear from the definition of r¢ that for any t € (—|¢'[,[€'|) we have hm Re(re (e +1it)) =

Re(re (it)) = 0. For any ¢ > [¢'| we have 11}61 me (e +it) = (2 — |¢'|*)%e isn and hm Re(re (e +
3
t2 _ 112\s
it)) = —sin(sw)(tl)“).
On the other hand, it is not hard to check that for —1 < s < %, there exists ps € (1,00)
and C; ¢ > 0 such that

(2.58)

Re(re (e +it)) dt.

€'l
=)

Indeed, since |rg/(e +4-)| is even, it suffices to show that ||re (e 4 i-)||z»s ([0, 00)) has a bound
independent of €. Since |r¢ (e + it)| is uniformly bounded for ¢ € [0, l%‘] and t € [0, %], it
suffices to show that ||rg (e + )|

(2.59) ||lrer(e +4-)||Les (R) < Cs v for any € € (0,

Lps [‘5\ 0)) < g,ﬁ"
If s > 0, we have [mg ()] = |22 + [¢']?|* < C1s(|2|** + |¢/|?*). Thus for any € € (0, & ‘) and
t> % we have

me/(e+it)] | JePe | slgP2
le+it]3 le+it|3 [eit]

|rer(e +it)| <

Cl,s

< Cis 4 CualgPr | g g
= Jefit[3—2s

erit® T erat® T Jerd]

_l’_
. 3—2s X 3 _ .
< Cromin (Z1,3)" + (Cro + DI¢Pmin (2,3) + sl¢/* 2 min (2, 1).
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Thus it suffices to take ps > 1 such that ps(3 — 2s) > 1 to obtain the desired bound.

If s < 0 then for € € (0, |£|) and ¢ > ‘5‘, we have (e 4 it) +i|¢'||° < |e + it|®, and
(= +it) — i€ | < [t — |€']|°. Since |me (= + it)] = |(= + i) + il¢'||* (e + it) — i[¢/| |, we find
in this case

. ‘mg,(g_t,_it)‘ |§I‘2s 5|§/|25—2 |(E+it)—i‘§/| |s |EI|2S 8|§/|2572
‘T§’ (5 + Zt)’ < le+it]3 le+it]3 + le+it] < le+it]3—s le+it|3 le+it]
< 1=l g | sle')>e2

eritp— 1 Jerap T e
/| |s 1 3—s 1128 13 2 1 3 1128—2 12 2 1
<[t =&l min (Z,4)" + €2 min (2, 1) + slg/[> 2 min (Z, 1)

Consequently it suffices to take p, > 1 such that —sps < 1 (i.e. ps € (1,—1)) to obtain (2.59).

It follows from (2.59) and Theorem 2.5 p. 50 in [24] that there exists k¢ € LPs(R) such
that Re(r¢ (z +1iy)) = ! /OO mke(t) dt. Moreover, from Theorem 2.1 p. 47 in [24]
we have 181&)1 Re(re (e + zt)) = ke (t) f(z)/r almost every t € R and ||Re(r¢ (e +1i-)) — ker||pps — 0
as € — 0. In view of the pointwise convergence, we infer that k¢ is even and

0 it te (=[] 1)
k’é‘/(t) - { (2_|£/|2)5 1

— sin(Sﬂ')tT it |t > |¢/]
a.e. on R. Now it is clear that the symbol m(&1,&’) can be written as

m(&1,¢) = |£’\25+5|«S’|28 261+ Gire (&)

(2.60) ez o erzs—2g2 S [P
= 6 sl PR 4 [ ke

Thus we may apply Theorem 2.8 to get, for any u € C=°(RY) and s € (—1, 3),

W (ur) + W (ug) — 2W (u /RN / ke (1 ’/ &, 51 _da| atae
(2.61) | 2
- /|°T (e-1ee)| [ f(«sl,&’)ﬁ’ig% der| drdg'
Similarly, if we consider the symbol m(¢) = (|€]? + a?)* we get the identity
W (1) + W (uz) — 2V (u)
(262) _168i:2(s7r) /RM /OT§'|2+a2 G ‘/ fee §2 ac.| arae

3 Symmetry and function spaces

For any u € C®(RY) we define u; and uz as in (2.1) and we put Tiu = uy, Thou = us.
Clearly, T and T are linear continuous mappings from C°(RY) to C?(RY). In this section
we consider the following intimately related problems :

1°. Determine significant subspaces X C D’ (RN ) such that 77 and 75 can be extended
to linear continuous mappings from X’ to X'. (Or, equivalently, find the subspaces X such that
u € X implies Thu, Tou € X and u —— Tiu, u — Thu are continuous for the X’ topology).
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2°. If X is a subspace as above, how the identities proved in the previous section can be
extended to X' 7

The answer to these questions is of great importance in symmetry problems. For instance,
suppose that a function space X’ has the two properties described above and that the solutions
of the variational problem

minimize E(u) := /R m(©)[a(e) de + /R F(u)dz

under the constraint / G(u)dr =\
RN

(3.1)

belong to X'. As before, the symbol m(&) = m(&;,&’) is assumed to be symmetric with respect

to &1. Defining W(u) := /N m(€)|a(€)|? d¢, we suppose also that that an identity of type
R

(2.45) holds for W (u) and it can be extended to X in such a way that

W(Tu) + W (Thu) — 2W(u) <0 whenever Thu # u, Tou # u.

(We will see later that most of the symbols in Examples 2.10-2.12 have this property.) Then,
we claim that after a translation in the z; direction, any solution of (3.1) is symmetric with
respect to x1. Indeed, let u be a minimizer. After a translation in the x; direction, we may

assume that / G(u(z))dx = / G(u(z))dx = i This implies / G(ui(x))dx =
{z1<0} {z1>0} 2 RV

2 G(u(z))dr = X\ and / G(ug(z))dr = 2 G(u(x))dx = X\ ; consequently uq
{z1<0} RN {z1>0}

and wug (which belong to X') also satisfy the constraint. It is obvious that / F(ui(z))dz +
RN

/ F(ug(z))dx = 2/ F(u(x)) dz. Suppose by contradiction that w is not symmetric with
RN RN

respect to x1. Then we get
E(u1) 4+ E(ug) —2E(u) = W(uy1) + W(ug) — 2W(u) <0,

and this implies that either E(u;) < E(u) or E(u2) < E(u). Therefore u cannot be a minimizer
and this proves the claim.

Given the motivation above, we will study the behavior of 71 and T3 from H S(RN) to
H*(RN), respectively from H*(RY) to H*(R"), where

H*RY) = {ue S'RY) | € Lj, (R") and AN(1+|€|2)SIQ(£)I2d£<w},

loc

HRN)={ucSRN)|aecL,.(RN) and /RN 1€)251a(€) | d¢ < oo}

Consider ¢ € C°(R), ¢ odd, such that ¢'(0) = 1. It is obvious that Th¢(x) = —sgn(z)p(z)
1o
and (Th)'(z) = f;?()xl)fﬁ;go and we have (in the distributional sense) (T1p)" =
—sgn(z)¢" (z) — 26p. Since (T1p)" ¢ L*(R), we conclude that T3 and Ty are not well-defined
from H*(R) to H*(R) if s > 2. In fact, 7} and Ty are not well-defined from H*(RY) to
H*(RN) (respectively from H*(RN) to H*(RN)) if s > 3, as it can be seen in the following
example.

= ze 1?l. An easy computation shows that G(£) =

3 5

Example 3.1 Define ¢ : R — R, ¢(x :
and ¢ € H*(R) for any s € (—35,3). It is clear

)
%, hence ¢ € H*(R) for any s < 3
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that (Typ)(z) = —|z|e 1"l and Tip(&) = ?ffigz;z) Consequently, 1o € H*(R) for s < 3
(respectively Typ € H*(R) for —3<s<3),but Tip & H¥(R) and Ty ¢ H*(R) for s > 3.

In dimension N > 2 it suffices to take ¥)(x) = (1)1 (22, ..., 2N), where g1 € C°(RN 1),
to see that T and Th are not well-defined from H*(RN) to H*(RY) (respectively from H*(R")
to H*(RN)) if S<s< i

If s < 0, the elements of H*(RN) or H*(RY ) are not necessarily measurable functions. In
this case we extend 71 and Ty to H*(RY) or H*(RY) by duality. For u, ¢ € C*(R") we
have

(Thu, v)s'.s :/RN(Tlu)(a:)gp(m) dx:/

{z1<0}

u(z)p(x) de + / u(—x1, 2" )p(x) dz

{z1>0}

— / u(x)p(z) dz —|—/ w(zy, ) p(—x1,2') do = (u, Ty p) 12 12,
{z1<0} {z1<0}
where (TF@)(2) = X{z, <0 (p(#1,2") + ¢(—x1,2")). Hence, for u € H*(RY) with s < 0 we
should define Thu by
<T1u730>H5,H*5 = <U7T1*90>HS,H*S

for any test function ¢ € C(RY). However, the operator T} does not map H¥(RY) into
H*RN)if k > § (as it can be easily seen by taking the function n(z) = e~ 1%l in one dimension,
respectively n(z1)n1(z2,...,zy), where n; € C°(RN™1) in dimension N > 2). This shows
that we cannot define T} and T on H*(R") and on H*(RY) if s < —3.

Example 3.2 Consider the tempered distribution u defined by u = p.v. ( ), that is

1
(u, p)sr.s = lim —p(x)dx for any ¢ € S(R).
e=0 {jz|>e} X

It is well-known (and easy to check) that @(¢) = —imsgn(€); hence u € H*(R) for any s < —1.

However, Tiu = —m and Thu = |1‘ do not define distributions on R !

Our next goal is to prove that the operators 77 and T, are well-defined and continuous

from H*(RY) to H*(RN) (respectively from H*(RY) to H*(RN)) if —1 < s <3 Itis

obvious that 71 and Ty are well-defined and continuous from L?(RY) to L*(RY). Tt is well-
known that HY(RY) = WH2(RVM) = {¢ € L*(RY) | 3“" € L*RY), i =1,...,N} and
that 71, Tp : WH2(RY) — WH2(RN) are well-defined and continuous. Using interpolation
theory we conclude that 77 and T, are well-defined and continuous from H*(RY) to H*(R")
if 0 < s < 1. However, interpolation gives no information if either s < 0 or s > 1. Our next
result deals with some values of s in this range.

Theorem 3.3 The operators 11 and T are well- deﬁned and continuous from H*(RN) to
H*(RN) and from H*(RN) to H*(RY) for any s € (— 1.3,

Proof. We will prove that there exists Cs > 0 such that for any u € C2°(R") we have

(32) Il < Cllullue,  respectively || Toullye < Collulle 5= 1,2,

and then the theorem will follow by density.
Therefore, suppose u € C2°(RY). If N > 2 we have by (2.61 ) and (2.62)

1 Tvul |, + (1 Toul%, = 2f[ull,

——168:2(”)/RN/|°T -1eP)’| [ Fene) 5£1d§1 dt de’,
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respectively

1Tyl 7 + [1T2ul[7s — 2[lul .

(3.4) . ,
16 sin(sm) 00 ) 1o s ‘ /oo R & ,
= == -1 ———— d¢&;| dtdg'.
2 o s (1P )| [T R g e e
If N =1 we have
16sin(sm) [ £ 2
2 2 2 _ 2s
(3.5) HTwH.S—i—HTQuH-S—QHUH-S_—T/O ¢ S de]
respectively

2
dt.

s

16sin(sm) [ s| [~ 13
2 2 2 _ 2 _
(3:6) |[Taulfhe + |[Toul e = 2fulfy. = =5 [* (2 -1)°] [T fle) 5+ d

We begin by proving that Ty and T, are bounded from H*(R) to H*(R), —% < s <
The integral in the right-hand side of (3.5) can be formally written as

(37) [ [ e mta mmf©imdednat

Our strategy is as follows: first we compute explicitly the integral

(3.8) Iy(¢ )—/OO#S ¢ T _gt=c¢ /Oot25 ! L
. s\, M) = 0 t2+f2 t2+772 =N 0 t2+§2 t2+n2 :

[\JIeC

Observe that I5(&,7) > 0if € > 0, n > 0. Then we will prove that for any s € (—%, %) and any
©, ¥ € L*(0,00) we have

0°° /0 T e L(E (€ (n) d dn] < C)¢llz2000) - 1011 22(0.00)-

This will be done in Lemma 3.4. Thereafter it will be clear that for any f € H*(R) we have

[ [ nemife) - Fonl dean
Y _/ / €0 L& mIE FO) - In* Fln)| d dn

CON 1 P00y < CONNy gy

This justifies the use of Fubini’s Theorem in evaluating (3.7) and proves that the right-hand
side of (3.5) is less than C]-(S)HfHHS(R)7 where C(s) is a constant depending only on s. Thus
we infer that there exists Cs > 0 such that HTWHHs(R) < CSHUHHs(R) and HTQUHHS(R) <
Collull s (g for any u € C°(R). Consequently, T1 and T can be extended as continuous

linear mapplngs form H*(R) to H5(R), —% <s< %, as claimed.

To carry out the first step of this strategy, we come back to I5(&,7n) given by (3.8). The
complex logarithm can be defined analytically on C\ {it | ¢t € (—o0,0]}. Hence, we may define
the holomorphic function z —— 225 1= ¢2$108(2) — |3|2s¢2sa18(2) on C\ {it | t € (—o0,0]}. With

ZQS

(22 4 €2)(2% + )
If £ # n, k has four simple poles, namely +i and +in ; if £ = n it has two double poles at

this definition the function k(z) = is meromorphic on C\{it | t € (—o0,0]}.
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+i€. For 0 < ¢ < min(§,7n), and R > max(&,n), consider the closed path 3. r composed by
the following pieces :

Bier(t) =t, t € [-R, —¢]
Bac(0) = ceilr- 9, 0elo,r]
B3.e,r(t) =t, t € e, R]

N R(G) = Reie, RS [0,71’].
Using the Residue Theorem we get

) . _ ) 525 7725
3.10 / k(z) dz = 2mi[Res(k, i§) + Res(k,in)] = me"*™ + .
(310) Be,R ) [Res(k, i¢) (&) E* =€) (& —n?)
Since s > —3 we have lim k(z)dz = 0. We have also hm k(z)dz = 0 because
B2, Ba,r
s < % Passing to the limit as ¢ — 0 in (3.10) and then passing to the limit as R —
O s S
oo in the resulting equation, we get / z)dz +/ k(z)dz = ﬂe’S”%, that is
2ism 4 q > 12s dt = meisT 525—1 ns—1 F btai
(e —|—)/0 ErEETy At = et —. or s # % we obtain
fe'e) t25 2s—1 _ . 2s—1
(3.11) / gt—— "¢ i—
o (+&)+n?) 2cos(sm)  n? - &2
For s = % we compute directly
o0 4 1 o0 t t
/ SR e e 2/ s paed
o (24 +n?) =& Jo P4+E2 240
(3.12)
1 1 > lnn In¢
== In(t? + &%) — In(t* + »* _
2n2—€2( ( )~ nl 77)) — =&
Noti h li > %8 dt = T(1-2s) ¢25—3 if 1 d i > t dt = 1
otice that 171—>H% 0 W t = 4cos(s7r)§ I s # 5 an 171—>H2 0 W t = @
Hence

T 57](523—1 _ ?723—1)

En(lnn —In¢) .

(3.13) Is(&,n) = if s # %, and Ié(g’n) =

2 cos(sm) n? — &2 n2 — &2
. . e spl=s_gl—s -1 _1 1 llnp—In
This gives £ n~°I5(§,n) = 2co;r(s7r)£ EQ T if s 7 % and 727 21% (&) = &2 7777 525'
An interesting property of these functions is given by the next lemma.
gs 1—s 51—5 S Inn =1
n n—Ing

Lemma 3.4 Let Ks(§,n) =

. . 11
g ifs# %, TespectwelyK%(g,n)zfznz e
For any s € (—1,3) there exists a constant C(s) (depending only on s) such that for any
212
o, ¥ € L*(0,00) we have

(& me(n) d§ dn| < C(s)l[@l]L2(0,00) 111 L2(0,00)

Proof. Using polar coordinates we write & = rcos(6), n = rsin(f), where r = /&2 + n? and
1

0 = arctan g It is easy to see that K(§,n) = —Ls(0), where
r
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(sin6)*(cos#)'~* — (cos 0)°(sin )" *

cos2 6 — sin2 0
—Intané

0) =
%( ) (1 —tan® ) cos? 6

/OOO/OOO‘SO(OKS( n)( ‘d&dn—// ‘ (rcos @)y (rsind)| dr|Ls(0)|db.

Using the Cauchy-Schwarz inequality we have

ifs;é%and

Ls(0) =
L

(sin 0)% (cos 9)% By a change of variables we get

|1l 220,00 [1¥[] £2(0,00)

9 inf)|dr < [|o(-cosf -sind =

/0 ‘gp(rcos JY(rsind) | dr <||o(- cos0)||£2(0,00) |1 (- sin 0)|| 2(0.00) Vcos0 - sin 6

Consequently,

10 [ [T[e@Kemuon|dsin < liellom il [ AL
o, = el *)Jo Veos0-sind

The lemma will be proved if we show that the last integral in (3.14) is finite. If s # % we have

jus

3 | (sin 9)87%(cos 0)%78 — (cos 0)57%(sin 9)%75

L0, y
0 cosf-sinf 0 cos? ) —sin” f
(3.15)
:/ (tan@)*~ 37— (gane) 1 40 — /OO 573 — 3" "
0 1 —tan?4 " cos2 0 0 1—1¢2
S 1 S
Using I’Hospital’s rule it is easy to see that %m{% = % — s; hence the function t ——
s—1 Ll
£ 2= is bounded near 1. Since s — & € (—1,1), the last integral in (3.15) converges.
If s = % we have
3 |L.(9)] 2| —Intan6 1 | Iny
3.16 27d9:/ . d9:/ ‘d.
( ) /o Vcos O -sin @ 0 l—tanQG‘ cos? 6 o lyz2—1 Y

Note that ?}E yl;_yl = % and this implies easily that that the last integral in (3.16) converges.
This completes the proof of Lemma 3.4. O

In view of (3.5), (3.7), (3.9), (3.13) and Lemma 3 4, it follows that T} and T are well-defined
and continuous from H*(R) to H*(R), — t<s< i

Next we estimate the integral in the right-hand side of (3.6). If s € [0, 3) we have by (3.7),

(3.8) and (3.9)
[y | [ iogtgafas [T

CIFIE. < CO)IflEe
If s € (—1,0), using the change of variable 7 = v/t2 — 1 and (3.11) we get
2

0o 5 2
| R g e ar

(3.17)

oo (t2 — 1) [ 728 ' T
| mreeen ) ErreE e vt
(3.18)

</OO 72 T ) ()
“Jo (PPH1+E) B +1+0%) 2cos(sm) =g
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Consequently,

[Ty | [ ropt e

oo oo R [e'S) s 577
< [T [T 0 G

dt

(319) TT oo oo B (1 + 52)% - (1 + n2)25;1
el A MU CIIOIRS — e dn
B 2(:08 (sm) / / 1+5 |f O -1+ )%|%|
1+ — 1+
E déd
e (R
We claim that for any &, n > 0, £ # 1 we have
577 ) (1 + gQ)M ( ) gs 1—s 51_5775 B

We may suppose without loss of generality that n > £. Then (3.20) is equivalent to

(321) (14 52>%*%<1 i) E - ()R (14T E < ey — e
Let a = g =V1+n% & =V1+E& a1 = % > 1. It is clear that o > ay (because
2 n* 5 772762 2

of =1="Tz->"y =af - 1). Inequality (3.21) can be written as

f lnl—s . nf—lgl—s < 65717773 . ,r,sflé-fs’
or equivalently

1 1
3.22 (Tt —ad) < Z(al 7 = af).
(3:22) (ol —a) < (et - o)

1—s 1—

Since s < 0, the function x —— x"~° — 2 is increasing on (0,00) and then o' — a® >
al™® —aj > 0. Tt is obvious that * > % > 0 and this implies (3.22). This proves our claim.

Coming back to (3.19) and using Lemma 3.4 we obtain

e e} s L { 2 C(S) R /
323) [ (#-1) \ JAIGE=T A< g o N Al < C @I

2 + &2 2 cos(sm
From (3.6) and (3.17) if s € [0,2), respectively from (3.6) and (3.23) if s € (—3,0), we
infer that 77 and T, can be extended as linear continuous operators from H*(R) to H*(R).
Now we prove Theorem 3.3 in the case N > 2.
If s € [0, 2), arguing as in (3.7)-(3.9) and using Lemma 3.4 we have
/ (tg €' ‘/ fl&, ¢ 3 7 d&1 dt</ d512
e t2 + &2 51

(324) / | 1P - 1T g )!nf-(éfsnfsfs(él,m)) dy dy

CONN- TN a0y <€) [ (& +1617) 17 60,€)P der.
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If s € (—3,0), using the change of variable 7 = \/t2 — [{/[2, arguing as in the proof of (3.18),
then taking (3.11) into account we obtain

/OO 1€'1%) dt:/oo 728 . T ir
e (82 +€2)(12 +n?) o (P2HEP+HE2+EP+n) VI2+E2

2s
- — (€12 + D)™
T2 &2 4+ ) (2 + |2 +n?) 2 cos(sm) n—&

We also have

* 2 r (P T
<[ .

am_ (G+ERTT - +1gP) T

— & (&2 +1€12)2 (nf + 1€')?)7

(the proof being the same as the proof of (3.20)). Arguing as in (3.19), using the two previous
inequalities and Lemma 3.4 we get

[f@z—MVf\Amf@hég2igd&2

- wC(s)

~ 2cos(sm)

< Ky(&1,m)

(3.25)
IR+ 1 BV a0 <€) [ (14 167) " IFtEn )P der

Integrating (3.24), respectively (3.25), over RV~! we infer that the integral in the right-hand
side of (3.3) is less than C”(s)||f||% .. This proves that 77 and T3 can be extended by continuity

from H*(RN) to H¥(RN) for s € (—1, 2).

27 2
In a similar way we show that 77 and T, can be extended by continuity from H*(R") to
H*(RN) for s € (—1,3). Theorem 3.3 is now proved. O

For a measurable function v« defined on RY, we define its antisymmetric part in the z;
direction by Au(z1,2") = 3(u(x1,2') — u(—z1,2')). If u is a tempered distribution, we define
Au by (Au,¢)s' s = (u,Ap)s s for any ¢ € S. Obviously, Au is odd with respect to x4
(for distributions, this means that (Au, ¢(—z1,2))s.s = —(Au, ¢)s.s). It is clear from the
definition that A defines a linear continuous map from H*(RY) to H*(RY) (respectively from
H*(RM) to H*(RYN)) for any s. Moreover, for any tempered distribution u, the distribution
F(Au) is odd with respect to ;.

It follows from the proof of Theorem 3.3 that for any s € (—%, %), the following complex
bilinear forms are continuous :

Bi, HS(R)xHS
Bls(uv / / Au 52 dg - / Av + - dn dt,

B, : H*(R) x H“”(R) —C,

B s(u,v) = /1 / Aul¢ t2+ @ / Av(n) 2y dndt

By : HS(RN) x H? RN)—>C

By.s(u,v) / / — €2 / Au(&, &) 2d£1/ Av( m,g') dm dt de’,
RN 1 / 0 5

By : HS(RN) x H*(RN) — C,
BNS u,v)

—/RN 1/ |£’\2+1 - / Au(. ¢ d&/ A m,g’)
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Moreover, from (3.3) - (3.6) we have the identities

16 sin(sm

326 Tl gy + T g, — 20l ey = ) By (Au, Aw),
16 sin(s7)

(3.27) 1 Tvul | Bre vy + 1 T1ul e vy = 2[ullFre gy = _TBNs(AU Au)

for any u € C° (RN ). From Theorem 3.3, the continuity of By ¢ and of B ~,s and the density
of C®(RY) in H*(RY) and in H*(R") we infer that we have the following :

Corollary 3.5 Let s € (—3,2). The identity (3.26) holds for any u € H*(RN) and (3.27)
holds for any u € H*(RN).

Our next aim is to show that the quadratic forms By s and BMS define norms in some
spaces of odd functions. We start with the following proposition :

Lemma 3.6 Assume that g : R — R is measurable, odd and
e cither g € LP(R) for some p € (1,00),
o or (0 +€2)2g(€) € LA(R) (respectively |€|°g(€) € L2(R)) for some s € (—%, %)

Suppose that the set A= {x >0 | / ——759(§) d§ = 0} has a limit point xo > 0.
0o z*+¢§

Then g = 0 almost everywhere on R.

In particular, if / o + e g(&) d¢ = 0 for almost every z in some open interval, then g = 0.

Proof. 'We may suppose without loss of generality that ¢ is real (otherwise we carry out the
proof for its real and imaginary parts).

First we deal with the much simpler case g € LP(R) for some p, 1 < p < co. We define the
Poisson integrals for g,

(3.28)  a(z,y) = 717/_0:0 mg(t) dt and b(z,y) = —% /_O:O mg<t> dt.

It follows from Lemma 2.4 iii) that the functions a and b are well-defined and harmonic in the
right half-plane and r(z +1iy) := a(x,y) +1ib(z,y) is holomorphic in {z € C | Re(z) > 0}. Since
g is odd, we have a(x,0) =0 for any z > 0. If z € A, we have also b(z,0) = 0. Consequently,
r(x) =0 for any x € A. But r is holomorphic and A has a limit point 2y > 0, thus necessarily
r = 0. By Lemma 2.4 ii) we know that a(x,y) — ¢(y) as © — 0 for almost every y, hence
g =20 a.e. on R.

Suppose that (a? + | -|?)2g € L*(R) for some s € (—4,3). We may assume that o =

1. If s € [0,2), then obviously g € L?*(R) and the conclusion of the lemma follows from
the above considerations. If s € (— ;,O), then for any z > 0 and y € R the functions
Ve y(t) = (1 + t2)_’W and ¢xy( ) =1+ t2)_§% belong to L?(R). We may

. o0 x N o0 y—t
oo S
/ Yy (t)(1 +t*)2g(t) dt. Using the Cauchy-Schwarz inequality, we see that the functions a

3 f_ é52g(§) d¢ exists

for any « > 0). Clearly the function r(x +iy) := a(z,y)+1ib(x, y) is holomorphic and, as above
we have r(z) = 0 for € A. Since A has a limit point z¢ > 0, we infer that » = 0. Next, we

[ee]
and b in (3.28) are well-defined in the right half-plane (in particular, /
0
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claim that 11?01 a(z,y) = g(y) whenever y is a Lebesgue point of g. This obviously implies g = 0
xX
a.e., as desired. Let y be a Lebesgue point of g and fix € > 0. Then there exists 6 = d(g) > 0
such that %/ lg(y — 1) — g(y)| dT < € for any r € (0,5]. We have :
-r

1

la(z,y) — g(y)| = =

/Oo e (gly — ) — 9(v)) dt‘

oo X212

1

6 x 1 T
. <= = gy —t) — dt + — — " lg(y — t)| dt
(3.29) < 7T/ﬂs x2+t2|g(y ) —g(y)|dt + 7T/t|>5 x2+t2lg(y )l

1

x
— —- dt =11 + Is + Is.
+7r/|t|>5352+t2‘g(y)’ 1+ 12+ 13

r

Let G(r) = / lg(y — 7) — g(y)|dr. It is obvious that G is nondecreasing on [0, 00) and we

T
have G'(r) = |g(y —7) —g(y)| + |g(y +r) — g(y)| almost everywhere. Using integration by parts
and the fact that 0 < G(t) < et for any t € [0, d], we get :

1 T

1 [0 =z 0
I =— —_ —r)— - dt = — ——G'(t)dt
1 7T/O 2l =) = 9@+ 9y +7) — 9yl 7T/O 2
1 = 2z [0 t G(§) 2z [0 et?
3.30 =———=G(0 —/ ——=G)dt < —= —/ ———dt
(3:30) a2 + §2 (9)+ 7 Jo (22 +12)2 (t)dt < oms | w o (22 +1t2)2
<5+2x5/5 1 dt<€+2€ . 5<€+5
—_—t— | — — + —arctan— < — +e.
— 2 m Jo x24+t2 T 2m 0w x = 2w
Using the Cauchy-Schwarz inequality we have :
B=— [ ol =ty — o) gy - o)l de
T Jjg|>s 2% + 12

(3.31)

1
T s ]__|_y_t2—s 2
swm+wﬁmmm(/ Utly—t) ﬁ).

t|>6 t4

Since s > —3, the last integral in (3.31) converges. Let K (y,d) be its value. We have proved
that

x s
(3.32) I < ;K(y,5)||(1 +]- |2)29HL2(R) for any = > 0.
Finally, the integral I3 is easy to compute :

l9(y)|

(3.33) Is = (m — 2arctan g)

For x sufficiently small, the right-hand side terms in (3.32) and (3.33) are less than . From
(3.29), (3.30), (3.32) and (3.33) we infer that |a(x,y) — g(y)| < 4e if x is sufficiently small.
Consequently a(z,y) — ¢(y) as y — 0 and the claim is proved.

In the case | - [*g € L?(R) and s € (—3, 3), we may repeat almost word by word the proof
above (we have only to replace the functions ¢, , and 1, by t — t7° L respectively

by t — t_‘g%).
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If | - |°g € L*(R) and s € [3, 3), the integrals defining a and b in (3.28) do not necessarily
converge. In this case we define

1 [ 4xyt
o) =2 g

(3.34)

g(t)dt.

1 oo 2t(t? + 22 — y?)
b1<m7y) = 7/0 [1:2 +

™ (y —t)?][z% + (y +1)?]

Notice that if g € L}, (R) is odd and g( ) e LY([1,00)), then @ = a; and b = b;. It is obvious

that for fixed x > 0, y € R and s € ( %, %), the functions ¢1(t) = t~° [22+(y7t)423]:[ya:1€2+(y+t)2]

2,2 .2 .. .
and ¢1(t) =5 [x2+(2;§t;ﬁz2f(;+t)2] belong to L2((0,00)) and this implies that a; and b; are
well-defined. It is straightforward that ri(z + iy) := ai(z,y) + bi(x,y) is holomorphic in the
o0 t

——g(t)dt =0
x? + t2g( )

for x € A. Consequently r = 0 on A. Since A has a limit point ¢ > 0, we infer that » = 0 in
the right half-plane. The lemma will be proved if we show that a1(z,y) — ¢(y) as z — 0
for almost every y.

o0
. dayt
Let y > 0 be a Lebesgue point of g. Note that /0 [:Jc22+(y7t)2][a:2+(y+t)2}

Proceeding as in (3.29)-(3.33), we may show that |ai(z,y) — = (arctan £)g(y)| — 0 as z — 0,
hence 111101 a1(z,y) = g(y) and the lemma is proved. O
x

right half-plane. Obviously a;(x,0) = 0 for any z > 0 and by (z,0) = —

dt = 2arctan%.

We set

Hf,odd(RN) ={f € H*R") | f is odd with respect to z1} = {f € H*RN) | f = Af},
Hls,odd(RN) ={fe HS(RN) | f is odd with respect to x1} = {f € HS(RN) | f=Af},

where, as before, Af is the antisymmetric part of f in the x; direction. For f € Hf’odd(RN )
we define Ny(f) = (By.s(f, )2 and for f € H; ,4q(RY) we define Ny(f) = (Bys(f, 1))z.

Theorem 3.7 N is a norm on Hf}odd(RN), continuous with respect to the usual H® norm,

and Ng is a norm on Hiodd(RN), continuous with respect to the H® norm.
Endowed with these norms, H f,odd(RN ) and Hf oad(RY) are pre-Hilbert spaces.

Proof. 1t is clear that B N,s and By s are complex-symmetric bilinear forms on H* (RN)
(respectively on H*(RM)) and that By s(f, f) > 0 and Bys(f, f) > 0 for any f (thus, in
particular, Ny and N; are well-defined). Suppose, for instance, that f € HY oag(RY) and

By s(f, f) = 0. This implies that for almost every E’ RN~ we have : f(-,g’) is odd,
12 12\E 7. ¢t L2(R d > 12— ’ ‘/ d ‘dt—O

(-P+IEPEfCe) e L@ and | Fln.€) s 46

For such & we must have / f(gl,g’)ﬂfw d&; = 0 for almost every ¢t € (1/[¢/]? + 1, 00) and
0

using Lemma 3.6 we infer that f(-,&') = 0 a.e. on R, hence / (5% + |£’|2)s |F(&1, &) de = 0.

R

Consequently ||f]|%s = / N 1/ (f% + \f’]z)s 1F(&1, €))7 dey dE' =0, ie. f =0 a.e. The proof

RN-1 JR

is the same for f € H*(R"). Finally, the continuity of Ny and N, with respect to the usual
norms follows from Theorem 3.3 and Corollary 3.5. O
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4 Applications

In this section we illustrate how the results in Sections 2 and 3 can be used to prove the
symmetry of minimizers in some concrete examples.

4.1 We start with two scalar variational problems.

Theorem 4.1 Let s € (0,1) and assume that F, G : R — R are such that u — F(u) and
u — G(u) map H'S(RN) (or H*(R™N)) into LY(RN). Suppose that either
Case A. u € H*(R™) and u is a solution of the minimization problem

minimize  E(u) = /RN |§\23|a(£)|2d§+/RN Flu(z)) de

under the constraint I(u) = / N G(u(x))de = A\, or
R

Case B. w € H*(RN) and u is a solution of the minimization problem

minimize  E(u) = /RN (1+ |g|2)5|a(g)|2dg+/RN Flu(z)) da
under the constraint I(u) = /RN G(u(x))dr = A

Then, after a translation in RN, w is radially symmetric.

Proof. Let us prove first that u is symmetric with respect to x1. Making a translation in the

A
x1 direction if necessary, we may assume that / G(u(z))de = / G(u(z))de = —~.
{$1<0} {:c1>0} 2

Let w1 = Tiu and us = Tou. It follows from Theorem 3.3 that ui, us € HS(RN) in case
A, respectively ui, ug € H*(RY) in case B. It is obvious that we have /N G(ui(z))dx =
R
2 G(u(x))dr = X and /N G(uz(x))dx = 2 G(u(x))dx = A; hence uy and us
R

{-771<0} {£B1>0}
also satisfy the constraint. From (3.26) and (3.27) we have

E(u1) + E(ug) —2E(u) = —%Q(M)NSQ(AM in case A, respectively

E(uy) + E(uz) — 2E(u) = _ 16sin(sm) V2(Au) in case B,

T2

where, as before, Au(z1,2") = L (u(z1,2’) — u(—z1,2')) is the antisymmetric part of u in the
1 direction. If Au # 0, then Theorem 3.7 implies N2(Au) > 0 (respectively N2(Au) > 0) and
we infer that E(uq) + E(u2) —2E(u) < 0, contradicting the fact that w is a minimizer. Thus
necessarily Au = 0 and this means that u is symmetric with respect to 1.

Arguing similarly with the remaining variables xs, . .., zy, we find a new origin O’ such that
u is symmetric with respect to any of the variables z1,...,zy ; in particular, u(—z) = u(z)
a.e. on RY. Now let II be any hyperplane containing the new origin O’ and let IT, and TI_

be the halfspaces determined by II. Since the transformation x — —z maps II_ into I}, we
A
see that / G(u(z))dx = / G(u(z))dx = 5 Arguing as above we conclude that u must
- I

be symmetric with respect to II. This implies that w is radially symmetric with respect to the
new origin O’. O

An application of Theorem 4.1 concerns the solitary waves to the generalized Benjamin-Ono
equation
1
A+ aAA, — B(—A)2A, =0, (z,y) € R? t € R,



where «, > 0. Solitary waves are solutions of the form A(t,z,y) = u(x — ct,y). After a scale
change, a solitary wave u(x,y) satisfies the equation

u = u’ in R°.

=

u+ (—A)

The existence of solitary waves was proved in [21] by minimizing the functional

_ L2 o, _ 1 e [2 2
V=g [ P et [ e = oo [ @R [ vtde

1
under the constraint I(u) = 3 / u?dx = constant. It has been shown in [21] that any
R2

solution u, of the above problem also minimizes

1

E(v) := 2 Jre

AV g L 3
|(—A)7v|” dx S/sz dx
1
under the constraint Q(v) = Q(u,), where Q(v) = 5 / , u|? d.
R

It follows directly from Theorem 4.1 that, except for translation, any minimizer of these
problems is radially symmetric.

4.2 Next we apply our method to a variational problem involving two unknown functions (the
vector case). Consider the functionals

1

E(u,v) = 2 e

(|(—A)§u\2+|VU\2)dx+/RN F(u,v)dx

where 0 < s < 1, and

Q(u,v) = G(u,v) dx.
RN

We make the following assumptions:

Al: F,G:R? — R are C? functions satisfying F(0,0) = 9;F(0,0) = 9,F(0,0) = 0,
G(0,0) = 91G(0,0) = 92G(0,0) = 0 and the growth conditions

|0:F (u,0)] < C(lulP~™ + ol ")  and  [9;G(u,0)| < C(JulP™ + [v]7h) if |(u,0)] 2 1,

where ¢ € {1, 2}, C is a positive constant, 2 < p < N2iv2$ and 2 < ¢ < %

A2 : If (u,v) € H*RY) x HY(RN) and (u,v) # (0,0), then either 9,G(u,v) # 0 or
02G(u,v) # 0 (a manifold condition).

Theorem 4.2 Under assumptions A1 and A2, any minimizer (u,v) € H*(RN) x HY(RY)
of E(u,v) subject to the constraint Q(u,v) = X is radially symmetric (except for translation).

Proof. First we prove that after a translation, (u,v) is symmetric with respect to z;. In fact,
after possibly a translation in the x; direction we may assume that

(4.1) / G(u,v)dxr = / G(u,v)dr = ~.
{z1<0} {z1>0} 2

We put u; = Thu, ug = Tou, v; = Tiv and vy = Thv. By Theorem 3.3, the pairs (uj,v;)
and (ug,v2) belong to H*(RY) x H'(R"Y) and in view of (4.1) they also satisfy the constraint
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Q(u1,v1) = Q(uz,v2) = X\. Moreover, defining W(y) = / N 1€1%%15(€)|? d¢ and using (3.26) we
R
see that

E(u1,v) + E(u2,v2) — 2E(u,v) = (W (u1) + W(uz) —2W(u))

1 8sin(sw
=— @)™ 71_(2 )BN’S(Au,Au) <0.

We conclude that (ug, v1) and (ug, v2) are also minimizers and we must have By s(Au, Au) = 0.
By Theorem 3.7 we infer that Au = 0, that is u is symmetric with respect to x1,i.e. u=1u; =
u9.

Since (u,v) and (u1,v1) = (u,v1) are minimizers, they satisfy the Euler-Lagrange equations

(4.2) (—=A)*u+ 01 F(u,v) + ad1G(u,v) =0,
' —Av + ©F(u,v) + adaG(u,v) =0,

respectively

(4.3) (—A)*u+ O F(u,v1) + BO1G(u,v1) = 0,
’ —Avy + 82F(u, 1)1) + 682G(u, ’Ul) =0.

From (4.2), A1, the elliptic regularity for the Laplacian and its fractional powers and the
usual boot-strap argument we get v € H*(RN) N L®RY) and v € H?2(RN) N L®RN).
Of course that the same conclusion holds for (u,v1). Notice that the LP elliptic regularity
for fractional powers of the Laplacian and for 1 < p < oo follows from the fact that the
(1+1€P)° B(a)

1+ €] €]
of Mihlin-Hormander.

and from the theorem

multiplier m(§) = satisfies the estimate |D*m(&)| <

We recall the following well-known result :

Unique Continuation Principle: Assume that ® € H*>(R™,R™) solves the linear system
(4.4) —AD + A(2)D(x) =0 in RV,

where A(x) is an m x m matriz whose elements belong to L°(RN). If ® = 0 in some open
set w C RN, then ® =0 in RY.

A proof for the Unique Continuation Principle is given in [13], Chapter VIII in the scalar
case and in the appendix of [18] in the vector case. Notice that the Unique Continuation
Principle is essentially a local result. Although it is stated for functions ® € H?(RYN), it is
also valid for functions ® € W2P(RM) with p > 2 because VVi’f(RN) C H? (RM). This
observation will be useful later.

Now let us come back to the proof of Theorem 4.2.

If (u1,v1) = (0,0), then obviously v = 0 in RY. By assumption A2 and the regularity of v
we have 9o F(0,v) = ay(2)v and 92G(0,v) = by (z)v, where ay, by € L (RY). Using the second
equation (4.2), the fact that v = vy in the half-space {x; < 0} and the Unique Continuation
Principle, we infer that v = 0 in R”, thus (u,v) is radially symmetric in a trivial way. It is
obvious that this situation cannot occur if A # 0.

If (u1,v1) # (0,0), it follows from A2 that there exists (z1,2) € (—oc,0) x RV~ such that
M G(uy,v1)(x1,2") # 0 or 2G(uy,v1)(x1,2") # 0. Since v = vy for x1 < 0, we infer from (4.2)
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and (4.3) that o = 3. Moreover, using the regularity of u, v, v; we get 0o F'(u,v) — 02 F (u,v1) =
b(z)(v(z) —vi(x)) and 9G(u, v) — 0eG(u,v1) = c(x)(v(x) — vi(z)) where b, ¢ € L¥(RY). Let
w(zx) = v(z) — vi(x). Using the second components of (4.2) and (4.3) and the fact that
a = 3, we see that w satisfies the linear equation —Aw(z) + a(z)w(z) = 0 in RY, where
a=b+acc L¥(RY). Since w vanishes on a half-space, by the Unique Continuation Principle
we conclude that w vanishes everywhere, and this implies v = v; in RY. Thus we have shown
that (u,v) is symmetric with respect to x;.

Repeating this argument with the variables xo, ...,z y, we find a new origin O’ such that
(u,v) is symmetric with respect to x1,...,zy. Then as in the proof of Theorem 4.1 we show
that (u,v) is symmetric with respect to any hyperplane II containing O’, consequently (u,v)
is radially symmetric with respect to the new origin O'. O

Remark 4.3 Symmetrization inequalities for functions in the space H/?(RN) have been
proved in [3]. Therefore if s = 3, the function F in Theorem 4.2 satisfies the cooperative
condition 97 yF(u,v) < 0 (see [5]), G has a special form and it is known in advance that the
components u, v of the minimizer are nonnegative, then using symmetrization one can conclude
that there exists a radially symmetric minimizer.

Remark 4.4 In the case F(u,v) = u?+v?%, G(u,v) = u?v, by using symmetrization and Riesz’
inequality it has been proved in [3] that there exists a radially symmetric minimizer. The fact

that I and G are homogeneous plays a crucial role in their proof.

As an example of application for Theorem 4.2, we consider the Hamiltonian system :

ou 0

5 = %((—A)V?Haﬂu,v))
(4.5)

ov

0
a = Txl(—AU'i_aQF(U, 'U))

The generalized multidimensional Benjamin-Ono equation

(46) o = o (-8) 20+ g(w)

with g(u) = u? and the generalized multidimensional Korteweg-deVries equation

ov 0
4.7 —=—(-A
(4.7 = o (v + f(0)
have been considered in [21] and in [4], respectively; in these papers, references giving the
physical motivation for the above equations can also be found. System (4.5) can be considered
a Hamiltonian coupling between (4.6) and (4.7).
Formally, system (4.5) has the following conserved quantities:

E(u,v) = 7/ |(=A)Y4)? + |Vo|? da +/ F(u,v)dx and Q(u,v)= 1/ (u* + v?) da.
RN RN 2 JRrN

If we minimize E(u,v) subject to the constraint Q(u,v) = A\, where A > 0, then according to

[9] the set Sy containing the elements of H %(RN ) x HY(R") where the minimum is achieved

is invariant and orbitally stable with respect to (4.5). Since any element (¢, 1)) € S, satisfies

the Euler-Lagrange system

(—A)YV2¢+ 0 F (¢, 0)) +cp = 0,
o) +ep = 0,



we see that (¢, 1)) gives rise to a travelling wave solution of (4.5) of the form (u(t,z),v(t,x)) =
(p(xy —ct,2'),P(xy —ct,2')), 2’ € RN~ As a consequence of Theorem 4.2, the elements (¢, v))
obtained in this way are radially symmetric (after a translation).

4.3 Next we consider the problem of minimizing the generalized Choquard functional

(4.8) E(u) 2/ |Vu\2d:v—/RN/RN ,m_l,N ' (u(y))dxdy—i-/RNH(u(x))dx

subject to the constraint Q(u / G(u dx = constant.

It is worth to note that the complex version of F,

B =5 [ Vel [ [ AR e AR dedy+ [ (@) de

is the Hamiltonian for the generalized Hartree equation

N‘,’I}—

w2
(4.9) ug + Au+4 (/R W dy) Fi(|u®)(z)u(z) — 2H] (Ju(z)|*)u(z) = 0,

and Q(u) = / |u®(z)| dz is a conserved quantity for this evolution equation. The critical
RN

points of E + w@ give rise to standing waves for (4.9). As far as minimization is concerned,
using an argument of T. Cazenave and P.-L. Lions (see the proof of Theorem II.1 p. 555 in
[9]), we can restrict ourselves to the real functionals E(u) and Q(u).

In the case N = 3, F(u) = G(u) = u? and H(u) = 0, the problem of minimizing F(u)
subject to Q(u) = A has been studied in [15], where the existence, the radial symmetry and
the uniqueness of the minimizer have been proved. The symmetry was proved by using a sharp
inequality for spherical rearrangements. This can still be used in our case if we konw that the
minimizer is nonnegative and if we assume assume that F' is increasing on [0, 00) (because the
equality F'(u*) = (F(u))* is needed). Using the results in sections 2 and 3, we will show the
radial symmetry of minimizers in dimension N > 3 under more general assumptions on F, G
and H.

We begin by studying some properties of the nonlocal term appearing in (4.8) :

Lemma 4.5 Let N > 3 and let F : R — R be a function of class C? satisfying F(0) =
F'(0) =0 and
[F'(2)| < Clz|”  for || > 1,

where C' > 0 is a constant and o <

N _9 Then the singular integral operator

1)) = [, ey

and the functional

0= [ oy Plote) g Flot) dody

have the following properties :

i) I is continuous from LP(RN) to LY(RN) if 1 <p < ¢ < o0 and 1 - 2.

3=

N
i) If 1 <p < 5 <P < oo, then I is continuous from LP*(RN) N Lp2(RN) to L*(RN)N
CORN).
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2N
i) If 1 <r < N g <" <2 and p € L"'(RN) N L2(RYN), then

N
2

)

: ,52@(5) in S'(RY).

™

I -
0O =537,

i) M is well-defined and differentiable on H'(RN) and

M'(u).p = 2/RN (/R F% dy) F'(u(z))p(z) dx.

N‘;U

v) For any u € H'(RY) we have

1 - 2 1
Tz  F W) ()] dE, where ¢y = .
N [€]? oN=27 3 T(X — 1)

M(u):cN/R

Proof. 1) follows directly from Theorem 1 pp. 119-120 in [23].

i1) We write m% as ai(x)+az(x), where a;(x) = WX{MN} and ay(z) = m%x{lz\ﬁl}'
Then we have I(¢) = a1 * ¢ + as * . It is obvious that a; € LY(RY) for ¢ € (s,
as € LYRN) for ¢ € [1, NN2) Let p} and p) be the conjugate exponents of p; and ps. Then
Py > Ni—z and ph < N_2, so that a; € L1 (RY) and ag € LP2(RN). We infer that I(y) is
continuous and by Young’s inequality we get

oo] and

(@)ool < Hlall - Mlllzor + [lazl] - lellzee-
iv) First we consider the bilinear form

Plew) = [ [ e i) dudy

Notice that P is well-defined and continuous on L%(RN ) X L%(RN ). Indeed, it follows
2N 2N
from 4) that I is well-defined and continuous from L%+2(R) to L¥-2(R") and we have

Ple)l =| [ 1)@ ds

< MO, gy - 1011 2, < Anllel] ax (W] ax .

L N—

Without loss of generality we may assume that o > % From the assumptions on F' we have
|F(u)] < Clul? if |u| < 1 and |F(u)| < Clu|*T? if |u| > 1. It is well-known that H'(RY)
is continuously embedded in LP(RY) for p € [2, 2] and then it is standard (see, e.g. [26],
Appendix A) that u —— F(u) is continuously differentiable from H!'(RY) to LI(RY) for

q € [max(1, 14%0)’ %] In particular u — F(u) is continuously differentiable from

RN 5 MmN 2N : _ -
H'(R"Y) to L¥+2(R") (because 1+ < N+2 < o) (iTe )). Since M (u) = P(F(u), F(u)), w)
follows.

i17) and v) Let K(x) =

. Then K € S'(R") and it follows from Theorem 4.1 p. 160

||
— N
in [24] or from Lemma 1 p. 117 in [23] that K(¢) = =%~ - -L;. From Lemma 1 p. 117 in

r(d-1 [
[23] we have

1 — 1
(1.10) P2 ) = oy oy TONODE) e = [ e ®(O)(E) de
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whenever ¢, 1) € S(RY). We claim that (4.10) holds for any ¢, ¥ € L™ (RN) N L"2(RY) with
1<r < % < rg < 2. This assertion implies both i) and v).
Now let us prove the claim. Since (4.10) holds on § x S, the bilinear form P is continuous

2N 2N 2N
on L¥+2 (RV) x L¥+2 (RY) and L™ (RN)NL"(RY) is continuously embedded into L~+2 (R),
all we have to do is to show that the quadratic form

Pile) = [ emPleDe) de

is continuous on (L”(RN) N L’"Q(RN)) X (L”(RN) N L’"Q(RN)>; then the claim follows by
density of S in L™ (RN) N L™ (RY).

Let ], 4 be the conjugate exponents of ri, ro and let ¢1, g2 be such that % + q% = %,
respectively o + ;- = 3. Let b1(€) = gxqg<1y and 02() = xjei>1)- We have 2 < g < N
and g > N, so that by € L9 (RY) and by € L®(RY). Since the Fourier transform maps
continuously L™ (RVN) into L1 (RN) and L">(R"N) into L™2(RY), we have :

Pl <| [ et @R@d+| [ s d

< l1b18llze - [1orBlze + (182112 - 1ol 2
< b1 B 1BIL oy 1190 g+ 1ol s |21 g 11

< O(N,ryra) (el [[9]lzr + [l |z |9 2r2) -

This proves the continuity of P; and our claim. Thus the proof of Lemma 4.5 is complete. O

Theorem 4.6 Let N >3 and let F, G, H : R — R be C? functions satisfying the following
assumptions :
a) F(0) = F'(0) = 0 and there ezists 0 < 15 and C > 0 such that

[F'(w) < Clul” if uf > 1.
b) There exists o1 € [1,322) and C1 > 0 such that
|G'(w)| < Cy|ul”  and |H'(u)| < Cilu|”  for any u € R.

Moreover, if o1 < 2 then we assume that o1 > max(w, 1).

¢) For any e >0, G'£0 on (—¢,0) and on (0,¢).
Then any minimizer w € H'(RN) of the functional E given by (4.8) subject to the constraint
Q(u) = X is radially symmetric (after a translation in RY).

Proof. First of all, notice that the functionals £ and @ are well-defined and of class C' on
HYRY). Let u € H*(RY) be a minimizer. We will show that, except for translation, u is
symmetric with respect to 1. The same proof is valid for any other direction in RY and the
radial symmetry of u follows as in the proof of Theorem 4.1.

After a translation in the z; direction we may suppose that

A
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As before, we define w1 = Tiu and us = Tou. We know that uq, us € Hl(RN). In view of
assumption a), it is obvious that F(u) € L*(R"™) and we have Ty (F(u)) = F(u1), To(F(u)) =

F(uz2), Q(u1) = Q(u2) = A. Defining W (yp) = /RN £1|2\g5(§)|2 d¢, from Lemma 4.5 v) we get
E(u1) + E(ug) —2E(u) = —[M (u1) + M (u2) — 2M (u)]

(4.11)
= —cen[W(T1(F(u))) + W(Ta(F(u))) — 2W (F(u))].

Recall that by (2.51) we have for any ¢ € C°(RY),

1| [~ >
1| [ AR ) g e e

To show that this identity also holds for F'(u) we need the following lemma :

(412)  W(Tip) + W(Thy) — 2W () — % /R

Lemma 4.7 Let N > 3 and let 1, ro9 be such that 1 < r; < ]\2,—_‘]\_[2 < rg < 2. The bilinear form
1 RPN &1 o= / m /
Rip) = [ o [0 g da [ 0 y dm g
= JowsTen Jo P ep g @) Y g p
is continuous on (LT1 (RN)N L (RN)) X <L” (RM)N L”Q(RN)).
Proof.  Consider ¢, ¥ € L"(RY) 0 L2(RY). Then &, ¢ € L"1(RN) N L™2(RY), where 7/

and 1) are the conjugate exponents of r; and ro. Using Holder’s inequality and the change of
variable & = t|¢’|, we get for & # 0 and i = 1,2,

grrgs]= ([ reoras) ([ gemanes)
(4.13) = |§’\1;‘” (/Ooo (1522)@5)1 (/OOO 51, €)™ d§1>
S ARk

A similar estimate holds for 1. Let ¢; be the conjugate exponent of %, ie. ¢ = 21—;% Using
(4.13), Holder’s inequality and the estimate H@H < Aillel|rr we have

déi| <

e

-

¢(7717 )

Bpn1(0,1) \5’!/ Pt |€’|2+£2 dé1- 0 |§’|2+ 2

([ ertaa ) ([T 9 an)’

2—2r
<ct €1
BRNfl (071)
1
A
1

1
q1(2 31) q1 e} , r
(4.14) <od/ | ) O’ /’waﬁmﬁﬁj
Brn-1(0,1) Bgn-1(0,1) J0 )
(/ / mmhawdm@>1
Bpn-1(0,1) Jo

1

H\"—‘
e

q1(2—3ry)

saar( [ e"w dg )" el o
Brn-1(0,1)
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and

= y m
'/{s’>1} |s'|/ Alene \erw R RIOR: Urzim:

1 1
22y g o0 o VAT . .
<cp [ el ([Tl eartda ) ([T 190m.eortam ) de
{1¢'1>1} 0 0
1 1
91 (2=3ry) a2 I r, m
(415 <c3 ( [ 1ers df’) ( S, ) 180E €T ey d£’>
{1&'1>1} {lg’1>1} Jo )
. %
(/ / $(m, &) dm df)
{lg'1>1}
1
- 02A2 , q2(2;3r2) d , q2
SO oy (&1 =2 deh ) el |[]]or.
q1(2—=3771)
Since 1 < ry < N+2 < r9 < 2, a direct computation shows that / 1’| S d¢' and
BRN71(071)
92(2—3r2)
/ 1’| T d¢" are finite. From (4.14) and (4.15) we have
{lg'1>1}
[B(e,¥)| < K (Il [ellzr + [lellra ||l Lr)
and Lemma 4.7 is proved. O

Let r; and ry be as in Lemma 4.7. Since the maps ¢ —— T1¢ and ¢ —— Thy are obviously
continuous from L™ (RN) N L™2(RY) into itself and we have shown in the proof of Lemma

1 —
4.5 that the bilinear form Pi(p,v) = /N W@(ﬁ)@b(f) d¢ is continuous on this space, it
R

follows that the left-hand side of (4.12) is continuous on L™ (R™) N L™?(RY). By Lemma
4.7, the right-hand side of (4.12) also defines a continuous functional on L™ (R) N L™2(RY).
Since (4.12) is valid for any ¢ € C®(RYN), by density we infer that (4.12) holds for any
¢ € L"'(RY) N L"2(RY). Recall that v € H'(R") and by the Sobolev embedding and
assumption a) we have F(u) € LY(RY) for any ¢ € [max(1, 14—%)’ %]7 hence (4.12) is
valid for F'(u).

Since u is a minimizer, we must have E(u;) + E(u2) — 2E(u) > 0. From (4.11) and (4.12)
we infer that necessarily

&1

4.
(4.16) Jo 27 R+ &

Contrary to our previous examples, (4.16) does not imply directly AF'(u) = 0 To see this,
consider a function ¢ € C2°(0, 00) such that supp(¢)) C [1,00), 1 # 0 and / T t2¢}( ) dt

0. (Such a function exists: for example, take two nonnegative functions g, 11 € C°(1, 00)
with dlSJOlIlt supports and put ¢, = (1 — 7)yp9 — 7¢1. There is some 7 € (0,1) such that

/ P ——— 1, (t)dt = 0.) Extend 9 to an odd function defined on R. Take o € C2°(RN~1) such
0

that @ # 0 and supp(e) € RV=1\ B(0,1) and put f(£,,&) = a({’)w(‘g, ). Then f € C°(RN)
(hence f € S), f # 0 and f is odd with respect to the first variable. However, we have

2
dé| d¢' =o.

[ Fare)@ ) gyt e
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/ f ({1, N 1 dé; = 0 for any £ # 0 and consequently
0

€2 + &3
/RN 1 |€’

To show that u is symmetric with respect to x1, we argue as follows: since u and wuy
minimize E under the constraint () = A, these functions satisfy the Euler-Lagrange equations
E'(u) + a@'(u) = 0, respectively E’'(u1) + Q' (u1) = 0 for some constants o and 3, that is

/f£ _ 8 gelae—o

(4.17) —Au —2I(F(u))F'(u) + H'(u) + oG’ (u) =0 in RV,

(4.18) —Auy — 21 (F(uy))F'(u1) + H'(u1) + BG' (uy) = 0 in RY.

We will show in the next lemma that v and u; are smooth functions. Then we prove that
I(F(u))(x) = I(F(u1))(x) in the half-space {x; < 0}. Together with assumption c), this
implies that a = ( in (4.17)-(4.18). Then we will be able to apply the Unique Continuation
Principle to prove that u = u;.

Lemma 4.8 Let u € HY(RY) be a solution of (4.17), where F, G, H € C%(R) satisfy the
assumptions a) and b) in Theorem 4.6. Then u € W3P(RN) for any p € [2,00). In particular,
u € C?(RY) and D% are continuous and bounded on RN if o € NV, |a| < 2.

Proof. The proof is rather classical and relies on a boot-strap argument. For the convenience
of the reader, we give it here.
We show first that u € L°(RY). By the Sobolev embedding we have u € LI(R") for

q € |2, ]\Q,NQ] We will improve this estimate by a bootstrap argument to get the desired
conclusion.

Let us consider first the case N = 3. We may assume without loss of generality that
3<o< N =4 (if 0 < 3, we replace o by 3 and this gives no supplementary constraint on

o1 in assumptlon b). Suppose that v € LI(R?) for any ¢ € [2, 3], where 3 > 6. Together with
assumption a), this implies F'(u) € LY(R?) for ¢ € [1, 1 ’6 =]. We distinguish two cases :

—

Case A. If 1-?— > 3, then Lemma 4.5 4)-ii) implies I(F(u)) € L4
By assumption a) we have F'(u)x{ju<1} € L2(RN) N L>®(RY), hence I(F(
LIRN) for g € (£,00] and F'(u)x{ju>1y € L'RN) N Lg(RN)7 thus 7(F'(u))F'(u)X{u>1} €
LYRN) for q € [1, g] Consequently, I(F(u))E'(u) € LY(RN) for q € g] Assumption b)
implies that G'(u), H'(u) € LIY(RYN) for ¢ € [max(l,azl),a%]. Note that 0—% > 0—% > ¢ and

g >8> 02 by the second part of assumptlon b). From equation (4.17) we find Au € LI(RY)
for any ¢q € ( mln(g, ’31)] if 021 < ¢ =, respectively for any ¢ € [ mln(g, ’61)} if (% > %. Let
Qs = mm(ﬁ 61) If g > 2, we have Au € L% (R3) and obv10usly u € L9 (RYN) (because
2 < gy < U—l < f3), hence u € W?%(R3) and by the Sobolev embedding we infer that u €
L®(R3). If 3 < g, < 2, again by the Sobolev embedding we have |Vu| € LP*(R"), where

p% = q% — & (thus p. € (3,6)), hence u € W'P+(R?) C L>*(R?). If ¢. = 3, we obtain

Au € L%(R?’), which implies |Vu| € L3(R?), hence u € WH3(R?) so that v € LY(R?) for any
q € [2,00). Repeating the above argument for some 3 > 3, we get u € L>°(R?). It remains to
study the case ¢, < % It is clear that in this case we have ¢, = a% (because g > %) Since

Au € L% (R3), by the Sobolev embedding we get u € L (R3), where 5—11 = q% — % Notice

that ﬁ—ll — % = "151 -2< L= 2 < 0, hence 31 > (. We repeat the previous reasoning with

RY) for ¢ € (3,00].
F(u)) F' (w)x{ju<1y €

—_~ o~ —

6
5

3
(1 instead of 3. We obtain that either v € L®(R?), or u € L?(R?), where #; > (3 and
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@ — % < 5 < 0. In the latter case we continue with (s instead of 8 and we get that either

u € L®(R?), or u € L(R?), where 33 > (35 and % e "16_5, and so on. After a finite

B2 =
number of steps we get u € L>°(R3) (since otherwise we would obtain a positive increasing
sequence (0y,)n>1 such that B% - % < MUIT_@ — —o0, which is impossible).

Case B. If 1+0’ <3 3 we may suppose that 1fa < % (otherwise we take (3 a little bit smaller).

-1
By Lemma 4.5 7) we have I(F(u)) € LY(R3) for q € (3, (H—" - 2) . As in case A we obtain

]
3 3
I(F(u)F' (u)X{ju<1y € LIYRN) for ¢ € (£, (HTU - %)71] and I(F(u))F'(u)X{ju>1} € LIRN)
(1+2" — 2)_1]. Notice
; 3
1

-1
for ¢ € [1, (14%20 — %) ], so that I(F(u))F'(u) € LY(R?) for q € (g 5
1 —
that (142320 _ %) g (because § > 6 and o < 4) and (% — %) > l by assumption

b). Since obviously G’(u), H'(u) € LYRYN) for ¢ € [max(1,2),~], using equation (4.17)

) o
~1
we infer that Au € LI(R3) for any q € [max(g,fl),mm <(1+ﬁ2" - %) ’m)} q # 8 =. Let
~1
g2 = min ((Hﬂ% — %) ,ﬁ) If g0 > %, arguing as in case A we get u € L®(R?). If
1 1

g2 < 3, by the Sobolev embedding we have u € L% (R3), where i == 2, hence 3= 3 <
o—4 01 —5

max( o ) < 0, so that §; > (. Repeating the preceedlng arguments for $1 we obtain

either u € L°°(R3), 15_—10 > 3 (so that we are in case A, consequently u € L*°(R?)), or

u € L7 (R3), where B2 > 31 and é — 5—11 < max ("T_‘L, 016_5>' In the latter case we repeat the

same reasoning, and so on. As in case A, after a finite number of steps we get u € L>(R3).

Now we consider the case N > 4 and we assume that u € LI(R”) for any ¢ € [2, 3], where

B> 225 It is clear that G'(u), H'(u) € LY(RY) for q € [max(l, 021), U—J and F(u) € LY(R")
for g € [1, i +J] Once again, we distinguish two cases :

Case A. If 1+U > & then I(F(u)) € LY(RN) for any g € (525, o0]. We have F'(u) X {uj<1y €
LY(RN) for ¢ € [2,00], hence I(F(u))F'(u))x{u<1y € LYRY) for ¢ € (1,00] if N = 4,
respectively for ¢ € [1,00] if N > 5 and F'(u)x{u>13 € LYRY) for ¢ € [1,?], hence
I(F(u))F'(u)X{ju>1y € LYRN) if ¢ € [1,@]. Consequently I(F(u ))F’( )) € LY(RYN) for
q € (1, f] if N = 4, respectively for ¢ € [1, E] if N > 5. Notice that 8 > 2% and the second

part of assumption b) imply = g > 2 . Using equation (4.17) we infer that Au € LI(RY) for
q€ {max(l —) min(2 5)} q#1 1f N = 4. Let g3 = min(~ *8 5) Notice that g3 < [ because

o1’ o0
o1 > 1and Au € LBRN). If g3 > ¥ > 2, then u € LQ3(RN) hence u € W24 (RY) and
by the Sobolev embedding we get u € LOO(RN). If g3 = &, then u € WQ’%(RN), conse-
quently u € LI(RY) for any ¢ € [2,00) and repeating the above proof with 5 >  we find
u € L®RN). If 3 < 2 , then necessarily g3 = U% (recall that B > 15 > N because we are

in case A). By the Sobolev embedding we get u € L% (RN), Where é = q% — % = % — %,

thus ﬁ — % = 01[;1 — % < % < 0 by b). Repeating the previous arguments

with § replaced by (i, we find that either u € L®(RM) or u € L% (RYN), where o > [

and % — é < w, and so on. As previously, after a finite number of steps we get
u € L=(RN).
Case B. If % < % we may suppose that 1-€a < 4. By Lemma 4.5 i), I(F(u)) €
-1
LYRN) for q € (NN % - %) } As in case A we get I(F(u))F'(u) € LI(RYN) for
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-1
q € [1,(1%2” — %) }, g # 1if N = 4. By a), b) and the fact that § > % we have

-1
(% - %) > U% Since G'(u), H'(u) € LI(RN) for ¢ € [max(1, 0_21) ﬁ] using (4.17) we get

Au € LYRN) for q € [max(1, o%),qz;], g # 1if N =4, where g4 = min (fl, (1"'2‘7 - 2) ) If

Ié] N
qa > % then, as above, we obtain u € L>®(R"Y). Otherwise by the Sobolev embedding we find
—1)(N-2)—4 o(N-2)—4
u € LP'(RN), where % = qi4 — £, thus é — % < max((gl )2(N )=4 ol N) ) < 0. Then
we restart the process with (; instead of 5. Continuing in this way, after a finite number of

steps we obtain u € L>®(RY).

Up to now we have proved that u € LY(RY) for any ¢ € [2,00]. Thus F(u) € LY RY) N
L®RN), I(F(u)) € LY(RN) for q € (N 5,00, F'(u) € L*(RY) N L= (RY), hence
I(F(u))F'(u) € L2RN) N L¥(RYN). Clearly G'(u), H'(u) € L4(R") for ¢ € [max(1, U%), 0.
Using (4.17) we have Au € L2(RV) N L>®(RY), thus u € W2P(RY) for any p € [2,00). In
particular, u € C1(RY) and % are continuous and bounded on RY. Differentiating (4.17)
with respect to z; we get '

ou ou ou ou ou

~A — 2I(F' F'(u) — 2I(F (u))F” g H" =0 inR".
( xi) (F"(u )8%) (u) = 2I(F(u) F"(u )agjz G (u )8mi+04 (U)axi 0 inR

It follows that _A((%Li) € L>(RN)n L>®(RY). Since 0bV1ously € L2RN) N L>®RYN), w

get g—; € W2P(RYN), which implies u € W3P(R") for any p € [2, oo). O

It follows from Lemma 4.8 that F(u) € C*(RY) and F(u) € W2P(R") for p € [1, c]. Using
Lemma 4.5 4) and ), it is easy to check that I(F(u)) € C*(RY) and I(F(u)) € W?P(RY) for
p € (25, 00]. In particular, I(F(u)) € S'(RY) and Lemma 4.5 i) implies F(I(F(u)))(€) =

N

Ay F F(u)(€), where dy = Setting U = I(F(u)) we have —AU = dy F(u).

4m2
r(g-1-
Next we show that 8—U(0,:r’) = %I(F(u))(o,x’) = 0 for any 2/ € RV~ From (4.16)
we infer that / FAF () (&, &) —L
0

&1 d§1 = 0 for almost every & € RN~! that is
&

) e +
/ FT(E)(&,E )5 I, dé&1 =0ae £ € RN*I, or equivalently

(4.19) / EF(I(F(u)))(&,8)dér =0 for almost every ¢ € RN 7L,

If i I(F(u)) and ]-'(%I(F(u))) are in L'(RY), by the Fourier inversion theorem (4.19) is
equlvalent to zo7 O I(F(u))(0,2") = 0, as desired.

Since we do not know whether %I(F(u)) € LYRY) and ]—"(%I(F(u))) € LYRN), we
argue as follows : we take an arbitrary test function ¢ € S(RV~1) and we put ¢, (z1) =

2 2 5
\/LZ—We* . Clearly, pn(71) = np1(nz1), |lenllr1w) =1 and $,(&1) = e 272. On one hand we
have, by using Lebesgue’s Dominated Convergence Theorem,
0

Jm [ enee@) |5 IF W) (@, o) da

(4.20) = Jim [ e [ 1] (L) g o
n—oo JRN o0xy n
= [ ) ((Fw))(0,2") do
RN-1 axl ’
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On the other hand we have

0 0

[y enleni@) |51 w)] (1,07 do = (- IE@)), eule1)0a s

@) = F (I ) F 7 (ool s

2
&

_ 1 iy~ ,
~(2m)N /RN €2 F(u)(§)e P(=¢') d&y de.

Since F(u) € L?(RY), for almost every ¢ € RV~! we have F/(Z)(~,§’) € L*(R). For any such
¢, arguing as in (4.13) we get
T = / / &1 Y / ’ c T /
PR O ,ENdé < 5 F ,§)]dé < F(u)(, ;
Jole ™ g des < [ a6 €)| e < -l Py

where C' does not depend on &'. Moreover, Cauchy-Schwarz inequality gives

CIO=EN 7oy, o , B N~
foo S IOl ae < [ P ae ) 1T, <

By the Dominated Convergence Theorem, we have for almost any ¢ € RN~1

2

§ 8
AMF(U)(glag)e 2n d§1 / 62_'_‘5,’2 )(513 )dé'l:() as n —s oo.

Thus we may use Fubini’s Theorem, then the Dominated Convergence Theorem on RV~ to
obtain

/ S F/(\ / —5—%2 / /
[ €. €)e () déa d

€
4.22 B 6 / 7% |
(4.22) == [ S e e de
7 P(=¢)-0dg" = 0. as n — 00.
RN-1

From (4.20), (4.21) and (4.22) we infer that / w(m’)g(I(F(u)))(O,x')dm’ = 0. Since
RN-1 1

Y € S(RN71) was arbitrary, we have %(I(F(u)))(o, ) =0in S'(RM~1), hence

a%l(I(F(u)))(O, 2') = 0 for any 2’ € RV ~! because %(I(F(u))) is a continuous function.

We know that F'(u;) is symmetric with respect to z; and a simple change of variables
shows that the function Uy := I(F'(u1)) is also symmetric with respect to x1. Clearly U; also
belongs to C?(RY) and satisfies —AU; = —A(I(F(u1))) = dyF(u1). By symmetry we have
3%(0, 2') = 0 for any 2’ € RV~1. Since uy(x1,2’) = u(zy, o) if z1 < 0, we have proved that
the functions U and Uy are both solutions of the problem

—AW = dyF(u) in {(z1,2') € RN | 21 < 0}
(4.23) W e CHRN)NnW2P(RY)  for p > %5,
gKi(O 2)=0 for any 2/ € RV-1L.
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It is not hard to see that the solution of (4.23) is unique. Consequently, U(z1,2’) = Uy (21, 2")
if 1 < 0. It is obvious that (u,U) and (u1,U;) solve the system

—Au —2UF'(u) + H'(u) + aG'(u) =0
(4.24) in RY,
—AU —dyF(u) =0

respectively

—Auy — 2U1F,(U1) + Hl(ul) + ﬂG,(uﬂ =0
(4.25) in RV,
—AUl — dNF(’U,l) =0

Next we show that if v = 0 in the half-space {1 < 0}, then u = 0 in RY. Indeed, if u = 0
in {x; < 0}, then from (4.23) it follows that U = 0 on that half-space. Now from (4.24) and
the Unique Continuation Principle we infer that (u,U) = (0,0) on RY. In this case u trivially
has a radial symmetry. Clearly, we cannot have u = 0 if A # 0.

If u# 0 in (—o0,0) x RN=!, then u((—00,0) x RV=1) = uy((—00,0) x R¥~1) contains an
interval of the form (—¢,0) or (0,¢) for some € > 0. Now assumption c¢), (4.24), (4.25) and
the fact that (u,U) = (u1,U;) on (—o0,0) x RN~ imply that a = 3 in (4.24)-(4.25). As a
consequence, we see that (u — uy, U — Uj) solves a linear system whose coefficients belong to
L®(RN). Since (u,U) = (u1,U;) for 71 < 0 and (u,U), (u1,U;) € W2P(RN R?) if p > 2 and
p > %, by using the Unique Continuation Principle we infer that v = u; (and U = Uy) in
RY, that is u is symmetric with respect to z;.

Similarly we show that w is symmetric with respect to any other hyperplane II which has
the property that / G(u(x))dr = / G(u(z)) dx, where II_ and I are the two half-spaces
- I

determined by II. As in the proof of Theorem 4.1 it follows that after a translation, u is radially
symmetric. The proof of Theorem 4.6 is complete. O

4.4 Our last application concerns the Davey-Stewartson system

iug + Au = f(|ul*)u — uvg,,
(4.26) in R3,
Av = (]u\Z)ml
which can be written as
(4.27) iug = —Au + f(|ul*)u 4+ R2(Jul*)u,

g t
where R; is the Riesz transform defined by Rjp = Z’ggﬁ(f) Let Fy(t) = / f(r)dr. Tt is easy
0
to check that

_ 1 1 1
E(u) = 5/R3 \Vul? dz + §/R3 Fy(|ul?) dz — Z/R?) | Ry ([uf?)[? dav

is a Hamiltonian for (4.27) and Q(u) = / lu(x)|? dz is a conserved quantity for the same
R3

equation. The standing waves for (4.27) are precisely the critical points of E + wQ. As in
the previous example, when we minimize F(u) subject to Q(u) = constant, we may restrict
ourselves to real functions u and to the real version of F,

1 1
B(u) = E/RS\Vude—k/l;{g F(u)dx—E/RB IRy ()2 da.
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We will consider a more general functional than Q, namely Q(u) = / G(u)dz. If G(u) =
R3

u?, in order to guarantee the boundedness from below of the functional E on the set of functions

satisfying Q(u) = A, the function F'(u) is required to behave as alu|” for u large, with a > 0
and v > 4. In the case F(u) = alu|?, the Cauchy problem for the evolution equation (4.27)
has been analysed in [12]. The global existence of solutions was proved in the case a > 0 and
~ > 4, while in the case v = 4 the global existence was proved if a is sufficiently large.

Still in the case of pure power F(u) = alu|?, with a > 0 and v > 4, the existence of

minimizers of E subject to the constraint Q(u) = |u|? dz = X can be proved by using the
3

Concentration-Compactness Principle (see [17]) if X is large enough (this assumption is needed
to prevent vanishing).

In [10] the existence of ground states related to the problem (4.26) has been studied.
However, our method cannot be used to prove the symmetry of these ground states because
the nonlocal term appears in the constraint.

It is well-known that Rj is a linear continuous map from LP(R3?) to LP(R3) for 1 < p < oo
(see [23]). If u? € L?(R3), then Ry (u?) € L?(R3) and by Plancherel’s theorem we get

2 gy — L TP = L [ 8 mep
@) [ R = s [ IR@EF dE = G [ PO e

We have the following symmetry result :

Theorem 4.9 Let u € HY(R?) be a solution of the minimization problem

1
minimize E(u) = 5/3]Vu|2dx—|—/3F( dx—f/ |Ry(u?)|? da
R R

subject to Q(u) = G(u(z))de = A
R3

under the following assumptions :
a) F, G : R — R are C? functions, F(0) = F'(0) = 0, G(0) = G’(0) = 0 and there exist
C >0, o <5 such that
|F'(u)] < Clul” and |G’ (u)] < Clul” for |u| > 1.

b) For any e >0, G' #0 on (—¢&,0) and on (0,¢).
Then, after a translation, u is radially symmetric in the variables (x2,x3) (i.e. u is azxially
symmetric).

Proof. Making a translation in the x5 direction if necessary, we may assume that
A
/ G(u(z))dx = / G(u(z))dx = =. As before, we define u; and ug by
{z2<0} {z2>0} 2

) u(zy, @, x3) if 9 <0, ) u(xy, =0, x3)  if 29 <0,
up (21, 22, 23) = { u(xy, —x9,x3) if 29 >0 up (21, 22, 23) = u(zy, z2,x3) if z9 > 0.

It is obvious that Q(u1) = Q(u2) = A\. Moreover, using (4.28) we get

E(u1) + E(u2) — 2E(u)

1 8 ]
4 ) [/ ‘§|2‘ 1(8)] d€+/ ’§|2 &)1 de /3|€|2|u ()|7de]| .
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Recall that by (2.53) and (2.54) we have the equality

(4.30)

& & &
o e Te©P e+ [ Do) e 2 [ 1o de
[ At S ae

~ g
=y &
™ JRy-1 (€] +1¢'
for any ¢ € C(RY), where j € {2,...,,N}. It is obvious that the left-hand side of (4.30)
defines a continuous functional on L2(R”Y). By the next lemma, it follows that the right-hand

side of (4.30) also defines a continuous functional on L?(RY). Then the density of C>*(R")
in L2(RY) implies that (4.30) holds for any ¢ € L*(RY).

Lemma 4.10 Let j € {2,...,N}. The bilinear form

&1 ey /
Sl(@ﬂ/}) /I{N 1 |§/|/ 617 £1+|£,|2 dé-l / T/’(ﬂlaf)wdmdf

is continuous on L*(R™) x L2(R™N).

Proof. As in (4.13) we have

’/ooo 95(51,5/)5%_51’£,|2 d& | < K|§/1|; (/OOO 16(E1, )2 d§1>2,

1
where K = ( /0 i +t2)2 dt) . Consequently

S <x? [ |§| ([ |@<51,s’>|2dsl)é ([ w(m,a’n?dmf ¢
<[ ([ r¢<§1,5’>|2d§1)5 ([ \mZ(m@')de)é g
< ([ [ e |2d£1d5) (L [T m&dedg)l

< Killell 2@ 1] L2 vy

-

|

Since u?, u?, u3 € L*(R?) (recall that H'(R?) C L*(R?) N L°(R?)), by exchanging the
roles of z1 and x5 and using (4.29) and (4.30) we find

E(U1)+E 'LL2 —2E( )

where Asp = %(gp(xl, x9,x3) — (1, —T2,23)).
Since u is a minimizer, we must have E(uy)+ E(u2) —2FE(u) > 0, consequently the integral
in the right-hand side of (4.31) must be zero, which is equivalent to

5—}—224—52 52 = 0 a.e. (51763) c R2.
1

3

(4.31)
g+8+8

2
/ 2)(61, 6, 3) des| e, dés,

(4.32) / Az (u?) (&1, £, E3)
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In particular, u; and uy are also minimizers. However, as in the previous example, (4.32) is
not sufficient to prove that As(u?) = 0. In order to accomplish this task, we will use the
Euler-Lagrange equation of u : since w minimizes E under the constraint Q(u) = A, there
exists a constant « such that E'(u) + aQ'(u) = 0, that is

(4.33) —Au+ F'(u) + R?(v®)u + oG’ (u) = 0.

Lemma 4.11 If F and G satisfy assumption a) in Theorem 4.9 and v € H'(R?) is a solution
of (4.33), then u € W3P(R3) for any p € [2,00). In particular, u € C*(R3).

Since Ry and R? are linear continuous mappings from LP(R3) to LP(R?) for 1 < p < oo,
the proof of Lemma 4.11 is standard, so we omit it.

Let I(p)(z) = /R 2 () dy. Using Lemma 4.5 it is easy to see that I(u?) € W2P(R3) for

5 |z —yl
any p € (3,00] and I(u?) is a C? function. Moreover, we have
2,2 3 o) Lo
F(Ri(w))(€) = et (&) = =g &l @)(©),
3
where dg = %, thus R} (u?) = d—gaa—;gl(ﬁ). Equation (4.33) can be written as
2 1
(4.34) —Au+ F'(u) + Lo (I(u2)) u+ aG'(u) =0
' d3 aZE% ’

Arguing exactly as in the proof of Theorem 4.6, (4.32) implies that 6%2 (I(u?)) (1,0,23) = 0
for any (x1,z3) € R
Since u; is also a minimizer, it satisfies the Euler-Lagrange equation

1 0%

4.35 —A F’ —_—
( ) ul + (ul) + ds ax%

(1(ud)) w1 + BG (ur) = 0.

The conclusion of Lemma 4.11 is obviously valid for uy. Since uy is symmetric with respect to
w9, I(u?) is also symmetric with respect to x5 and, consequently, 6%2 (I(u?)) (21,0, 23) = 0 for
any (z1,23) € R%. Weset U = I(u?) and U = I(u?}). Recall that u(xq, z2, 23) = uq (21, 22, 23)
if zo < 0 ; thus U and Uy are both solutions of

—AW = u? in R x (—00,0) x R,
(4.36) W e C]R)NW2P(R3) for3<p<oo
%(1’1,0,%‘3) =0 for any (z1,73) € R%

It is not hard to see that the solution of (4.36) is unique. Hence we must have I(u?) = I(u?)
in R x (—00,0] x R. In the same way we obtain I(u?) = I(u3) in R x [0,00) x R.

Now we focus our attention on u;. Making a translation in the x3 direction if necessary,

we may assume that / G(ui(z)) dx = / G(ui(z))dx = % We define
{z3>0}

{1‘3<0} x3>0

w (JU T :L‘): u1(m1,x2,x3) if 3 <0,
1\T1, X2, L3 ui (1, 9, —x3) if xg >0,
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_ ) walwy,me, —wg)  ifag <O,
U)Q(x17"1}‘2,.'1§'3) - { U1($1,$27x3) lf T3 2 O

It is obvious that Q(w;) = Q(w2) = A. Proceeding as above, we find the identity
E(wl) + E(wg) — 2E(u1)
(4.37)

&3
E+8+8

2
dgs| d&y dés,

A3 (u}) (&1, &2, &3)

1 8
371—/112\/@

where Agp = 3(p(21,22,23) — (21,22, —23)). Since uy is a minimizer, it follows from (4.37)
that wy and ws are also minimizers of F under the constraint Q = A; hence w; and wy
satisfy the conclusion of Lemma 4.11 and I(w1), I(ws2) € C2(R3?) N W?2P(R3) for p € (3, 00].
Moreover, the integral in the right-hand side of (4.37) must be zero. As previously, this gives
6?3]( (w1, 29,0) = 0 for any (x1,72) € R?. Proceeding as above, we find I(u?) = I(w?) in
R? x (—00,0] and I(u?) = I(w3) in R? x [0, 0).

Now let us consider the function w;. It is clear that wi(z1, —x9, —x3) = wi (21, —x2,23) =
wi(x1, 9, x3), i.e. wi is symmetric with respect to xo and with respect to x3. Consider a plane
IT in R? containing the line {(x1,0,0) | #1 € R} and let II; and II_ be the two half-spaces
determined by II. Since (z1,x2,x3) — (21, —x2, —x3) maps II; onto II_, using the symmetry

of w; we get / G(wi(x))dr = / G(wi(x))dr = g Let s denote the symmetry in R3
I -

+
with respect to II. We define

) wi(2) if eIl ) wi(sn(x)) ifxell,
(@) = { wi(sni(z))  if = € I, and - ry(z) = { w () if z € I, .

Repeating the above arguments we obtain an integral identity analogous to (4.31) and (4.37)
which implies that r; and ro also minimize E subject to the constraint () = A. Furthermore,
using the fact that the integral in the right-hand side of this identity must vanish we find

0

(4.38) a—[(w%)(xl,xg,xg) =0 whenever (x1,x9,23) € 11,
n

where n is the unit normal to II. Passing to cylindrical coordinates we write

I(w?)(z1, 72, 23) = I(w})(x1,7cosf,rsinf) = ®(zq1,7,0), where r = /x3 + 23. Since I(w?)
is a C? function and (4.38) is valid for any plane I containing {(z1,0,0) | 1 € R}, (4.38) is

equivalent to (Z%) = 0, that is ® does not depend on 0, i.e. I(w?)(z1,x2,73) = ®1(x1, (/23 + 23)
for some function ®;. In other words, we have proved that I(w?) is radially symmetric in the
variables (72,73). In the same way we show that I(w3)(x1,z2,73) = ®o(w1, /23 + 22) for
some function ®5. Since I(u?) is continuous on R3, I(u?) = I(w?) in the half-space {z3 < 0}
and I(u?) = I(w3) in the half-space {z3 > 0}, we have necessarily ®; = ®5, and then I(u?) is
radially symmetric in the variables (29, x3). Similarly, I(u3) is radlally symmetric in (x2,z3).
Recall that I(u?) = I(u?) in the half-space {z2 < 0} and I(u?) = I(u3) in the half-space
{x9 > 0}. But I(u?) is a continuous function on R3, thus we must have I(u?) = I(u?) = I(u3)
on R3, consequently I(u?) is radially symmetric with respect to (2, x3).

If u = 0 in the half-space {z3 < 0}, it follows that u; = 0 in R? and then I(u?) = 0 which
implies I(u?) = 0 in R3. In this case (4.34) becomes —Au + F'(u) + aG’(u) = 0 and from the
Unique Continuation Principle we infer that v = 0 in R?, thus u is radially symmetric in a
trivial way. Obviously, the case u = 0 is excluded if X # 0.
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If w # 0 in the half-space {z2 < 0}, by assumption b) there exists (a; ,T9,73) € R3, 29 <0
such that G'(u(x1,z2,73)) # 0. Since u = uj on {wy < 0} and I(u?) = I(u?) on R3, from

(4.34) and (4.35) we infer that a = (3. Let a(z) = %38871'2? (I(u?)) (z) = g a@;% (I(u?)) (z). We

know that a is a continuous and bounded function on R3. The functions u and u; both satisfy
the equation —Aw + F'(w) + a(r)w + aG'(w) = 0 in R? and using the Unique Continuation
Principle again we conclude that u = u; in R3, i.e. u is symmetric with respect to zs.

In the same way we prove that v is symmetric with respect to xg (after possibly a transla-
tion). Proceeding as in the proof of Theorem 4.1 we can show that u is symmetric with respect

to any plane containing the line {(z1,0,0) | 1 € R}, consequently u is radially symmetric
with respect to (z2,x3) variables. O

Remark 4.12 i) We have stated and proved Theorem 4.9 in dimension N = 3 only for sim-

plicity. Replacing the term / Ry (u2)2(2) dz in E(u) b / Ry (H (u))[2(z) dz and making
R3 RN

suitable assumptions on the function H, this result admits a straightforward generalization to

RN, N > 3.

it) We do not know whether the minimizers in Theorem 4.9 are symmetric or not with
respect to x1. Recall that by (2.55) we have

2
L Simwera+ [ Shimera-2 [ e

_ 8 &
B W/RN—I &g+1¢

for any ¢ € C°(RY). Clearly, the left-hand side of (4.39) is continuous on L?(R"). Proceeding
as in Lemma 4.10, it is easy to see that the right-hand side of (4.39) also defines a continuous
functional on L?(R"). Consequently, (4.39) holds for any ¢ € L*(RY). Using (4.28) and
(4.39) we have

(4.39)

* A ae| ag

|2 dgl

&
€17

The right-hand side in this integral identity is always nonnegative and (4.40) does not imply
the symmetry of minimizers with respect to x;.

(4.40)  E(Tyu)+ E(Tou) — 2B(u) = >—— /R e

7 (2m)N a1 df’.

| Faw)©5;

iii) Let us change the sign of the nonlocal term appearing in Theorem 4.9, i.e. let us
consider the minimization problem

1 1
minimize E,(u) = §/S|Vu|2d:r+/3F(u) dm—i—z/s |R1(u?)|? d
R R R

(4.41)
under the constraint Q(u) := / G(u(z))dr = A

R3
The minimizers of this problem (when they exist) give rise to standing waves for equation
(4.27) where the sign of the nonlocal term R?(|u|?)u has been reversed. Clearly, the integral
identities that we have do not imply the symmetry of solutions of (4.41) with respect to xo
and x3.

The symmetry of minimizers of (4.41) with respect to x7 is also an open problem. As
above, in this case we have the identity

&1

2
u?)(€ )|€!2

(4.42) E.(Tiu) + B (Tow) — 2B, (u) = — 2 —— /R 2 ae|” dey des,

7 (2m)3
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If w is a minimizer, the right-hand side of (4.42) must vanish. As in the proof of Theorem 4.9,
this implies %I(UQ)(O,ZL‘Q,ZU;;) = 0 for any (z2,23) € R2. Repeating the argument already
used in Theorem 4.9 we get I(u?) = I((Tyu)?) on {x1 < 0} and I(u?) = I((Tou)?) on {z1 > 0}.
Moreover, if A # 0 then u and uy := Thu satisfy the same Euler-Lagrange equation, namely

1 92

—_ / —_———
(4.43) Aw + F'(w) T

(1(w?) w+ aG'(w) = 0.
Equivalently, defining U = I(u?) and U; = I(u?), we see that (u,U) and (u1,U;) are both

solutions to the system

2
(4.44) —Aw—i—F’(w)—éaaTvgw—i—aG’(w):O,
—AW = w?.

Moreover, (u,U) = (u1,U;) on {z; < 0} and u, u; satisfy the conclusion of Lemma 4.11. We

do not know whether this information together with the boundary condition 3—5(0, X9, x3) =

%{11(0’ x9,x3) = 0 imply that u = uy.

Remark 4.13 If N = 3, the nonlocal term in Theorem 4.9 can be written as

1 & B 1 0 =
/Rg | B (u?) | do = (273 /Ri, @W(f)ﬁdﬁ e /Rgf<ax%1(“2)> (E)u?(€) dg

1 0?2 1
= _dg/ I(u?)(z)u?(z) dx = _d3/R3 /Rd () K (z — y)u?(y) dz dy,

R® Ox?
2 202 — 22 —x2 . . . .
where K(x) = O () = 28727 Gince this kernel changes sign, spherical rearrange-
ox? \ |z 2, .2, .2\ ’
1 (zy+a5+a3)2

ments in the variables (x2,x3) combined with Riesz’ inequality cannot be used to prove the
symmetry of minimizers.

Remark 4.14 It is worth to note the following simple idea : let u, be a minimizer for a
variational problem like those studied in this paper. Suppose that one can prove that wu, is

ou
a C! function and that — = 0 whenever x € II, where II is any hyperplane in R" having
n

the property / G(uy(z))dx = / G(us(z))dx (here II_ and II; are the two half-spaces
- I

determined by II, n is the unit normal to II and G is the function appearing in the constraint).
Proceeding as we did for I(u?) in in the proof of Theorem 4.9, one can prove that after a
translation, u, is radially symmetric. This method should be useful in problems where the
integral identities that one can obtain are not sufficient to deduce the symmetry of minimizers
and an unique continuation theorem is unavailable. Unfortunately it cannot give symmetry
with respect to only one direction.

5 Some open problems
We close this paper speaking about several problems for which the methods described above
(including ours) seem to fail.

First, let us come back to the two minimization problems considered in Theorem 4.1. As

before, if u is a minimizer of any of these problems, we may assume that / G(u)dx =
{z1<0}
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/ G(u) dzx and we set u1 = Tyu and ug = Tou. Assume that s € (1, %) Then the identities
{z1>0}
(3.26) and (3.27) are still valid (see Corollary 3.5) and we get

16 si
E(uy) + E(ug) — 2E(u) = —wl\ff(zﬁlu) >0 in case A, respectively
7r
16 si ~
E(u1) + E(u2) —2E(u) = —(SSLQ(SW)NSQ(AQL) >0 in case B.
s

It is easy to see that these integral identities work in the wrong direction. Are the minimizers
still radially symmetric for s € (1,3) ?

Another problem is to study the symmetry of minimizers of

1 2 2
u(z)u dx dy + F(u(z))dx
o ms 7 — g ) w) drdy + | F(u(@)

1
Bu) =5 [ 1VuP+

subject to the constraint

/ u?(x) dr = \ > 0.
R3

In the particular case F(u) = —C'u|*/3, this problem arises in connection with the Schrédinger-
Poisson-Slater system ([22]). Due to the repulsive effect of the nonlocal term, Riesz’ inequality
as well as the Reflection method work in the wrong direction.

A last problem concerns the symmetry of minimizers of

B = [ (2@ + @) dr - [ lela(©) de

—00 —

+o0
where v > 0, subject to the constraint / u2(a:) dr = XA > 0. These two functionals are

conserved quantities for the Benjamin equaticé)on (see [1]). Symmetrization and reflection cannot
be used due to the sign of the nonlocal term. Oscillating travelling waves for this equation
have been found numerically; perhaps this is an indication that the minimizers of the problem
above may change sign.
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Abstract

We prove that the non-existence of supersonic finite-energy travelling-waves for non-
linear Schrodinger equations with nonzero conditions at infinity is a general phenomenon,
which holds for a large class of equations. The same is true for sonic travelling-waves in
dimension two. In higher dimensions we prove that sonic travelling-waves, if they exist,
must approach their limit at infinity in a very rigid way. In particular, we infer that there
are no sonic travelling-waves with finite energy and finite momentum.

Keywords. nonlinear Schrodinger equation, nonzero conditions at infinity, travelling-
wave, integral identities, Gross-Pitaevskii equations and systems, cubic-quintic NLS.
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1 Introduction
The aim of this paper is to study travelling-wave solutions for nonlinear Schrodinger equations

0P
(1.1) iE+A<I>+F(x,|<I>|2)<I>:0 in RV,
where F' is a real-valued function defined on RV x R, ® is a complex-valued function on
RY satisfying the "boundary condition” |®| — rg as || — oo, and 7 is a positive constant
verifying lim , F(x,s)=0.

|x|—00, s—r
The above equa(:tion with the considered non-zero conditions at infinity arise in a large
variety of physical problems, such as superconductivity, superfluidity in Helium II, phase tran-
sitions and Bose-Einstein condensate. Two important particular cases of (1.1) have been
extensively studied both by physicists and by mathematicians : the Gross-Pitaevskii equa-
tion (where F(x,s) = 1 — s) and the so-called ”cubic-quintic” Schrédinger equation (where

F(z,s) = —a1 + ags — ass?, a1, ag, as are positive and % < a;‘g"’ < %)

T‘2
Equation (1.1) has a Hamiltonian structure: denoting V' (z,s) = / ’ F(x,7)dr, it is easy
S

to see that, at least formally, the ”energy”

(1.2) B(®) :/RN \V<I>|2d:c+/RN Vi, [02) de

is a conserved quantity. There is another important (vector) quantity associated to (1.1),
namely the momentum. It is given by
0P 0P

(1.3) P(®) = (P(®),..., Px(®)), where Pk(q)):/RN(iaxk,(I))dx: [ Relig ®)du

1



Note that, in general, the momentum is not well-defined for any solution ® of finite energy.
In the case where F' does not depend on the variable x;, the momentum with respect to the
xp—direction, Py, is conserved by those solutions of (1.1) for which it can be well-defined.

It is worth to note that equation (1.1) can be put into a hydrodynamical form by us-
ing Madelung’s transformation ®(z,t) = \/p(x, t)e’? @ (which is singular when ® = 0). A
straightforward computation shows that, in the region where ® # 0, the functions p = |®|?
and 6 satisfy the system

(1.4) pt + 2div(pVe) = 0,
Ap  |Vpl?
1.5 0, + Vo> — =% — F(z,p) =0.
(15) 1902 = 52+ B2 pap)
Equation (1.4) and the derivatives with respect to x1,...,xx of (1.5) are, respectively, the

equation of conservation of mass and Euler’s equations for a compressible inviscid fluid of
density p and velocity 2V#.

Let us assume that F' admits a partial derivative with respect to the last variable (in the
sequel, this derivative will be denoted by dn 1 F or by %—f) and that lim , ON1F(x,p) =

|z|—o0, p—7g
—L, where L is a positive constant. Taking the derivative with respect to ¢ of (1.5) and
substituting p; from (1.4) we obtain

9 Ap  |VpP?
L 20N11 F A . - 2_ 2P —0.
(1.6) Out + 20N 41 F (2, p) (020 + Vp.V0) + - (yvay 2+ 4 0

For a small oscillatory motion (i.e. a sound wave), all nonlinear terms in (1.6), except 2pAf,
may be neglected. In view of the behavior of p and On1F(z,p) for large |z|, we find that
in a neighborhood of infinity, the velocity potential # essentially obeys the wave equation
0 — 2r3LAO = 0. Tt is well-known that the solutions of the wave equation propagate with a
finite speed; in the present situation, we infer that the velocity of sound waves at infinity is
r0v/2L. In what follows we will always assume that Oy F(z,p) — —L as |z| — oo and
p — 12 (the convergence being in a sense to be defined) and we will denote by vs = rov/2L
the sound velocity at infinity.

For a fixed y € SV~1, a travelling-wave for (1.1) moving with velocity ¢ in direction y is
a solution of the form ®(z,t) = ¥ (z — cty). Without loss of generality we will assume that
y = (1,0,...,0), i.e. travelling-waves move in the z;—direction. The travelling-wave profile
satisfies the equation

(1.7) —icgjjleAw%—F(x, 1]2) =0 in RY.

In a series of papers, J. Grant, C.A. Jones, S.J. Putterman, P.H. Roberts et al. studied
formally and numerically travelling-waves for the Gross-Pitaevskii equation and related systems
(see, e.g., [16], [19], [21], [22], [7] and references therein). In particular, they conjectured that
such solutions exist if and only if their speed ¢ belongs to the interval (—vs,vs). For the
cubic-quintic nonlinear Schrédinger equation, the existence of subsonic travelling-waves in
one dimension has been proved in [2] and their stability has been studied in [1]. The non-
existence of such solutions for sonic and supersonic speeds has also been conjectured in any
space dimension. In the case of the Gross-Pitaevskii equation, it has been shown in [17] that
any travelling-wave of finite energy and speed ¢ > wvs must be constant. It has also been
proved in [18] that the same result is true if N = 2 and ¢? = v2. The proofs in [17], [18§]
strongly depend on the special algebraic structure of the nonlinearity in the Gross-Pitaevskii



equation. In the present paper we show that the nonexistence of finite energy travelling-waves
moving faster than the sound velocity is a general phenomenon, which holds for a large class
of equations and systems of the form (1.1). We also prove that there are no finite energy sonic
travelling-waves in space dimension two. In higher dimensions we show that any finite-energy

sonic travelling-wave ¢ must satisfy || —r3 € LP(RY) for any p > %%:é On the other hand,

if a sonic travelling-wave satisfies |12 — rg € L%(RN ), then it must be constant.

This article is organized as follows: in the next section we prove that travelling-waves,
whenever they exist, are smooth functions. If their speed is supersonic (or sonic, provided
they converge sufficiently fast at infinity), then they must satisfy a special integral identity.
This will be proved in Section 3. In section 4 we show how this identity implies, under general
assumptions, the non-existence of travelling-waves with finite energy. We apply our results
to the Gross-Pitaevskii equation, to the cubic-quintic Schrodinger equation and to a Gross-
Pitaevskii-Schrodinger system which describes the motion of an uncharged impurity in a Bose
condensate. In the last section we describe all supersonic and sonic travelling-waves (with
finite or infinite energy) for one-dimensional equations with nonlinearities independent on the
space variable.

2 Basic properties of travelling-waves
We keep the previous notation and we consider the following set of assumptions:

e (H1) F:RMx[0,00) — R is a measurable function which has the following properties:

a) for any s € [0,00), F(-, s) is measurable;
b) for any z € RY, F(x,-) is continuous;
c¢) F is bounded on bounded subsets of RY x [0, c0).

(H2) There exist a > 0, C' > 0 and 7, > 0 such that for any z € R" and for any s > r,
we have F(x,s) < —Cs®.

(H3) ‘ lim F(z,73) =0and F(-,r3) € L*RN).

z|—00

e (H4) F admits a partial derivative with respect to the last variable and Oy41F is
bounded on bounded subsets of RY x [0,00). Moreover, |l‘im Ony1F(z,r3) = —L,
x| —0o0

where L > 0 and On1 F(-,73) + L € LPo(RYN) for some py € [1,2].

LH5) There are some positive constants Ry, 7, M such that 0% 41 I exists on (RN \
B(0, Ro)) x (g —n,75 +n) and

%41 F(a,s)| <M forall (z,5) € RV \ B(0, Ro)) x (1§ —n, 75 +1).

Definition 2.1 A travelling-wave (of speed c) for (1.1) is a function ¢ € L}, .(R”) that satisfies
(1.7) in D'(RY) together with the "boundary condition” |¢)| — rq as |z| — oc.

In view of (1.2), we say that a travelling-wave v has finite energy if Vi) € L2(R") and
V(. vP) € LHRY).

We have the following result concerning the regularity of tavelling-waves:

Proposition 2.2 Let ¢ be a finite-energy travelling-wave for (1.1).
i) Assume that F : RY x Ry — R is measurable and satisfies (Hla), (H1b), (H2),

the function v —— /;F(.CIZ,T) dr belongs to L} (RN) (where r. is given by (H2)) and
o

loc

F(, [0*)¢ € LL (RN). Then ¢ € L*(RN).



If, in addition, F satisfies (H1c), then ¢ € W}, ’p(RN) for any p € [1,00). In particular,
Y € CLYRYN) for any a € [0,1).

ii) Suppose that F € C*F(RN x [0,00)) for some k € N*, (H2) holds, and F(-,|¢|*) €
LL (RN). Then ¢ € I/V/ij’p(RN) for any p € [1,00). In particular, if F is C*, then
P € C°(RYN).

Proof. 1) The proof relies upon the ideas and methods developed by A. Farina in [13, 14].
By (H2) we have

(s,

Vix,s) = /FdeT> /F.I‘TdT+/CT dr = /F:ET)dT+a+1

Tx
Consequently, for any s > r, we get s@t! <o+l 4 0%1 (V(x, s) + /2 F(x,7) dT), so that
7o

[9]?°T2(z) < max (rerl,rf‘H + a; 1( V(z, [1*(z +/ F(x,T) dT))

Since V (-, [2|?) and 2 F( 7)dr belong to L}, (RY), we infer that ¢ € L}*"*(RN).

loc

We will use a well- known inequality of T. Kato (see Lemma A p. 138 in [23]):
Ifue L (RY) is a real-valued function and Au € Li, . (RY), then

(2.1) A(u™) > sgn™(u)Au in D'(RY).

Let ¢(x) = e_%w(m). Then ¢ € L;*"*(RY) ¢ L}, .(R") and an easy computation shows
that ¢ satisfies

02
(2.2) A+ (F(a, o) + Z)g& =0  inD(RY).

It is clear that F(-, |¢|?)¢ € L} (RYN) (because F(z, ||?)y € L} (RY) by hypothesis) and it
follows from (2.2) that Ap € L} (RY). Choose 7 > r, and C; > 0 such that Cs** — % >
C(s — 7)%* for any s > 7. Denoting ¢1 = Re(y), p2 = Im(p) and using Kato’s inequality for
@i — 7, 1 =1,2, then using (2.2) and (H2) we get

Alpi— )" = sgnt(pi — P)A(pi — 7) = sgnt (i — )~ (F(a, o) + 5]
(2.3) > sgnt (i — F)[Cle™ — Fles > sent (i — 7)[Clei* — Tles
> Cusgn®(pi = 7) (i — 7)2T = (0 — F)F]P2F
Next we use the following result of H. Brézis (Lemma 2 p. 273 in [9]):
Lemma 2.3 ([9]) Letp € (1,00). Assume that u € LI (RY) satisfies
—Au+ |uPlu <0 in D'(RNY).
Then u < 0 a.e. on RY.

It follows from (2.3) that the function u; = (Cl)i(gpi — 7)* satisfies —Aw; + |u;[*Yu; <0
in D'(RYN). Since u; € L% (RY), we may use Lemma 2.3 and we get u; < 0 a.e. in RV, that
is ¢; < 7 a.e. in RV,



It is obvious that both ¢ and —¢ satisfy (2.2). Repeating the above argument for —p, we
infer that —p; < 7 a.e. on R". Therefore we have |p;| < 7 a.e. on RY, i = 1,2, which implies
that ¢ € L>°(RY). Since |¢| = ||, we have proved that ¢ € L>°(R").

Using (H1c) and (2.2) we infer that Ap € L>®(B(x,2R)) C LP(B(z,2R)) for any z € RV,
R > 0and p > 1. By standard elliptic estimates we obtain ¢ € W?P(B(x, R)) for any € R,

R > 0and p € (1,00). Thus ¢ = eic%gp € VVZQO’p(RN) for any p € (1,00), consequently

C

belongs to Cllo’?(RN ) for any a € [0,1) by the Sobolev embedding theorem.
ii) Assume F' € C'(RY x [0,00)). Differentiating (1.7) with respect to z; we get

OF N

(24)  —icthuz, + Mo, + 5 (2, [U*)9) + 20841 F (a, |¢|2)(¢.67k

N
o 0+ P )52 = 0

in D'(RY). Hence Ay, € L} (RY) for 1 < p < co. By standard elliptic regularity theory we
get Yy, € T/VlQO’f(RN) for 1 < p < oo, 1<k <N, therefore ¢y € Wli’f(RN) for 1 < p < .
If € CHRYN x [0,00)) we may differentiate (2.4) further and repeat the above arguments.
After an easy induction, we get ¢ € V[/llzzrz’p (RM) for any p € (1,00). O
Lemma 2.4 Assume that (H1), (H3), (H4), (H5) hold and u € L} (RY,C) satisfies
lu(z)| — 7o as || — oo and V (-, |ul?) € LY(RN).

Then |u?> — r¢ € L>(RY).

Proof.  Let Ry, n, M be as in (H5). From (H4) and the fact that |u(z)] — 7o as
|x| — oo it follows that there exists R; > Ry such that

L
Ony1F(z,18) < -3 and  |u(x)]® € (rd —n, 78 + 1) for any x satisfying |z| > R;.

For (z,s) € (RN \ B(0, R1)) x (r3 —n,73 + 1) we get, by Taylor’s formula with respect to
the (N + 1)* variable,

1 1 /s
V(.’IJ,S) = _(S - Tg)F(.%',T’g) - 5(3 - 748>261\7-|-1F1(x77'[%) - 5 /2(8 - T>2612V+1F(:(}7T) dr.
"o
In particular, for s = |u(z)|? we obtain
—3(ju(@)]* = 18)*0n+1F (2, 78)
(2.5)

For z € RV \ B(0, R;) we get by (H5)

fu@)P s s
[, (u@P =)0k Fla.r)dr| < 1
7o

|u(z)|?
[, (u@P=n2ar

0

= @R -

It is clear that there exists R > R; such that %‘\u(x)ﬁ - r%’ < L on RV\ B(0,R,). Using
(H4) and (2.5) we infer that

F(lu(@)]? = 18)? < —3(ju(@)? — r§)*On 1 F (2, 13)

IN

V(z, [u(@)?) + (lu(@)? = r§) F(z,78) + 5 - %\ Ju(z)|? — g

< Vi, [u@)?) + (u@)]? ~ ), rd) + E[ )P~ on RN\ B(O, Ry).



Consequently
(2.6) §(|u(:c)|2 — 1) < V(. [u@)]?) + (ju(@)? = r§) F(z,75)  on RV \ B(0, Re).

Since F(-,72) € LY(RYN) by (H3), V(- [ul?) € LYRY) and ||u(z)]? — r3| < 2L on RV \
B(0, Ry), using (2.6) we get (Ju|?> —r2)? € LYRN \ B(0, Ry)). It is obvious that (Ju|? —r3)? €
LY(B(0, Ry)) because u € L (RY). Hence (|u|?—r3)? € L*(RY) and Lemma 2.4 is proved. O
Proposition 2.5 Assume that (H1)-(H5) hold and let ¢ be a finite-energy travelling-wave
for (1.1) (in the sense of Definition 2.1) such that F(-,|¥|?)y € L} (RYN). Then:

i) Vip € WHP(RN) for any p € [2,00).

ii) Let R, > 0 be such that [¢(x)| > 3 for |x| > R.. There exists a real-valued function
0 such that 6 € I/VZQO’S(RN \ B(0,R,)) for any p < oo, VO € WIP(RN \ B(0, R.)) for any
p € [2,00) and

(@) = [B@)|D  on RV \ B0, R.),

Proof. 1) We already know by Proposition 2.2 i) and Lemma 2.4 that 1 is bounded,
NS W/'l2’p(RN) for any p € [1,00) and |¢p|* — 7’8 c L2(RN)'

oc

Let Ry, 7, M be as in (H5). Choose Ry > Ry such that [¢|*(z) € (13 — n,73 + n) for
r € RV \ B(0, Ry).
By using Taylor’s formula with respect to the last variable for the function F' we get

(27)  Flas) = Flard) + (s — o Flard) + [ (s =10k e, dr
7o

if (z,s) € (RN \ B(0, Ry)) x (r3 —n,7¢ + 1), hence
F(z, [pP@)(x) = Fla,r§)v() + (V@) = r§)on F (@, 18) (@)
(2:8) WI2()
(@) |,

To

(]1/1]2(96) — 7')8]2\,“}7(:6,7') dr for any |z| > R;.

We analyze the three terms in the right-hand side of (2.8). Assumptions (H1) and (H3)
imply F(-,73) € L' N L>®°(RY). Since ¢ € L>®(RY), it follows that F(-,73)y € L' N L®(RY).
We may write (6] — 12) 1 (-, 13 = — L[ — 13+ (]2 — 13) (L + Oy 1 F(-, 1))
We know that ¢ € L®°(RY), [1|2—r¢ € L2NL>®°(RY) and by (H4) we have L+9dn1F(-,1¢) €
LPo N L=®(RN) for some pg € [1,2], so we infer that (|¢|?> —rd)On 1 F (-, 73)y € L2 N L2(RYN).
As in the proof of Lemma 2.4, for € RY \ B(0, Ry) we have

¥ (@)
@9) | [, (WP@) =m0k Flarydr| < M = 5 (WP @)=,

0

W@,
[ [ wP@-r|dr
To

[ ()
Consequently the function z — /2 (|93 (x) — 7)0% 41 F(x,7) d7 belongs to L'NL® (RN \
o

B(0, Ry)).

Summing up, we have proved that F(, |¢|?)y € L2 N L¥(RY \ B(0, R;)). From (H1) and
the fact that ¢ is bounded on RY it follows that F(-,|¢|?)1 is bounded on B(0, R;), hence
F(, [9*)y € L2 N L2(RY).

We have % € L?(R") because ¢ has finite energy. Coming back to (1.7), we get

0
Ay = aj’ CF(L WP € LARY).



It is well-known that A € LP(RY) with 1 < p < oo implies a:i‘;bx — € LP(RV) for any

J.k € {1,..., N} (this follows, e.g., from the fact that % is a Fourier multiplier on LP(RY) if

1 < p < 00; see Theorem 3 p. 96 in [27]). Therefore all second derivatives of ¢ are in L*(R),
2 e HY(RN) = WI(RY) for k=1,...,N.

The rest of the proof is an easy bootstrap argument. Assume that Vi) € WHP(RN) for some
p > 2. In case p < N, it follows from the Sobolev embedding theorem that Vi) € LP"(RN),
where ]% = % — %. From (1.7) we have Ay = zcgf F(-,|v?)y € LP"(RY) and we infer
as previously that V¢ € WP (RY). Repeating this argument if necessary, after a finite
number of steps we get Vi) € WH4(RYN) for some ¢ > N. Then by Sobolev embedding we get
Vi € L™ (RY) for any 7 € [¢,00). From (1.7) we obtain Ay € LP(RY) for p € [2,00) and we
infer that Vi € WHP(RYN) for any p € [2,00).

ii) Take R, > 0 such that [¢)(z)] > 2 on R\ B(0, R,) and denote Y(z) = ‘igi% It is then
standard to prove that ) € T/Vlif(RN \B(0, R,)) for p € [1,00) and Vi) € W'»(RN\ B(0, R,))
for any p € [2,00) (see, e.g., Lemma C1 p. 66 in [10]).

Let us consider first the case N > 3. For R, < Ry < Rp, the domain Qg, g, = B(0, R2) \
B(0, Ry) is simply connected in RY. It follows from Theorem 3 p. 38 in [10] that there
exists a real-valued function Og, r, € W??(Qp, g,) (1 < p < 00) such that ¢ = ¢Rr1.R2 on
QR, Ry If Re < Ry < Ry, Ry < R3 < Ry and (Ry, Ro) N (R3, Ry) # 0, then ¢ = ¢¥R1.r2 =
ePrs R on Qg g, N Ry Ry, thus Or, r, — Or, Ry € 277 on Qg p, N gy Rk, Since functions
in W5P(Qg, r, N Qry Rr,) with values in Z are constant when sp > 1 (see Theorem B1 p. 65
n [10]), there exists k € Z such that 0R3,R4 — 9317}32 = 27wk on QR1,R2 N QR3,R4- Let (Rn)nzl
be an increasing sequence such that R, < R; and R, — oo. Let k, € Z be such that
Or..rR, = Or. R, + 27k, on Qg, g,. Define 0(x ) = Og,, R, (x) — 27k, for z € Qp, R,- It is
clear that 0 is well-defined on RN \ B(0, R,), ¥ = ¢’ and 0 € VVl P(RN \ B(0,R,)) for any
p € [1,00).

Next we consider the case N = 2. Since ¢ is C' and [¢)| > % on R? \ B(0, R,), the
topological degree deg(1, 0B(0, R)) is well-defined for any R > R, and does not depend on R.
It is well-known that 1 admits a C* lifting 0 (i.e. ¢ = |1[e??) on R? \ B(0, R,) if and only if
deg(¢,0B(0,R)) = 0 for R > R,. Denoting by 7 = (—sin(, cos() the unit tangent vector at
OB(0, R) at a point Re’, we get

1 2m —(w(Relc)) R 27 aw Re’LC
B = | —_— = | — or 7
degtv. 080, R)| = |51 [T S ad < [ [T ezl g
(2.10)
1
2r 9 ) 2m . 2
<or [ 2ivetre)ac < e ([ \W(Rewdc)
2w Jo 1o A 0
On the other hand,
00 2 .
/ V@) de :/ R/ Vb (Re€) [ d¢ dR.
R2\B(0,R.) R. Jo
We have / _ \Vip(z)]? dz < oo (because v has finite energy) and we infer that there
R2\B(0,R.)

7r7'0 1

S R . From (2.10) we get

27
exists R1 > R, such that Rl/ |V¢(Rle )|2 d¢ <
0

1
Ry g 1\ 1
d B — V2T | — = | =<



Since the topological degree is an integer, we have necessarily deg(¢,dB(0,R;)) = 0. Con-
sequently deg(¢,0B(0,R)) = 0 for any R > R, and v admits a C' lifting . In fact,
0 c Wl P(R%\ B(0, R,)) because ¢ € VVI P(R?\ B(0, R.)) (see Theorem 3 p. 38 in [10]).

If N = 1, the existence of a lifting 1) = [1)|e?® follows immediately from Theorem 1 p. 27
in [10].

Finally, it is easy to see that ‘8 | = |89 | and |8I d;vk’2 = 8:2269@’2 + \00 2 |8xk|2

|8:1: 3xk| , and i) implies VO € Wl’p(RN \ B(0, R,)) for any p € [2,00). )

3 An integral identity

The main result of this section is given by the next theorem.

Theorem 3.1 Assume that (H1) - (H5) hold. Let 1) = 11 + iy be a finite-energy travelling-

wave for (1.1) such that F(-,|[¢*) € Li, (RY). Let R, be sufficiently big, so that [¢| > %

on RNV \ B(0, R.) and let 0 be the lifting given by Proposition 2.5 ii). Let x € C°(RY) be a
cut-off function such that x =0 on B(O 2R,) and x =1 on RN \ B(0,3R.). Then:
i) The functions F(-, [l + 5 (]2 = 13) and G = 1 522 — B2 — 13- (x0), j =
., N, belong L' N L>®(RN). (We always extend x0 by zero on B(O, R*))
i) If N > 2 and ¢ > v? we have the following identity:

2
| VU = P R = S (0l —rd) da
(3.1)
v? P o 9
(1 - 072)/ 7/] axl 1/)271 - aiﬂfl(xe) dx.
i) Identity (3.1) holds if ¢ = v? and

o cither N =2 5 5
e or N > 3 and we assume in addition that 1 ﬂ — ﬂ € LN (RN)
{1}1 I

Proof. i) Let Ry, n, M be as in (H5) and take Ry > Rg such that [v|*(z) € (r3 —n, 73 +n)
for z € RN \ B(0, R1). Using (2.7) and the fact that v = 2LrZ we get

F(I, ’¢‘2($))|¢|2( ) (|7/)| ( )—TO) (:C,T%)’¢‘2($)
(3.2) +([[2(@) = i) On 1 P, 18) + LIl P(@) — L (192 (x) - 13)°

vl ()
HoP@) [, (WP = Dok Fler)dr forany o] > Ry,
"o

Since ¢ € L>(R") by Proposition 2.2 i) and F(-,72) € L' N L®(RY) by (H1) and (H3),
we infer that F(-,r2)[¢|? € L' N L¥(RYN).

We have ¢ € L¥(RY), oy 1 F(-,7¢) + L € Lo N L>®°(RYN) by (H4) and [|¢|?> — ¢ €
L2 L=(RY) by Lemma 2.4, hence (|| — r3)[On11F(-,73) + L]|[¢|?> € L' 0 L2(RYN).

From Proposition 2.2 i), Lemma 2.4 and (2.9) it follows that the last two terms in the
right-hand side of (3.2) are in L' N (RN \ B(0, Ry)). Hence F( PRSP + (2 —r3) e
L' N L®(RN \ B(0,Ry)). Clearly, the function F(-, [¢|?)[y|?> + (W\Q — r3) is bounded on

B(0, Ry), therefore this function belongs to L' N L‘X’(RN)
Since 11 = |1| cos @ and 19 = || sin b, a straightforward computation gives

w ¢1

00 —
(33) g g = () o RN VB R,



Therefore

an awl 2 0 . 2 2 ﬁ N\ =
B4 GG o) = (WE =)L o RY\B.3R,).

From Lemma 2.4, Proposition 2.5 ii) and the Sobolev embedding theorem we have |1|? — 73 €
L? N L*(RYN) and 8879], € L2 N L>®(RN \ B(0, R.)), respectively. Identity (3.4) implies G; €
L*'NL°(RN\ B(0,3R.)). Since Gj is continuous on RY, we conclude that G; € L*NL>®°(RY).

ii) Equation (1.7) is equivalent to the system

(3.5) ng + Atpy + F(z, |[9)*)y = 0 in D'(RY),
3% o0 . N
(3.6) . + Aths + F(z,[9[")p2 = 0 in D'(RY).

In view of Proposition 2.2 i), equalities (3.5) and (3.6) hold in LF (RY) for 1 < p < oo.

i),
Multiplying (3.5) by 9 and (3.6) by 11, then substracting the resulting equalities we get

c 0

(3.7) 58751“1”2 —73) = div(v1 Vb2 — 1o Vihy).

We multiply (3.5) by #; and (3.6) by 2, then we add the corresponding equalities to obtain
Oty o, 1

(38) IVl + IVeal® - Fla, WA = (b5~ = v ) = SAWF = 5).
From (3.7) and (3.8) we get
(39 Con (9P = 1) = div (1 Vs — 41 — 7BV (0) + 7EAND),
respectively

AU = 1) = 22 (2 = 7d) = VU2 + [Vl = Fa ORI — 2 (102 = 13)
(3.10)

0
J— —_— —_— J— 27
c(¢1 8.1?1 2 8.’131 To 8.’E1 (X@)) CTro 8131 (X@)

Since ¥ € W, ’p(RN) equalities (3.7)-(3.10) hold in L?

loc

(RY) for 1 < p < co. We denote

2 0 0 0
H = (V61 + [V4af? = Fla 6P = S0P = 1) = cln 52 = a3 = 1352 0).

We take the derivative of (3.9) with respect to z; (in D'(R”)) and we multiply it by c,
then we take the Laplacian of (3.10) (in D'(RY)). Summing up the resulting equalities we
obtain

(3.11) (A2 — A+ )(W —r2)=AH + c;(dw(e)) in D'(RV).
€1

From i) we have H,G1,...,Gy € L'NL>®(RY) and we know from Lemma 2.4 that [¢|?> — 73 €
L2NL®(RY). Therefore H,G1,...,Gn, [¢|> —r¢ € S'(RY) and we infer that, in fact, equality
(3.11) holds in S’(RY). Taking the Fourier transform of (3.11) we get

(312) (et +o2IeP — PENF (P —rd) = rfPH—cZakak in §'(RY),



We have H, Gy, € L®NCO(RY) because H, Gk € L'Y(RY). Thus the right-hand side of (3.12)
is a continuous function on RM. Since [¢|? — 73 € L2(RY), we have F(|¢|? — r3) € L2(RY)
and we infer that the left-hand side of (3.12) belongs to LZ (RY) and (3.12) hOldb a.e. on RV,
We denote
P = (€€ RY | g + 26l — 2 = 0},

If ¢ < v2 we have I' = {0}. If ¢? > v?
RY. In the latter case, we claim that

2, it is easy to see that I' is a nontrivial submanifold of

(3.13) |€12H (€) + chléka =0 for any ¢ € T.
k=1

To prove this claim, we argue by contradiction and suppose that there exists £ € T' such
N

that \§O\Zﬁ(§0) +c Z f?{g@(fo) # 0. By continuity, there exist m > 0 and a neighborhood
k=1

N
U of & such that ‘ |§]2ﬁ + CZ flkak‘ > m on U. From (3.12) we infer that
k=1

2m
F(||* = > a.e. on U\ T.
s w®‘\%ﬁ+ﬁmﬂw%ﬂ \
Since 0 and (y/¢? — vg, O ,0) are not isolated points of I', we may assume that £° # 0 and
# (/% — vg, 0,. A stralghtforward computation (detalls can be found in [17], p. 98

in the case v2 = 2; the general case is similar) shows that

/ ! dé =
onr €[ +2E)? —e2g2 >

consequently / |F([w]* —r3)(€)|* dé = co. But this is in contradiction with F (|2 —r2) €
U\l

L*(RY) and the claim is proved.
It is not hard to see that I' = {(&,¢) € Rx RV | ¢ = L(—v? —2¢ +

Jui+42E2)}. Let f(t) = \/1 (—v2 262+ /0T +4%). The function f is well-defined

for t € [~/ —02,/@ =02, f(0) = 0and im5f = —14 5. Fixj € {2,...,N}. For
m&ﬁ—@@f:< 0, f(1),0,...,0) and £(t) = (£,0,...,0,—f(1),0,...,0),
where f(t), respectively — f(t), stand at the j¥ place. It is obvious that §( ),E(t) € F From
(3.13) we obtain

(3.14) (82 + f2O))H(E(1) + G (E(t)) + et f(£)G;(£(t)) = 0, respectively

(3.15) ( + POV H(E(E) + c®Gr(E(1) — et f()G;(E(t) = 0.
We multiply (3.14) and (3.15) by 75, then pass to the limit as ¢ | 0 to obtain

2 A 2
(3.16) H(0) + ¢G1(0) + ¢ [—1 + %Gj(o) = 0, respectively

s

m@‘@
o

2 ~ c? ~
(3.17) —gH( )+ cG1(0) — ey -1+ Uszj(O) =0

S

10



From (3.16) and(3.17) we infer that CQH(O) +¢G1(0) =0 and G; (0) =0, that is / H(x

?Gl( dx = 0 and / dx = 0. The first of these integral identities is exactly (3.1)
and the latter can be written as
P o1 5 0 ,
1 — —ro—(x0)dz = for j=2,...,N.
(318) G Gt () dr =0 forj =2

i) Assume that ¢2 = 2. Then (3.1) is equivalent to H(0) + ¢G1(0) = 0. Denoting
£ =1(4,¢), where ¢ = (&,...,&N), identity (3.12) implies

F(UI =€) = 2 s (1(6) + eG©)

(3.19)
—zci S15k — S Gr(©) —2$f1(5) a.e. £ € RN
€11+ 2le? [§]* + c2[¢']?
For ¢ € (0,1], we denote Q. = {(£1,€") e Rx RN & €0,¢], 0 < [¢] < &1} We will use
the following

Lemma 3.2 Let N >2 and k€{2,...,N}.
2
i) The function & — @W belongs to LP(Q.) if and only if p < N — %

it) The function § — belongs to LP(Q.) for any p € [1,2N —1).

2|£/|2

Proof of Lemma 3.2. i) Using Fubini’s theorem for positive functions, then passing to
spherical coordinates in RV~ and making the change of variables r = &2t we get

61 2p 1 de' d
I8 ( c2|5'\2> e
[F N [& NP
_A 5117’5' ‘A (£%+62T2)p drdgl

= |§N- 2|/ /El GETRDE (€&0" 2§4t2) fl dt d&; (change of variables r = £2t)

(3.20)

e L N-2
_ |gN-2 2(N—-1-p) [& 1t
= 1572 [N O e

Assume that p < N — % Obviously 0

W <1 fort € [0,1] and < c%, thus we have

1+2t2 —

L N2 1 E C1+ %=1 if p # 854
! 1, N—2p—2 1

———dt <1 —/ t P2 dt =
/0 (1+c22)p — — T 1

where C; are some positive constants. This estimate implies that the right-hand side of (3.20)
is.ﬁniteifp<N—l

Cs+Cyilng  ifp=27L

N=2
pr>N—§,denotecp—/ wdt>0 Slnce5
c

side of (3.20) is greater than |SN=2|c, [ & 2AN—1=P) dé) = 0.

> 1 for & € (0,¢), the right-hand

11



ii) Proceeding as above, we have

_&& P &le'r pgN -2 & pptN-2
A¥&+ﬂw2%§/(§+ﬂ€ dc= [ e1s™ | @ a2y
N—2
(3.21) =[SV 2‘/ §p/61 %{% dt d&y (change of variables r = 5%1&)

3 L p+N—-2
— N2y [TeNepe2 fE T
‘S |/D 51 /0 (1 +02t2)p 51'

As previously,

1 1
g tPHN2 1 (& N_po 1 1 ,
e dt < —= TP dE = fN—-—p—1>0.
/0 (14 2e2)p 2 Jo (N —p—1) fN p—1 ! p
Therefore in the case p < N —1, the right-hand side of (3.21) is less than C' [ &V~ d¢; < oo. If
g 051
7517—}-]\[—2
p > N —1, the integral / W dt converges. Let a, be its value. If N -1 <p < 2N —1,
c
by (3.21) we get / a 515;‘5,|2 de < |SN- 2\%/ GNP el < oo O
Qe

Remark. It can be proved that the function £ —— does not belong to LP(Q.) if

2 /|12
p > 2N — 1, but we will not make use of this fact here. ‘5 |

Now we come back to the proof of Theorem 3.1. All we have to do is to show that
H(0) + ¢G1(0 0) = 0. We argue by contradiction and assume that H(0) + cé\l( 0) # 0. Since
the functions H and G are continuous, there exists e € (0,1) such that |H(€) + ¢G1(€)| >
2]H (0) + ¢G1(0)| for any ¢ € Q.. Taking a smaller ¢ if necessary, we may also assume that
|E1* + 1€ < 2(&f + 2|¢')?) for any € € Q.. By (3.19) we have

1 & £2 N -
e o) + OO0 < 2 s H () + eCa(e)

(3.22)

Y a&l A .
< |F(p? = r5) ()] +2e ’Z 2\5'2|Gk(€)|+2W|H(€)| a.e. on (2.

Consider first the case N = 2. We know that F(|[¢|>—r3) € L?(R?), consequently F(|¢|* —
r3) € LP(Q.) for any p € [1,2]. Since Gy, are continuous and bounded, by Lemma 3.2 i) we
mfer that the functions & —— PETWG’“(Q belong to LP().) for any p € [1,3). It is obvious

that ‘chz‘ 2 | H ()| < ?’H (€)] and H is continuous and bounded on RY. We conclude that
the right- hand side of (3.22) belongs to LP().) for any p € [1,2]. Then (3.22) implies that

Er— Pl belongs to L%(Q.), which contradicts Lemma 3.2 i). This contradiction proves

2|€/
that H( )+ ¢G1(0) =0
Next we assume that N > 3 and 15 6%’ @ZJQ% € Lav=s (RY). Equation (3.8) can be

written as

+ 5%
2

1 2 g 2
=5 AW =r5) + S (Y[ = 15)
(3.23)

2
IV = [Vl + Fa WP + 2 (0P = 78) + el 522 — o 310,

12



We have already proved that F(-,[1]?)[]? + %(W!Q —r¢) € L' N L>®(R"Y). From Propo-

sition 2.5 i) we have |Vi|? € LP(RYN) for any p € [1,00]. Using the assumptlon ¢1 ‘g’:ﬁff —

P2y 81/)1 e Livs 5(RN), we infer that the right-hand side of (3.23) belongs to Lav=s (RM).
By the Hausdorff-Young inequality, for any function f € LP(RY) with 1 < p < 2 we have
F(f) € L (RN), where ]% + 1% =1 (see, e.g., Theorem 1.2.1 p. 6 in [4]). Passing to Fourier
transforms in (3.23) we get

Fl? —3)©) = P [~IVel? + (FC WP+ S (1P - r3)
(3.24)
te(i1f2 — )] (6)  ae €€ RN,

We obtain from (3.24) that F(|¢|> — rd) € LN_’(RN) Combined with the fact that H, C/J\]
and & — m&% are bounded and Lemma 3.2 ii), this implies that the last expression in
(3.22) is in LN_%(QS). We infer that the function £ — 54+62‘£,‘2 |H(0) 4 ¢G1(0)| must be in
LN_%(QE) for any sufficiently small e. If H(0) + ¢G1(0) # 0, this contradicts Lemma 3.2 i).
Thus necessarily H(0) + ¢G1(0) = 0 and the proof of Theorem 3.1 is complete. O

It is an open problem whether any finite energy travelling-wave v of (1.1) moving with

2N—-1
speed ¢ = Fv; satisfies 11 3 81/’2 wg% € L2v=3 (RN). Even for very particular cases of (1.1),
such as the Gross- Pltaevsku equation, the answer to this question is not known. However, we
have the following:

Proposition 3.3 Assume that (H1) - (H5) hold and let 1» = 11 + ithy be a finite-energy
travelling-wave for (1.1) such that F(-,|4|?) € LL . (RN). Let R, be sufficiently big, so that
|| > % on RN\ B(0, R,), let 0 be the lifting given by Proposition 2.5 i) and let x € C*®(RN)
be a cut-off function as in Theorem 3.1. Then:

i) Let p € (1,00). The following assertions are equivalent:

a) V(x0) € LP(RY);

b) Y1gs2 — agst € LP(RY) for any j € {1,...,N};

¢) 1 gifff b2y Wl € LP(RN);

d) [Y]* —rj € WQ’p(RN);

¢) [¥? —r§ € LP(RY).
ii) If N > 3, there exists 0y € R such that x0 — 0y € W*4(RN) for any q € [%, 00).
Moreover, if ¢? = v?
iii) |2 —r2 € LP(RN) andwl%’j—wgg—% € LP(RN) for any p > 28~ 3 Landje{1,... N}
w) V([y|> —r3) € LP(RY)
v) 8%k(\w\2 —1¢) € LP(RY) for any p € (1,00).

we have:

Proof. i) Since ¢ € L=(R") and (3.3) holds, the equivalence a) < b) is clear. It is also
obvious that b) = ¢).

From the classical Marcinkiewicz Theorem (see Theorem 3 p. 96 in [27]) it follows that the

functions ‘§|21+v2, |§|§iv2 and | €|2i’“ > are LP—multipliers for 1 < p < co. Assume that gff —

a9 € LP(RY). Since [Vib[2 € L'NL=(RN) and F(-, [[?)[0 >+ % ([ —r3) € L'NL>®(RN)
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by Theorem 3.11), we have —| Ve[ *+(F ( 2|2+ ([ 2—r2))+e(vhr 52—y 201) € LP(RN)
and we infer from (3.24) that [1|? — 73 € W27P(RN). Hence c¢) = d). It is obvious that d) =
e).

It follows from Proposition 2.5 ii) that dx(x#) € S'(RY). It is then clear that all terms
appearing in (3.9) belong to S'(RY). We take the derivative of (3.9) with respect to zj (in
S'(RY)), then we take the Fourier transform of the resulting equality to obtain

3 fyfk E% 2 2
or equivalently
c
(3.25) (%ck ZR Ri(G)) = G RaBy([[* = rg),

-~

where R; is the Riesz transform, R;¢ = F~1(i —]d)) It is well-known that the Riesz transform

maps continuously LP(RY) into LP(RY) for 1 < p < oo (see, e.g., Theorem 3 p. 96 and
Example (iii) p. 95 in [27]). From Theorem 3.1 i) we have G; € L' N L®(RY), therefore
R;Ri(G;) € L4(RN) for any ¢ € (1,00). Assume that [¢|> —13 € LP(RN) for some p € (1, 00).
Then Rle(\wF —r3) € LP(RY) and from (3.25) we infer that (XG) € LP(RM) for any
ke {l,...,N}. Thus e) = a) and i) is proved.

ii) It is well-known that for any function ¢ satisfying V¢ € LP(RY) with p < N, there
exists a constant A such that ¢ — A € LP"(RY), where I% = %— + (see Theorem 4.5.9 in [20] or
Lemma 7 and Remark 4.2 in [15] p. 774-775 for a different proof). From Proposition 2.5 ii) we
have V(x6) € WLP(RY) for any p € [2,00). If N > 3, we infer that there exists §p € R such
that x0 — 0y € LY(RY) for ¢ € [225, 00). Therefore x0 — 0y € W24(RY) for any ¢ € [255, 00)

and, in particular, x8 — 6y — 0 as |z| — oc.

-/‘n-

iii) We will use the following result due to Lizorkin (see Theorem 8 p. 288 in [24]):

Theorem 3.4 ([24]) Let 8 €[0,1) and let K € L=*(RN)nCY(RN \ {0}). Assume that

N
(H gj’?ﬁﬁ)afl LN K e L°RY)  forany ky, ... ky € {0,1}.

Then K is a Fourier multiplier from LP(RMN) to Lﬁ(RN) for any p € (1, %)

Let K(&) = W, where &' = (&2,...,&n). A straightforward but tedious computation
shows that K satisfies the assumptions of Lizorkin’s theorem for 3 = 55¢—. From (3.19) we
obtain

(3.26)
[ —rd = 2R} (F~ (K(H +G))) + QCi RiR; (FUKG))) +2 ivj R (FH(KH)),
j=2

=2

where R;’s denote Riesz transforms. Since H,Gy,...,Gy € L' N L®°(RY), by (3.26) and
Lizorkin’s theorem we infer that |¢|> — 2 € LP(RY) for any p € (%, 00). The rest of iii)
follows from part i), b) < e).
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iv) and V) From iii) and i), d) < e) it follows immediately that [1|?> — 73 € W*P(RY) for
any p € (3=, 00). Using (3.19) we obtain

2, (|0 = 13) = 2Ry ReR3 (F~1 (162K (H + Gv)) )

N
1+2¢ ST RLRRIR; (F Y IEPKG
(3.27) ch::Q eRefta Ry (771 (€K G))

N
+2 ) RyReR3 (F7U(|EPKH))  in S'(RY),
j=2
It can be proved by direct computation that the function |£|2K satisfies the assumptions of
Lizorkin’s theorem for 3 = 0. Consequently |¢|?K is an LP—multiplier for 1 < p < co. Since
H,G; € L' 0 L®(RY), it follows from (3.27) that 9%, (|¢|> —r¢) € LP(RY) for 1 < p < oo.
By using the Gagliardo-Nirenberg inequality

1 1/1 1
2, <C ol i === ( )
Vol < Cllollual Pl it =5 (£ +7).
we infer that V(9|2 — r3) € LP(RY) for any p > 28=1. O
Corollary 3.5 Under the assumptions of Theorem 5’ 1, assume that N >3, 2 =2 and
the momentum of ¥ with respect to the x1— 6w2 1/12 gi’i €

LYRN). Then v satisfies (3.1).

Proof. From Proposition 3.4 iii) and i) we have ;5" WQ — o ngl € LP(RN) for p €

(38=%,00). Then the assumption ¢ 5 6¢2 — 2 gi’ll € L'(RY) 1mphes wl — P2y 67’/’1 € LP(RY)
for any p € [1,00). Now the conclus10n follows from Theorem 3.1 iii). O

4 Nonexistence results

In this section we show how Theorem 3.1 may be used to prove nonexistence of supersonic and
sonic travelling-waves with finite energy for some equations of type (1.1).

1. We consider the equation
9% . .

We assume that the function G : [0, 00) — R satisfies the following asumptions:

e (A1) G € C?([0,00),R) and there exists ro > 0 such that G(r3) = 0 and G’(r3) < 0.

e (A2) There exists a > 0 such that lim sup% <0.

S§—00
Obviously, equation (4.1) is of the form (1.1). As previously, we associate to (4.1) the ”bound-
ary condition” |®| — 73 as |z| — oc. In this context, the sound velocity at infinity is vs =
—2G'(r¢). The energy corresponding to (4.1) is E(®) = / VO dx +/ V(|®%) da
RN RN

r2

where V(s) = / ’ G(7) dr. Let ¢ be a finite-energy travelling-wave for (4.1) (in the sense of
Definition 2.1) nsloving with speed c. Then 1 satisfies the equation

(4.2) —icgj}l + A+ G([Y*)Y =0 in D'(RY), || — 1o as |x] — oo.
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If G satisfies (A1)-(Az2), it is easy to see that F'(x, s) := G(s) satisfies the assumptions (H1)-
(H5) in section 2 (with L = —G’(r3)). It is then clear that the conclusions of Propositions
2.2, 2.5 and Theorem 3.1 i) are valid for ¢). Moreover, we have:

Proposition 4.1 (Pohozaev identities) Let ¢ be as above. Choose R, > 0 such that | > 3
on RV \ B(0, R.). Let 0 be the lifting oow' on RN\ B(0, R.) (as given by Proposition 2.5 ii))
and let x be a cut-off function as in Theorem 3.1. The following identities hold:

(4.3) - /R i

_/RN

da:+/ V(|¥]?) and

S [ V()

8%1 RN

d+/

ox}, 83:

(4.4) - ik J
o f 2 wgawl (0 =0 fork=2....N,

RN 8901

It is worth to note that Proposition 4.1 is valid for any speed ¢ € R.

Proof. Since the arguments are rather classical, we only sketch the proof.

Formally, travelling-waves are critical points of the functional E. = E + cP;, where F is
the energy and P; is the momentum with respect to the x;—direction (see (1.3)). Identities
(4.3) and (4.4) are simple consequences of the behavior of F. with respect to dilations in R”.
To be more precise, define vy ¢(x) = P (x1, ..., Tp—1, Tk, Tpt1, ..., 2N) and gp(t) = Ee(ry).
If ¢ is a critical point of E., one would expect that g, (1) = %(Ec(wk,t)”t:l = 0 and this is
precisely (4.3) if k = 1, respectively (4.4) if £ > 2. However, this argument is not rigorous for
at least two reasons. First, it is not clear what function space one should consider to define E,
(and this could not be a vector space because of the boundary conditions at infinity). Second,
even if an appropriate function space is found, we do not know whether %(wk,tﬂt:l = xk%
belong to the tangent space at 1 of the considered function space.

The most convenient way to prove Pohozaev identities is to use a truncation argument.
Fix a function n € C°(RY) such that n = 1 on B(0,1) and = 0 on R \ B(0,2). For n > 1,
define n,(z) = n(%). We take the scalar product of (4.2) by :L“;mn(:n)8%6c and we integrate by
parts the resulting equality. It is standard (see, e.g., Proposition 1 p. 320 in [3] or Lemma 2.4
p. 104 in [11]) to prove that

: N oy | 1 2
(4.5) ?}Lngo RN(Aw,:Uknn(x)a—xk)dx— f/RN o2y dx+§/RN V| dz and
(4.6) Jm [ @GPy de = [ V()

It is obvious that (icg—i,nn( )xlgfl) = cnp(x)x (Z%’%) = 0. Thus taking the scalar

product of (4.2) by :Umn(x)gi, integrating and using (4.5) and (4.6) we get (4.3).
By (3.3) we have (—i%,w) 1 o 31/’1 = [¢]°F% on RV \ B(0, R,). Using the
convention 0%(x#) =0, (0%x)0 = 0 on B(O 2R*), we have

(—ige, ) = (1= x)(—i 52, ) + x| 22
(4.7)
= (1= X) (=g, ) + [0PHL — [0P6gx  on RV
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Therefore we get for k =2,..., N:

[ ociell @) 20
RN k

0x1 Ox
oY 0 8w
2/ k77n 835( 17/}’ 8xk) 8xk( 83;1 w)} dx
o C 87771 61,!) 87771 31/1
5 fro P Vi 5 (@) + a0 (i - ) d

02, 23(x9) 290X 1 1
g @)1= X)(=ig—9) + 1Yl — [y, -] d

- Ty () [(1—X)(_i% Y) + W‘Qa( — [¥*6 6X]

_ ¢ Onn O(x0) _ Inn O(XH) oY .
- 2/ klof? <8x oer D Ons )—nn(x)(—z— ¥)de  ifn>3R,

because supp(1—x) C B(0,3R,) and suppVn, C B(0,2n)\B(0,n), consequently (1—)0% =0
J
and %% =0on RN for n > 3R,.
It is obvious that

Onn O(x0) O O(xH)
/N $k<81‘1 oxy, Oz, Oz >d$

:/RN

Since [¢|> — rZ and V(x0) belong to L*(R”), using the Dominated Convergence Theorem we
obtain

(4.9)

- {i(nna(xe)) 0 (v 8(x9)>}dx:/RN 1 300) 4

ory oxy, Oz \'" Ory ory

Iy O(x0)  Onn O(x0) ’
2
‘/ Tk |¢’ <8CE1 8xk 8xk 83:1 )dx

(4.10)

3(X9)’ 9(xb)
<2 oo 2
<2Villmnr [ (0| B

)d:):—>0asn—>oo.

Recall that 1 5 WQ —1)g g—fll —rd 85;‘9) € LY(R"Y) by Theorem 3.1 1) and by dominated convergence
we get

/RN””K_Z%W) rga(xﬁ)}dx_/R nn[wlazm_% zp B 88(X9)]dx

(91'1 81'1 81'1
(4.11)
s 0000
w 02, wg o 1 dx as n 00.
Combining (4.8)-(4.11) we find
- i 0 = Y2 00 200x0)
(4.12) Jim RN< anxl’xmn(x)ﬁxk)d 5 W wgaxl v dx.



Taking the scalar product of (4.2) by nn(m)mkg—;i, integrating over RY and using (4.5), (4.6)

and (4.12) we obtain (4.4). O

Theorem 4.2 Assume that N > 2, (A1), (A2) hold and let ¢ be a finite-energy travelling-
wave for (5.1) such that G(|1|*)y € L}, (RYN). Suppose that

o cither ¢® > v2, where vy = 1 —2G'(r) is the sound velocity at infinity,

R4

e or N =2 and ¢ = v?,

2N-—1
e or N >3 and ¢ =v? and ¢18w2 ¢2% € L2v=3 (RV).
Moreover, assume that G satisfies

2
S

o (A3) there exists o € [—1 + %(1 — Z—E), % such that

2 2
sG(S)—i—%(S—T%)—i—(l—a—Z—;)V(s) <0 for any s > 0.

Then 1 is constant.

Proof. 1t follows from Propositions 2.2 and 2.5 that v is smooth and Proposition 4.1 implies
that v satisfies (4.3) and (4.4). Summing up the identities (4.4) for k =2,..., N we get

o |?
/RN 8951 N d +/ W}’
(4.13)
d(xb
—c ¢1 82}1 — ¢2 w r% éﬁl) dx = 0.

On the other hand, from Theorem 3.1 we have

2
[ VU = GUUBIE = 5 (w2 = 1) do

v2 Do o 5, 0 _
(1—*)/ (1 % o a—ml(xe)da:fo.

c? Oxq

(4.14)

We multiply (4.13) by —1 + Z—E and we add the resulting equality to (4.14) to get
RN c?

7)2
[ G + Sl — )+ (1= SV () =0

9 |
61:1

Y |

al’k

+(1- (1—1)%)2

c2

(4.15)

Let « satisfy (A3). Multiplying (4.3) by « and adding it to (4.15) we obtain
v2 o |2 N
R R T

U2 2
=/NG(|¢|2)|¢I2+55(|¢!2—7"(2))+(1—a %) ([9]?) da
R

2

al'k
(4.16)
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By (A3), the right-hand side of (4.16) is less than or equal to zero. If & € (— 1+(1—Z—§)N—_3, —;),
o |?

T

dr =0 for k=1,..., N, which implies Vi) = 0 on R,

M
8:r1
consequently 9% — () on RY which implies that 1) does not depend on x1. Since Vi|? dx
ox N
R

it follows from (4.16) that /
RN

2
ie. 1 is constant. If « = —1+ (1 — —)%‘?, we infer from (4.16) that / dx = 0,

RN

is finite, we have necessarily V¢» = 0 on R, which means that is ¢ is constant. A similar
argument shows that v is constant in the case a = Z—z O

Remark. Let o, Cy and 7 be positive constants satisfying G(s?) + % < —Cy(s —7)%@
for any s > 7 (such constants exist by assumption (A2)). Let ¢ be as in Theorem 4.2. It
follows from the proof of Proposition 2.2 i) that |¢(z)| < #v/2 for any x. Therefore the proof
of Theorem 4.2 is still valid if the inequality in (A3) only holds for all s € [0, 27?].

If 2 = v2, N > 3 and ® is as above, we already know from Proposition 3.3 iii) that
Y1 gﬁf zp &ﬁi € LP(RN) for any p € (%%_zl,), 00). Therefore we have:
Corollary 4.3 Assume that (A1), (A2), (A3) hold, N > 3 and ¢ = v2. Let ¢ be a
travelling-wave for (4.1) having finite energy, finite momentum with respect to the x1—direction
(i.e. 1y g;ff 2 gf; € LYRY)) and such that G(|¢|*)¢ € L} (RN). Then 1 is constant.

Example 4.4 The Gross—Pitaevskii equation is of type (4.1) with G(s) = 1 — s. In this
case we have 79 = 1, V(s) = 3(s — 1)? and vy = /2. For any finite-energy function ¢
we have [pn( |¢|2 - 1) dx < o0, hence Y € L (RY) and consequently G(|v|*)y € Li, (RY).
Assumptlons (Al) and (A2) are clearly satisfied. We find sG(s)+ o 5 (s— 7‘0)+(1—a—2—§)V(s) =

—(5+a+ )(1 — 5)%. The last expression is nonpositive for any s if « > —3 — Z—g, thus
assumption (A3) is also satisfied. Hence the conclusion of Theorem 4.2 holds for the Gross-

Pitaevskii equation. In particular, we recover the non-existence results in [17], [18].

Example 4.5 The cubic-quintic Schrodinger equation is of the form (4.1) with G(s) =

—aq + azs — ass?, where a1, ag, as are positive and 16 < 4% < %. The nonlinearity G
3

can be written as G(s) = —as(s — r?)(s — 73), where 0 < 7“1 < ro. In this case we have
v = 213G (ro) = 2a57r3(rg — r}) and V(s) = G(s— 13)%(s + 7"0 - §r1) For any function 1

with finite energy we have V(|¢|?) € LY(RY), which implies d) € LlOC(RN ) and consequently
(\w\ )¢ € LL . (RYM). It is obvious that G satisfies (A1) and (A2). If ¢ > v2 we have

—Z— 1+ 823 (1 2—5), Z—g] and an easy computation shows that sG(s)+ %(s —r)+V(s) =

—%(4s + 5r§ — 3rf) < 0 for any s > 0. Hence assumption (A3) holds for a = —Z—;, therefore
the conclusion of Theorem 4.2 is valid for the cubic-quintic Schrédinger equation.

Remark. The proof of nonexistence of supersonic and sonic travelling-waves for equations
of type (1.1) relies on identity (3.1), combined with Pohozaev identities. We have proved (3.1)
in an ”indirect” way, starting from (3.11), using the Fourier transform and analyzing the be-
havior near the origin of the symbols of the differential operators involved. A natural question
is whether (3.1) could be proved ”directly”, by multiplying the equations by appropriate func-
tions and integrating by parts (and it is very tempting to try to do so because of the form of
equations (3.7) and (3.8)!). We suspect that it is not possible to find such a proof, a heuristical
reason being the following: if a "direct” proof of (3.1) could be found, it should be valid for
any value of ¢. Since Pohozaev identities are also valid for any ¢, one could infer that, for
any c, equation (4.1) and the system (4.17)-(4.18) below do not admit nontrivial finite-energy
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travelling-waves. However, in the case of the Gross-Pitaevskii equation the existence of non-
trivial, finite-energy travelling-waves moving with sufficiently small speed ¢ has been proved
in [7] in dimension N = 2, respectively in [6] and [12] in dimension N = 3. In a recent work
[5], existence of travelling-waves has been proved in space dimensions N = 2 and N = 3 for a
wider range of speeds, including speeds ¢ close to (and less than) vg if N = 2. For Schrédinger
equations of cubic-quintic type, the existence of small velocity travelling-waves has been proved
in [25] in any space dimension N > 4. Even for these particular cases, the question whether
such solutions exist for any speed ¢ € (—wvs, vg) is, to our knowledge, still open.

2. Our second application concerns the system

(4.17) iy HAY = (U + S - 1) =0 in RV,
d 1
(4.18) Ma&t + AP — ?(q2\\11\2 —%kH)d =0 in RV,

which describes the motion of an uncharged impurity in a Bose condensate (see [16]). Here
U and ® are the wavefunctions for bosons, respectively for the impurity, and €, 4, g, k are
dimensionless physical constants. Assuming that the condensate is at rest at infinity, the
functions ¥ and ¢ must satisfy the "boundary conditions” |¥| — 1 and |®| — 0 as |z| —
00.

The system (4.17)-(4.18) has a Hamiltonian structure, the associated energy is

1 1 1 k?
_ 2 2 2 _ 12 21512 _ 2
(4.19)  E(T,®) = /RN VOP+ I VP + (0P = 1%+ S 0PI — o) dr.
We are interested in travelling-wave solutions for (4.17)-(4.18), i.e. solutions of the form

U(x,t) = (xy —ct,za,...,2N), P(x,t) = p(z1 — ct,x2,...,xN). Such solutions must satisfy
the equations

. oY Lo 1 o _
(4.20) g —TAY (W7 + Slel” =1y =0,
. 0p Lo 2 2,9y
(4.21) 2653% +Ap = (W]~ ke =0,

together with the boundary conditions |¢)| — 1 and |¢| — 0 as |z| — oc.

Equation (4.17) is of type (1.1). In view of the analysis in the Introduction, the associated
sound velocity at infinity is g

In space dimension one, the system (4.20)-(4.21) with the considered boundary conditions
has been studied in [26]. It was proved that it admits nontrivial solutions if ¢ is less than
the sound velocity at infinity; in this case the structure of the set of travelling-waves has been
investigated and it was proved that it contains global subcontinua in appropriate (weighted)
Sobolev spaces.

Here we study the finite energy travelling-waves for (4.17)-(4.18) in dimension N > 2.
In view of (4.19), by finite energy travelling-wave we mean a couple of functions (¢, ¢) €
L (RY)x LL (RY) which satisfy (4.20)-(4.21) in D'(RY), the boundary conditions |¢)| — 1,
¢ — 0 as |z| — oo and such that Vi, Vo, p € L*(RYN), (J[* = 1)? + S |[*|¢|? € LHRY).
As before, we denote 1)1 = Re(v), 12 = Im(v)), 1 = Re(p), p2 = Im(yp). We have:

Proposition 4.6 Let c € R and let (¢, @) be a finite energy travelling wave for (4.17)-(4.18).
Then:
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i) The function ) is bounded and C> and ¢, Vi) € WkP(RN) for any k € N and p > 2.

ii) There exist R, > 0 and a real-valued function 0 such that 1) = |1’ on RN \ B(0, R.)
and VO € WFP(RN \ B(0, R.)) for any k € N and p > 2.

iii) Let x € C®°(RN) be a cut-off function such that x = 0 on B(0,2R,) and x = 1 on
RY\ B(0,3R.). We have ¢15: &pz — 2 _ 0 _(\g) € LY(RN) and the following Pohozaev-type

o1 8:1:1
identities hold:
B 1 [0p 2 lop2 1 |0p]?
/ o) ——3|ae| +2( o |o| )da
RN |01 €2¢? | 0xq = 0z e2q*|0x;

(4.22)
s e = 17 4 S Plel? — o ar =0
N 262 gt v £2q? v ’

and for any k € {2,...,N},

8¢ 2 1 2 N 8'¢ 2 1 8()0
a T o dx
/RN Owy, 8a:k - %;ﬁ (396]. 2| 0 )
( ) +/ N 252(’1/}’ - 1) 4|¢| ‘@’ - @MO‘ dx
LN RN PRSI O E
C/ o 0xq Ve Oxq 8:1;1( X0) dax 232 Jun P on, dx = 0.

Proof. Putting F(z,s) = —E%(s + E%]go(x)\Q — 1), equation (4.20) is a particular case of
(1.7). Clearly, in this case we have rg = 1.

It is obvious that F satisﬁes the assumptions (H1la) and (H1b) in Section 2. Clearly,
F(z,s) < ——(s -1) < - 23 for any s > 2 and x € RY, hence I satisfies (H2) for r, = 2.

Moreover, / F(z,m)dr = —% (5 + + = Llp(x)|?) is a locally integrable function of z. We have

e2

[yt < 2(|¢|2 —1)2+ 2 and (J1|> — 1)? € LY(R) because (¢, ) has finite energy, hence
0 € L (RY). W also have | [o20] < (ol + oPluf?) and [of?, [Pl0f? € LH(R). It s then
clear that F(-,[1|?)y = —E%WJ\QM) E4|g0| ¥ + 5 belongs to L} (RY). Hence we may use
Proposition 2.2 i) and we infer that ¢ € L*(R").

By hypothesis we have ¢ € L?(RY) and Vi € L?(RY), that is ¢ € WI2(RY). Assume
that ¢ € WHP(RN) for some p € (1,00). Since 9 is bounded, by (4.21) we find Ap € LP(RY),
and we infer that ¢ € W2P(RY). If p < N, by the Sobolev embedding we have p € LP"(R)
and Vo € LP"(RY) (where 1% = %—%), hence ¢ € WP"(R”). Repeating the above argument
if necessary, after a finite number of steps we find ¢ € W24(R") for some ¢ > N and the
Sobolev embedding implies ¢ € L"(RY) and Vo € L"(RY) for any r € [g,00). Using (4.21)
again, we conclude that Ay € L"(RY), hence ¢ € W27 (RY) for any r € [2,00).

It follows that ¢ € C*(RY), which implies ' € C*(R") (and consequently F' satisfies
(H1c)). By Proposition 2.2 ii) we get ¢ € W) ’p(RN) for any p € [1,00). In particular,
¥ e C*(RY).

We have F(z, 1) = ——|<p( )|? and F clearly satisfies assumption (H3). It is obvious that
ON1F(z,8) = _?2 and 612V+1 (z,5) = 0 on RV x R, therefore F satisfies (H4) and (H5).
Thus we may use Proposition 2.5 i) and we infer that Vi € WIP(RYN) for any p € [2, 00).

The rest of the proof is a very easy induction. For k € N*, assume that Vi € WFP(RY)
and ¢ € WFLP(RN) for any p € [2,00). Consider a € N such that |a| = k. Differentiating
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(4.20) and (4.21) we obtain

A(0) = icd” G+ Ho (W12 + Zlol? = 1), respectively

A(0°) = 160 - + %0°([¥]? - 2k?)p).
We infer that A(9%), A(0%) € LP(RYN) for any p € [2,00). By hypothesis we have
0%, 0% € LP(RYN), therefore 0%, 9% € W2P(RN) for any p € [2,00). Since this is
true for any o with |a| = k, we have Vi) € WEFLP(RY) and ¢ € WF2P(RY). We conclude
that Vi) and ¢ belong to W*P(RY) for any & € N and p € [2,0).
ii) is an immediate corollary of Proposition 2.5 ii).

iii) It follows directly from Theorem 3.1 i) that 11 5 8w2 @DQ% — Tm(x@) €L (RN) The
proof of (4.22) and (4.23) is similar to that of (4.3) and (4.4) (multiply (4.20) by l“j??n%j and
(4.21) by ﬁxjnné%, where 7, (z) = n(5) is a cut-off function, add the resulting equalities,

integrate by parts and pass to the limit as n — o0). We omit the details. O

We have the following result concerning the non-existence of supersonic travelling-waves
for (4.17)-(4.18):

Theorem 4.7 Let N > 2 and let (1, ) be a finite energy travelling-wave for the system
(4.17)-(4.18), moving with velocity c. Assume that:
o cither ¢ > E%,

e or N=2 andc2:€%,

2N-—-1
e or N >3 andc® = 5—2 and ¢16¢2 @DQ% € L2v=3 (RV).
Then ¢ = 0 and 1) is constant on RN

Proof. Let 6, x be as in Proposition 4.6 and let F(z,s) = —8%(5+ E%|go(:c)|2 —1). We have
already seen that F' satisfies assumptions (H1)-(H5) and it follows that identity (3.1) holds.
Taking into account the particular form of F', this identity can be written as

1 1
2 2 2 2 2
/NIWI + (W7 =17+ Zlel Y  do

(4.24)

2 ng 81[11 a

We take the scalar product of (4.21) by ¢, then we integrate the resulting equality to get

== 20 Jo

2
2 q 2012 7. 1.2 2 9
(4.25) /RNW<,0| dx+;2 /RN|g0\ ||*dx — k / lp|” dx 205/ ('018:51 dr = 0.

Summing up the identities (4.23) for k = 2,3,..., N, we find

/ [ latp N—3N<8¢2 16(,0>d
RN |0z 2|0z, N -1 o Ox; Ox;j v
4.26 1 1 k?
W0t [ (WP = 1+ Pl — Sl da
O oY 0 2¢6 Ops
C/ V1 0z V2 Oxr1 Oz (x0) dx e2q? Jrn v 0z dr =0
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Next we combine the equalities (4.24)-(4.26) in order to eliminate the terms / 1 6“92 dx and

/ ¢lg?ﬁf w%—a—m(xe)dx We find:

2 o |? 2 \N-3 P
2 o 5] @+ (0 (1 22) 57=) s Z oz,
2
(4.27) +'Af 1)e242 ¥ O
(N —1)e2q et/ Jry i | Ox
1 2 9 9
+ﬁ(1+€27)/ (9P =1)*de + / |l |9|? dar = 0.

Obviously, all integrals in (4.27) are nonnegative. If ¢? > 2, all coefficients are also nonneg-

0
ative, therefore each term in (4.27) must be zero. In particular, / w
RN | Dz,

k€ {1,...,N}, which implies V¢ = 0 on R", i.e. ¢ is constant. Since / N(|w|2 —1)2dz =0,
R

dx = 0 for any

necessarily |1)| = 1. We have also 0 = / N || dx = / N || dz, hence o =0 on RY. O
R R

5 The one-dimensional case

Since most of the proofs in the preceding section are not valid in space dimension N = 1 (in
particular, we do not have identities analogous to (4.4) and (4.23)), we treat separately the
one-dimensional case. It turns out that some integrations can be performed explicitly and
some of the results are stronger than in higher dimensions.

Let G : [0,00) — R be a function satisfying the following assumption:

e (A) GeC([0,00)) and there exists ro > 0 such that G(r3) = 0.

Moreover, G € C*([rg —n,72 + n]) for some n > 0 and G'(r3) = —L < 0.

We consider the Schrodinger equation

o
(5.1) z%t + U + G(|T2)T =0 in R,

together with the ”boundary condition” |¥| — rg as * — foo. We have seen in the
Introduction that the sound velocity at infinity associated to (5.1) and to the considered
boundary condition is vy = 79v/2L. As usually, a travelling-wave moving with velocity ¢ is a
solution of the form ¥(z,t) = ¢ (z — ct). It must satisfy

(5.2) —ic) + " + G([Y))Y =0 in R, |(z)] — ro as r — £oo0.
We have the following result concerning supersonic and sonic travelling-waves:

Theorem 5.1 Let ¢ € L}, (R) be a solution of (5.2) in D'(R) such that G(|¢Y|*)v € L} (R).
Assume that G satisfies (A) and
i) either ¢* > v, or

7,2
ii) ¢ = v? and, denoting V (s) = / ’ G()dr and W (s) = v2s? —4(s + 1)V (s +1d), there

S
exists € > 0 such that one of he following conditions is verified:
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a) W(s) >0 on (—&,0) U (0,¢);
b) W(s) >0 on (—¢,0) and W(s) <0 on (0,00);
c) W(s) >0 on (0,e) and W(s) <0 on [-73,0).

Then either 1) is constant, or (x) = roec@t90) where 0y is a real constant.

Remark. Theorem 5.1 gives all supersonic and sonic travelling-waves for equation (5.1),
no matter whether their energy is finite or not (and we see that finite energy travelling-waves
must be constant).

It is easy to see that W is C? near 0 and W(0) = W’(0) = W”(0) = 0. Condition ii)
a) is satisfied, for instance, if G is C® near r¢ (this clearly implies that W is C* near 0) and
W™ (0) =0, WE)(0) > 0, or equivalently 72G”(r3) = 3L and 4G"(r3) + r3G" (r}) > 0. The
condition W(s) > 0 on (—¢,0) in ii) b), respectively W(s) > 0 on (0,¢) in ii) ¢), is satisfied
if G is C® near 73 and W”’(0) < 0 (respectively W”(0) > 0); however, in these cases only an
information on the behavior of G in a neighborhood of 73 is not sufficient to get the conclusion
of Theorem 5.1.

icx
= 1

Proof of Theorem 5.1. Let ¢(x) = e~ 2 ¢(x). Then ¢ € L; .(R) and it is easy to see that

loc

2
(5.3) "+ (Gllel?) + Cz)cp —0 inD(R).
From (5.3) we get ¢” € Li,.(R). This implies that ¢’ is a continuous function on R (see, e.g.,
Lemma VIIL2 p. 123 in [8]). Thus ¢ € C1(R). Since |¢| — 1o as 2 — Fo0, we infer that ¢
is bounded on R. Coming back to (5.3) we see that ¢” is continuous and bounded on R. In
particular ¢ € C?(R) and this implies 1 € C*(R).
Denoting 11 = Re(v), 12 = Im(%)), equation (5.2) is equivalent to the system

(5.4) sy + 97 + G(|9*)gr = 0,
(5.5) —cy + 95 + G([Y[*) 2 =0  inR.

We multiply (5.4) by 2¢] and (5.5) by 245, then we add the resulting equalities to get
[(W1)% + (¥5)?) — (V(|[¢|%))" = 0. Hence there exists k1 € R such that

(5.6) W2 (x) = V([9[*)(x) =k for any z € R.

Multiplying (5.4) by 12 and (5.5) by —1, then summing up the corresponding equations we
obtain §(|¢[* —r3) — (Y1ybh — he}) = 0. Consequently there is some ky € R such that

(5.7) SUUP —rd) — (s —vov) = ks R

Next we multiply (5.4) by 2¢; and (5.5) by 219, then we add the resulting equalities to find
(5:8) 201ty —ath) + (II° = r9)" = 21'1° + 2G ([0 ") [ = 0.

Taking into account (5.6) and (5.7), equation (5.8) can be written as

(5.9) (191 = r5)" + (|0 —18) = 2V ([¢) + 2G (|0 *)[$]* = 2k1 + 2cke.

Denote v(x) = [1)|*(z) — r3. Then v is real-valued, C? and tends to zero as x — 400, hence
there exists a sequence z;,, — oo such that v”(x,) — 0. Writing (5.9) for z,,, then passing
to the limit as n — oo we see that necessariy ki 4+ cko = 0 and v satisfies the equation

(5.10) V" + v —2V(v+18) + 200+ 1) G(v+13) =0 in R.
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Next we multiply (5.10) by 2¢, then we integrate the resulting equation and we obtain (v')% +
2v? — 4(v + 13)V(v +73) = k3 in R, where k3 is a constant. It is clear that there exists a
sequence y, — oo such that v'(y,) — 0, consequently k3 = 0 and we have

(5.11) ()2 (z) + 0 (z) — 4w + )V (v +73)(z) = 0 for any = € R.

Our aim is to prove that, under the assumptions of Theorem 5.1, we have v = 0 on R.

Suppose first that ¢ > v2 = 2Lr3. Since G satisfies (A), it follows that V € C?*([rg —
n,73 +n]) and we have by Taylor’s formula

1 1
V(rg +5)=V(rd) +sV'(r3) + 5821/"(7"(2)) + s%h(s) = §L52 + 5%h(s) for s € [—n,n],

where h(s) — 0 as s — 0. Take &1 € (0, 7] such that ¢ — v2 — 2Ls — 4(s + 72)h(s) > 0 for
any s € [—e1,e1]. Suppose that v(zg) € [—£1,0) U (0,e;] for some zg € R. By (5.11) we obtain

0 = (v)*(xq) + v*(x0)[c® — v — 2Lv(xg) — 4(v(x0) + Tg)h(v(xo))] >0,

a contradiction. Consequently we cannot have v(z) € [—e1,0) U (0,£;]. Since v is continuous
and v(z) — 0 as * — o0, we infer that necessarily v(z) = 0 for any = € R.

Next assume that ¢ = v2. Equation (5.11) can be written as
(5.12) (V") (z) + W(v(x)) =0 on R.

If assumption ii) a) is verified, we cannot have v(z) € (—¢,0) U (0,¢) and we infer, as above,
that v = 0 on R. In case ii) b), we cannot have v(x) € (—¢,0) and we infer that v(z) > 0 for
any = € R. Since v(z) — 0 as x — oo, there is some xg such that v achieves a nonnegative
maximum at zg. Then v'(zg) = 0 and from (5.12) we get W(v(zg)) = 0. But W(s) < 0 for
s > 0 by ii) b), hence v(zg) = 0 and consequently v = 0 on R. Similarly we have v = 0 in the
case ii) c) (note that v = || — r2 > —r2 and it suffices to know that W < 0 on [~7Z,0)).

Thus we have always v = 0, that is [¢)|> = 73 on R. Consequently there exists a lifting
0 € C*(R,R) such that ¢(z) = r0e’?® for any x € R. Tt is clear that 11 — o)) = |¢|20' =
730" (see (3.3)). On the other hand we have 1) — ¥9t)] = —ko by (5.7), hence ' = —ff—% is

0
i(—*22+60)

constant, therefore 0(z) = —fj—%x + 6y, where 6y is a real constant. Since ¢ = rge 0
0
2
satisfies equation (5.2), we find —c% - (:‘f—%) = 0, thus either f—% =0 or f—% = —c. Finally we
0 0 0 0
have either ¢ (z) = € or i(x) = e/(“**+%) and the proof is complete. O

Example 5.2 In the case of the Gross-Pitaevskii equation we have G(s) = 1 — s and we

obtain W(s) = —2s3 (see Example 4.4). In the case of the cubic-quintic nonlinearity we have
G(s) = —as(s — r?)(s — r3), where a5 > 0, 0 < r; < ro (see Example 4.5) and a simple
computation gives W (s) = —2ass® (%r% — 7} + 15). Therefore both the Gross-Pitaevskii and

the cubic-quintic nonlinearities satisfy assumption ii) b) and Theorem 5.1 gives all sonic and
supersonic travelling-waves for these equations.

Remark. The proof of Theorem 5.1 provides a method to find subsonic travelling-waves
for (5.1). With the above notation, it follows from (5.11) that on any interval where v’ # 0

we have v'(z) = :l:\/4(v +73)V (v +13)(z) — c2v2(x). In many interesting applications this

equation can be integrated and we obtain explicitly v = [1|? — r%. Then it is not hard to find
(up to a constant) the corresponding phase 6.
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Remark.  Assume that N = 1 and let (¢, ¢) be a finite-energy travelling-wave for the
system (4.17)-(4.18). It follows from the proof of Proposition 4.6 that ¢) and ¢ are C'*

functions and ¢/, € W*P(R) for any k € N and p > 2. If 2 > E% (recall that g is the

sound velocity at infinity associated to (3.21)-(3.22)) and if there is a lifting ¥ (z) = v(z)e*®),
o(x) = u(z)e @ where v, u, o, § are real-valued functions of class C?, Proposition 3.1 p.
1545 in [26] implies that v = 1, « is constant and ¢ = 0 on R.
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Abstract

For a large class of nonlinear Schrédinger equations with nonzero conditions at infinity
and for any speed c¢ less than the sound velocity, we prove the existence of finite energy
traveling waves moving with speed ¢ in any space dimension N > 3. Our results are valid
as well for the Gross-Pitaevskii equation and for NLS with cubic-quintic nonlinearity.

AMS subject classifications. 35Q51, 35Q55, 35Q40, 35J20, 35J15, 35B65, 37K40.

1 Introduction

We consider the nonlinear Schrédinger equation

(1.1) z‘%(erAqu(kp\?)@:o in RV,
where ® : RY — C satisfies the "boundary condition” |®| — 7 as |z| — oo, 79 > 0 and
F is a real-valued function on Ry satisfying F(rg) = 0.

Equations of the form (1.1), with the considered non-zero conditions at infinity, arise in a
large variety of physical problems such as superconductivity, superfluidity in Helium II, phase
transitions and Bose-Einstein condensate ([2], [3], [4], [12], [20], [22], [23], [24], [25]). In non-
linear optics, they appear in the context of dark solitons ([27], [28]). Two important particular
cases of (1.1) have been extensively studied both by physicists and by mathematicians: the
Gross-Pitaevskii equation (where F'(s) = 1 — s) and the so-called ”cubic-quintic” Schrédinger
equation (where F(s) = —aj + azs — ass?, a1, as, as are positive and F has two positive
roots).

The boundary condition |®| — r¢o > 0 at infinity makes the structure of solutions of
(1.1) much more complicated than in the usual case of zero boundary conditions (when the
associated dynamics is essentially governed by dispersion and scattering).

Using the Madelung transformation ®(z,t) = \/p(z,t)e??@? (which is well-defined when-
ever ® #£ 0), equation (1.1) is equivalent to a system of Euler’s equations for a compressible
inviscid fluid of density p and velocity 2V#. In this context it has been shown that, if F' is C!
near rZ and F'(r2) < 0, the sound velocity at infinity associated to (1.1) is vs = roy/—2F'(r2)
(see the introduction of [33]).



o
Equation (1.1) is Hamiltonian: denoting V'(s) = / F(7)dr, it is easy to see that, at least
formally, the ”energy” ’

(1.2) E(®) :/RN yvq>|2dx+/RN V(|®%) da

is a conserved quantity.

In a series of papers (see, e.g., [2], [3], [20], [24], [25]), particular attention has been paid to
a special class of solutions of (1.1), namely the traveling waves. These are solutions of the form
®(x,t) = 1p(x —cty), where y € SV~ is the direction of propagation and ¢ € R* is the speed of
the traveling wave. We say that ¢ has finite energy if Vi € L2(RY) and V (|¢|?) € L*(RY)).
These solutions are supposed to play an important role in the dynamics of (1.1). In view of
formal computations and numerical experiments, a list of conjectures, often referred to as the
Roberts programme, has been formulated about the existence, the stability and the qualitative
properties of traveling waves. The first of these conjectures asserts that finite energy traveling
waves of speed ¢ exist if and only if |¢| < vs.

Let 1 be a finite energy traveling-wave of (1.1) moving with speed ¢. Without loss of
generality we may assume that y = (1,0,...,0). If N > 3, it follows that ¢ — zy € L?"(R")
for some constant zg € C, where 2* = ]\2,]}2 (see, e.g., Lemma 7 and Remark 4.2 pp. 774-775
in [17]). Since |¢)| — 79 as |x| — oo, necessarily |z9| = 7. If @ is a solution of (1.1) and
a € R, then €@ is also a solution; hence we may assume that zg = ro, thus ¢ —rg € L¥ (RM).
Denoting u = rg — 1, we see that u satisfies the equation

(1.3) ic%—Au—l—Fﬂro—u\Z)(ro—u) =0 in RY.

8:51
It is obvious that a function u satisfies (1.3) for some velocity c if and only if u(—z1, z") satisfies
(1.3) with ¢ replaced by —c. Hence it suffices to consider the case ¢ > 0. This assumption will
be made throughout the paper.

In space dimension N = 1, in many interesting applications equation (1.3) can be integrated
explicitly and one obtains traveling waves for all subsonic speeds. The nonexistence of such
solutions for supersonic speeds has also been proved under general conditions (cf. Theorem
5.1, p. 1099 in [33)).

Despite of many attempts, a rigorous proof of the existence of traveling waves in higher
dimensions has been a long lasting problem. In the particular case of the Gross-Pitaevskii
(GP) equation, this problem was considered in a series of papers. In space dimension N = 2,
the existence of traveling waves has been proved in [7] for all speeds in some interval (0,¢),
where ¢ is small. In space dimension N > 3, the existence has been proved in [6] for a sequence
of speeds ¢,, — 0 by using constrained minimization; a similar result has been established in
[11] for all sufficiently small speeds by using a mountain-pass argument. In a recent paper [5],
the existence of traveling waves for (GP) has been proved in space dimension N = 2 and N = 3
for any speed in a set A C (0,vs). If N =2, A contains points arbitrarily close to 0 and to v,
(although it is not clear that A = (0, vs)), while in dimension N = 3 we have A C (0, v¢), where
vo < vs and 0, vy are limit points of A. The traveling waves are obtained in [5] by minimizing
the energy at fixed momentum (see the next section for the definition of the momentum) and
the propagation speed is the Lagrange multiplier associated to minimizers. In the case of
cubic-quintic type nonlinearities, it has been proved in [31] that traveling waves exist for any
sufficiently small speed if N > 4. To our knowledge, even for specific nonlinearities there are
no existence results in the literature that cover the whole range (0, vs) of possible speeds.

The nonexistence of traveling waves for supersonic speeds (¢ > v;) has been proved in [21] in
the case of the Gross-Pitaevskii equation, respectively in [33] for a large class of nonlinearities.



The aim of this paper is to prove the existence of finite energy traveling waves of (1.1)
in space dimension N > 3, under general conditions on the nonlinearity F' and for any speed
c € (—vs,vs).

We will consider the following set of assumptions:

A1l. The function F is continuous on [0,00), C! in a neighborhood of r¢, F(r3) = 0 and
F'(r3) < 0.

A2. There exist C' > 0 and py < 325 such that [F(s)| < (1 + sPo) for any s > 0.
A3. There exist C, ag > 0 and r, > 7o such that F(s) < —Cs* for any s > r,.
3
If (A1) is satisfied, we denote V (s) = / F(r)dr and a = /—3F'(r2). Then the sound
velocity at infinity associated to (1.1) is vss = 2arg and using Taylor’s formula for s in a

neighborhood of r¢ we have

1
(L4 V() = SV"(r5)(s = 15)* + (s = 15)%(s = 15) = (s = 15)" + (s = 75) (s = 1),
where £(t) — 0 as t — 0. Hence for |¢| close to 79, V (|1|?) can be approximated by a?(|1|? —
2)2
r5)

We fix an odd function ¢ € C*°(R) such that ¢(s) = s for s € [0,2r0], 0 < ¢’ < 1 on
R and ¢(s) = 3r for s > 4rg. We denote W (s) = V(s) — V(¢?(v/s)), so that W(s) = 0 for
s € [0,4r3]. If assumptions (A1) and (A2) are satisfied, it is not hard to see that there exist
C4, C9, C3 > 0 such that

(1.5) [V(s)] < Ci(s—1r3)? for any s < 9rf;
' in particular, [V/(¢?(7))| < C1(¢*(r) — rg)? for any 7

(1.6) [V (b) — V(a)| < Ca|b— a| max(a?®, b*°) for any a, b > 2r;

(1.7) W (%) — W (a?)| < C3|b—al (a2p0+1]l{a>2r0} + b2p0+1]l{b>2m}) for any a,b > 0.

Given u € H, ZIOC(RN ) and Q an open set in R", the modified Ginzburg-Landau energy of v in
Q) is defined by

(1.8) EZ (u) = /|Vu]2dx+a /Q((,02(‘T’Q—u|)—7“(2))2 dx.

We simply write Egr(u) instead of EgL (u). The modified Ginzburg-Landau energy will play
a central role in our analysis. We consider the function space

X = {ueD*RY)|*(|Iro —u|) —r§ € L*(RY)}

(1.9) = {ue H'RN) |ue L¥(RY), Egr(u) < oo},

where DL2(RY) is the completion of C° for the norm |[v|| = ||[Vv||z2. If N > 3 and (A1),
(A2) are satisfied, it is not hard to see that a function u has finite energy if and only if u € X
(see Lemma 4.1 below). Note that for N = 3, X' is not a vector space. However, in any space
dimension we have H'(R) C X. If u € X, it is easy to see that for any w € H'(R") with
compact support we have u+w € X. For N = 3,4 it can be proved that u € DI’Q(RN) belongs
to X if and only if |rg — u|?> — 73 € L?(RY), and consequently X coincides with the space F,
introduced by P. Gérard in [17], section 4. It has been proved in [17] that the Cauchy problem
for the Gross-Pitaevskii equation is globally well-posed in X' in dimension N = 3, respectively
it is globally well-posed for small initial data if N = 4.

Our main results can be summarized as follows:



Theorem 1.1 Assume that N > 3, 0 < ¢ < vs, (A1) and one of the conditions (A2) or
(A3) are satisfied. Then equation (1.3) admits a nontrivial solution uw € X. Moreover, u €

T/Vli’f(RN) for any p € [1,00) and, after a translation, u is axially symmetric with respect to

Ol’l.

At least formally, solutions of (1.3) are critical points of the functional

E.(u) = /RN \Vu|? dr + cQ(u) + /RN V(|ro — ul?) dz,

where @ is the momentum with respect to the x;—direction (the functional @ will be defined
in the next section). If the assumptins (A1) and (A2) above are satisfied, it can be proved (see
Proposition 4.1 p. 1091-1092 in [33]) that any traveling wave u € X of (1.1) must satisfy a
Pohozaev-type identity P.(u) = 0, where

N
ou|2 N-3 Ju |2
P = [ |2 L] a / V(lro — uf?) da.
(1) /RN or| N1 g e+ [ V- uP)s
We will prove the existence of traveling waves by showing that the problem of minimizing F.
in the set {u € X | v # 0, P.(u) = 0} admits solutions. Then we show that any minimizer
satisfies (1.3) if N > 4, respectively any minimizer satisfies (1.3) after a scaling in the last two
variables if N = 3.

In space dimension N = 2, the situation is different: if (A1) is true and (A2) holds for
some py < oo, any solution u € X of (1.3) still satisfies the identity P.(u) = 0, but it can
be proved that there are no minimizers of E. subject to the constraint P. = 0 (in fact, we
have inf{E.(u) | u € X,u # 0,P.(u) = 0} = 0). However, using a different aproach it is
still possible to show the existence of traveling waves in the case N = 2, at least for a set
of speeds that contains elements arbitrarily close to zero and to vs (and this will be done in
a forthcoming paper). Although some of the results in sections 2—4 are still valid in space
dimension N = 2 (with straightforward modifications in proofs), for simplicity we assume
throughout that N > 3.

It is easy to see that it suffices to prove Theorem 1.1 only in the case where (Al) and (A2)
are satisfied. Indeed, suppose that Theorem 1.1 holds if (A1) and (A2) are true. Assume that
(A1) and (A3) are satisfied. Let C, r., ag be as in (A3). There exist 5 € (0, ﬁ), T > Ty,
and C7 > 0 such that

2
Cs?0 — % > Oy (s —7)%° for any s > 7.
Let F be a function with the following properties: F' = F on [0,472], F(s) = —Cys” for s
sufficiently large, and F(s2) + % < —C3(s—7)%7 for any s > 7, where Cy, C3 are some positive
constants. Then F satisfies (A1), (A2), (A3) and from Theorem 1.1 it follows that equation
(1.3) with F instead of F' has nontrivial solutions u € X. From the proof of Proposition 2.2 (i)
p. 1079-1080 in [33] it follows that any such solution satisfies |rg —u|? < 272, and consequently
F(|ro—ul?) = F(|ro —u|?). Thus u satisfies (1.3). Of course, if (A1) and (A3) are satisfied but
(A2) does not hold, we do not claim that the solutions of (1.3) obtained as above are still min-
imizers of E, subject to the constraint P. = 0 (in fact, only assumptions (A1) and (A3) do not
imply that E. and P, are well-defined on X and that the minimization problem makes sense).
In particular, for F'(s) = 1 —s the conditions (A1) and (A3) are satisfied and it follows that
the Gross-Pitaevskii equation admits traveling waves of finite energy in any space dimension



N > 3 and for any speed ¢ € (0,v5) (although (A2) is not true for N > 3: the (GP) equation
is critical if N = 4, and supercritical if N > 5). A similar result holds for the cubic-quintic
NLS.

We have to mention that, according to the properties of F', for ¢ = 0 equation (1.3) may
or not have finite energy solutions. For instance, it is an easy consequence of the Pohozaev
identities that all finite energy stationary solutions of the Gross-Pitaevskii equation are con-
stant. On the contrary, for nonlinearities of cubic-quintic type the existence of finite energy
stationary solutions has been proved in [13] under fairly general assumptions on F. In the
case ¢ = 0, our proofs imply that Ey has a minimizer in the set {u € X | u # 0, Py(u) = 0}
whenever this set is not empty. Then it is not hard to prove that minimizers satisfy (1.3) for
¢ = 0 (modulo a scale change if N = 3). However, for simplicity we assume throughout (unless
the contrary is explicitly mentioned) that 0 < ¢ < vs.

This paper is organized as follows. In the next section we give a convenient definition of
the momentum and we study the properties of this functional.

In section 3 we introduce a regularization procedure for functions in X which will be a key
tool for all the variational machinery developed later.

In section 4 we describe the variational framework. In particular, we prove that the set
C={ueX|u#0, P.(u) =0} is not empty and we have inf{E.(u) | u € C} > 0.

In section 5 we consider the case N > 4 and we prove that the functional E. has minimizers
in C and these minimizers are solutions of (1.3). To show the existence of minimizers we use
the concentration-compactness principle and the regularization procedure developed in section
3. Then we use the Pohozaev identities to control the Lagrange multiplier associated to the
minimization problem.

Although the results in space dimension N = 3 are similar to those in higher dimensions
(with one exception: not all minimizers of E. in C are solutions of (1.3), as one can easily see by
scaling), it turns out that the proofs are quite different. We treat the case N = 3 in section 6.

Finally, we prove that traveling waves found by minimization in sections 5 and 6 are axially
symmetric (as one would expect from physical considerations, see [24]).

Throughout the paper, £V is the Lebesgue measure on RY. For 2 = (z1,...,2x) € RY,
we denote 2’/ = (29,...,2x) € R¥N™L. We write (21, 22) for the scalar product of two complex
numbers 21, z3. Given a function f defined on R and A, o > 0, we denote by

/
rl T
1.10 = —_, —
( ) f/\vU f < A ) 0_)

the dilations of f. The behavior of functions and of functionals with respect to dilations in
RY will be Very 1mportant For 1 < p < N, we denote by p* the Sobolev exponent associated
1

to p, that i is o« E_W'

2 The momentum

A good definition of the momentum is essential in any attempt to find solutions of (1.3)
by using a variational approach. Roughly speaking, the momentum (with respect to the
x1—direction) should be a functional with derivative 2iu,,. Various definitions have been given
in the literature (see [7], [5], [6], [31]), any of them having its advantages and its inconvenients.
Unfortunately, none of them is valid for all functions in X'. We propose a new and more general
definition in this section.

It is clear that for functions u € H'(R”), the momentum should be given by

(2.1) = / (tug, ,u) dz,
RN



and this is indeed a nice functional on H'(RY). The problem is that there are functions
u€ X\ HY(RY) such that (iug,,u) ¢ L'(RY).
If u € X is such that 79 — u admits a lifting g — v = pe’, a formal computation gives

(2.2) / (1ug,,u) de = —/ P20, dx = —/ (p? = 12)0,, dz.
RN RN RN

It is not hard to see that if u € X is as above, then (p? — r2)0,, € L*(RY). However, there
are many "interesting” functions u € X such that ro — u does not admit a lifting.

Our aim is to define the momentum on X in such a way that it agrees with (2.1) for
functions in H'(R") and with (2.2) when a lifting as above exists.

Lemma 2.1 Let u € X be such that m < |rg — u(z)| < 2rg a.e. on RN, where m > 0. There
exist two real-valued functions p,0 such that p —ry € H'(RYN), 6 € DV2(RN), rg — u = pe'?
a.e. on RN and

00

— a.e. on RYN.
8951

(23) (a0} = =0~ (Tm(w) + 708) = (7 = 13)

Moreover, we h(we/

1
der < —F .
RN = 2am ar(v)

(0? = 18)0,

Proof.  Since 19 —u € HL_(RY), the fact that there exist p,6 € H} (RY) such that

ro —u = pe'? a.e. is standard and follows from Theorem 3 p. 38 in [9]. We have

2 2 2

ou

0z

o
81']'

00

0z

2

(2.4) a.e. on RY for j=1,...,N.

Since p = |rg — u| > m a.e., it follows that Vp, VO € L>(RN). If N > 3, we infer that there
exist pg, 0y € R such that p— pg and @ — 6y belong to L2 (R"). Then it is not hard to see that
po = 1o and Oy = 2k, where ky € Z. Replacing 6 by 6 — 2ko7, we have p — ro, 0 € DM2(RN).
Since p < 2rg a.e., we have p?> — r2 = ¢(|ro — u|?) — r3 € L2(RY) because u € X. Clearly

2 .2
lp—rol = 218l < 1192 — 1|, hence p— 19 € LA(RN),
A straightforward computation gives
. . 0 00
(i, , 1) = (itg,,70) — p*Op, = —roa—xl(lm(u) +1r00) — (p? — rg)a—xl.
By (2.4) we have 8879]_ < % 887“]_ < %‘g—% and the Cauchy-Schwarz inequality gives

1 1
do < [10* = rdllza 16z < — 116 = Bl e llum lze < 5 —Faw ()

Lo e,

up € X, uz € HY(RY) and the following estimates hold:

(2.5) Vu;| < C|Vu| a.e. on RN,i=1,2, wehere C depends only on x,

* *

2" 2"
(2.6) luzl|2rvy < CLllVull gy and [1(1=x*(@))ull 2@y < CillVaull % gy,



2 2 *
en [ (P =) de< [ (@) =) dot ClITulga,

(2.8) /RN (*(Iro — ual) — 1"8)2 dx < CZHVUH%;(RN).

Let 1o — uy = pe' be the lifting of ro — w1, as given by Lemma 2.1. Then we have

) 0 0

)a o 7”0871(11!1(“1)4”09)

(2.9) (itgy, u) = (1= x*(w)) (itg,, u) — (p° -
a.e. on RV,

Proof.  Since |u;| < |u|, we have u; € L¥ (R"N), i = 1,2. It is standard to prove that
u; € HE (RY) (see, e.g., Lemma C1 p. 66 in [9]) and we have

Ouq O(Re(u))

(2.10) oz, = <81X(u)8xj + 32X(u)a(lglm(:))> u + X(u)ggj

A similar formula holds for ug. Since the functions z — 0;x(2)z, i = 1,2, are bounded on C,
(2.5) follows immediately from (2.10).
Using the Sobolev embedding we have

4\* 72 . .
2 2 2 2
uzl[72 < /RN‘U| ]l{\u\>%)}(x) dr < <7“0> /RN|U, ]1{|u|>%0}(95) dz < C1|Vul[ 7.

This gives the first estimate in (2.6); the second one is similar.
For |u| <™ we have ui(z) = u(x), hence

2 2
[ Pl =) do= [ (o al) = 1)’ e,
{lul<2} {Jul<72}

There exists C' > 0 such that (¢?(|ro — z|) — ro) < C'|2)* if |z| > 2. Proceeding as in the
proof of (2.6) we have for i = 1,2

[ @l —d) de<c [ juPds < Gl Vul
{Jul>"2} {Jul>"2}

This clearly implies (2.7) and (2.8).
Since o1 x (u )B(Re( Do, x(u )M € R, using (2.10) we see that (i ggl cur) = X2 (u) (ig, , u)
a.e. on R. Then (2. ) follows from Lemma 2.1. O

We consider the space Y = {0,,6 | ¢ € DV2(RM)}. Tt is clear that ¢, ¢2 € DV2(RY) and
a:rfl le = 89:1 ¢2 imply d)l = ¢2. Deﬁning

102, 0lly = l|llpr2 = [Vl 2 @),

it is easy to see that |||y is anorm on Y and (Y, ||-||y) is a Banach space. The following holds.

Lemma 2.3 For any v € L'(RY)NY we have / v(z)dr = 0.
RN



Proof. Let ¢ € DY2(RY) be such that v = 9,,¢. Then ¢ € S'(RY) and |¢|¢ € L2(RN).
Hence ¢ € L} (RV\{0}). On the other hand we have v = 9,,¢ € L' N L*(R") by hypothesis,
hence ¥ = i¢1¢ € L2 N CY(RY).

We prove that v(0) = 0. We argue by contradiction and assume that v(0) # 0. By
continuity, there exists m > 0 and ¢ > 0 such that [0(§)| > m for |{| <e. For j =2,...N we

get

i€3©)] > SlpE) = md forae. €€ B,e).
ISY IS1
But this contradicts the fact that iﬁj(;AS € L?(RY). Thus necessarily 7(0) = 0 and this is exactly
the conclusion of Lemma 2.3. g

It is obvious that Li(v) = / v(z)dr and Lo(w) = 0 are continuous linear forms on
N
LYRN) and on Y, respectively. Moreover, by Lemma 2.3 we have L; = Ly on L'(R™) n Y.
Putting
(2.11) L(v+w) = Li(v) + La(w) = / v(x) dx for v € LYRYN) and w € Y,
RN

we see that L is well-defined and is a continuous linear form on L'(RY) + ).
It follows from (2.9) and Lemmas 2.1 and 2.2 that for any u € X we have (iug,,u) €
LY(RN) + Y. This enables us to give the following

Definition 2.4 Given u € X, the momentum of u (with respect to the x1—direction) is
Q(u) = L(<iu$17u>)'

If u e X and x,u1,u2, p,0 are as in Lemma 2.2, from (2.9) we get

(2.12) Q(u) = /RN(l =X (W) ity u) — (P = 1§)ba, d.

It is easy to check that the right-hand side of (2.12) does not depend on the choice of the
cut-off function y, provided that x is as in Lemma 2.2.

It follows directly from (2.12) that the functional @ has a nice behavior with respect to
dilations in RY: for any v € X and )\, ¢ > 0 we have

(2.13) Qurg) = o™ 1Q(u).

The next lemma will enable us to perform ”integrations by parts”.

Lemma 2.5 For any u € X and w € H'(RY) we have (iug,,w) € LYRN), (iu,w,,) €
L'BRN)+ Y and

(2.14) L((iug,,w) + (iu, wy,)) = 0.

Proof.

Since w, u,, € L>(R"), the Cauchy-Schwarz inequality implies (iu,,,w) € L'(R").

Let x, ui, ug be as in Lemma 2.2 and denote w; = yx(w)w, wy = (1 — x(w))w. Then
u = Ul + u2, w = wy + wy and it follows from Lemma 2.2 that u1 € X N LOO(RN) and
Uz, Wi, W € Hl(RN).



As above we have (z%, w), (iug, 2 Por) € L'(RM) by the Cauchy-Schwarz inequality. The
standard integration by parts formula for functions in H'(RY) (see, e.g., [8], p. 197) gives

8u2 810
2.1 | —— iug, — ) dz = 0.
(2.15) /N<zax1,w)+<w2,axl> z=0
Since u; € DM2 N L®(RY) and w; € H' N L>®(RY), it is standard to prove that (iuy,w;) €
D12 N L>®°(RN) and

8w1 0

2.1 =
( 6) 61‘1> 6$1

wi) + (iuq, (tuy,wy) a.e. on RV,

<167U17

Let A, = {# € RN | |w(z)] > 2}. We have (T—O) LN(A,) < /A lwl?dz < |Jw||2,,

and consequently A, has finite measure. It is clear that w, = 0 and wng = 0 a.e. on
RN\ A,. Since wy € L2 (RY) and Vwy € L?(RY), we infer that wy € L' N L2 (RY) and
Vws € L' N L2(RYN). Together with the fact that u; € L¥ N L®(RY) and Vu; € L?(RV),
this gives (iug,ws) € L' N L2 (RY) and

Ouy

dw
<z%,w2>eL1ﬂL%(RN), (iu, 52) € L'NLYRY)  forj=1,...,N.
J J

It is easy to see that %(iul,u@ = (i %,ua) + (iuq, gw2> in D'(RY). From the above we

(W
RN 81’3
indeed, let ~1 C C°(RN) be a sequence such that — ) in WHY(RN) as n — oo;
( ) n)n>1 c q n (0 )

/ On dx — / a—q’bdl‘ as n — 00). Thus we have
RN j R

Nl’j

infer that (iuj,ws) € WHL(RN). It is obvious that dr = 0 for any v € WHH(RN)

then

RN IL‘J
<Zggi,”LU2> (tuy, ?;;ﬂ € L'(RY) and

,6u1 . 8’(02 8
2.1 — —dr = dx = 0.
(2.17) /N<Zax17w2>+<W1, 8x1> =) o o (iur, wa) 0
Now (2.14) follows from (2.15), (2.16), (2.17) and Lemma 2.5 is proved. O

Corollary 2.6 Let u, v € X be such that u —v € L>(RN). Then

(2.18) Q) = Q)] = [lu — vl| 2@ (Haxl

L2(RN))

Proof. Tt is clear that w = u — v € H'(R") and using (2.14) we get
Q(u) = Q(v) = L({i(u = v)zy,u) + (iVay,u — v))

L2(RN) Haxl

(2.19) = L((itg,,u—v) + (ivg,,u —v))
= <2u$1 + ivxl 9 u — U> dw
RN
Then (2.18) follows from (2.19) and the Cauchy-Schwarz inequality. 0

The next result will be useful to estimate the contribution to the momentum of a domain
where the modified Ginzburg-Landau energy is small.

Lemma 2.7 Let M > 0 and let Q be an open subset of RN. Assume that u € X satisfies
Egr(u) < M and let x, p, 0 be as in Lemma 2.2. Then we have

R20) [0 =3 ) ) (0 = )0 | do < COME + M) (B ()



Proof. Using (2.6) and the Cauchy-Schwarz inequality we get

[0 x| e <l sl = )ula
(2.21) 0 ;
< ClHuiﬂlHLQ(Q)HquLQ2(RN)

We have |ui| < %, hence [rg — uz| < 3% and ¢(|ro — u1|) = |ro — u1| = p. Then (2.7) gives

(2.22) 6% — 73|l 2y < C'(Egr(u) + Bar(u) ) < C'(M + M 7).
From (2.4) and (2.5) we have 8879]_ < % ‘g—;; <" gT“j a.e. on R, Therefore

dz < ||p* = 15l z2()6a: [ r2(0)

/ )(,9 —13)0,,
(2.23) “
2%
< O"lp? =l 2y |20y < O (M + M7 )

N

(B8, (u))? .

Then (2.20) follows from (2.21) and (2.23). O

3 A regularization procedure

Given a function v € X and a region  C R" such that EgL(u) is small, we would like to
get a fine estimate of the contribution of 2 to the momentum of u. To do this, we will use
a kind of ”regularization” procedure for arbitrary functions in X. A similar device has been
introduced in [1] to get rid of small-scale topological defects of functions; variants of it have
been used for various purposes in [7], [6], [5].

Throughout this section, € is an open set in RY. We do not assume Q bounded, nor
connected. If 9Q # ), we assume that 9 is C2. Let ¢ be as in the introduction. Let u € X
and let h > 0. We consider the functional

1 v — ul?
U ALY
ho(v) = Egr(v) + e /Q ® < 3970 ) dx.

Note that Gj, (v) may equal oo for some v € X; however, G} o(v) is finite whenever v € X
and v —u € L2(2). We denote H}(Q) = {u € HY(RY) |u=0on RV \ Q} and

HX Q) ={veX|v—uecH}(Q}.
The next lemma gives the properties of functions that minimize G} ¢ in the space HL(Q).

Lemma 3.1 i) The functional G¥ o has a minimizer in H}(S2).
i1) Let vy, be a minimizer of G g in HL(Q). There exist constants Cy, Ca, C3 > 0, depend-
ing only on N, a and rqo such that vy, satisfies:

(3.1) B (vn) < Egp(w);
2
(3.2) [Jon — ul 22y < 32roh? B (u) + Cy (S, (w) N AW
2 2
63) [ =) =) = (o ~ ) | do < ConEGy (w0

10



2z
SIS

(3.4) Q) — Qon)| < C <h2+(E8L<u>> hfv> ES, (u).

i11) For z € C, denote H(z) = (@2(|z —rol) — 7“(2)) o(lz —7ro))¢' (|2 — ro|) =2 if z # 19 and

|z—ro]
H(rg) = 0. Then any minimizer vy, of Gi(, in H.(Q) satisfies the equation

1 lvp, — ul? :
: —Avp, + 2¢°H ! —u) = D'(Q).
(3.5) vy, + 2a“H (vy,) + 327’0h2@ < 3270 (vh —u) =0 in D'(Q)

Moreover, for any w CC Q we have vy, € W?P(w) for p € [1,00); thus, in particular, v, €
Ch%(w) for a € [0,1).

i) For any h > 0, 6 > 0 and R > 0 there exists a constant K = K(a,r9,N,h,0,R) > 0
such that for any u € X with EZ; (u) < K and for any minimizer vy, of Ghq in HL(Q) we have

(3.6) ro— 0 < |ro —vp(z)| <ro+9d whenever x €  and dist(x,0) > 4R.

Proof. i) It is obviuos that u € H}(). Let (v,)n>1 be a minimizing sequence for G In
H(Q). We may assume that Gh o(vn) < Gy o(u) = E2, (u) and this implies / V|2 de <
E2; (u). It is clear that ’

2
(3.7) / vy, — ul*dx < 32r0/ @ on = ul” dz < 32roh* B2, (u).
QN {|vn —u|<8ro} Q 32

Since v, —u € Hy(Q) € H'(RY), by the Sobolev embedding we have |[v, — ul[2- g
Cs|[Vvn, — Vul|2(gvy, where Cs depends only on N. Therefore

/ v — ul? dz < (8r9)* ™% / v — ul? da
(38) {lvn—u|>8ro} {|vn— u|>8r0} -

< (810)* 7 Mlon — ullFor gy < C'l|Von = Vul|Fo gvy < C (EGL () 7.

It follows from (3.7) and (3.8) that |[v, — u|[z2() is bounded, hence v, — u is bounded in
H}(2). We infer that there exists a sequence (still denoted (v,),>1) and there is w € H{ ()
such that v, —u — w weakly in H}(Q2), v, —u — w a.e. and v, —u — w in L} (Q) for
1 <p<2* Let v=u+w. Then Vv, — Vv weakly in L?(R") and this implies

IN

/ \Vo|? da < liminf/ |V, |2 d.
Q n—oo Jo
Using the a.e. convergence and Fatou’s Lemma we infer that

/ ( (]ro —v|) — 7“0) dx < hmmf/ (gpz(\ro —vpl) — 7“8)2 dx and
Q Q

n—0o0

v —ul? o / v — ul?
dz < lim inf 192 Z U g
/Q“P( 3o ) PSR | P T )

Therefore G¥ ,(v) < liminf G}! (v,) and consequently v is a minimizer of G¥ (, in H,(€2).
’ n— 00 ’ )

ii) Since u € H}(f2), we have EZ, (v;) < Ghalvn) < E2, (u); hence (3.1) holds. It is clear
that ¢ (‘U’L ul” ) > 2rg if |vp, — u| > 8rg, thus

v —U2
2l ({fon —ul 2 sp) < [ o (M0 o < 106 o) <m0,

11



Using Holder’s inequality, the above estimate and the Sobolev inequality we get

/ oy, — ul? dz
{lvn—u|=8ro}

-2

(3.9) < fon = ul2ar (10, —uissreyy (£ {lon —ul = 870})) 2
. &
< lon = ull2ar gy (£ ({on — ul > 8ro}))" 2

1-5% 4 1+2
< Csl|Vun — Vel By (B2 B ()7 < O (B ()7

It is clear that (3.7) holds with vy, instead of v, and then (3.2) follows from (3.7) and (3.9).
We claim that

2\
(3.10) ‘w(p«o —2)) = o(|ro — <|)‘ [327“ (’232TE‘ )} for any z, ¢ € C.

32rg
o(|ro — z|) — @(|ro — C|)‘ < ‘|7“o —z| —|ro — (]’ <'|z — (|, hence (3.10) holds.
If |z — 7| < 4rpand | —rg| > 47, there exists ¢ € [0, 1) such that w = (1 —t)z +t( satisfies

|ro — w| = 4r¢ and

Indeed, if |z — 79| < 4rp and [ — 79| < 4rg, then |z — (| < 8rp, w(\zf@) — =< g

[(Iro = 21) = e(lro = ¢1)| = |so(Iro = 21) = (lIro — wl)|

< [sorop (1520)] = oo ()]

We argue similarly if |z — 79| > 479 and |¢ — rg| < 4rg. Finally, in the case |z — 19| > 4r¢ and
|¢ — ro| > 4rg we have p(|ro — z|) = ¢(|Jro — ¢|) = 3r¢ and (3.10) trivially holds.
It is obvious that
2 2
| (@310 = ul) = 78)° = (#*(Iro = vn) = 13)°

< 6ro|p(|ro — ul) = e(Iro — va)|

(3.11) . ) ,
©*(|ro — ul) + @*(Iro — vp|) — 2rg|.

Using (3.11), the Cauchy-Schwarz inequality and (3.10) we get

/ ’ (Iro — ul) _7’0)2_ (802(|7‘0—vh|)—7“§)2‘dx

N 2 N
ellro = u) = ellro = )" o) ([ |20 = ub + (o = onl) ~ 23 o)

| /\

<o ([
< 32%@ vg;)czg;)é(z/g (£2(Jro — u]) = 12)% + (¢2(Jro — va]) — r2)* da;>

3 3 1 3
18r] (G o(0n) )" (ZES () + 2B (0)F < B2 hES, (u)

| /\

and (3.3) is proved. Finally, (3.4) follows directly from (3.1), (3.2) and Corollary 2.6.

iii) The proof of (3.5) is standard. For any ¢ € C°(Q) we have v + ¢ € HL(Q2) and the
function ¢ — G} (v + t1)) achieves its minumum at ¢ = 0. Hence %‘t—o ( halv+ tw)) =

for any 1 € C2°(Q2) and this is precisely (3.5).

12



For any z € C we have
(3.12) |H(2)| < 3r0|p?(|z — ro|) — rg| < 24r3.
Since v;, € X, we have @*(|rg—v,|) =73 € L2(RY) and (3.12) gives H(v;) € L>NL>®(RY). We
@ () (on = w)| < lon — ul and | (B4722) (0 — w)| < sup ! (575) 5 < oo
Since v, —u € L*(RY), we get ¢/ (%) (vp, —u) € L2 N L= (RN). Using_(3.5) we infer that

Avy, € L2NL*®(Q). Then (iii) follows from standard elliptic estimates (see, e.g., Theorem 9.11
p. 235 in [19]) and a straightforward bootstrap argument.

also have

iv) Using (3.12) we get

9r2
CTQOEgL(U)a

2 912
| R <o [ (o= o) = r3)? do < 2B (0) <

[N

hence [|H (vp)|2(0) < C” (EZ, (u))?2. By interpolation we find for any p € [2,00],

p—2

2
(3.13) 1H (on) | 2o(62) < H (0n)l] 2 oy [ (0n)] 2y < C (EGL(w)

D=

There exist mq, mo > 0 such that

2 2 9 5
30/ (3;1”0) 8‘ < mie (3570) and sp’ (3;1”0) 8‘ < mo for

any s > 0. Then we have

o (on — ul? ‘2 / lup, — ul? 2 -0
1Vn — Ul . < 19 = Ul < E
/Qgp < 3970 )(vh u)| der <my Qgp 3270 dx < mih*Egp(u),
1 op—ul?
e <§277“0> (vn = u)’ 12(9)
v —u2
¢ (e (o = w)

(3.14) < ‘

1
thus ‘ < h(mi1EZ; (u))?2. By interpolation we get

LP(Q)
Vhp—U 2
@ (M55 ) (vn —w)

S Ch% (EgL(U)) ’

v, —u2
o (\ §2T0\ ) (vp, —U)‘ 22(9)

p=2
"l
L= ()

for any p € [2,00]. From (3.5), (3.13) and (3.14) we obtain

2 1
(3.15) | Avp ||y < CL+hv~2) (BEL(u))? for any p > 2.
For a measurable set w C RY with £V (w) < co and for any f € L'(w), we denote by

m(f,w) = ﬁ@ / f(x) dz the mean value of f on w.

w
Let xo be such that B(xo,4R) C . Using the Poincaré inequality and (3.1) we have

1
(3.16)  ||lvn — m(va, B(wo, 4AR)|| 12 (B(zo.ar)) < CPRIIVUL||12(B(aoar)) < CPR (EgL(u))? .

We claim that there exist £ € N, depeding only on N, and C, = Cy(a,r9, N, h, R) such that

(3.17) o, — m(vh,B(xo,llR))HWz,N(B( r_yy < G ((EgL(u)); + (EgL(u))J{’> .

20, ok—2

It is well-known (see Theorem 9.11 p. 235 in [19]) that for p € (1,00) there exists C' =
C(N,r,p) > 0 such that for any w € W?P?(B(a,2r)) we have

(3.18) Nwllw2e (o)) < C (lwllrBazry) + 1AW Lr(Ba2r)) -

13



From (3.15), (3.16) and (3.18) we infer that

1
(3.19) [lvn — m(vn, B(zo, 4R))lw2.2(B(zo 2r)) < Cla,70, N, h, R) (Egp(u))? .

If <4 ~ from (3.19) and the Sobolev embedding we find

D=
2\10

1
(3'20) ”vh - m(vhﬂ B(ﬂ?o, 4R))HLN(B(900,2R)) < C(a7 ro, N, h, R) (EgL(u)) 2.

Then usmg (3 15 ) (for p = N), (3.20) and (3.18) we infer that (3.17) holds for k& = 2.

If ; ~> (3.19) and the Sobolev embedding imply
1
(3'21) th - m(Uh, B($Oa 4R))HLP1 (B(z0,2R)) < C(CL, o, N, h, R) (EgL(u)) ’,
where - = 5 — . Then (3.21), (3.15) and (3.18) give

Wl
2|

+ (B (w))

)

otherwise we repeat the process. After a finite number of steps we find k& € N such that (3.17)
holds.
We will use the following variant of the Gagliardo-Nirenberg inequality:

(3.22) ||lvp—m(vn, B(z0,4R))||yw2.mm (B(zo,R)) = C(a,r9, N, h,R) <(E8L(u))

).

If

< &, using (3.22), the Sobolev embedding, (3.15) and (3.18) we get

2

1
p1

N|=
2=

||Uh - m(vhaB($074R))HW2,N(B(;L~0’%)) < C(GJ?TOvNa h7R) <(E8L(u)) + (EgL(u))

q 1—4
(323) Hw - m(wa B(CL, T))‘ |LP(B(a,r)) < C(pa q, N, T)Hw‘ |Z‘1(B(a,2r)) | ]Vw| ‘LN?B(a,Qr))

for any w € WHN(B(a,2r)), where 1 < ¢ < p < oo (see, e.g., [26] p. 78).
Using (3.23) with w = Vo, and (3.17) we find

HVUh— (V’Uh, ($072k 1))HLP (az:o7 EY)

ok—1

(3.24) < CvahHLz(B( ||v vh“LN(B(:L'o 2 )
1 1y 1-2

< C (@) ((EGL<u>>§ - (EGL<u>>W) '

for any p € [2,00), where the constants depend only on a, 79, N, p, h, R.
Using the Cauchy-Schwarz inequality and (3.1) we have

R R 1
‘m(vvh,B(ﬂfo, F))‘ < EN(B(x(% 21971)) : ||vvhHL2(B(fE0:2k131

y <0 (E?:L(U))%

and we infer that for any p € [1, 0o] we have the estimate

[1m(Von, B@o, 525 )| Lo(pao, 1)

3.25
( ) )m Vup, B(zo, 2k— 1))‘ (ﬁN( (o, 2’“%)))

= =
SIS

< C(N,p, R) (E&(u))

From (3.24) and (3.25) we obtain for any p € [2, 00),

N

1,10 2
(326) vahHLP(B(xo,ijil)) S C(a,ro,N,p, h,R) <(E8L(’U/)) + (ESL(’U,))P N( P)> .

14



We will use the Morrey inequality which asserts that, for any w € C°NWP(B(xg,r)) with
p > N we have

_N
(327)  |w(@) —w(y)| < Clp, N)le =y 7 [|Vwllpopaery)  for any .y € B(zo,r))

(see, e.g., the proof of Theorem IX.12 p. 166 in [8]). Using (3.26) and the Morrey’s inequality
(3.27) for p = 2N we get

(3.28) hm@)—vaw|SCanhNJuRWv—m5(ﬂﬁLw»5+(E§Au»*“+;U

for any x,y € B(xo, %))

Let 6 > 0 and assume that there exists xg € € such that ||v,(xo) — 70| — 0] > 0 and
B(zo,4R) C Q. Since || |va(z) — ro| — 70| — | |lvn(y) — ro| — 7ol | < Jva(z) — v (y)], from (3.28)
we infer that

| lon(x) — ro| — ro| > g for any x € B(xg,7s),
where
(R 5 R AT VNS SRET PN TCNE B
(329) 75 =min <2k1’ <2C(a, "o NI R)) <(EGL(U)) 2+ (Bopw) V2 ) ) :
Let
(3.30) n(s) = inf{(¢*(r) = 18)* | 7 € (=00, 70 — 8] U [rg + 5,00)}.

It is clear that 7 is nondecreasing and positive on (0,00). We have:

2
%MMZE&wwzﬁé( (o) o) e
ZTo,Ts

(3.31)
zﬁ/ n(8) dz = LN(B(0, 1))a2n ().
B(zo,rs)

where 75 is given by (3.29). It is obvious that there exists a constant K > 0, depending only
on a, rg, N, h, R, § such that (3.31) cannot hold for Eg; (u) < K. We infer that ||vp(z0) —
ro| — 10| < & if B(z0,4R) C Q and EY; (u) < K. This completes the proof of Lemma 3.1. [

Lemma 3.2 Let (up)n>1 C X be a sequence of functions satisfying:

a) Eqr(uy) is bounded and
b) lim ( sup Egéy’l)(un)) =0.
yeRN

n—oo

There exists a sequence hy, — 0 such that for any minimizer v, of GZ:,RN m H}Ln(RN)

we have || [y, — 10| — 70| Lo gy — 0 as n — oc.

Proof. Let M = sup Egr(uy,). Forn > 1 and x € RY we denote
n>1

1
mn(x) = m(uy,, B(z,1)) = m /B(%U un(y) dy.

By the Poincaré inequality, there exists Cy > 0 such that

t/ i) — () dy s<11/ Vet ()1 dy.
B(z,1) (z

i
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From (b) it follows that

(3.32) sup Il = mn (@) 2y — 0 a5 — oo,
zeRN

Let H be as in Lemma 3.1 (iii). From (3.12) and (b) we get
2 2 22
33 s [ By < 50 98 [ (= um)) = ) dy — 0
zeRN z€RN (z,1)

as n — 00. It is obvious that H is Lipschitz on C. Using (3.32) we find

(3.34) sup [|H (uy) — H(mn(x))Hm(B(m)) < Cr sup |Jup, — mn(x)HLQ(B(x,l)) — 0
zeRN zeRN

as n — oco. From (3.33) and (3.34) we infer that sup,cpn [[H(mn(2))||12(B(2,1) — 0 as

n — oo. Since ||H (my(2))||12(pz1)) = LY (B(0, 1)|H (my(x))], we have proved that

(3.35) lim sup |[H(my,(z))| =0.

O zeRN

Let

Nz ¥
(3.36) hy, = max < sup ||un, — mn(a:)HLz(B(l,’l))) , ( sup |H(mn(x))|>

zeRN zeRN

From (3.32) and (3.35) it follows that h, — 0 as n — oo. Thus we may assume that
0 < hy, < 1 for any n (if h,, = 0, we see that w,, is constant a.e. and there is nothing to prove).
Let v, be a minimizer of Gh RN (such minimizers exist by Lemma 3.1 (i)). It follows from
Lemma 3.1 (iii) that v, satisfies (3.5). We will prove that there exist Ry > 0 and C' > 0,
independent on n, such that

(3.37) AL LN (B(w,Rry)) < C for any 2 € RY and n € N*.
Clearly, it suffices to prove (3.37) for = 0. We denote my, = m,(0) and (s) = ¢(53-.). Then
(3.5) can be written as
1

(3.38) —Avy, + h—2¢'(|vn — mp|?) (v — M) = fo,
where

fo = —2a%(H(v,) — H(my)) — 2a?H(my,)
(3.39)

+% (¢,(|Un — mn|?) (00 = mn) = @ ([vn — unl*) (v — Un)) :

In view of Lemma 3.1 (iii), equality (3.38) holds in L (RY) (and not only in D'(RY)).
The function z — ¢'(|z]?)z belongs to C°(C) and consequently it is Lipschitz. Using

(3.36), we see that there exists Cy > 0 such that

&' (|vn, — mnP)(Un —mp) — @' (Jvn — un|2)(vn - Un)HLZ(B(O 1))
3.40 ;
(3.40) < Oallun — mn||12(p0,1)) < Cahf+2.

=

1
By (3.36) we have also ||H(mn)||r2(B0,1) = (LN(B(0,1))2 [H(my)| < (£N(B(0,1))
From this estimate, (3.39), (3.40) and the fact that H is Lipschitz we get

hN
(341) anHLQ 0 R) < C,?,H’Un mnHL2(B(07R)) -+ C4h;]lv for any R e (O, 1]
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Let x € C®(RY,R). Taking the scalar product (in C) of (3.38) by x(z)(vn(x) —m,) and
integrating by parts we find

1 -
| x0T et g [ 3@ o = maf?) o, = m e
RN

(3.42)

— ;/RN(AX)’vn — a2 dz + /RN<fn(-TJ),Un(x) — ma)x(z) d.

2
From (3.2) we have [[vy, — up|[2gyy < Cshy', thus

2
(3.43) lon = mallL2(B0,1)) < llvn — unllr2(B0,1)) + [un — MallL2(B0,1)) < Koha'-

We prove that
2j N?
(3.44) |on — mnHLg(B(O _1y) < Kjhy for 1 <j< [] +1,
721 2

where K; does not depend on n. We proceed by induction. From (3.43) it follows that (3.44)
is true for j = 1.

Assume that (3.44) holds for some j € N*, j < [%2] Let y; € C2(RY) be a real-valued

function such that 0 < x; <1, supp(x;) C B(0, 2]%1) and x; = 1 on B(0, 2]) Replacing x by
X; in (3.42), then using the Cauchy-Schwarz inequality and (3.41) we find

/ |an| dr + — nz / &' (|von, — mn]2)|vn - mn|2 dx
B(0,55 57)

’2j

(3.45)

IN

31AX; ] oo vy [on — mnHLQ(B(O y Tl nllez s mn”L2(B(0, )

< AJ'HUn - mn”2

/
LQ(B(O,Qj%l)) + C4hn an - mn||L2(B(O,2j%1)) < A]hyjlv .

2j
From (3.44) and (3.45) we infer that [[vn—ma| g1 5 1y < Bjhx'. Then the Sobolev embedding
Y]

implies
25
(3.46) ||vn — mnHL?*B(O,%) < Djhy .

The function z — 3(|z|?) is clearly Lipschitz on C, thus we have

[ 16on =) = glln = mal?) o < Ch [ =l
B(0,1) B(0,1)

< Céllun — mallL2(B0,1)) < Cehl 2.

It is clear that / G(|vn — un|?) dz < hiGZ" ry (vn) < h2Eqp(u,) < h2M and we obtain
B(0,1)

(3.47) / @(|vn — mp|?) dz < Crh2.
B(0,1)
32rg

If |vp(x) — my| > 8rg we have @(|v,(z) — my|?) = @ (M> > 2r¢, hence

(3.48) 2r0 LN ({z € B(0,1) | |vn(z) — mp| > 8r}) < / @ (lvn — mp|?) dz < Crh2.
B(0,1)

17



By Holder’s inequality, (3.46) and (3.48) we have

/ vy, — My |? da
{|vn—mn|>8r0}NB(0, L

727

_2
(3.49) < llom = Ml o, 2y (£Y ({2 € BO, 1) | [on () = ] > 8ro})) 7"
72

2\ 2 -2 4i4a
< (Lyhﬁ§> (Eih?> T < B

2rg°’n

From (3.45) it follows that

/ ) |vn—mn2dx§/ 1 ¢(|vn—mn|2)|vn—mn\2daj
(3 50) {|vn—mn\<8fro}ﬁB(0,§) B(O’E)
4544

o044 4j+4
< AN < Ahy

/.
J

Then (3.49) and (3.50) imply that (3.44) holds for j 4+ 1 and the induction is complete. Thus

. is established. Denoting jy = |5-| + 1 an N = 57n=T, we have proved that
3.44) is established. Denoti N1 +1 and Ry = 55k h d th

i N
(3.51) lon = manllL2B0,Ry) < Kjnhn™ < Kjyhy
It follows that

~/ 2 N
hﬁ@ (Jvn = mn|") (vp —my)|  dz
' 1 ~/ 2y |V 2 2
< -5 sup (@ (|z]?) z‘ |v, — mp|” dz < Cs.
hi zec B(0,Ry)

Arguing as in (3.40) and using (3.36) we get

16" (Jon — mnP)(”n —my) — @' (Jvn — Un|2)(vn - un)H]LVN(B(o,l))

3.53 - N-2
(3.53) < Cy Sup )90' (I2%) Z‘ lun = mallF2(po1) < Crohn ™
ze

From (3.39), (3.53) and the fact that H is bounded on C it follows that || fu|| v (50, ry)) < C11,
where C1;1 does not depend on n. Using this estimate, (3.52) and (3.38), we infer that (3.37)
holds.

Since any ball of radius 1 can be covered by a finite number of balls of radius Ry, it follows
that there exists C' > 0 such that

(3.54) [[Avn || v (B(z1)) < C for any 2 € RY and n € N*.
We will use (3.18) and (3.54) to prove that there exist Ry € (0,1] and C' > 0 such that
(3.55) on = mn(@)|lyy2n (B iy < € for any z € RY and n € N*.

As previously, it suffices to prove (3.55) for g = 0. From (3.54) and Holder’s inequality it
follows that for 1 < p < N we have

1-2 b
(3.56) 1Avallzo(zay < (EYBO) 1801y ) < CO).
Using (3.43), (3.54) and (3.18) we obtain

(3.57) o = mn(0)lly22(p(1)) < C:

18



— % < %, (3.57) and the Sobolev embedding give

D=

[lon = M (0| v Bz, 1)) < C

and this estimate together with (3.54) and (3.18) imply that (3.55) holds for Ry = 7.
Ifi-2> N, from (3.57) and the Sobolev embedding we find ||v,, — 1, (0 )HLPI(B(%%)) <C,

where pi = — %. This estimate, (3.56) and (3.18) imply ||v, — m,(0 )|‘W2,p1(B(x7%)) <C.If

p% — % <3 L from the Sobolev embedding we obtain [|vr, — mp (0 )HLN B(z.1)) < C, and then

using (3.54) and (3.18) we infer that (3.55) holds for Ry = L. Otherwise we repeat the above
argument. After a finite number of steps we see that (3.55) holds

Next we proceed as in the proof of Lemma 3.1 (iv). By (3.23) and (3.55) we have for
p € [2,00) and any o € RV,

Vv, — m(Voy, B(zo, %RN))HLP(B(QUO,%RN))

2 1—2
P 2 P
< OO a1V 20 o iy < €10

(3.58)

Arguing as in (3.25) we see that ||m(Vuy,, B(xo, % ))HLP fy)) is bounded independently

1
053
on n and hence

||anHLp(B(x07%éN)) < Ca(p) for any n € N* and o € RY.

Using this estimate for p = 2V together with the Morrey inequality (3.27), we see that there
exists C, > 0 such that for any =,y € RY with |z —y| < RTN and any n € N* we have

(3.59) o (@) = va ()] < Cula —y]2.

Let 6, = || |[vn — 10| — 70| oo (rv) and choose x;,, € RY such that | v, (z5) — 10| — 70| > %
From (3.59) it follows that ||v,(x) — ro| — 70| > %” for any x € B(xy,ry,), where

— min @ 57” ’
n = 2 '\ac,) |-

Then we have

G(ro — va(y)]) — 12)* dy > / (¢2(r0 — vn(®)]) — 12)* dy
(360) B zn,l) B(In,Tn)
> e n (%) dy = LN(B(0,1)n (&) rl,

where 7 is as in (3.30).
On the other hand, the function z +— ( 2(lrg — 2]) — 7'0) is Lipschitz on C. Using this
fact, the Cauchy-Schwarz inequality, (3.2) and assumption (a) we get

L 0= o)) = 18)* = (0o = unlo)) = 18)” |y
B(z,1)

2
<C . vn(y) — un(y)| dy < C'||vy, — Un|12(B(z,1)) < C'|vn — Un||L2(RN) < C"hY .

Then using assumption (b) we infer that

(3.61) swp [ (Pl nw)) =) dy 0 asn
zeRN JB(z,1)
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From (3.60) and (3.61) we get hm 0 1) (%) rYN = 0 and this clearly implies hm o = 0.
Lemma 3.2 is thus proved. O
The next result is based on Lemma 3.1 and will be very useful in the next sections to

prove the ”concentration” of minimizing sequences. For 0 < Ry < Ry we denote Qg, r, =
B(0, R) \ B(0, R1).

Lemma 3.3 Let A > A3 > As > 1. There exist ¢g = eo(a,ro, N, A, Az, A3) > 0 and

C; = Ci(a,ro, N, A, Ay, A3) > 0 such that for any R > 1, € € (0,e9) and u € X verifying
QAR,R
E 3

ar(u) < e, there exist two functions ui, ug € X and a constant 0y € [0,2m) satisfying the
following properties:
i) supp(u1) C B(0, AyR) and r9 — u1 = e~ (rq — u) on B(0, R),
ii) ug = u on RNV \ B(0, AR) and ro — uz = roe'® = constant on B(0, A3R),
2 3U1 2 8UQ 2
ii1) ‘ ’ —|=— - |=
RN 83:] 837j al’j

iv) / ©*(|ro — u|) — r0)2 — (¢*(Iro —wa|) — 7'8)2 — (¢*(Iro — u2|) — r%)Q ’ dx < Cye,

v) |Q(u) — Q(u1) — Q(uz)| < Cse,
vi) If assumptions (A1) and (A2) in the introduction hold, then

’deClaforjzl,...,N,

2% 1

/RN [V(Iro = ul?) = V(iro = w[?) = V(lro - ual®)| do < Cae + C5v/E (Bow(w) 2

Proof. Fix k >0, Ay and Ay such that 14+4k < A; < Ay < A3 <Ay < A—4k. Let h=1
and § = . We will prove that Lemma 3.3 holds for ¢g = K(a,r9, N,h = 1,6 = 3, k), where
K(a,ro,N h 0, R) is as in Lemma 3.1 (iv).

Consider 71, m2 € C*°(R) satisfying the following properties:

m =1on (—oo,A1], m =0on [A2,00), m is nonincreasing,
n2 =0 on (—o0, Az], m2 =1 o0n [A4,00), 72 is nondecreasing.

Let € < gg and let u € X’ be such that EQR 4 (u) < e. Let vy be a minimizer of G¥ Qnan
in the space H} w(Qr aRr). The existence of vy is guaranteed by Lemma 3.1. We also know
that vy € I/Vl P(Qpg agr) for any p € [1,00). Moreover, since ng’AR(u) < K(a,ro,N,1,73 k),
Lemma 3.1 (1V) implies that

3
(3.62) %0< 7o — v1 ()] <§ if R+ 4k < |z| < AR — 4k.

Since N > 3, Qa, g A,r is simply connected and it follows directly from Theorem 3 p. 38 in [9]
that there exist two real-valued functions p, 6 € W?P(Qu, g a,r), 1 < p < 00, such that

(3.63) ro —vi(x) = p(z:)ew(@ on Q4, R AR

For j=1,..., N we have

ovq op .00 0 Ovy |2 5| 00 |2
364) — =|—7=——ip— )€ d |— :’—’ — .. Q .
( ) 8xj < 8.%'j Zp8$j> c o 8xj 8:(}]' P 833]‘ a.6. O 32A1R, AR
Thus we get the following estimates:
(3.65) / Vo2 da < / Vor2de <&,
QA R, A4R QA R, A4R
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(3.66) a2/ (p* — r%)2 dx < nglR’ Ml y)) <e,
QA R, A4R

4 4
(3.67) / IVOP? dz < — Vo |? dz < —e.
QA R, A4R T

0 /Qa R AyR 0

The Poincaré inequality and a scaling argument imply that

Eos) [ em(Quranlde < CN VAR [ [9fPds
QAR AyR

QA R, A4R

forany f € H'(Qa,r, a,r), where C(N, Ay, Ay) does not depend on R. Let 6y = m(0, Qa, g, a,R)-
We may assume that 0y € [0,27) (otherwise we replace 6 by § — 27 []). Using (3.67) and
(3.68) we get
(3.69)
/ |9—(90|2de C(To,N,Al,A4)R2/ \Vv1|2da: < C(’Fo,N,Al,A4)R2€.
QA R, A4 R

QA R, AR

We define %1 and us by

ro —u(z) if v € B(0,R),
ro —vi(z) if z € B(0,A1R)\ B(0,R),

=]

(370) ro — Ul (aj) = (TO + nl(%)(ﬂ(%) . ’f‘o)) 6i<90+771(f)(9(m)—90))
if z € B(0,A4R) \ B(0, A{R),
roe® if x € RN\ B(0, A4R),

roe® if x € B(0, AL R),

(To + (i) (p(w) - To)) (oot 0w—00))
(3.71) ro — up(x) = if 2 € B(0, A4R) \ B(0, A\ R),
ro—vi(x) ifx € B(0,AR)\ B(0, A4R),

ro —u(z) ifx € RV\ B(0,AR),

\

then we define w1 in such a way that rg — u; = e~ o (ro — @1). Since u € X and u — vy €
HY QR ar), it is clear that u; € HY(RY), up € X and (i), (ii) hold.
Since p + rg > %7‘0 on Q4,r, A,R, from (3.66) we get

2
(3.72) 1o = rollze(0, 5 ayn) = 9rZaz"

|z x

Obviously, ¥ (ro + () (p(w) = 10)) = Fnl(Eh(p(@) = ro) & + m(5)Vp and using (3.65),
(3.72) and the fact that R > 1 we get

19 (o + (5 (0) = 70) ) 11200, a0

(3.73)
< wsup 1] - 1o = roll L2 o am) T Hm(%)VﬂHm(mlR,MR) <CVEe

Similarly, using (3.67) and (3.69) we find

IV (60 + (3 (0@) = 00) ll22(010, 5,

(3.74) .
< %Sup |77;‘ ’ He - GOHLZ(QAIR,AALR) + Hni(%)va|’L2(QAlR,A4R) < Ct\/g
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From (3.73), (3.74) and the definition of uy, up it follows that ||Vuil|r2, p 4,n) < CVE
i = 1,2. Therefore

/RNH('M‘]QgZ;Q ng‘Z‘dm:/ H@a:JZgZ;2 ng‘Q‘dx

ou |2 |0v Ou |2 |0u ou
< / — 1‘ dx + / ! 2
Qr A RUQA, R AR O ax] QA R AR

oz T ach oz,
and (iii) is proved. On 94, 4,r we have p € [%2, 3], hence ¢ (7‘0 +m(‘ |)(p(x) —ro)) =
ro -+ (i) (p(x) = o) and

’ dr < Cie

(3.75) ((p (TO+ m(‘ l)( () - TO)) N T(%)Q: (p— 7“0)2771‘2(%) <2ro+ 771‘(%)(0 - 7“0))2
< (3r0)” (p —0)2.

From (3.70)—(3.72) and (3.75) it follows that ||@?(|ro — wi|) — T%HLZ(QAIR’AALR) < Cy/e. As
above, we get

| @ = ) =1)* = ((r0 = i) = 18)° = (2o = wal) = 13)°|

2 2

< + (@2(|r0 —vl) — 7‘8) dz

(*(Iro = ul) = r5)

/QR,A1 RUQA R AR

2

2 2
4 / (&2(ro —ul) — 12)* + (¢2(ro — wa]) — 12)* + (2(ro — wal) — 12)? dax < Che.
QA R,A4R

This proves (iv).
Next we prove (v). Since <i%’ @1) has compact support, a simple computation gives

ouq

(3:76) Q(un) = L5 Ot Oty

_ I ((ie—if0 _ _—ifo —ifos VY _ / UL oy
) ((ie 8x1’r0 e "Org 4+ e "0uy)) RN<28.'1717UI> x
From the definition of %; and uz and the fact that u = v; on R\ Qg Ar we get (i gzl ,U1) —

(i ggi uy) — (i 871,112) =0 a.e. on RV \ Qu,p a,r. Using this identity, Definition 2.4, (3.76),
then (2.3) and (3.70), (3.71) we obtain

B vy Oty . Ougy
Q) ~ Q)= QUua) = [l i) —lig ) — (i ) de
:/ <Z.31J1_5M1_('31627r0>dx_/ (pQ—TQ)ﬁd:C
QAlR,A4R 8371 81’1 81'1 QA1R7A4R 8371

(3.77)

> <( enlZio-m) - n%) 2 (0 5o - 00) as

AR, A4R =1
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The functions vy — @ — ug and 0* = 6 — ZZ 1 (00 + nz(|x|)(9(x) - 90)) belong to C1 (g Ar)

and vy — @ — ug = ro(e® — 1) = const., 0* = —y = const. on Qr.ar \ Qa,r 4,r. Therefore

9*
(3.78) / (zﬂ(vl — U —ug),ro)dr =0 and / 0 dzx = 0.
QA R, A4R I QA R, A4R 9

Using (3.66), (3.67) and the Cauchy-Schwarz inequality we have

(3.79) ‘ / (p* — 7“8)ﬁ dx‘ < Ce.
QA R, A4R Oy

Similarly, from (3.72), (3.74), (3.75) and the Cauchy-Schwarz inequality we get

|z]

CEUNNY <<ro+m<§><pro>>2r3) o (t0 4 mli0 - o0)) o] < e

From (3.77)—(3.80) we obtain |Q(v1) — Q(u1) — Q(u2)| < Ce and (3.4) gives |Q(u) — Q(v1)| <
C’ng’AR (u) < Ce. These estimates clearly imply (v).

It remains to prove (vi). Assume that (Al) and (A2) are satisfied and let W be as in the
introduction. Using (1.5) and (1.7), then Holder’s inequality we obtain

/ V(Iro = uf?) = V(Iro — v1]?)|da
RN

<
QR, AR

<C (*(Jro — ul) = 12)* + (P2(lro — i) —12)* da

QR, AR

V(@3 (ro—ul)) =V (¢2(Iro—v1 )| + | W (Iro—uf2) =W (Iro—v1[?) | do

(3.81) LC

Iro — u| — |ro — 1] ‘ (Iro = ulPPo M g —u 5200}
QR, AR —
—HTO - 7}1’ pot ]l{|ro—v1|>2r0}) dx

<Cl5+c/ ‘u ’U1|<‘7“0 u’ ]l{|r0 u|>2r0}+’T0 Ul’ IL{|7“() v1|>2r0}>d

RAR

< Ce+ Clu—vill 2 an) (H ro — U|1{|r0 al>2r0} [ 2m
—1
L2 (R, AR)

(Qr, AR)

From the Sobolev embedding we have

[|u — ’Ul||L2*(RN) < Csl|V(u — UI)HL?(RN)

3.82
(3.82) < Cs(I[Vull 2@ + IV01 20020 0) < 205 V5.

It is clear that |rg — u| > 2ro implies |u| > 9 and |rg — u| < 2|ul, hence

|| |T0 - U’ﬂ{|7"0—u|>2ro}||L2*(QR, AR)

3.83
(3.83) < 2lJull 2ty < 205Vl g, < 2Cs (Egr (u)

N
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Obviously, a similar estimate holds for v;. Combining (3.81), (3.82) and (3.83) we find

(3.84) /Q »

From (3.70) and (3.71) it follows that V(|rg — v1|?)
RN \ QA1R7A4R and |’f‘0 — 1)1’, |’f‘0 — ull, |’f‘0 — UQ’ c [
(3.66), (3.75) and (3.72) we get

2% -1

V(|ro — ul?) = V(|ro — vl\Q)‘ dr < C'e + C"/e (EgL(u)) 2

V(lro — wa|*) = V(Jro — u2f?) = 0 on

,3—] on Q4,r, A,z- Then using (1.5),

S |

(3.85) / V(jrog — v} dz < C (p? —12)?dx < Ce, respectively
QA R, A4R QA R, A4R
5 2
(3.86) / IV ([ro — w|?)| dz < C <(m + (2 (o - 7«0)) - 7"8) dz < Ce.
QAR AyR QA R, A4R
Therefore
LIV = o) = Viiro =) = Vi(iro = waf’)| do
(3.87) ) ) )
< [V(lro = v1[)[ 4+ [V(Iro — wa|[)| + [V ([ro — ua|)| dz < Ce.
QA R, A4R
Then (iv) follows from (3.84) and (3.87) and Lemma 3.3 is proved. O

4 Variational formulation

We assume throughout that assumptions (A1) and (A2) in the introduction are satisfied. We
introduce the following functionals:

E.(u) = /R |Vu|2 dx + cQ(u / Vilro — u|

Alu _/:[;{Nz’a(f]’ d,

Bc(u):/RN 8$1‘ dz + cQ(u) + /RN V(jro — ul?) da,

Pu(u) = N=3 A(u) + Be(u).

It is clear that E.(u) = A(u

~—

+ Be(u) = 527 A(u) + Pe(u). Let
C={ueX|u#0,P.(u)=0}.

The aim of this section is to study the properties of the above functionals. In particular,
we will prove that C # 0 and inf{FE.(u) | v € C} > 0. This will be done in a sequence of
lemmas. In the next sections we show that F. admits a minimizer in C and this minimizer is
a solution of (1.3).

We begin by proving that the above functionals are well-defined on X. Since we have
already seen in section 2 that @ is well-defined on X, all we have to do is to prove that
V(ro — u|?) € LYRY) for any u € X. This will be done in the next lemma.
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Lemma 4.1 For any u € X we have V(|rg — u|?) € LY(RY). Moreover, for any § > 0 there
exist C1(0), C2(d) > 0 such that for any uw € X we have

-0 [ (o) -2 do— GOV B
RN
(4.1) S/ V(|ro — ul?) dz
RN

2 *
< (1+6)a? /RN (@2(|T0 —ul) - 7“8) dx + 02(5)HV“||%2(RN)'

Proof. Fix 6 > 0. Using (1.4) we see that there exists 5 = ((d) € (0,7¢] such that
(4.2) (1 =0)a®(s —12)> <V(s) < (14 8)a’(s —r2)? forany s € ((ro — 3)%, (ro + 5)?).

Let u € X. If |u(x)| < 8 we have |rog — u(z)|> € ((ro — B)%, (ro + 8)?) and it follows from (4.2)
that V(|ro — u|2)]l{|u‘<5} € LI(RN) and

(-0 [ (Plro-u) =) dr [ Vin-uP)d
{Ju|<B} {Ju|<B}

(4.3)

< (14 5)&2/ (goQ(\rg —ul) — 7“(2))2 dzx.
{lul<p}

Assumption (A2) implies that there exists C7(d) > 0 such that
[V(Iro = 2%) = (1 = §)a®(¢?(ro — 2) — r§)?| < CL(8)[2[*F* < CY(8)[=*
for any z € C satisfying |z| > . Using the Sobolev embedding we obtain

[ o= ul?) = (1= a0 — )~ 7| da
{lu|>8}
(4.4)
<Ct®) [ P de <) [l de < o)Vl
{lu|>8} RN

Consequently V (|rg — u[*)Lgj,>gy € L'(RY) and it follows from (4.3) and (4.4) that the first
inequality in (4.1) holds; the proof of the second inequality is similar. O

Lemma 4.2 Let § € (0,79) and let u € X be such that ro — 0 < |rg —u| <79+ 6 a.e. on RY.

Then
1

D —
< 2a(rg — 0)
Proof. From Lemma 2.1 we know that there are two real-valued functions p, 6 such that
p—r1o € H'(RN), § € DV2(RYN) and rg — u = pe? a.e. on RYN. Moreover, from (2.3) and
Definition 2.4 we infer that

1Q(u) Egr(u).

Qw =~ [ (7 =)o, do
RN
Using the Cauchy-Schwarz inequality we obtain
2a(ro — 0)|Q(u)| < 2a(ro — 8)||0a, || 2rv)l1? — 78]l L2 mA)

< (7"0—5)2/ |0x1|2dx+a2/ (0" = 13)" du
RN RN
< /N P?|VO? + a* (,02 - 7“8)2 dr < Egr(u). 0
R
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Lemma 4.3 Assume that 0 < ¢ < vg and let £ € (0,1 — —). There exists a constant K| =
K1(F,N,c,e) > 0 such that for any v € X satisfying Eqr(u ) < K1 we have

/ |Vu|2dx+/ V(lro — ul?) dz — c|Q(u)| > eEr(u).
RN RN

Proof. Fix &1 such that € < e; <1— <. Then fix §; € (0,7 — ). By Lemma 4.1, there
exists C1(61) > 0 such that for any u € X we have

%

(4.5) /R V(Jro—uf’)de = (1 b1)a” /RN (¢(Iro —ul) =r3)" do — Ca(81) (B (u) =

Using (3.4) we see that there exists A > 0 such that for any w € X with Egp(w) < 1, for
any h € (0,1] and for any minimizer v, of G} g n in H} (RY) we have

(4.6) Q(w) — Q(vn)| < AWK Egp(w).

Choose h € (0, 1] such that 61 -1 — CARN > ¢ (this choice is possible because e1 — 01 —e > 0).
C

Then fix § > 0 such that ﬁ <1 —¢&; (such § exist because ey <1— = =1- )

2aro
Let K = K(a,r9,N,h,d,1) be as in Lemma 3.1 (iv).
Consider u € X such that Fgr(u) < min(K,1). Let vy be a minimizer of G gy in

HI(RY). The existence of v, follows from Lemma 3.1 (i). By Lemma 3.1 (iv) we have
rog— 0 < |rog —uvp| <rp+0 a.e. on RY and then Lemma 4.2 implies

(4.7) clQ(vp)] <
We have:

/ Vul? de + / V(Jro — uf?) de — ¢/ Q(u)|
I{N‘ I{N

WC_(S)EGL(U}L) (1—e1)Eqrn(vp) < (1 —e1)Ear(u).

> (1 61)Ear(u) — C1(6) (Ear(w)T —clQ(u)] by (4.5)
(4.8) > (1 61)Eqr(u) — C1(61) (Bar(w) T — c|Q(u) — Q(un)] — clQ(un)|

> (1 - 61)Ear(u) — C1(81) (Bar(u) ® — cARS Egp(u) — (1 — 1) Egr(u)
by (4.6) and (4.7)

*

- (51 ~ 81— AT — (1) (EGL(U))%*l) Ear(u).

Note that (4.8) holds for any u € X with Egy(u) £ m 1n( ,1). Since g1 — 61 — cARN > ¢, it
is obvious that g1 — & — cARN — C1(01) (Bar(u)? ' >¢ it E¢p(u) is sufficiently small and
the conclusion of Lemma 4.3 follows. O

An obvious consequence of Lemma 4.3 is that E.(u) > 0 if u € X \ {0} and Egr(u) is
sufficiently small. An easy corollary of the next lemma is that there are functions v € X such
that E.(v) < 0.

Lemma 4.4 Let N > 2. Let D = {(R,e) € R2 | R > 0, 0 < ¢ < &}, There exists
a continuous map from D to HY(RN), (R,e) — v such that v € C.(RYN) for any
(R,e) € D and the following estimates hold:

R
i) / IVolt |2 de < YRV 72 + CoRN 72 1n =,
RN g
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i) ‘/ V(\rg—vR’EP)dx‘ < C3e2RN2,

iii) ’/ 2(|ro — vRE|) — 7'8)2 dx‘ < Oye?RN72,

w) —2mr3wn_1 RN < Q(vf*e) < —2mrdwn_1 (R — 2e)N L,

where the constants Cy — Cy depend only on N and wy_1 = LYY (Bry-1(0,1)).

Proof. Let A > 0 and

Tar={zreRY[0< 2| <R, _NR%M<Q:1<A(R+W}.

We define 647 : RV — R in the following way: if |2/| > R we put §4%(z) = 0 and if
|z'| < R we define

0 ifay < AR
(4.9) 0 () = ¢ gty +n ifa € Tap,
or  if oy > AEED,
It is easy to see that 2 — e (@) is continuous on RV \ {z | #1 = 0, |2/| = R} and equals 1

on RV \ Ty g.
Fix ¢ € C*°(R) such that ) =0 on (—o0,1], % =1 on [2,00) and 0 < ¢’ < 2. Let

(4.10)  P=(2) = d,(i\/g;l + (]2 = R)?2) and  wape(z)=r0 (1 _ wR,E(:E)ei@A,R(I)) ‘

It is obvious that wa r. € C.(RN) (in fact, wa Re is C* on RY \ B, where B = 0TAr U
{(21,0,...,0) | 21 € [-A, A]}). On RY \ B we have

AR T AR __mRm o
(4.11) 0077 _ ) am-y He€Tan, 0007 | ey e €Tan
0z 0 otherwise , Ox; 0 otherwise,

(4.12) 81/’}2—76(3:) . <\/$1 (2’| = )2)\/ T
xf +

o1 e (- RP

opte L Vit (@ - R)? | -R .
(4.13) (x) = g¢ ( - ) Tt =T for j > 2.

ox; + (lz'| = R)2 ||
Then a simple computation gives (i 811:921&5 , WA Re) = —13 (YT E)Qagle + % (wR < sin(94F))
on RV \ B. Thus we have
2 Rye\2 ap
Q(wA,R,E) = —TO/ ('l/] 75) wa
RN i}

It is obvious that

) aeA,R [e'¢) 89A,R
(4.14) / o dry =0 if |2/| > R and / o dry =27 if 0 < |2/| < R.
—00 1 —0 1

Since 2 8 >an on RY and 0 < ¢ < 1, we get

AR AR AR
/ % dz S/ (¢R’E)2 d dxq S/ % dx,
{IR—|'| |22¢} 021 RN Oz RN 071
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and using Fubini’s theorem and (4.14) we obtain that w g satisfies (iv).

Using cylindrical coordinates (z1,7,¢) in RY, where r = |2/| and ¢ = Iijl € SN2 we get

2y dz = |SN- 2|/ / (%2( i_R)2>)rN_2drda:1.

Next we use polar coordinates in the (z1, ) plane, that is we write 1 = 7cosa, r = R+7sin«
(thus 7 = /2% + (R —1)2). Since V(rg¢%(s)) = 0 for s > 2, we get
(4.16)

/ / ( 21/}2( ( R)? )) N-2 g iy — /26/27r V(202 (D)) DR+ 7sina)N-2da T dr

2 27
=2 [ [TV ) (B essina) 2 dasds,
0 JO

(4.15) / V(|ro —

2m
It is obvious that ‘ / (R+essin a)N_Zda‘ < 21(R+2¢)N72 for any s € [0,2], and then using
0
(4.15) and (4.16) we infer that wa g satisfies (ii). The proof of (iii) is similar.
It is clear that on R™ \ B we have

(4.17) [Vwape| = rg| Ve 4 rglye P Vot

From (4.12) and (4.13) we see that |Vy&e(2)]? = &

e

22+(|z'|-R)? 2 .
Y’ <1€> ‘ . Proceeding as

above and using cylindrical coordinates (x1,7,() in RY, then passing to polar coordinates
x1 =Tcosa, r = R+ 7sina, we obtain

T— R)2 2 2
(4.18) / (Vxl ('] = R) ) [ i < 27T|5N2|52(R+25)N2/ o[ ()| ds.
RN € 0
It is easily seen from (4.11) that [V (z)|? = AQ(RZF?ZD (1 + (R_ﬁi,‘)z) if x € Tapg, |2'| #

0, and Vo4 (z) = 0 a.e. on RN \ T4 g. Moreover, if (z1,2') € Ta g and |2/| > R —
we have ¥ (x1,2') = 0. Therefore

/ WPV E 1 da S/ VAR gy
RN TA,RO{‘ZBI‘<R—\/£7RQ}
/{Iﬂf’|<R—

(4.19) = /
{lo/|<R-—

R 3A \/ﬂr
_ 9.2 N-2 +
=27 (A >S ]/ R—rdr

Re
VAT IE

A(R—|2'])

/A(RR )] \VGA’RPda:l da’
N

2m%R +2772A 1 ,
y A(R — |2']) 3 RR— 2|

\/A2 R2

N—-2

k JA2 2
:27r2<R 3A>|SN 2| gN-2 Zl<1—€> pn (VAR
AR —k\ VR R e
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Now it suffices to take v®¢ = wp p.. From (4.17), (4.18) and (4.19) it follows that v%%*
satisfies (i). It is not hard to see that the mapping (R,¢&) —— v is continuous from D to
H'(RY) and Lemma 4.4 is proved. O

Lemma 4.5 For any k > 0, the functional Q is bounded on the set
{ue X | Eqgr(u) <k}.

Proof. Let ¢ € (0,v5) and let € € (0,1—>). From Lemmas 4.1 and 4.3 it follows that there
exist two positive constants C3(§) and K such that for any u € X satisfying Eqr(u) < K
we have

(14 5)Ear(w) + Co(5) (Bar(w) T — c|Q(u)|

> / |Vu|2 dx + / V(lro— u|2) dr — c|Q(u)| > eEgr(u).
RN RN

This inequality implies that there exists Ko < K such that for any u € X satisfying Fqr(u) <
K5 we have

(4.20) c|Q(u)| < Egr(u).

Hence Lemma 4.5 is proved if k < Ko.
Now let u € X be such that Egr(u) > Ka. Using the notation (1.10), it is clear that for
o >0 we have Q(uss) = oV 1Q(u) (see (2.14) and

Ecr(uge) = O'N_2/ |Vu|2 dr + UNaQ/ (@2(|r0 —u|) — 7“(2))2 dx.
RN RN

1
Let o9 = (%) N2 Then oy € (0,1) and we have Egr(tgy00) < aév_2EGL(u) =

Ks. Using (4.20) we infer that ¢/Q(toy00)| < Ecr(Uoge,), and this implies cop —!|Q(u)| <
0’2 Eqr(u), or equivalently

1

1 1 -+ N-1
(4.21) Q)| < —Ear(u) = —K, " (Egr(u) V2.
Co( C
Since (4.21) holds for any u € X with Egr(u) > Ks, Lemma 4.5 is proved. O

From Lemma 4.1 and Lemma 4.5 it follows that for any k£ > 0, the functional E. is bounded
on the set {u € X | Eqr(u) = k}. For k > 0 we define

Ec min(k) =inf{E.(uv) |u € X, Eqr(u) = k}.

Clearly, the function E. pn is bounded on any bounded interval in R. The next result will be
important for our variational argument.

Lemma 4.6 Assume that N > 3 and 0 < ¢ < vs. The function Ec min has the following
properties:

i) There exists kg > 0 such that E¢ min(k) > 0 for any k € (0, ko).

it) We have klirgo E¢ min(k) = —o0.

iii) For any k > 0 we have E¢ min(k) < k.
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Proof. (i) is an easy consequence of Lemma 4.3.

(ii) It is obvious that H*(RY) C X and the functionals Eg, E. and @ are continuous
on HY(RY). For ¢ = 1 and R > 2, consider the functions v! constructed in Lemma 4.4.
Clearly, R — vf! is a continuous curve in H'(RY). Lemma 4.4 implies E.(v!) — —oo
as R — oo. From Lemma 4.5 we infer that Egy(v!) — 0o as R — oo and then it is not
hard to see that (ii) holds.

(iii) Fix k& > 0. Let v! be as above and let u = v*! for some R sufficiently large, so that
Ecr(u) >k, Q(u) <0 and E.(u) <O0.

In particular, we have
2
E.(u) — Egr(u) = cQ(u) + / . V(|ro — ul®) — a® (¢*(Iro — ul?) — r§)” dz < 0.
R
It is obvious that Egr(uss) — 0 as ¢ — 0, hence there exists o9 € (0,1) such that

Ecr(tsy,00) = k. We have

Ec(toy,00) — Ecr(teg.op)
= aévflcQ(u) + oY /RN V(|ro — uf?) — @ (g02(|7‘0 —ul?) — r%)z dx
= (07 ' = 00 )eQ(u) + of (Ee(u) — Egr(u)) < 0.
Thus Ec(tey,ey) < Ear(teye,). Since Eqr(teye,) = k, we have necessarily E; min (k)
E(tgy,00) < k.
From Lemma 4.6 (i) and (ii) it follows that

VAN

(4.22) 0 < Se :=sup{Ecmin(k) | k> 0} < 0.
Lemma 4.7 The set C ={u € X |u#0, P.(u) =0} is not empty and we have
Te:=inf{E.(u) |ueC}>S.>0.

Proof. Let u € X\ {0} be such that E.(w) < 0 (we have seen in the proof of Lemma

Sw 12

4.6 that such functions exist). It is obvious that A(w) > 0 and / ‘%‘ dx > 0; therefore
RN 1
B.(w) = E.(w) — A(w) < 0 and P.(w) = Ec(w) — 527A(w) < 0. Clearly,

1 ow |2 N -3
(4.23) P.(wy1) = / ‘—’ dx + cgA(w) + cQ(w) + 0/ V(|ro — w|?) da.
0 JRN 8.7}1 N -1 R3
Since P.(wi31) = P.(w) < 0 and lir%Pc(wgJ) = 00, there exists o9 € (0,1) such that

P.(wg.1) = 0, that is wy,1 € C. Thus C # 0.

To prove the second part of Lemma 4.7, consider first the case N > 4. Let u € C. It
is clear that A(u) > 0, B.(u) = —8=3A(u) < 0 and for any o > 0 we have E.(u,) =
A(ui o) + Be(ui o) = oV 3 A(u) + oV B.(u) , hence

d _ _

L (Bulune) = (N = 3)0A(w) + (N = 10" 2 B.(u)
is positive on (0, 1) and negative on (1,00). Consequently the function o — E.(u1 ) achieves
its maximum at o = 1.

30



On the other hand, we have

ou |2
Eqr(uie) = o3 A(u) + oV </ | a? (Ao — ul) = 13)° dx) '
RN 6[61
It is easy to see that the mapping o —— Eqg(u1 ) is strictly increasing and one-to-one from
(0,00) to (0,00). Hence for any k > 0, there is a unique o(k,u) > 0 such that Egr,(u1 o(ku)) =
k. Then we have

Ec,min(k) < Ec(ul,o’(k,u)) < Ec(ul,l) = Ec(u)
Since this is true for any k£ > 0 and any u € C, the conclusion follows.
Next we consider the case N = 3. Let u € C. We have P.(u) = B.(u) = 0 and E.(u) =
A(u) > 0. For o > 0 we get
Ec(u15) = A(u) + 0%Be(u) = A(u) and

ou 12
Eor(u1s) = A(u) + o2 </ ‘ai + a? (902(|7"0 —ul) — 'rg)Q d:n) :
R3 T

Clearly, 0 — Eqr(u1 ) is increasing on (0, 00) and is one-to-one from (0, 00) to (A(u), 00).
Let € > 0. Let k. > 0 be such that E. pn(k:) > Sc —e. If A(u) > ke, from Lemma 4.6 (iii)
we have

E.(u) = A(u) > ke > Ecmin(ks) > Se — €.
If A(u) < ke, there exists o(k-,u) > 0 such that Egr(u; ok, ) = ke- Then we get

EC(U) = A(u) = Ec(ul,a(kg,u)) > Ec,min(ke) > S, —e.

So far we have proved that for any u € C and any € > 0 we have E.(u) > S.—e. The conclusion
follows letting ¢ — 0, then taking the infimum for v € C. O

In Lemma 4.7, we do not know whether T, = S..

Lemma 4.8 Let T, be as in Lemma 4.7. The following assertions hold.
i) For any u € X with P.(u) < 0 we have A(u) > YT,
i) Let (un)n>1 C X be a sequence such that (Egr(un)),>; s bounded and lim P(u,) =

n—0o0

< 0. Then liminfA(u,) > Y717
n—oo

ou 12
Proof. 1) Since P.(u) < 0, it is clear that u # 0 and / ’%‘ dx > 0. As in the proof
RV 1
of Lemma 4.7, we have P.(u11) = P.(u) < 0 and (4.23) implies that lirr%) P.(uy1) = 00, hence

there exists og € (0,1) such that P.(uy,1) = 0. From Lemma 4.7 we get E.(uy,1) > T, and
this implies E.(ugy,1) — Pe(tgy,1) > Te, that is ﬁA(uUO’l) > T.. From the last inequality we
find

N—-11 N —1

—T. > ——T..
O'O C > 2 (&

(4.24) A(u) >

2

% dr > 0.

ii) For n sufficiently large (so that P.(u,) < 0) we have u,, # 0 and /
RN X1
As in the proof of part (i), using (4.23) we see that for each n sufficiently big there exists

opn, € (0,1) such that

(4.25) P.((un)o,,1) =0
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and we infer that A(u,) > %éTc. We claim that

(4.26) limsup o, < 1.
n—oo
Notice that if (4.26) holds, we have hnniig.}fA(u”) > N2_1 T Supi_)oo -1 > %Tc and Lemma

4.8 is proved.
To prove (4.26) we argue by contradition and assume that there is a subsequence (o, )>1
such that o, — 1 as k — oo. Since (Egr(un)),~; is bounded, using Lemmas 4.1 and 4.5

2
we infer that </ Oun dw) : (/ V(|ro — un|?) dm) , (A(up))n>1, and (Q(up))n>1
RN 61,'1 n>1 RN n>1 - -

are bounded. Consequently there is a subsequence (ny,)¢>1 and there are aq, az, 5,7 € R

such that
/ ouy, g
RN 8331

A(“nke) — Q, Q(Unké) — 3 as{— oo.

2

dr — o, / V(|ro — un, \2) dr — ~y
RN ‘

Writing (4.25) and (4.23) (with (un,, )O—"kz’l instead of (uy)s, 1 and we,1, respectively) then
passing to the limit as £ — oo and using the fact that o, — 1 we find o + %ag—i—cﬂ—i—'y =
0. On the other hand we have élirgo Pc(unke) = p < 0 and this gives 0414—%042 +cf+y=p<0.
This contradiction proves that (4.26) holds and the proof of Lemma 4.8 is complete. O

5 The case N >4

Throughout this section we assume that N > 4, 0 < ¢ < vy and the assumptions (Al) and
(A2) are satisfied. Most of the results below do not hold for ¢ > vs. Some of them may not
hold for ¢ = 0 and some particular nonlinearities F'.

Lemma 5.1 Let (up)n>1 C X be a sequence such that (Ec(uy))n>1 is bounded and Pe(u,) —
0 as n — oo.
Then (Eqr(un))n>1 is bounded.

Proof. We have 127 A(uy) = Ec(un) — Pe(uy), hence (A(up))n>1 is bounded. It remains

0
to prove that / 87%‘ + a? (@2(|r0 — Up|) — 7‘8)2 dz is bounded. We argue by contradiction
RN X1

and we assume that there is a subsequence, still denoted (uy)n>1, such that

ouy,
1 —_—
(5 ) /RN oz 1

Fix ko > 0 such that E;in(ko) > 0. Arguing as in the proof of Lemma 4.7, it is easy to see
that there exists a sequence (o,,),>1 such that

+a’ (‘PQ(’TO—UnD—?”g)2 dxr — o0 as n — o0.

Ouy,
(52)  Eor((un)ie,) = o0 > Aluy) + o) / 222+ a2 (2(Ir0 — wn]) — 18)* dz = ko.
RN axl
From (5.1) and (5.2) we have ,, — 0 as n — oo. Since B.(u,) = —3=2 A(uy) + Pe(uy), it
is clear that (B.(un))n>1 is bounded and we obtain
Eo((un)1o,) = oh 3 A(un) + oY ' Be(un) — 0 as n — 00.
But this contradicts the fact that E.in(ko) > 0 and Lemma 5.1 is proved. Il
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Lemma 5.2 Let (up)p>1 C X be a sequence satisfying the following properties:
a) There exist Cq, Co > 0 such that C1 < Egr(u,) and A(u,) < Cy for any n > 1.
b) P.(up) — 0 as n — oo.
Then liminf E.(u,) > T, where T, is as in Lemma 4.7.

n—oo

Note that in Lemma 5.2 the assumption Fgr(u,) > C; > 0 is necessary. To see this,
consider a sequence (uy,)n>1 C H'(RY) such that u, # 0 and u, — 0 as n — oco. It is clear
that P.(u,) — 0 and E.(u,) — 0 as n — oo.

Proof. First we prove that
(5.3) C3 := liminf A(uy) > 0.

n—0o0

To see this, fix kg > 0 such that E.,n(ko) > 0. Exactly as in the proof of Lemma 4.7,
it is easy to see that for each m there exists a unique o,, > 0 such that (5.2) holds. Since
ko = Egr((un)ie,) = min(eY =2, 0N"NEq((uy)) > min(ol =3, ¢¥-1)Cy, it follows that

(0n)n>1 is bounded. On the other hand, we have E.((uy)1,0,) = N3 A(up) + N 1By (uy) >
Ec,min(k'()) > 0, that is

N -3

(5.4) oN T3 Auy) + o1 <Pc(un) N1

A(un)> > Ec’mm(k’o) > 0.
If there is a subsequence (uy, )r>1 such that A(u,,) — 0, putting u,, in (5.4) and letting
k — oo we would get 0 > Eq min(ko) > 0, a contradiction. Thus (5.3) is proved.

We have B.(u,) = Pe(un) — N=3 A(u,) and using (b) and (5.3) we obtain

N—1
N -3
(5.5) lim sup Be(uy,) < — C3 < 0.

Clearly, for any o > 0 we have

LN -3
N -1

N -3

Pc((un)l,o') = UN N1

Aluy) + oV Bo(uy) = oV 73 ( Aup) + JQBC(un)> :

1
N-3 3
For n sufficiently big (so that B.(u,) < 0), let 5, = <%> . Then P.((un)1,5,) = 0,
or equivalently (un)1,5, € C. From Lemma 4.7 we obtain E.((un)1,5,) = &,];[_3%A(un) +
GN"1B.(u,) > T., that is

N -3

(5.6)  Eolun) + (573 — 1) Afup) + (551 - 1) <pc(un) N3

A(un)> > T,

1
Clearly, &,, can be written as &, = ( Pelun) | 1) * and using (b) and (5.5) it follows that

—Be(un)
lim &, = 1. Then passing to the limit as n — oo in (5.6) and using the fact that (A(uy))n>1
n—oo f
and (P.(un))n>1 are bounded, we obtain lim inf E.(u,) > Te. O
- n—oo

We can now state the main result of this section.
Theorem 5.3 Let (up)n>1 C X\ {0} be a sequence such that
P.(u,) — 0 and E.(u,) — T as n — oQ.
There exist a subsequence (uy, )k>1, a sequence (zg)r>1 C RY and u € C such that
Vi, (- + ) — Vu  and  @*(|ro — tn, (- + z1)|) — 18 — ©*(Jro —u|) —r3 in LARMN).

Moreover, we have E.(u) = T¢, that is u minimizes E. in C.
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Proof.  From Lemma 5.1 we know that Egr(uy) is bounded. We have 25 A(u,) =
E.(up) — P.(un) — T, as n — oo. Therefore
N -1 N-—-1
(5.7) lim A(up) = TTC and liminf Fgr(uy) > lim A(uy,) = ——Te.

n—o00 n—00 n—o0 2

Passing to a subsequence if necessary, we may assume that there exists a9 > %Tc such that
(5.8) Eqr(u,) — ap as n — 0o.

We will use the concentration-compactness principle ([30]). We denote by g, (¢) the con-
centration function of Egr (uy), that is

(5.9) qn(t) = sup / |Vun|2 +a? (902(|r0 — Up|) — r%)z dx.
yeRN JB(y,t)

As in [30], it follows that there exists a subsequence of ((un, ¢n))n>1, still denoted ((un, ¢n))n>1,
there exists a nondecreasing function ¢ : [0,00) — R and there is a € [0, ap] such that

(5.10) qn(t) — q(t) a.e on [0,00) as n — oo and q(t) — a as t — oc.
We claim that

(5.11) there is a nondecreasing sequnce t,, — oo such that lim g¢,(t,) = a.

n—oo
To prove the claim, fix an increasing sequence x — oo such that ¢, (zx) — q(xx) asn — oo
for any k. Then there exists nj, € N such that |gn(2x) — q(zx)| < & for any n > ny; clearly, we
may assume that n, < ngy for all k. If ny, < n < ngyq, put t,, = xg. Then for ny <n < N
we have

lan(tn) — of = |gn(zr) — | < lgn(zr) — q(zr)] + |g(zr) — af < % + lg(wx) —a| — 0

as k — oo and (5.11) is proved.
Next we claim that

tn

(5.12) Gultn) — (2) 0 asn— oo

To see this, fix ¢ > 0. Take y > 0 such that ¢(y) > o — § and ¢,(y) — q(y) as n — oo.
There is some 7 > 1 such that ¢,(y) > a — 5 for n > n. Then we can find n, > 7 such
that ¢, > 2y for n > n,, and consequently we have ¢,(%2) > ¢,(y) > o — 5. Therefore

lim sup (gn(tn) — gn(%)) = lim g, (¢,)—liminf ¢, (%) < e. Since ¢ was arbitrary, (5.12) follows.
N—00 n—00 n—00

Our aim is to show that a = ag in (5.10). It follows from the next lemma that o > 0.

Lemma 5.4 Let (up)p>1 C X be a sequence satisfying
a) My < Egr(uyp) < My for some positive constants My, Ms.
b) lim P.(u,)=0.
n—oo
There exists k > 0 such that sup / Vu,|? + a? (@2(|r0 — Up|) — r%)2 dx > k for all
B(y,1)

yeRN
sufficiently large n.
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Proof. We argue by contradiction and we suppose that the conclusion is false. Then there
exists a subsequence (still denoted (uy,),>1) such that

(5.13) lim sup / IVun|® + a? (¢*([ro — unl) — 7"%)2 dz = 0.
B(y,1)

=00 e RN

We will prove that

(5.14) lim ‘V(|r0—un|2) — a? (¢2(|ro — un) —r%)Q‘dx:O.
n—oo JRN
Fix £ > 0. Assumptions (A1) and (A2) imply that there exists §(g) > 0 such that
2 2
(5.15) V(o = 2%) = a® (#*(Ir0 — 21) = 18)" | < ea® (#*(Iro — 2]) —75)
for any z € C satisfying | [ro — 2| — ro| < d(¢) (see (4.2)). Therefore
2
/ [V(Iro —unl?) — a® (¢*(1ro — ual) ~ 3)° | d
{l Iro—un|=ro|<d(e)}
(5.16)
< sa2/ (¥2(Iro — unl) —13)" dx < eMs.
{lIro—un|-ro|<d(e)}
Assumption (A2) implies that there exists C'(¢) > 0 such that
2
G171 |Vl —2P) —a® (¢ (ro— 2l) — 18)*| < O Iro — 2| — o+
for any z € C verifying | |ro — z| —ro| > d(e).

Let w,, = ||ro — un| — 70|. It is clear that |w,| < |uy,|. Using the inequality |V|v|| < |V|
a.e. for v € HL (RY), we infer that w, € DY?(RY) and

(5.18) / |Vw,|? dz < M, for any n.
RN
Using (5.17), Holder’s inequality, the Sobolev embedding and (5.18) we find

/ [V(Iro ) = a2 (£2(Iro — ual) — 12)* | d
{lro—un|—ro[>d(c)}

< (o) / (o [2P9+2 d
{wn>d(e)}

2pg+2

(5.19)

1— 2po+2

< C(e) (/ o dx) (LY{wn > 0(e)}) ™
fun>5()}

1— 2pp+2

< C(e)C | Vwnl| By (EV ({wn > 8(2)})

1 2pg+2

< C(e)OF Myt (LN (wy, > 0(2)))) =

We claim that for any € > 0 we have

(5.20) lim £ ({w, > d(¢)}) = 0.

n—oo
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To prove the claim, we argue by contradiction and assume that there exist g > 0, a subsequence
(wp, )k > 1 and v > 0 such that £V ({w,, > §(e0)}) > v > 0for any k > 1. Since [[Vwn!| 2@
is bounded, using Lieb’s lemma (see Lemma 6 p. 447 in [29] or Lemma 2.2 p. 101 in [10]),

we infer that there exists 3 > 0 and y, € R such that £V ({wnk > &2@} N By, 1)) > B

: . 2
Let n be as in (3.30). Then wy, (x) > 5(30) implies (% (|ro — un, ()]) —13)" > 7 (@) > 0.

Therefore

2)? d(e0)
[ =@ =) ar =0 (22) >0

for any k£ > 1, and this clearly contradicts (5.13). Thus we have proved that (5.20) holds.
From (5.16), (5.19) and (5.20) it follows that

V0= ual?) = @ (2r0 = ) = 13)° | de < 220
RN

for all sufficiently large n. Thus (5.14) is proved.
From Lemma 5.2 we know that liminf E.(u,) > T.. Combined with (b), this implies

n—~0o0
liminf 25 A(u,) > T,. Let og = 2%\/_—31) and let i, = (un)1,0,. It is obvious that
n—o0
N -1
(5.21) liminf A(@,) = op ®liminf A(u,) > od 73T..
n—o0 n—o0 2

Using assumption (a), (5.13) and (5.14) it is easy to see that

(5.22) there exist Ml, M, > 0 such that M; < Eqr(uy,) < M, for any n,
(5.23) lim sup / |V, |? + a® (4,02(]7“0 — Up|) — 7“3)2 dr =0 and
TP yeRN JB(y,1)

5.24 lim Vv ro—an2 —a® g02 ro — Unp —7“22 dr = 0.
0

n—oo JRN

It is clear that P.(u,) = %angA(&n) + 037N B,(@1,) and then assumption (b) implies

(5.25) lim (ﬁf’agA(an) +Bc(an)> = lim (A(@n) + Ec(@,)) = 0.

n—oo n—oo

Using (5.22), (5.23) and Lemma 3.2 we infer that there exists a sequence h, — 0 and
for each n there exists a minimizer v, of G}" oy in Hy (RN) such that 6, := || |v, — 70| —
70l|poomyy — 0 as n — oo. Then using Lemma 4.2 and the fact that |c[ < vs = 2arg we
obtain

(5.26) Ecr(vn) +cQ(vy) >0 for all sufficiently large n.

From (5.22) and (3.4) we obtain

1

4 _2\2
(5.27) |Q (1) — Qvy,)] < <h,21 + h,]{’MQN> My — 0 as n — 00.

36



Since Egr(vn) < Egr(ty), it is clear that

Puli) = Fenlin) +oQin) + | Vil =) = a® (¢ = al) = 3)" da

> EGL(Un) + CQ(Un) + C(Q(an) - Q(Un))

= [ |Viro = @) = ® (¢(Iro = @nl) = 1)
RN

2‘(11’

Using the last inequality and (5.24), (5.26), (5.27) we infer that liminf E.(@,) > 0. Combined

n—oo

with (5.25), this gives lim sup A(u,) < 0, which clearly contradicts (5.21). This completes the

n—oo
proof of Lemma 5.4. O
Next we prove that we cannot have « € (0, ap). To do this we argue again by contradiction
and we assume that 0 < a < «ag. Let t, be as in (5.11) and let R, = %" For each n > 1, fix
yn € RY such that Egéy"’R")(un) > gn(R,) — 1. Using (5.12), we have

e :—/ [V + a2 (#2110 — un|) — 13)” da
(5.28) B(yn,2Rn)\B(yn,Bn)

< ¢u(2Rp) — (gn(Rn) — 2) — 0 as n — oc.

After a translation, we may assume that y, = 0. Using Lemma 3.3 with A = 2, R = R,
€ = &y, we infer that for all n sufficiently large there exist two functions w,, 1, uy, 2 having the
properties (i)-(vi) in Lemma 3.3.

From Lemma 3.3 (iii) and (iv) we get |Egr(un) — Eqr(un1) — Eqr(unz2)| < Cep, while
Lemma 3.3 (i) and (ii) implies Egr,(un1) > Egg)’R")(un) > ¢ (Rn)—1, respectively Egr(un2) >

ERV\BO2R) v 5 p King i d inf
oL (un) > Eqr(un)—qn(2R,). Taking into account (5.11), (5.12) and (5.28), we infer

that
(5.29) Ecr(un1) — « and Ecr(up2) — ap — as n — 00.

By (5.28) and Lemma 3.3 (iii)—(vi) we obtain

(5.30) |A(un) — A(un,1) — A(up,2)| — 0,
(5.31) |Ec(un) — Ec(tun,1) — Ec(unz2)| — 0, and
(5.32) |P.(un) — Pe(un1) — Pe(un2)| — 0 as n — o0.

From (5.32) and the fact that P.(u,) — 0 we infer that P.(uy1)+ Pe(up2) — 0 asn —
00. Moreover, Lemmas 4.1 and 4.5 imply that the sequences (P.(un;))n>1 and (Ee(tun;))n>1
are bounded, ¢ = 1,2. Passing again to a subsequence (still denoted (uy,),>1), we may assume
that nh_)rgo P.(up1) = p1 and nh_)r{)lo P.(up2) = p2 where p1, po € R and p; + p2 = 0. There are

only two possibilities: either p; = pa = 0, or one element of {p1, p2} is negative.
If p1 = p2 =0, then (5.29) and Lemma 5.2 imply that liminf E.(u, ;) > T¢, i = 1, 2. Using
n—oo

(5.31), we obtain lim inf E.(u,) > 27 and this clearly contradicts the assumption E.(u,) —
n—od

T. in Theorem 5.3.
If p; < 0, it follows from (5.29) and Lemma 4.8 (i) that liminfA(u,;) > Y7T,. Using
n—od

(5.30) and the fact that A > 0, we obtain liminfA(u,) > %TC, which is in contradiction
n—oo
with (5.7).
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We conclude that we cannot have o € (0, avp).
So far we have proved that 1tlim q(t) = ap. Proceeding as in [30], it follows that for each
—00

n > 1 there exists x,, € RY such that for any € > 0 there is R. > 0 and n. € N satisfying
(5.33) Egg"’RE)(un) > —€ for any n > n..

Let @, = un(- + ), so that 4, satisfies (5.33) with B(0, R.) instead of B(x,, R.). Let
X € C°(C,R) be as in Lemma 2.2 and denote @y,,1 = X(Un)Un, Un,1 = (1 — x(@p))ay,. Since
Ecr(ty) = Egr(uy) is bounded, we infer from Lemma 2.2 that (y1)n>1 is bounded in
DL2(RN), (tin2)n>1 is bounded in HY(RYN) and (EgL(iin,i))n>1 is bounded, i = 1, 2.

Using Lemma 2.1 we may write 7o — ty,,1 = pnew”, where %ro < pnp < %ro and 0, €
DI2(RYN). From (2.4) and (2.7) we find that (p, —r9)n>1 is bounded in H'(RY) and (6,)n>1
is bounded in DV2(RN).

We infer that there exists a subsequence (ny)r>1 and there are functions u; € DH2(RY),
uy € HY(RY), 0 € DV2(RN), p € ro + H'(RY) such that

Upy 1 — Ul and Op, — 0 weakly in DV?(RY),
Upy,2 — U2 and Pry —T0 = p—T0 weakly in H'(RY),
ank,l — Ui, ank,Q — uz, enk — 07 Pny —T0 —pP—T0

strongly in LP(K), 1 < p < 2* for any compact set K C R" and almost everywhere on R".
Since Uy, 1 = 1o — pnkew"k — 19 — peie a.e., we have rg —u; = pew a.e. on RV,

Denoting u = u; + ug, we see that @,, — u weakly in DV2(RY), @,, — u a.e. on RY
and strongly in LP(K), 1 < p < 2* for any compact set K C RV,

Since Egr(@in) is bounded, it is clear that (¢?(|ro — tn,|) — r%)k21 is bounded in L?(R")
and converges a.e. on RY to ¢?(|rg — u|) — rZ. From Lemma 4.8 p. 11 in [26] it follows that

(5.34) (g02(|7"0 — Ay, |) — r%) — 902(\7“0 —ul) — 7“(2) weakly in LZ(RN).

The weak convergence iy, — u in DY2(RY) implies

) _
(5.35) / Ou dr < lim inf/ Ottny.
R R

2
dr < oo forj=1,...,N.
N 8a:j k—o00 N 8.1“]' ]

Using the a.e. convergence and Fatou’s lemma we obtain

(5.36) / (*(Jro — ul) — 7“(2))2 dzr < liminf/ (*(Iro — in, |) — 7“(2))2 dx
RN RN

k—o0

From (5.35) and(5.36) it follows that u € X and Egr(u) < likm inf Eqr,(tn, )
—00
We will prove that

(5.37) lim V(|ro — tin, |*) do = / V(|ro — ul?) da
k—o0 RN RN

and

(5.38) Tim Qin,) = Q(u).

Fix ¢ > 0. Let R, be as in (5.33). Since Eqgr (U, ) — ag as k — oo, it follows from
(5.33) that there exists k- > 1 such that

RN\B(O,RE)(

(5.39) Eqp Up, ) < 2 for any k > k..
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As in (5.35)—(5.36), the weak convergence Vi, — Vu in L2(R" \ B(0, R.)) implies

/ |Vu|? de < hmlnf/ Vi, | dz,
RN\B(0,R:) k—oo JRN\B(0,R.)

while the fact that u,, — u a.e. on RY and Fatou’s lemma imply

k—oo

/ ( 2(|ro — ul) — ""0) dr < hmlnf/ (@2(\7“0 — Uy, |) — ?”8)2 dz.
RN\ B(0,R:) RN\B(0,R:)
Therefore

(5.40) ERI\BOR) ) < liminf B¢, TABOR) (7 ) < 9e.

Let v € X be a function satisfying E M\B(0, RE)( )
V(s) =V(¢*(/s)) + W(s). Using (1.5) we ﬁnd

2
S, Vo= eb)ldz <1 | ($(1ro = vl) = 13)° da

RN\B(0,R:)

< 2e. As in the introduction, we write

(5.41)

Cy 7 RM\B(0,R:) 20
< GEy, (v) < e,

It is clear that W(\rg —v(2)|?) = 0if [rg — v(x)| < 279. On the other hand, |rg — v(x)| > 2rg
implies ( 2(|ro — v(z r%)Q > 9rg, consequently

2e

IralLN ({z € RN\ B(0,R.) | |ro — v(z)| > 2ro}) < / (¢ 2(|ro —v]) — 1"0) dr < —.
RN\B(0,Rc)

a

Using (1.7), Holder’s inequality, the above estimate and the Sobolev embedding we find

/ (W (|ro —v|*)|dx < C [0|2P0+2 g
RN\B(O,RE) (RN\B(OyRE))ﬂ{|T’0—’L)|>27’0}

2pg+2
3

B4 o[ wra) (e e R\ BOR) oo > 2)

Po-‘r

< CIHV H2P0+2 1— 2173#'

L2(RN)E < ' (Bgr(v)™ el

It is obvious that u and @, (with k > k.) satisfy (5.41) and (5.42). If M > 0 is such that
Ecr(uy) < M for any n, from (5.41) and (5.42) we infer that

S 1V r0 = el = Vo =)

S/ 1% (‘To_unk‘ )+ 1V (Jro — ul )]dx<cg_|_CMpo+1 1-
RN\B(0,R.)

(5.43)

po+2

Since z —— V(g — 2) is CL, [V(|ro — 2?)] < C(1 + |2/*°*2) and @, — u in
L?02(B(0, R.)) and almost everywhere, it follows that V(|rg — @n,|?) — V(Jro — u|?) in
LY(B(0, R.)) (see, e.g., Theorem A2 p. 133 in [36]). Hence

(5.44) / V(|ro — tin, |*) — V(ro — ul?)|dz < e if £k is sufficiently large.
(0,Rc)

39



Since € > 0 is arbitrary, (5.37) follows from (5.43) and (5.44).
2% *
From (2.6) we obtain ||(1 = x(un))unl|2my) < Cl| V|| 5 gy < C (Ecr(un)) 7. Using
the Cauchy-Schwarz inequality and (5.39) we get

ou
1— 2/~ . ng ~
S [ X )

Olin,
<1 = X (un))uall 2wy | e | L2 @\ B(0,RL)) < CMT \/’g for any k > k..

(5.45)

From (2.7) we infer that

1

. 1 !
||IO721 - 7"8||L2(RN) <C (EGL(un) + ||vun||%2(RN)> ’ <cC (M + MT) 2

(X(Un)un) 6un

< o1

Using (2.4) and (2.5) we obtain ‘89 < To <C

5 a.e. on RY and then (5.39) im-
Tl

plies || 39 2|2\ B(0,R.)) < CVE for any k > k. . Using again the Cauchy-Schwarz inequality
we find

00
v < (1o, — il || 5

00,
/RN B(O,R ‘ (i, = 75) lek

(5.46) \BoRg
SC(M—FMT)Q Ve forany k> k..

L2(RN\B(0,R:))

It is obvious that the estimates (5.45) and (5.46) also hold with u instead of ,, .
Using the fact that @,, — u and pp, —r9 — p —ro in L?(B(0, R.)) and a.e. and the
dominated convergence theorem we infer that

(1= X* ()i, — (L= x*(w)u  and pj;, =715 — p* =13 in L*(B(0, Re)).

This information and the fact that unk — 9u and %0:1’“ - (.?Tfl weakly in L?(B(0, R.)) imply

oz
ean [ S i de— [ G - de and
B(0,R:) dxy’ B(0,R:) Oz,
00 00
5.48 / p2 —rk nkda:—>/ 2 p2) =—dz.
(5:48) B(O,RE)( <~ 70) dx1 B(0,R.) (" =70) Oy

Using (5.45)—(5.48) and the representation formula (2.12) we infer that there is some k1 (g) > k.
such that for any k > k1 (e) we have

Q(@n,) — Q)] < C (M7 + MT) VE,

where C' does not depend on k > ki(¢) and €. Since € > 0 is arbitrary, (5.38) is proved.

It is obvious that
Qi) = [ Vim0, do
RN

N-3 Oliy,, |2
TN 1A(“”k)+/RN’ a1

dx — P.(ty,) > ——
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Passing to the limit as k — oo in this inequality and using (5.37), (5.38) and the fact that
Alup) — %ch P.(u,) — 0 as n — oo we find

(5.49) Q) — /RN Vilro — uP)dz > X237, > 0.
In particular, (5.49) implies that u # 0.
From (5.35) we get
(5.50) Afw) < Timinf Ain,) = %TC.
Using (5.35), (5.37) and (5.38) we find
(5.51) P.(u) < likn_lj)réf P.(ty,) = 0.

If P.(u) < 0, from Lemma 4.8 (i) we get A(u) > X=1T,, contradicting (5.50). Thus necessarily
P.(u) = 0, that is u € C. Since A(v) > YFT, for any v € C, we infer from (5.50) that
A(u) = ¥FT,, therefore E.(u) = T, and u is a minimizer of E, in C.

It follows from the above that

N-—-1
(5.52) A(u) = TTC = klim A(ty,).
Since P.(u) =0, klirn P.(ty,) =0 and (5.37), (5.38) and (5.52) hold, it is obvious that
2 0 (2
(5.53) / @‘ dz = lim il 2
RN 8171 k—oo JRN 81‘1

Now (5.52) and (5.53) imply klim HVﬂnkH%Q(RN) = HVUH%Q(RN). Since Vi, — Vu weakly in

L*(RN), we infer that Vi,, — Vu strongly in L2(RY), that is @,, — u in DV2(RN).
Proceeding as in the proof of (5.37) we show that

(5.54) lim (2% (170 — iing|) — 12)° da = /RN (&*(Iro — ul) — r3)? da.

k—oo JRN

Together with the weak convergence ¢?(|rg — @n, |) — 13 — ©2(|ro — u|) — 73 in L2(RY) (see
(5.34)), this implies @?(|rg — 1, |) — 72 — ¢*(Jro — u|) — 72 strongly in L?(R"). The proof
of Theorem 5.3 is complete. O

In order to prove that the minimizers provided by Theorem 5.3 solve equation (1.3), we
need the following regularity result.

Lemma 5.5 Let N > 3. Assume that the conditions (A1) and (A2) in the Introduction
hold and that uw € X satisfies (1.3) in D'(RYN). Then u € W2P(RYN) for any p € [1,00),

loc

Vu e WHP(RN) forp € [2,00), u € CH*(RY) for a € [0,1) and u(z) — 0 as |z| — oo.

Proof.  First we prove that for any R > 0 and p € [2,00) there exists C(R,p) > 0
(depending on u, but not on 2 € RY) such that

(5.55) lullw2r(B,r)) < C(R,p) for any z € RY.

We write u = uy + u2, where u; and ugp are as in Lemma 2.2. Then |ui| < %, Vuy € L*(RN)
and up € HY(RY), hence for any R > 0 there exists C(R) > 0 such that

(5.56) |l g1 (Ba,r)) < C(R) for any = € RY.
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icx

Let ¢(x) =e~ 2 (rog —u(x)). It is easy to see that ¢ satisfies

62
(5.57) A¢+ <F(\¢I2) + 4) $=0  inD'(RY).

Moreover, (5.56) holds for ¢ instead of . From (5.56), (5.57), (3.18) and a standard bootstrap
argument we infer that ¢ satisfies (5.55). (Note that assumption (A2) is needed for this
bootstrap argument.) It is then clear that (5.55) also holds for w.

From (5.55), the Sobolev embeddings and Morrey’s inequality (3.27) we find that u and
Vu are continuous and bounded on RY and u € C»*(RY) for o € [0,1). In particular, u is
Lipschitz; since u € L?" (RY), we have necessarily u(x) — 0 as |z| — oo.

The boundedness of u implies that there is some C' > 0 such that |F(|ro — u[*)(ro — u)| <
C"gp (lro—u])— ‘ on RY. Therefore F(|ro—u|?)(ro—u) € L2NL>®(RY). Since Vu € L?(R"),
from (1.3) we ﬁnd Au € L*(RN). Tt is well known that Au € LP(R”Y) with 1 < p < oo implies
dac &E € LP(RN) for any i, j (see, e.g., Theorem 3 p. 96 in [34]). Thus we get Vu € WH2(RYN).

Then the Sobolev embedding implies Vu € LP(RY) for p € [2,2*]. Repeating the previous
argument, after an easy induction we find Vu € W1P(RY) for any p € [2, ). O

Proposition 5.6 Assume that the conditions (A]) and (A2) in the introduction are satisfied.
Let u € C be a minimizer of E. in C. Thenu € W, ’f(RN) for any p € [1,00), Vu € WHP(RY)
forp € [2,00) and u is a solution of (1.3).

Proof. 1t is standard to prove that for any R > 0, J,( / V(jrg—u—v[*) dz is a C*

functional on H}(B(0, R)) and J.,(v).w = 2/ F(lro —u —v[*){ro — u — v,w) dz (see, e.g.,
N

R
Lemma 17.1 p. 64 in [26] or the appendix A in [36]). It follows easily that for any R > 0, the
functionals P.(v) = P.(u +v) and E.(v) = E.(u +v) are C' on H}(B(0, R)). We divide the
proof of Proposition 5.6 into several steps.
Step 1. There exists a function w € C}(RN) such that P/(0).w # 0.

To prove this, we argue by contradiction and we assume that the above statement is false.
Then u satisfies

CPu N -3 (0%
8:13% N —1 P 81:%

(5.58) ) +icug, + F(jro — ul*)(ro —u) = 0 in D'(RY).

Let 0 = 1/%. It is not hard to see that u; , satisfies (1.3) in D'(R”). Hence the conclusion

of Lemma 5.5 holds for u; , (and thus for w). This regularity is enough to prove that u satisfies
the Pohozaev identity

811,17(, aula
ooy [ [oelans 23 [ |

To prove (5.59), we multiply (1.3) by Zk o X (5 )du1 2 where Y € C°(RY) is a cut-off function
such that y = 1 on B(0,1) and supp(x) C B(O 2), we integrate by parts, then we let n — oc;
see the proof of Proposition 4.1 and equation (4.13) in [33] for details.
2
Since o = {/X=4, (5.59) is equivalent to (%) A(u) + Be(u) = 0. On the other hand we

have P.(u) = 83 A(u) + B.(u) = 0 and we infer that A(u) = 0. But this contradicts the fact
that A(u) = T > 0 and the proof of step 1 is complete.

dr + cQ(u1s) + / V(|ro — u1,0|?) dz = 0.

RN
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Step 2. Existence of a Lagrange multiplier.

Let w be as above and let v € H! (RN ) be a function with compact support such that
P/(0).v = 0. For s, t € R, put ®(t,s) = Pe(u+tv+ sw) = P.(tv + sw), so that ®(0,0) = 0,
8? (0,0) = P/(0).v = 0 and 8‘b(O 0) = P/(0).w # 0. The implicit function theorem implies
that there exist 6 > 0 and a Cl function 7 : (=9,0) — R such that n(0) = 0, n'(0) = 0
and P.(u + tv + n(t)w) = P.(u) = 0 for t € (—4,6). Since u is a minimizer of A in C, the
function t — A(u + tv + n(t)w) achieves a minimum at ¢ = 0. Differentiating at ¢ = 0 we get
A'(u).v = 0.

Hence A'(u).v = 0 for any v € H'(RM) with compact support satisfying P.(0).v = 0.

u

Taking o = Ig/’((oig (where w is as in step 1), we see that
(5.60) A'(u)v = aPl(u).w for any v € H'(R"™) with compact support.

Step 3. We have a < 0.

To see this, we argue by contradition. Suppose that a > 0. Let w be as in step 1.
We may assume that P.(u).w > 0. From (5.60) we obtain A’(u).w > 0. Since A'(u).w =

Jim At =AW 4 q Pl(u)w = limw7 we see that for ¢ < 0, ¢ sufficiently close to
t—0 t ¢ t—0 !

0 we have u + tw # 0, P.(u + tw) < P.(u) = 0 and A(u + tw) < A(u) = %TC. But this
contradicts Lemma 4.8 (i). Therefore av < 0.
Assume that o = 0. Then (5.60) implies

N
(5.61) / (=— Ou v ——)dz =0 for any v € H'(R") with compact support.
RN £ Bx] O0x;

Let x € C°(RY) be such that x = 1 on B(0,1) and supp(¥) C B(0,2). Put v, (z) = x(%)u(z),
so that Vo, (z) = 1Vx(£)u + X(£)Vu. It is easy to see that ¥(<)Vu — Vu in L*(RY) and
LV%(:)u — 0 weakly in L2(RN). Replacing v by v, in (5.61) and passing to the limit as
n — oo we get A(u) = 0, which contradicts the fact that A(u) = %Tc. Hence we cannot
have a = 0. Thus necessarily o < 0.

Step 4. Conclusion.
Since av < 0, it follows from (5.60) that u satisfies

(5.62) 0%*u <N 3 1> Y 9%y

C0a? o) &= ox

N_-1 « 2 +icug, + F(|ro — ul*)(ro —u) = 0 in D'(RY).

1

Let 09 = (% — é) *. Tt is easy to see that u; o, satisfies (1.3) in D/(RY). Therefore the

conclusion of Lemma 5.5 holds for u », (and consequently for u). Then Proposition 4.1 in [33]
1mphes that uy ., satisfies the Pohozaev identity N= 3A(u1700) + Bc(u1,0,) = 0, or equivalently

]N\, 30V 3 A(u) + oY 7' B.(u) = 0, which implies

N-3 <N—3 ~ 1> A(u) + Be(u) = 0.

N-1\N-1 «
On the other hand we have P.(u) = ¥=3 A(u)+ B.(u) = 0. Since A(u) > 0, we get =3 -1 = 1.
Then coming back to (5.62) we see that u satisfies (1.3). O
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6 The case N =3

This section is devoted to the proof of Theorem 1.1 in space dimension N = 3. We only
indicate the differences with respect to the case N > 4. Clearly, if N = 3 we have P, = B..
For v € X we denote

D(v):/R3

For any v € X and ¢ > 0 we have

ov

ox

2
dz + a2/ (¢*(Iro — v]) — r%)Q da.
R3

(6.1) A(vi o) = A(v), B.(v14) = 0% B.(v) and D(vi,) = 0?D(v).

If N = 3 we cannot have a result similar to Lemma 5.1. To see this consider v € C, so
that B.(u) = 0. Using (6.1) we see that u;, € C for any ¢ > 0 and we have E.(u1,) =
A(u) + 0?Be(u) = A(u), while Egr(u1,) = A(u) + 0?D(u) — 00 as ¢ — o0.

However, for any u € C there exists ¢ > 0 such that D(u; ) = 1 (and obviously u; , € C,
Ec.(ui,s) = E¢(u)). Since C # 0 and T, = inf{E.(u) | v € C}, we see that there exists a
sequence (up)p>1 C C such that

(6.2) D(uy) =1 and E.(uy) = A(uy) — T, asn — o0.

In particular, (6.2) implies Egp(u,) — T, + 1 as n — 0.
The following result is the equivalent of Lemma 5.2 in the case N = 3.

Lemma 6.1 Let N =3 and let (un)n>1 C X be a sequence satisfying
a) There exists C > 0 such that D(u,) > C for any n, and
b) Be(up) — 0 as n — oo.
Then linrr_lgf E.(u,) = liminf A(uy) > S¢, where S, is given by (4.22).

n—oo

Proof. 1t suffices to prove that for any k£ > 0 we have

(6.3) liminf A(uy,) > Eemin(k).

n—oo

Fix k > 0. Let n > 1. If A(uy,) > k, by Lemma 4.6 (iii) we have A(uy,) > k > E¢pmin(k). If
A(up) < k, since Egr((un)1,0) = A(uy) + 02D(uy,) we see that there exists o, > 0 such that
Ecr((un)1,0,) = k. Obviously, we have 02D(u,) < k, hence o2 < % by (a). It is clear that
E:((un)1,0,) = A(un) + 02Be(un) > Eemin(k), therefore A(up) > Eemin(k) — 02| Be(un)| >
Eemin(k) — &|Be(uy)|. Passing to the limit as n — oo we obtain (6.3). Since k > 0 is
arbitrary, Lemma 6.1 is proved. U

Let
Ac = {AeR| there exists a sequence (uy),>1 C X such that

D(uy) > 1, B.(up) — 0 and A(u,) — X as n — oo}

Using a scaling argument, we see that

A. = {A e R/ there exist a sequence (up)p>1 C X and C > 0 such that
D(u,) > C, B.(u,) — 0 and A(u,) — X as n — oo}.

Let A\, = inf A.. From (6.2) it follows that T, € A.. It is standard to prove that A, is closed in
R, hence A\, € A.. From Lemma 6.1 we obtain

(6.4) Se <A < T.

The main result of this section is as follows.
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Theorem 6.2 Let N =3 and let (up)n>1 C X be a sequence such that

(6.5) D(up) — 1, Be(up) — 0 and A(up) — Ae  asn — oo.

There ezist a subsequence (up, )k>1, a sequence (Tp)r>1 C R? and u € C such that
Vi, (- + ) — Vu  and |ro — tn, (- +z3) > —rg — |ro —u* —r3 in L*(R?).

Moreover, we have E.(u) = A(u) =T, = A\ and u minimizes E. in C.

Proof. By (6.5) we have Egr(uyn) = A(up)+D(u,) — Ac+1asn — oo. Let g,(t) be the
concentration function of Eqr (uy,), as in (5.9). Proceeding as in the proof of Theorem 5.3, we
infer that there exist a subsequence of (uy, g )n>1, still denoted (wy, ¢n)n>1, & nondecreasing
function ¢ : [0,00) — [0,00) and « € [0, A¢ + 1] such that (5.10) holds. We see also that there
exists a sequence t,, — oo satisfying (5.11) and (5.12).

Clearly, our aim is to prove that o = A, + 1. The next result implies that o > 0.

Lemma 6.3 Assume that N = 3, 0 < ¢ < v and let (uy)n>1 C X be a sequence such that
D(un) — 1, Be(uy) — 0 as n — oo and sup Egp(u,) = M < oo.
n>1

There exists k > 0 such that sup / 'V, |? + a? (902(|r0 — Up|) — 7“(2])2 dx > k for all
yeR? J B(y,1)
sufficiently large n.

Proof. We argue by contradiction and assume that the conclusion of Lemma 6.3 is false.
Then there exists a subsequence, still denoted (uy,),>1, such that

(6.6) sup Egéy’l)(un) —0 as n — oo.
yeR3

Exactly as in Lemma 5.4 we prove that (5.14) holds, that is

(6.7) lim ‘V(\m —up|?) — a® (p*(Jro — un|) — r%)Q ’ dx = 0.

n—oo JR3

Using (6.7) and the assumptions of Lemma 6.3 we find

2
(6.8)  cQ(un) = Be(un) — D(un) — /3 V([ro = un|?) = a® (¢*(Jro — un|) —r5)” dz — —1
R
as n — o00. If ¢ = 0, (6.8) gives a contradiction and Lemma 6.3 is proved. From now on we
assume that 0 < ¢ < vs.
Fix ¢; € (e,vs), then fix 0 > 0 such that

M
(6.9) o2 > —©

Cl—C.

A simple change of variables shows that M := sup Eqr,((un)1,) < oo and (6.7) holds with
n>1

(un)1,0 instead of w,. It is easy to see that ((un)1,0)n>1 also satisfies (6.6). Using Lemma 3.2
we infer that there exists a sequence h,, — 0 and for each n there exists a minimizer v,, of

G i HY,,), (RP) such that

(6.10) || [on — 7ol = r0l[Leom3) — 0 as n — 00.
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From (3.4) we obtain

(6.11) 1Q((un)1,0) — Q(vn)] < (h%+h§M§>2M—>O as n — 00.

Using (6.10), the fact that 0 < ¢; < 2arg and Lemma 4.2 we infer that for all sufficiently large
n we have

(6'12) EGL(UTL) + CIQ(UH) > 0.
Since Eqr(vn) < Eqr((un)1,e), for large n we have

0 < Ear(vn) + c1Q(vn)

< EGL((Un)l,o') + ClQ((un)l,o’) + Cl|Q((un)1,0) - Q(vn)|

= A(un) + Be((un)1,6) + (1 = 0)Q((un)1,0) + c1|Q((un)1,0) — Q(vn)|
(019 + [0 (0 = o) = 78) = Vilro = (o) de

= A(un) + 0%Be(upn) + 0%(c1 — ¢)Q(uy) + an

< M + 0%Be(up) + 0%(c1 — ¢)Q(up) + an,
where

an = c1|Q((un)1,0) — Q(vn)| + /R3 a’ (‘PQ(|T0 — (un)1,0]) — T(%)Q = V(|ro — (Un)l,a|2) dr.

From (6.7) and (6.11) we infer that lim a, = 0. Then passing to the limit as n — oo

n—oo
in (6.13), using (6.8) and the fact that lim B.(u,) = 0 we find 0 < M — 02%=¢. The last
n—oo
inequality clearly contradicts the choice of ¢ in (6.9). This contradiction shows that (6.6)
cannot hold and Lemma 6.3 is proved. ]

Next we show that we cannot have a € (0, A\, + 1). We argue again by contradiction and
we assume that o € (0, A\. + 1). Proceeding exactly as in the proof of Theorem 5.3 and using
Lemma 3.3, we infer that for each n sufficiently large there exist two functions wy, 1, u, 2 having
the following properties:

(6.14) Ecr(up1) — a, Ear(uni) — Ae+1—q,
(6.15) |A(un) — A(un,1) — A(up2)| — 0,

(6.16) |Be(un) — Be(un,1) — Be(un2)| — 0,

(6.17) |D(upn) — D(un,1) — D(un2)] — 0 as n — 0o.

Since (Eqr(un;))n>1 are bounded, from Lemmas 4.1 and 4.5 we see that B.(un;))n>1 are
bounded. Moreover, by (6.16) we have lim (Be(upn1)+ Be(upn2)) = lim Bc(u,) = 0. Simi-
n—00 11—00

larly, (D(up,;))n>1 are bounded and lim (D(up,1) + D(up2)) = lim D(u,) = 1. Passing again
- n—oo n—oo

to a subsequence (still denoted (up), > 1), we may assume that

(6.18) lim Be(un,1) = b1, lim Be(un2) = bo, where b; € R, b1 + by =0,

n—~oo n—oo
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(6.19) lim D(up,) = di, lim D(up2) = do, where d; > 0, di +do = 1.
n—oo

n—oo

From (6.18) it follows that either by = by = 0, or one of by or b is negative.

Case 1. If by = by = 0, we distinguish two subcases:

Subcase 1a. We have d; > 0 and do > 0. Let 0; = TQdT’ i =1,2. Then D((uni)1,0,) =
02D(un;) — 4 and Be((uni)10;) = 07Be(un;) — 0 as n — oo. From (6.1) and the
definition of A, it follows that liminf A(uy, ;) = liminf A((upi)1,6,) > Ae, @ = 1,2. Then (6.15)
implies o o

liminf A(u,) > liminf A(up1) + hnniio%f Aun2) > 2,

n—oo n—oo

an this is a contradiction because by (6.5) we have lim A(uy) = Ac.
n—oo

Subcase 1b. One of d;’s is zero, say di = 0. Then necessarily dy = 1, that is lim D(up2) =
1. Since Egr,(un2) = A(un2)+D(up2) — 14+ A.—a as n — oo, we infer that anr;o Aup2) =
Ae —a. Hence D(uy2) — 1, Be(up2) — 0 and A(up2) — Ac—aasn — OO?:VTIOiCh implies
Ae — a € A.. Since a > 0, this contradicts the definition of ..

Case 2. One of b;’s is negative, say by < 0. From Lemma 4.8 (ii) we get liminf A(u, 1) >
T. > A and then using (6.15) we find linlrii;gf A(up) > Ac, in contradiction Witﬁ?g?5).

Consequently in all cases we get a contradiction and this proves that we cannot have

a€ (0, . +1).
Up to now we have proved that tlim q(t) = A¢ + 1, that is ”concentration” occurs.
—0Q

Proceeding as in the case N > 4, we see that there exist a subsequence (uy, )i>1, a sequence
of points (7x)g>1 C R? and u € X such that, denoting iy, (z) = up, (z + 7), we have:

(6.20) Vi, — Vu and @*(|rg — tin, |) — 18 — ©*(|ro — u|) — r§ weakly in L*(R?),

(6.21) lp, — uw in LY

(R?) for 1 < p < 6 and a.e. on R?,

(6.22) /R V(1o — i, |2) dz —> /R Vi(ro — ul?) dx,
(6.23) | o= =) do— [ (20— = 18)” da,
(6.24) Qi) — Q) ask— o

Passing to the limit as k — oo in the identity
~ 2 2( 2 ~ 2\2 ~ ~ ~
/R3 V(Jro = tn, |*) — a” (¢*(Iro — tin,|) — 75)” do + cQ(in,,) = Be(itn,) — D(n,,),
using (6.22)—(6.24) and the fact that B.(ty, ) — 0, D(ty,) — 1 we get
/ V(ro — ul*) — a® (@2(\7'0 —ul) — 7“(2))2 dzx 4+ cQ(u) = —1.
R3

Thus u # 0.
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From the weak convergence Vi, — Vu in L?(R3) we get

2 & 12
(6.25) / Ou dr < liminf/ Oy dx forj=1,...,N.
R3 895]- k—oo JR3 axj
In particular, we have
(6.26) Au) < kli)ngo A(ty,) = Ae.
From (6.22), (6.24) and (6.25) we obtain
(6.27) B.(u) < kl:n;o B.(ty,) = 0.

Since u # 0, (6.27) and Lemma 4.8 (i) imply A(u) > T.. Then using (6.26) and the fact that
Ae < T, we infer that necessarily

(6.28) A(w) = Tp = Ao = lim A(iiy,).

k—o0

D,

The fact that B.(1,,) — 0, (6.22) and (6.24) imply that </
R

If / Ou Oiin,
R3 o0xy 0x1

Lemma 4.8 (i) implies A(u) > T¢, a contradiction. Taking (6.25) into account, we see that
necessarily

(6.29) /R 3

Thus we have proved that u € C and |[Vul|p2(gs) = klim ||V, || 22(r3)- Combined with the

2
d$> converges.
E>1

3 i)

2 2
‘ dr < lim dx, we get B.(u) < klim B.(ty,) = 0 in (6.27) and then
—00

k—oo JR3

2

Ou dx and B.(u) = 0.

dxy

D,

81’1

2 .
‘ dr = lim
k—oo R3

weak convergence Vi, — Vu in L?(R3), this implies the strong convergence Vi, — Vu
in L?(R?). Then using the Sobolev embedding we find ,, — u in L5(R?).
From the second part of (6.20) and (6.23) it follows that

(6.30) P*(Iro — @) =16 — @*(Iro—ul) =r§  in L*(R®).

Let G(z) = |ro — 2|2 — ©?(|ro — z|). It is obvious that G € C°*°(C,R) and |G(2)| < C|ro —
2P L grg—spm 20} < C’|z|2]l{|z|>m§ < C"[ 21 2500}~ Since Gy, — w in LS(R?), it is easy to see
that G(@,, ) — G(u) in L*(R?) (see Theorem A4 p. 134 in [36]). Together with (6.30), this
gives |ro — fin, |> — 18 — |ro —u|? —r¢ in L?(R3) and the proof of Theorem 6.2 is complete. [J

To prove that any minimizer provided by Theorem 6.2 satisfies an Euler-Lagrange equation,
we will need the next lemma. It is clear that for any v € X and any R > 0, the functional
BY(w) := Be(v +w) is C' on H}(B(0, R)). We denote by (BY)(0).w = Pn%w its

derivative at the origin.

Lemma 6.4 Assume that N > 3 and the conditions (A1) and (A2) are satisfied. Letv € X
be such that (B2)'(0).w = 0 for any w € C}(RY). Then v =0 almost everywhere on RY.

Proof. We denote by v* be the precise representative of v, that is v*(x) = hII(l) m(v, B(z,7))
r—

if this limit exists, and 0 otherwise. Since v € Llloc(RN ), it is well-known that v = v* almost

everywhere on RY (see, e.g., Corollary 1 p. 44 in [14]). Throughout the proof of Lemma 6.4
we replace v by v*. We proceed in three steps.
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Step 1. There exists a set S C RY~! such that £LY~1(S) = 0 and for any 2’ € RN=1\ §
the function v,/ := v(-,2’) belongs to C?(R) and solves the differential equation

(6.31) — ()" (s) + ic(vy) (s) + F(|ro — v (s)]?) (ro — v (s)) = 0 for any s € R.
Moreover, we have |v,/(s)| — 0 as s — £oo and v,/ satisfies the following properties:

(6.32) vy € L* (R), ©*(|ro —wvw|) — 72 € L*(R)  and  (vy) = (f”(.,g;’) € L*(R),

I

(6.33) F(ro — ver?)(ro — ver) € LA(R) + L7071 (R).

It is easy to see that F(jrg — v|?)(rg —v) € L2(RN) + Lﬁ(RN). Since v € H. (R?),
using Theorem 2 p. 164 in [14] and Fubini’s Theorem, respectively, we see that there exists a
set S € RV~ such that £V~1(S) = 0 and for any 2/ € RV~1\ S the function v, is absolutely
continuous, v,y € H} (R) and (6.32)—(6.33) hold.

Given ¢ € CHR), we denote Ay(z1,2') = (%(azl,x’),QS’(xl)) + c(i%(ml,x’),qﬁ(m» +

(F(lro — v|*)(ro — v)(x1,2"), ¢(x1)). From (6.32) and (6.33) it follows that Ay(-,2’) € L'(R)
for ' € RVN=1\ S. For such 2’ we define \g(z') = / Ay(z1,2")dxq, then we extend the

R
function Ay in an arbitrary way to RM-L Let v € CHRN1). It is obvious that the
function (z1,2') — Ag(x1,2")9(z') belongs to L'(RY) and using Fubini’s Theorem we get

/ Ay(z1,2")p(2") do = / Ao(2")1)(2") dz’. On the other hand, using the assumption of
RN RN-1

Lemma 6.4 we obtain 2 Ay(z1,2")p(2) do = (Bg)/ (0).(¢(x1)(2")) = 0. Hence we have
RN

/RN1 Ao(2 V(') d’ = 0 for any ¢ € CLRY"!) and this implies that there exists a set

Sy C RN=1\ S such that £LN=1(Sy) =0 and A\g = 0 on RN\ (SUS,).

Denote gy = ﬁ*ﬂ € (1,00). There exists a coutable set {¢, € C}(R) | n € N} which
is dense in H'(R) N L%(R). For each n consider the set Sy, C RV~! as above. Let S =
Su U Sp,.- It is clear that £LV71(S) = 0.

neN
Let ' € RVN"1\ S. Fix ¢ € CY(R). There is a sequence (¢n, )r>1 such that ¢,, —

¢ in H'(R) and in L%(R). Then Agn, (2') = 0 for each k and (6.32)—(6.33) imply that
Apn, (#") — Ap(2'). Consequently Ay(z') = 0 for any ¢ € CH(R) and this implies that v,
satisfies the equation (6.31) in D'(R). Using (6.31) we infer that (v,/)” (the weak second
derivative of v,/) belongs to Li, (R) and then it follows that (v,/)" is continuous on R (see,
e.g., Lemma VIIL.2 p. 123 in [8]). In particular, we have v, € C'(R). Coming back to
(6.31) we see that (v,)"” is continuous, hence v,s € C2(R) and (6.31) holds at each point of
R. Finally, we have |v,(s2) — vy (s1)] < |s2 — sl\%H (var) ||2; this estimate and the fact that
vy € L2 (R) imply that v, (s) — 0 as s — Fo0.

Step 2. There exist two positive constants k1, ko (depending only on F' and c¢) such that
for any 2’ € RN \ S we have either v,y = 0 on R or there exists an interval I, C R with
LY(I) >k and | |rg — vgr| — 70| > ko on L.

To see this, fix 2/ € RV~1\ S and denote g = |rg — vy|? — r2. Then g € C*(R,R) and g
tends to zero at +o0o. Proceeding exactly as in [33], p. 1100-1101 we integrate (6.31) and we
see that ¢ satisfies

(6.34) (') (s) + Pg*(s) —4(g(s) + )V (g(s) +73) =0  inR.
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Using (1.4) we have ¢®t2 —4(t+13)V (t + 1) = t3(c* —v2 +¢£1(t)), where g1(t) — 0 as t — 0.
In particular, there exists kg > 0 such that

(6.35) At — At + AVt +13) <0 for t € [—2kg,0) U (0, 2ko).

If g = 0 on R then |ro—v,| = 1 and consequently there exists a lifting 7 — v,/ (s) = roe?(®)

with € C?(R,R). Using equation (6.31) and proceeding as in [33] p. 1101 we see that either
170 — Vg (8) = 10€™0 or 1y — vy () = 19e’** % where fy € R is a constant. Since vy € L¥ (R),
we must have v, = 0.

If ¢ # 0, the function g achieves a negative minimum or a positive maximum at some sy € R.
Then ¢'(s9) = 0 and using (6.34) and (6.35) we infer that |g(so)| > 2ko. Let sy = inf{s <
so | lg(s)] > 2ko}, s1 = sup{s < s2 | g(s) < ko}, so that s1 < s2, |g(s1)| = ko, |g(s2)| = 2k¢ and
ko < |g(s)| < 2ko for s € [s1,s2]. Denote M = sup{4(t +r2)V (t +r3) — 2t | t € [—2ko, 2ko]}.
From (6.34) we obtain |¢/(s)| < VM if g(s) € [~2ko, 2ko] and we infer that

ko =las2)] ~ la(s2)| < | [ o) ds| < VT (52 = )

hence sy — 51 > f—%[ Obviously, there exists ko > 0 such that | |rg — 2|? — r3| > ko implies

| |ro — z| — 10| > ko. Taking k = j—oﬁ and I, = [s1, s2], the proof of step 2 is complete.

Step 3. Conclusion.

Let K = {2/ € RN"1\ S| vy # 0}. It is standard to prove that K is £V ~!—measurable.
The conclusion of Lemma 6.4 follows if we prove that £V ~1(K) = 0. We argue by contradiction
and we assume that £V ~1(K) > 0.

If 2/ € K, it follows from step 2 that there exists an interval I, of length at least
ki such that (p*(|ro — ve|) —r%)z > n(ke) on I, where n is as in (3.30). This implies

/ (¢*(Iro — v(21,2)]) — r%)z dxy > kin(kz) and using Fubini’s theorem we get
R

/RN (©2(Iro — v(@)]) —12)? do = /

K
> kin(ko) LN 7L(K).

Since v € X, we infer that LY ~1(K) is finite.

It is obvious that there exist 2} € K and 2z, € RV~1\ (K U S) arbitrarily close to each
other. Then [v,r| > ky on an interval I,; of length ki, while v,; = 0. If we knew that v
is uniformly continuous, this would lead to a contradiction. However, the equation (6.31)
satisfied by v involves only derivatives with respect to x1 and does not imply any regularity
properties of v with respect to the transverse variables (note that if v is a solution of (6.31),
then v(z1 + d(2'),2’) is also a solution, even if § is discontinuous). For instance, for the Gross-
Pitaevskii nonlinearity F'(s) =1 — s it is possible to construct bounded, C*° functions v such
that v € L¥ (RYN), (6.31) is satisfied for a.e. 2/, and the set K constructed as above is a
nontrivial ball in RN=1 (of course, these functions do not tend uniformly to zero at infinity,
are not uniformly continuous and their gradient is not in L2(R")).

We use that fact that one transverse derivative of v (for instance, a%> is in L2(RY) to get
a contradiction.

For 2/ = (z9,23,...,2n5) € RN™!, we denote 2” = (3, ...,2n). Since v € H} (RY), from
Theorem 2 p. 164 in [14] it follows that there exists J C RY~! such that £¥~1(J) = 0 and
u(z1,-,2") € HL (RY) for any (21,2"”) € RVN71\ J. Given 2” € RV =2, we denote

Ky ={x9 € R| (22,2") € K},
Sy ={xe € R| (22,2") € S},
Jpr = {.%'1 eR ’ (.%'1,.%”) S J}
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Fubini’s Theorem implies that the sets K, Sy», Jy are L'—measurable, £'(K,») < oo and
LY(Sy) = LY (Jpn) =0 for LN 2—ae. 2" € RV 72 Let

G = {2 e RVN"2| K, Sy, Jyn are L' measurable,

(6.36) LY(Sn) = L1 (Jpr) = 0 and 0 < LK) < 00}

Clearly, G is £V =2 —measurable and / LYK ) da" = LY7YHK) > 0, thus £V72(G) > 0. We
claim that
ov

(6.37) /R o

Indeed, let ” € G. Fix € > 0. Using (6.36) we infer that there exist s1, s3 € R such
that (s1,2”) € RVN"1\ (K US), (s2,2") € K and |sy — s1| < e. Then v(t,s1,2”) = 0 for
any t € R. From step 2 it follows that there exists an interval I with £!(I) > kj such that
[v(t, s2,2")| > ||ro — v(t, s2,2")| — ro| > ko for t € I. Assume s; < s9. If t € I'\ Jp» we have
v(t,-,2") € H. (R), hence

2
—(z1, 29, )’ dr1 dzy = o0 for any 2" € G.
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ko < u(t,se,2") —v(t,s1,2")| = 88 (t,7,2")dr
S9 5

< (o=st (g enan df) .

2

e %21 dv k2
Clearly, this implies d’]‘ > —=. Consequently

s 8x2(t7 )
ov
dxy d
/R2 ax2($1,$2, )‘ r1drg > //51

Since the last inequality holds for any ¢ > 0, (6.37) is proved. Using (6.37), the fact that

ov |2

LN=2(G) > 0 and Fubini’s Theorem we get / ‘ v
RN
v € X. Thus necessarily £V ~1(K) = 0 and the proof of Lemma 6.4 is complete. O
Proposition 6.5 Assume that N = 3 and the conditions (A1) and (A2) are satisfied. Let
u € C be a minimizer of E. in C. Then u € W2F(R3) for any p € [1,00), Vu € W'P(R3) for

loc

p € [2,00) and there exists o > 0 such that u1 5 is a solution of (1.3).

Mﬁ>h%

—(t,7,2")

dxr = oo, contradicting the fact that

Proof.  The proof is very similar to the proof of Proposition 5.6. It is clear that A(u) =
E.(u) = T, and u is a minimizer of A in C. For any R > 0, the functionals BY and A(v) :=
A(u+v) are C1 on H}(B(0, R)). We proceed in four steps.

Step 1. There exists w € C}(R3) such that (B%)'(0).w # 0. This follows from Lemma 6.4.
Step 2. There exists a Lagrange multiplier & € R such that

(6.38) A'(0).v = a(BY)(0).v for any v € H'(R?), v with compact support.
Step 3. We have a < 0.

The proof of steps 2 and 3 is the same as the proof of steps 2 and 3 in Proposition 5.6.

Step 4. Conclusion.
Let 8 = —1. Then (6.38) implies that u satisfies

0%u 3 0%u n 0%u
Ox? O0x3 Oz}
For 02 = 1 we see that u1,, satisfies (1.3). It is clear that u;, € C and u;, minimizes A

(respectively E.) in C. Finally, the regularity of u;, (thus the regularity of u) follows from
Lemma 5.5. (|

) +icug, + F(jro — ul*)(ro — u) = 0 in D'(R?).
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7 Further properties of traveling waves

By Propositions 5.6 and 6.5 we already know that the solutions of (1.3) found there are
in Wli’f(RN ) for any p € [1,00) and in C?(RY). In general, a straightforward boot-strap
argument shows that the finite energy traveling waves of (1.1) have the best regularity allowed
by the nonlinearity F. For instance, if FF € CF([0,00)) for some k € N*, it can be proved
that all finite energy solutions of (1.3) are in W/l]f)jz’p(RN) for any p € [1,00) (see, for instance,
Proposition 2.2 (ii) in [33]). If F' is analytic, it can be proved that finite energy traveling waves

are also analytic. In the case of the Gross-Pitaevskii equation, this has been done in [5].

A lower bound K (¢, N) on the energy of traveling waves of speed ¢ < vg for the Gross-
Pitaevskii equation has been found in [35]. The constant K (c, V) is known explicitly and we
have K (¢, N) — 0 as ¢ — vs. In the case of general nonlinearities, we know that any finite
energy traveling wave u of speed c satisfies the Pohozaev identity P.(u) = 0, that is u € C.
Then it follows from Lemma 4.7 that A(u) > Y717, > 0.

Our next result concerns the symmetry of those solutions of (1.3) that minimize E, in C.

Proposition 7.1 Assume that N > 3 and the conditions (A1), (A2) in the introduction hold.
Let uw € C be a minimizer of E. in C. Then, after a translation in the variables (xa,...,TN),
u is axially symmetric with respect to Oxy.

Proof. Let T, be as in Lemma 4.7. We know that any minimizer u of F. in C satisfies
A(u) = Y27, > 0. Using Lemma 4.8 (i), it is easy to prove that a function u € X is a
minimizer of E. in C if and only if

L . . N -1
(7.1) u minimizes the functional — P, in the set {v € X | A(v) = TTC}.

The minimization problem (7.1) is of the type studied in [32]. All we have to do is to verify
that the assumptions made in [32] are satisfied, then to apply the general theory developed
there.

Let II be an affine hyperplane in RY parallel to Oz;. We denote by sy the symmetry of
RY with respect to II and by II*, II~ the two half-spaces determined by II. Given a function
v € X, we denote

[ v(x) if z € IT UTI, | v(x) it v e II7 UII,
v+ () = { v(si(z)) ifxell, and v (2) { v(sp(z)) ifxzellt.

It is easy to see that v+, vg- € X. Moreover, for any v € X we have
A(ve) + A(vg-) = 2A(w)  and  Pu(vps) + Pe(vpg-) = 2P.(v).

This implies that assumption (A1.) in [32] is satisfied.

By Propositions 5.6 and 6.5 and Lemma 5.5 we know that any minimizer of (7.1) is C!
on R, hence assumption (A2.) in [32] holds. Then the axial symmetry of solutions of (7.1)
follows directly from Theorem 2’ in [32]. O
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Abstract

We are interested in the existence of travelling-wave solutions to a system which
modelizes the motion of an uncharged impurity in a Bose condensate. We prove that
in space dimension one, there exist travelling-waves moving with velocity c if and only
if ¢ is less than the sound velocity at infinity. In this case we investigate the structure
of the set of travelling-waves and we show that it contains global subcontinua in
appropriate Sobolev spaces.
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1 Introduction.

This paper is devoted to the study of a special kind of solutions of a system describing
the motion of an uncharged impurity in a Bose condensate. In dimensionless variables, the
system reads

0
25 = A+ (Y + Hlel? — 1)
(1.1)
2657 = Apt L - e

Here ¢ and ¢ are the wavefunctions for bosons, respectively for the impurity, 6 = f;
where g is the mass of impurity and M is the boson mass (J is supposed to be small),
¢ = ﬁ, [ being the boson-impurity scattering length and d the boson diameter, £ is
a dimensionless measure for the single-particle impurity energy and ¢ is a dimensionless
constant (& = (%)%, where a is the “healing length”; in applications, ¢ = 0.2). Assuming
that we are in a frame in which the condensate is at rest at infinity, the solutions must
satisfy the “boundary conditions”

(1.2) Y| — 1, ¢ — 0 as|z| — oc.



This system (originally introduced by Clark and Gross) was studied by J. Grant and
P. H. Roberts (see [5]). Using formal asymptotic expansions and numerical experiments,
they computed the effective radius and the induced mass of the uncharged impurity.

We consider here the system (1.1) in a one dimensional space and we look for solitary
waves, that is for solutions of the form

(1.3) Y(x,t) =v(x—ct), p(x,t)=d(@—ct).

This kind of solutions corresponds to the case where the only disturbance present in the
condensate is that caused by the uniform motion of the impurity with velocity c. In view
of the boundary conditions, we seek for solutions of the form

(1.4) D) = (14 7(2)e™ @, 3(z) = a(z)e @

with 7(z) — 0, 4(z) — 0 as |z| — oo. By an easy computation we find that the real
functions vy, g, 7, @ must satisfy

;o1
(1.5) o = c(1 a +7:)2),

(1.6) Yo = ¢d,

(1.7) P = c2(m —(1+7)+ é((l Fi)P — (L47) + 5_12(1 +7)i?),
(1.8) i = (Zz(l +7)? = 0 — k).

From (1.6) we see that necessarily ¢o(x) = cox+C. Note that the system is invariant under
the transform (¢, @) — (e1),e¥p), so the integration constants in (1.5) and (1.6) are
not important. Thus all we have to do is to solve the system (1.7)-(1.8). Thereafter it will
be easy to find the corresponding phases from (1.5)-(1.6) and (1.4) will give a solitary-wave
solution of (1.1).

After the scale change @(z) = fu(%), #(x) = r(%), we find that the functions r and u
satisfy

" 3 2_2 1 2
(1.9) = (1+7) —(1+7’)—c€(1+7‘—(1+T)3)—|—(1+7“)u,
(1.10) u" = (P(1+7)? = Nu,
where
(1.11) A =e*(26 + k).

The equation r” = (1 +7r)3 — (1 +7) — %(1 +7r— ﬁ) + (1 + r)U, where U is a

positive Borel measure, was studied in [7]. In the case U = 0, it has been shown that this

2



equation has only the trivial solution r = 0 if [v| > /2 ; for 0 < |v| < v/2, it also admits
the solution

(1.12) r(r) = =1+ 5 (1—5)tanh2(

V2 —v?

5 x).

Moreover, any other nontrivial solution is of the form r,(- — z) for some xy, € R. Equation
(1. 10) is linear in u ; more precisely, © must be an eigenvector of the linear operator
—4 + ¢*(1+r)? corresponding to the eigenvalue \ = £2(c?6% + k?).

It is now clear that except for translations, the only solutions of (1.9)-(1.10) of the form
(r,0) are (0,0) and (7a., 0) (the latter one exists only for |ce| < %) We call these solutions
the trivial solutions of (1.9)-(1.10). We will prove that there exist non-trivial solutions of
(1.9)-(1.10) in a neighbourhood of (7., 0) (for suitable values of the parameter \) and we
will study the global structure of the set of non-trivial solutions.

It has been shown (see e.g. [7] and references therein) that using the Madelung’s
transform 1 = ﬁe“"o, the first equation in (1.1) can be put into a hydrodynamical form
(i.e. it is equivalent to a system of Euler equations for a compressible inviscid fluid of
density p and velocity V). In this context, \/5 represents the sound velocity at infinity.

It will be proved at the beginning of section 3 that (1.1) does not possess non-constant

travelling-vaves moving with velocity |c¢| > ﬁ Hence we will assume throughout that

] < ﬁ
Observe that the system (1.9)-(1.10) has a good variational formulation : its solutions
are critical points of the “energy” functional. Indeed, since 1+ 7 = |¢)| > 0, it is clear

that we must have 7 > —1. Therefore we will seek for solutions r of (1.9) with r > —1.
Let V = {r € H'(R) | iglf{r(z) > —1}. It is obvious that V is open in H*(R) because

H'(R) C CP(R) by the Sobolev embedding. A pair (r,u) € V x H'(R) satisfy (1.9)-(1.10)
if and only if (r,u) is a critical point of the C* functional F : V x H'(R) — R,

E(ru) = /R ' [2da + ; /R (+r? 1) (1~ (fiiz)dm

/ (14 7)%dx + — /|u|d93 —/

However, E(r,-) is quadratic in u for any fixed r and it would be very difficult to find
critical points of F by using a classical topological argument.

In this paper we use bifurcation theory to show the existence of nontrivial solitary waves
for the system (1.1). Note that this system (or equivalently (1.9)-(1.10)) is invariant by
translations. To avoid the degeneracy of the linearized system due to this invariace, we
work on symmetric function spaces. Consequently, the travelling-waves that we obtain will
also present a symmetry. To be more precise, we will use the spaces

H=H2,R)={ue H*R) | u(z) =u(—x), Vo € R} and

(1.13)

L=71?,R)={uel*R)]|ulz)=u(-x), ae xR}

Clearly HNV is an open set of H. We define S: (HNV)xH — L, T: RxHxH — L,

(1.14) S(ryu) = —r" +(14+7)* = (1+7) —0252(1+7’— + (1 +7r)u?

1
T+



(1.15) T ru) = —u" + (¢*(1+7)* — Nu.

It is obvious that S and T are well defined and of class C*° (recall that H C C}(R) and
H is an algebra). Clearly r and u satisfy the system (1.9)-(1.10) if and only if S(r,u) =0
and T'(\,r,u) = 0.

In the next section, we will study the structure of the set of nontrivial solutions in a
neighbourhood of the trivial ones. It follows easily from the Implicit Function Theorem
that there are no nontrivial solutions of (1.9)-(1.10) in a neighbourhood of (A,0,0) for
A < ¢? (see the proof of Theorem 3.8). It is well-known that we may have nontrivial
solutions arbitrarily close to (A, s, 0) if and only if the differential d(, . (S, T) (A, race, 0) is
not invertible. For A < ¢?, we will see that d(,,)(S, T') (X, race, 0) is not invertible if and only
if A is an eigenvalue of the particular Schrédinger operator given by (1.10). In this case
we show that all the nontrivial solutions in a neighbourhood of (\, 9., 0) form a smooth
curve in R x H x H.

It is natural to ask how long such a branch of solutions exists. Recently, there were
obtained general global bifurcation results for C* Fredholm mappings of index 0 which
apply to a broad class of elliptic equations in RV (see, e.g., [9], [10]). Using the ideas and
techniques developed in [11] it can be proved that for any fixed A < ¢?, the mapping
(S, T(\,-,)): (HNV)xH — LxL is Fredholm of index 0. By a general global bifurcation
theorem (a variant of Theorem 6.1 in [9]) one can prove that either the branch of nontrivial
solutions of (1.9)-(1.10) starting from a bifurcation point (A, ra., 0) is noncompact in R x
H x H or it meets [¢?, 00) x H x H (note that [¢?, c0) is the essential spectrum of the linear
Schrodinger operator appearing in (1.10)).

To obtain further information (such as unboundedness) about the branches of nontrivial
solutions, a key ingredient would be the properness of the operator (S, T), at least on closed
bounded sets. Unfortunately, it is easy to see that the operator (S,7T) is not proper on
closed bounded sets. Indeed, it suffices to take r,, = .. (- — 1) 4+ 79, (- +n) and to observe
that (S,T)(\,7,,0) — (0,0) as n — oo, the sequence (r,) is bounded in H but has no
convergent subsequence.

In order to obtain a more precise description of the branches of nontrivial solutions
and to avoid troubles due to the lack of properness, we choose a different approach : we
reformulate the problem and we work on a weighted Sobolev space (which is a subspace of
H). In section 3, we use a variant of the Global Bifurcation Theorem of Rabinowitz ([12])
to obtain global branches of solutions of (1.9)-(1.10) in that space. Note that the use of
a slowly increasing weight (for example, (1 4+ 2?)® for s > 0) is sufficient to eliminate the
lack of properness and to obtain global branches of travelling-waves. It is worth to note
that for A\ < ¢2, any nontrivial travelling-wave which is in H also belongs to the weighted
space which is used (i.e., there is no loss of solutions). We show that there exists exactly
one branch of nontrivial solutions bifurcating from the curve (A, 7o, 0) if ¢ < \/211? The
number of these branches is increasing with ¢ and tends to infinity as ¢ — oo. We will
prove that any of these branches is either unbounded (in the weighted space) or A tends
to ¢ along it. On the other hand, we prove that there are no nontrivial solutions of
(1.9)-(1.10) for A > ¢*.




2 Local curves of solutions

In order to prove a local existence result of nontrivial solitary waves for the system (1.1),
. . 2 .
we have to study the propertles of the linear operator A= —dd? + ¢*(1 + 79¢2)%, which

can be written as A = —4; + ¢%r9..(2 + r902) + ¢*. Since —1 < r(z) < 0 for any = € R,

the function 79..(2 + 7“205) 1s everywhere negative (and even). Actually, in a slightly more
. 2 . .

general framework, we will study the operator L = —dd? + V(z) for a negative potential

V', the properties of A being then deduced from those of L by a shift. For any A < 0, we
also consider the Cauchy problem

(2.1) { —u"(z) + ngx)u(ii) : Au(x),

If V' is continuous and even (i.e., V(z) = V(—xz)), it is clear that problem (2.1) has an
unique global solution which is also even. We denote by w, this solution and by n(\) the
number of zeroes of uy in (0, 00).

Proposition 2.1 Let V € L2N L¥(RY), V £ 0 be continuous, less than or equal to zero,
even, and satisfy dim V(z) =0. The operator L = —% +V(z) : H — L is self-adjoint
and has the following properties :

Z) Uess(L) = [Oa OO)

ii) L has at least one negative eigenvalue.

iii) Any eigenvalue of L is simple.

iv) For any A < 0 and € > 0, there exists C' > 0 such that

(2.2) W™ (z)] < CeV L m=0,1,2.
If A <0 is an eigenvalue and 0 < € < —\, there exist Cy,Cy, M > 0 such that
2.3)  Cre VA < (M (2)] < Cpem VAo on [M,00), m=0,1,2

v) For any A < 0, the number of eigenvalues of L in (—oo, \) is exactly n(X), the number
of zeroes of uy in (0,00).

vi) If/ x|V (x)|dx < oo, then L has at most 1 +/ x|V (x)|dx negative eigenvalues.
0

Proof. i) The operator — &, +-V(z) on L*(R) (with domain H?(R)) is self-adjoint, so it is
easy to see that L is self-adjoint. Multiplication by V is a relatively compact perturbation
of —A and it follows from a classical theorem of Weyl that oess(L) = 0ess(—A) = [0, 00).

ii) It suffices to show that there exists u € H such that (Lu,u), < 0 and it will
follow from the Min-Max Principle (see [13], Theorem XIII.1, p.76) that L has negative
eigenvalues. Consider an even function v € C§° such that v = 1 on [—1,1] and u is
non-increasing on [0, 00). Let u,(z) = u(%). Then

(L, tn)1, —/\u \dx+/|u )PV (@ dx%/ z)dr <0

as n — 00, so (L, u,)1, < 0 for n sufficiently large.
iii) Clearly, X is an eigenvalue of L if and only if u, € H. If this is the case, it is obvious
that Ker(L—\) = Span{u,}. Since L is self-adjoint, we have Ker(L—\)NIm(L—\) = {0},



so for any n € N* we have Ker(L —\)" = Ker(L — \) = Span{u,}, that is A is a simple
eigenvalue.

iv) By (2.1), uy and v, cannot vanish simultaneously, so u, must change sign any time
it vanishes and u) has only isolated zeroes. There exists d > 0 such that V(x)—\ > —% >0
on [d,00) because V(z) — 0 as + — oo. Two situations may occur :

1°. There exists xp > d such that uy(z) and u)(x¢) have the same sign, say, they
are positive. Then uf = (V(x) — AN)u,, so uf will remain positive after z, as long as
uy > 0, which implies that v/ is increasing, hence it remains positive as long as u, > 0.
Consequently, uy is increasing after xy as long as it remains positive, which implies that
uy is positive and increasing on [z, 00). Since u)(z) > u\(zg) > 0 for any = > xo, we
have necessarily lim upx(z) = oo. By (2.1) we find that lim ul(z) = o0, so we have also

lim u)(z) = oo. Let f(z) = (u\(x))? and g(z) = u3(z). Clearly, f(x) — o0, g(x) — oo

Tr—00

as ¥ — oo and

= =V(z)—A— =\ as r — 00.

L’Hospital’s rule implies that xhrgo % = —\, which gives xhnolo Zig; = +v/—A. Thus for any

€ > 0, there exists x, > 0 such that

(2.4) V=A—e< uA() <V-=A+e on [z, 00).

Integrating (2.4) from x. to x we get for any x > z,

V=X —e(z —x) <Inuy(z) — Inuy(z) < V- +e(z — z.),
that is
(2.5) un(z)eV @) <y (1) < up(m)eY AFETE) for any = > z..

Note that the above situation always occurs if uy has a zero in (d,00). Indeed, if
ux(xg) = 0, then necessarily u,(z) and u)(z) have opposite signs for © < z and = close to
xo (because if uy and u) have the same sign at some z; € (d, zy), we have just seen that
uy cannot vanish in after z1). But u, changes sign at xy and ) (xy) # 0, hence u, and u)
have the same sign just after z;.

2°. The functions u, and v} have opposite sign in (d,c0). Replacing uy by —u, if
necessary, we may suppose that uy > 0 and v} < 01in (d, 00) (observe that v} cannot vanish
because it also changes sign at any zero and we would be in case 1°). So u,, is decreasing and
positive on (d,00). Let I = lim uy(x). Clearly, I > 0. If [ > 0, then uy(z) — —Al >0
as x — oo by (2.1), which implies u}(z) — oo as © — o0, a contradiction. Thus
necessarily [ = 0. Also, u) is increasing on (d,c0) (because us(x) = (V(z) — Nuy(z) > 0)
and negative, so it also has a limit at infinity. Since u, converges (to zero) at infinity, we
must have 9}520 u)\(z) = 0. Now we may apply ’'Hospital’s rule to get

! 2
lim L)\Q(x)) = lim

~—

= lim (V(z) — \) = —\.

T—00

~—



Thus Zi Eg — —v/ =X as x — o0 because u, and u, have opposite sign at infinity. Given

€ > 0, there exists M > d such that

(2.6) Yy e\ Ry w (M, o).
ux(z)

Integrating (2.6) on [M, z] we obtain, as in case 1°,

(2.7) uy(M)e™VATE=M) g () < up(M)e™VA—el@=M) for any x > M.

Finally, (2.2) and (2.3) follow from (2.5), respectivey (2.7) and the fact that QCILIQOZ&/EX = —\,

lim ") = = ++v/—A. It is obvious that A is an eigenvalue of L if and only if uy € H, i.e. if

z—00 UA(T)
and only if we are in case 2°. Therefore assertion iv) is proved.

Note also that uy has only a finite number of zeroes. Indeed, it follows from the above
arguments that u, has at most one zero in (d, c0) and we know that any zero is isolated,
so there are only finitely many zeroes in [0, d].

The proofs of v) and vi) are rather classical and are similar to the proofs of Theorems
XII1.8 and XIIL.9 p. 90-94 in [13]. The bound on the number of eigenvalues given by vi) is
due to Bargmann (see [13] and references therein). O

Corollary 2.2 The linear operator A = —% +@*(1+79..)? (considered on L with domain
D(A) = H) is self-adjoint and has the following properties :

i) A > 2c22¢% and 0.45(A) = [¢%, 00).

i) A has at least one eigenvalue in [20252(]2 7?).

i1) Any eigenvalue of A is simple. If p < ¢* is an eigenvalue and u,, is a corresponding

eigenvector, then for any € > 0, there exist C7,Cy, M > 0 such that
(2.8) CreVa@—ntdal < |qum) ()| < Che~ Ve —i=ell if |lv] > M, m=0,1,2.

i) Let N, be the number of eigenvalues of A in [2¢*e*¢%, ¢*). We have N < 1+(21In2)¢?
In partzcular if g < \/7 then A has exactly one eigenvalue less than ¢>.

v) We have N, — 00 as ¢ — 0.

It can be proved that there exist ¢, ¢z, go > 0 such that ¢;¢ < N, < coq for any ¢ > g, but
we will not make use of this result in what follows.

Proof. Recall that ro. is given by (1.12). We have A = —-4; + ¢*V (x) + ¢?, where the

d:c2
function V given by V(z) = (1+r.(x))*—1 = (1—2c% )(—1+tanh2(\/ %x)) is even,
negative, tends exponentially to zero as x+ — 400 and iglf{ V(x ) = 2¢%¢? — 1. Obviously,

1 is an eigenvalue of A if and only if u — ¢ is an eigenvalue of — %, >+ ¢*V(z), so i), ii) and
iii) follow at once from Proposition 2.1. An easy computation glves

o) 00 1—2 2.2
/ 2|V (@)|dz = (1 — 20252)/ (1= tanh?(| ——""a) ) da
0 - 0 2

= 2/ y(l— tanh? y)dy = 2/ y(tanhy — 1)'dy = 21n 2.
0 0

Now iv) is a direct consequence of Proposition 2.1, vi).
v) Fix n € N, n > 1 and take n symmetric functions ¢4, ..., 9, € C°(R), ¢; # 0, such

that supp(p;) N supp(p;) =0 if i # j. Clearly,

(Agi, o)1 — (@i i) —/ IVildx + ¢ / z)|ps(2)Pde — —o0  as ¢ — o0
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hence there exists go > 0 such that for any ¢ > go and any ¢ = 1, ..., n we have (Ay;, ;)L —
*{pi, pi)r, < 0. Since the ¢;’s have disjoint supports we get

A(Zaztpz) Zaz%@z L —q2||Za,g0,||%
=3 oyl /\wﬂd:qu/ 2)|pile)*dz) <0
i=1

Therefore we have found an n-dimensional subspace of H, V,, = Span{ys,...,v,} such
that (Au,u)r, — ¢*||ul|lr. < 0 for any v € V,, and any ¢ > qo. By the Min-Max Principle
(see, e.g., [13], Theorem XIII.1 p.76) it follows that for ¢ > gy, A has at least n eigenvalues
less than ¢%, that is N, > n if ¢ > qo. This proves v). O

We have the following result concerning the existence of non-trivial solitary waves:
Theorem 2.3 Let \, < ¢* be an eigenvalue of A and let u, be a corresponding eigenvector.
There exists n > 0 and C* functions

s — (A(s),7(s),u(s)) € R x H x (ur N H)
defined on (—n,n) such that A\(0) = A\, 7(0) =0, u(0) =0 and
S(roce + s1(5), s(ux +u(s))) =0, T(A(S), 72 + s7(5), s(us +u(s))) = 0.

Moreover, there exists a neighbourhood U of (A, Toce, 0) in RXHXH such that any solution
of S(ryu) =0, T(A\,r,u) =0 in U is either of the form (A(s), race + s7(8), s(us + u(s))) or
of the form (X, race, 0).

That is, 7 = T9. + sr(s), u = s(us + u(s)) are nontrivial solutions of (1.9)-(1.10) for
A= A(s).

Let goce : (—1,00) — R, goee(2) = (1+x)3—(1+x)—0252(1+x (1+m ) Then S(r, u)
can be written as S(r,u) = —1r" + goce(r) + (1 + 7)u?. It is easily seen that d,.S(rae.,0) =
_d

dx2 _I_ 9205(T2ca)-

For the proof of Theorem 2.3, we need the following lemmas :

Lemma 2.4 The linear operator J := —% + ghee(r2ec) : H — L has the following
properties :

i) J is self-adjoint, invertible and has the essential spectrum o.ss(J) = [2 — 4c*e?, 00).

i1) J has exactly one negative eigenvalue and any eigenvalue of J is simple.

Proof. i) The linear operator B = —% + Ghee(T2ec) with domain D(B) = H?*(R) is
self-adjoint in L*(R). We claim that Ker(B) = Span{-try.}. Indeed, we have
d2
(29) @7’2% - g2ce(r2ca)~
Thus r)

Y. € C*(R). Differentiating (2.9) with respect to = we get Lry.. € Ker(B).
Conversely, let h € Ker(B). Then h” = g} (2.:)h, so that

(h’/r2ce> = h//récs + h’/rgcs = hgéce(,rQCE)récs + h/g2C€(T2C€) = (h'g205(r2€€>>/'

Hence W'rh,. = hgae(race) + C on R. Taking the limits as x| — oo, we get C' = 0, so

RW'rh.. = hgoes(r2ee) = hrl,.. Since rh,. # 0 on (—o0,0) and on (0,00), on each of these
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intervals we have (T: )/ = % = 0. Thus there exist constants C, C'y such that
h(z) = Cyrh.(x) oncs(—oo,O) and h(z) = Cyrl.(z) on (0,00). Consequently, h'(x) =
Cirgee (1) = Cig(rae(w)) on (—00,0) and h'(x) = Cory. () = Cagacs(rac=(x)) on (0, 00).
But 1 is continuous because h € H*(R) and therefore C; = Cy, which proves our claim.

Since rh,. ¢ H, it is clear that the restriction of B to H is one-to-one from H into L.
It remains to prove that BH = L. It is well-known that Im(B) = Ker(B)*t = (r,.)*
since B is self-adjoint. We have L C Im(B) because 7. is an odd function. Let f € L.
Clearly there exists r € H*(R) such that Br = f. Let 7(z) = r(—=z). It is easy to see that
Bi = f, hence there exists C such that r — 7 = Crf,.. Then r — 1Cr. = (r+7) € H
and B(r — 3Crh,.) = f.

Now it is clear that J, which is the restriction of B to H, is self-adjoint in L and
invertible. The function gb,._(rq..) tends (exponentially) to gh..(0) = 2 — 4c?e? as © — oo.
It follows from Weyl’s theorem that o..(J) = 0ess(B) = [2 — 4¢?e?,00). This completes
the proof of i).

ii) It follows from Proposition 2.1 iii) and v) that any eigenvalue of J is simple and the
number of negative eigenvalues of J is exactly the number of zeroes of u in (0, c0), where

u is the solution of the Cauchy problem

(2.10) { "+ Ghee(rae)u =0 in [0, 00),

u(0) =1, «'(0)=0.

We use the following simplified version of the well-known Sturm oscillation lemma (this
is also a paticular case of Lemma 5 in [8]) :

Sturm oscillation lemma. Let Y and Z be nontrivial solutions of the differential
equation

—¢" + h(x)p =0
on some interval (u,v), where h is continuous on (u,v). If 'Y and Z are linearly indepen-
dent and Y () =Y (v) =0, then Z has at least one zero in (u,v).

From this lemma it follows at once that J has at most one negative eigenvalue. Indeed,
suppose that J has at least two negative eigenvalues. Then the solution u of (2.10) has at
least two zeroes in (0, 00), say, x; < x5. But the function r} . also satisfies the differential
equation in (2.10) and obviously u and 7} . are linearly independent (because 5. (0) = 0).
Using Sturm’s oscillation lemma, we infer that .. must have a zero on (z1,x5), which is
absurd because 74,.(z) > 0 on (0, c0).

Now let us prove that J has (at least) one negative eigenvalue. We argue again by
contradiction and we suppose that J has no negative eigenvalues. Then the solution
u of (2.10) has no zeroes in [0,00), consequently u(x) > 0 for any x € [0,00). Since
Ghoe(Toce (7)) —> 2 — 4c%e? > 0 as ¥ — 00, repeating the argument used in the proof of
Proposition 2.1 iv) we infer that either u(x) — oo or u(x) — 0 as * — oo. In the
latter case we have also

|u(m) (x)] < Ce™ 2_46252_5“4, m=0,1,2

for some constant C' > 0, § € (0,2 — 4c*c?) and z sufficiently large. Consequently, u € H
and 0 is an eigenvalue of J. But this is excluded by i). Therefore we must have u(x) — oo
as r — 00.

Since u(0) = 1, we have v > 0 in a neighbourhood of 0. Note that g}, (72.:(0)) =
(5 + 555)(c%e? — 1) < 0, hence gh,.(r9e:) < 0 near 0. From (2.10) we get u”(z) < 0 for

2c2¢2 2
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z > 0 and x close to 0. We have «/(0) = 0, so there exists § > 0 such that «/(z) < 0
on (0,d]. We may choose ¢ so small that u(§) > 0 and 74..(§) > 0 (note that r5._(0) =
(1—2c2¢2)?

G2ce (T20:(0)) = N T 0). Let 5= Ti(j()é) > 0 and let h(x) = O () —u(x). Clearly, h

is a solution of the differential equation in (2.10) and h(6) = 0, A/(§) = pBri..(6) —u/'(§) > 0.

Hence h(z) > 0 for 2 > 6 and x close to 0. On the other hand, we have lim h(z) = —oo,

so there exists > § such that h(n) = 0. Since both 75, and h satisfy the differential
equation in (2.10), by the Sturm oscillation lemma we infer that rf,_ must have a zero in
(6,7m), which is absurd. This finishes the proof of Lemma 2.4. O

Lemma 2.5 We have:
i) Ker(T (A, Toce, *)) = Span(uy);
i) Im(T (A, roee, ) = ui N L.
The proof is obvious.
Proof of Theorem 2.3. Let V = {r € H | sulg Ir(z)| < 1} and I = (—v/2ce,v/2ce). Clearly
re

V is open in H. We define F: I x R x V x (HNu}) — L x L by

1
35 (race + 7, 5(us + 1))
if s # 0,
1
F(S> )‘7 r, U) - ;T()V T'9ce + ST, S(U* + U))
(4,8 (rzees 0)-r o
< T()‘> Tcey Us + U) if s = 0.

It is easily seen that F'is C'*° because
Fi(s,\,r,u) = % (S(roce + sr, 8(us +u)) — S(roee, 0))

1
=1 iS(rgcs + tsr, ts(u, + u))dt
SJo dt

1
= i/ dyS(roee + tsr,ts(ue + w)).sr 4 dyS(roee + tsr, ts(ue + u)).s(us + u)dt
0

1
= / dS(roce + tsryts(uy, +w)).r + dyS(roee + tsr, ts(u, +w)).(u. + u)dt
0

and Fy(s, A\, m,u) = T'(A\, roee + ST, Uus + u).

It is also clear that F'(0,\,,0,0) = < 8 ) and

Aoy F (0, Ay, 0,0) (A, 7, @) = < _gu* ) + < drs(rﬁs,o).r ) N < . 0 )

)\*a T'9¢ce,s ﬁ)

In view of Lemmas 2.4 and 2.5, d ;. F(0, Ay, 0,0) is invertible. By the Implicit Function
Theorem, there exist 7 > 0 and C'* functions defined on (—n,n),

st— (A(s),7(s),u(s)) € R x Hx (HNu)
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such that A(0) = A, r(0) = 0, w(0) = 0 and F(s, A(s),u(s),r(s)) = (0,0). It is obvious
that for s # 0, (A(s), (race + s7(s), s(up + u(s)))) satisfy the system (1.9)-(1.10). Finally,
the uniqueness part in Theorem 2.3 is proved exactly in the same way as in the Bifurcation
from a Simple Eigenvalue Theorem. O
Remark 2.6 Let A(s), 7(s), u(s) be given by Theorem 2.3. We have A(0) = 0, (0) = 0
and

4q® _
Tz (L raeul, (A 4 e
*|L

(2.11) A0) = —

where the dots denote derivatives with respect to s and J is the operator in Lemma 2.4.
To see this, we differentiate with respect to s the equation T'(\(s), roce + s7(s), us +
u(s)) = 0 and then we take s = 0 to obtain
d2

(2.12) — 200+ [ (1 + 79c2)? = AJid(0) = A(O)u, = 0,

that is (A — X\)4(0) — A(0)u, = 0. But Im(A — A,) and Ker(A — \,) = Span{u,} are
orthogonal (because A is self-adjoint), so (2.12) implies that A(0) = 0 and @(0) = 0.

We differentiate twice with respect to s the equation T'(A(s), roce + s7(s), ux +u(s)) =0,
then we take s = 0 to get

(2.13) (A — X)ii(0) + 462 (1 + 79e2)7(0) 1y, — AM(0)u, = 0.

Substracting the equation —rf . + goce(72.c) = 0 from the equation S(ra.. + sr(s), s(u. +

u(s))) = 0 and then dividing by s we get
2

(2.14) —dcizr(s) + /01 Ghoe(Toce +t57(8)) dt - 7(5) + 5(1 + roee + 57(5)) (uy + u(s))? = 0.

We differentiate (2.14) with respect to s, then we take s = 0 to obtain

da? . '
_@T(()) + gécg(r205>r(0> + (1 + 71205)“3 = 0’

that is J7(0) + (1 + 79, )u? = 0, which can still be written as
(2.15) #(0) = —J (1 4 race)ul).

Taking the scalar product of (2.13) with u, we find A(0)||u.|[2 = 4¢*(1 + roec)u, 7(0)) ..
We replace 7(0) from (2.15) in the last equality to obtain (2.11).

3 Global branches of solutions

Our purpose is to obtain information about the global structure of the set of nontrivial

solutions of (1.9)-(1.10). We give a nonexistence result first.

Proposition 3.1 i) The system (1.9)-(1.10) does not admit solutions (A\,r,u) € R x V x
1 - : 1
HY(R) with (r,u) # (0,0) if c = — 5.

ii) Suppose that ¢ < ﬁ and let (\,r,u) € R x V x HY(R) be a nontrivial solution of

the system (1.9)-(1.10). Then 2c*%¢*> < X\ < ¢ and —1++/2ce < r(x) <0 for any x € R.
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Proof. Let (A\,7,u) € RxV x H'(R) be a solution of (1.9)-(1.10). Since H'(R) C Cy(R),
the equations (1.9)-(1.10) imply that r” and «” are continuous, hence r,u € C*(R).
If u=0andc> ﬁ, the only solution of (1.9) which tends to zero at oo is r = 0

(this was proved in [7], but can be easily deduced from the arguments below). From now
on we suppose that u #Z 0. Multiplying (1.10) by u and integrating we find

(3.1) / |u’\2dx—|—q2/ (1+r)2\u\2dx:)\/ lu|?da.
R R R

Since u # 0, we have necessarily A > 0. Let
S

Goce(s) = /0 Goe=(T)dT = F((1 + 5)* — 1)2(1 — &fj;) Multiplying (1.9 ) by 7’ gives

(32 [0 PY + (G + 5L+ )Y =,

and multiplying (1.10) by u’ leads to

(33 W P ) — S =0,

From (3.2) and (3.3) we get
A

(W] + G + 5100+ = S5 (0) = 0.

1 1
4 = N21/ o
B P 5
Integrating (3.4) from —oo to x and taking into account that r(x) — 0, r'(z) — 0,
u(z) — 0 and v/(x) — 0 as * — £00 we obtain
1 A
(3:5)  Ir'[*(w) + 5l |*(x) + (? -

" (1+7(x)?)u*(x) = 2Gaee(r(z))  for any z € R.

Suppose that there exists zy € R such that r(xy) < min(—1 + %, —1+v/2ce). Then
q% — (1 4+ 7r(x))* > 0 and the left hand side of (3.5) is positive at xy (because u(xy) =
w'(x9) = 0 and (1.10) would imply u = 0) while G (r(z9)) < 0, a contradiction. Thus
r(x) > min(—1+ %, —1 4 /2ce) for any z € R.

Suppose that A < 2c2e%¢® ( that is, % < v/2ce). Then we have (1 + r(z))? > q% for
any r € R and (3.1) gives

A
/R |u'|*dz + ¢ /R ((1 +7)? — ?)uzdx =0,

which implies u = 0, again a contradiction. Therefore we have A\ > 2c?c%¢? and r(z) >
—1+4+/2ce for any x € R. This is impossible if v/2ce > 1 because r(z) — 0 as x — +00.

Hence we cannot have other solutions than (,0,0) if v/2ce > 1. From now on we
suppose that V2¢e < 1. In this case we have r < 0 on R by the Maximum Principle.
Indeed, the function gs.. is strictly increasing and positive on (0,00). Suppose that r
achieves a positive maximum at xy. Then r”(z9) < 0. On the other hand, from (1.9) we
infer that 7(x¢) = gace (1(0)) + (1 + (o) )u?(x9) > 0, which is absurd.

If v/2ce = 1 we have seen that 0 > r(z) > —1 + y/2ce = 0, hence r = 0. Then (1.10)
becomes u” = (¢*> — \)u ; together with the boundary condition u(zr) — 0 as z — o0,
this gives u = 0. Thus i) is proved.
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From now on we suppose throughout that 2c?¢? < 1. Clearly, if r(z¢) = —1 4+ v/2ce
for some xy € R, then (3.5) would imply u(zq) = u/(x9) = 0 (because A > 2c%2¢?), hence
u = 0 by (1.10), which is impossible. Hence 0 > r(z) > —1 + 1/2ce for any z € R.

It only remains to show that we cannot have nontrivial solutions with A > ¢%. Suppose
that (A, 7,u) is such a solution. First, observe that r cannot vanish because (3.5) would
give a contradiction. We prove that r decays sufficiently fast at infinity. Take 0 < € <
A — 1.There exists M, > 0 such that (1 +r(z))?> < 1+ € on [M,,00) (because r(z) — 0

q
as x — 00). Using (3.5), we have on [M,, o0)

0< (q)\z —1- €)U2(SL’> < 2G205(7’(5€>),

hence 0 < (q% —-1- e) ﬁifﬁ < 2|G2rf((;)(f))|. Passing to the limit as x — oo we obtain

lim “f(“;) — 0. Dividing (1.9) by r we get
" 2
36) 0 _9elr@) g o@D )20 ase— 00

r)  r(@) r(z) -

Since 7" must have at least one zero between two zeroes of r’; (3.6) shows that 7’ has no
zeroes in some neighbourhood of infinity. In that neighbourhood we have

(L:/Qfﬁ)‘)?/ RGN 95:(0) >0 asz — oo.

r(z)

Since r(z) — 0 and 7’(x) — 0 at infinity, we may apply I’'Hospital’s rule to get

lim (’;’((;))) = ¢5..(0). We know that r and 7" have constant sign in a neighbourhood
of infinity and they cannot have the same sign because r tends to 0 at infinity, so neces-
sarily lim ’;,’((:f)) = —1/G5.(0). The argument already used in the proof of Proposition 2.1

shows that for any € > 0, there exists C. > 0 such that
r(z)| < Cee™ V92O for any z € [0, 00).

Of course that a similar estimate is valid on (—oc, 0]. In particular, 72 + 2r is a continuous,
bounded function on R and lim |z|(r*(z) + 2r(z)) = 0. Moreover, multiplication by

r? 4+ 2r is a bounded aperator on L?(R), hence it is also bounded with respect to —% with
relative bound zero. Consequently, by the Kato-Agmon-Simon Theorem (see, e.g., [13],
Theorem XIII.58 p. 226), the operator —% + ¢*(r* + 2r) (with domain H?(R) and range
L*(R)) cannot have eigenvalues embedded in the continuous spectrum (0, 00). This means
exactly that the operator —% + ¢*(1 + 7)? has no eigenvalues in (¢*, 00) and contradicts
the existence of a non-tivial solution (A, r,u) with A > ¢*. O

We will use the following variant of the Global Bifurcation Theorem of Rabinowitz :
Proposition 3.2 Let E be a real Banach space and 2 C R x E an open set. Suppose that
G : QQ — E is compact on closed, bounded subsets w C ) such that dist(w, ) > 0 and is
of the form G(a,u) = L(a,u)+ H(a,u), where L and H satisfy the following assumptions :

a) L(a,-) is linear, compact for any fized a and (a,u) — L(a,u) is continuous and
compact on closed, bounded subsets w C § such that dist(w,0) > 0.
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b) For any closed, bounded subset w C Q such that dist(w,0) > 0, there ezists a
function hy, such that h,(s) — 0 as s — 0 and

[1H (a, w)|| < [lullho(l[ul]) — for any (a,u) € w.

c¢) There exists ag and € > 0 such that
e (ap,0) € Q,
e for any a € [ag — €,a9 + €] \ {ap} we have Ker(Id— L(a,-)) = {0},
e if a) € [ag — €,a9) and ay € (ag, ap + €, then
ind(Id — L(ay,-),0) # ind(Id — L(as,-),0).
Let
S={(a,u) € Q| u+#0 andu= G(a,u)}

be the set of nontrivial solutions of the equation uw = G(a,u). Then SU{(ag,0)} possesses a
mazximal subcontinuum (i.e. a maximal closed connected subset) C,, which contains (ay,0)
and has at least one of the following properties :

i) Coq is unbounded ;

ii) dist(Cay, O) =0 ;

iii) Cqy meets (ay,0), where ay # ag and Ker(Id — L(ay,-)) # {0}.

From the first assertion in c) it follows that the index ind(Id — L(a,-),0) = deg(Id —
L(a,-), B(0,p),0) is well defined for any a € [ag — €, a0+ €]\ {ap}. By a) and the homotopy
invariance of the Leray-Schauder degree, it is a continuous function of a. So we have
necessarily Ker(ld— L(aop,-)) # {0} (since otherwise ind(Id — L(ay, -),0) would be defined
and ind(Id — L(a,-) 0) would be constant for a € [ag — €, ap + €], contradicting the last
assertion in c)).

The proof of Proposition 3.2 is similar to that of Theorem 1.3, p. 490 in [12] (see also
Corollary 1.12 in [12]).

Next, we give a reformulation of problem (1.9)-(1.10) suitable for the use of Proposition
3.2.

Equation (1.9) can be written as —r" + go- (1) + (1+7)u? = 0, where go.e(z) = (1+z)*—
(1+4x)—c?e? (1 +x— ﬁ) We will seek for solutions of the form r(z) = roe.(z) +w(x).
Taking into account that ro.. satisfies —175.. 4+ gaee(72¢c) = 0, equation (1.9) becomes

(37) —uw"” + 9205(7"205 =+ U)) - g2ce(r2c€) + (1 + Toce + w>u2 =0.

Note that g,.(0) = 2 — 4c%? > 0, thus the linear operator — % + g5 .(0) (with domain H
and range L) is invertible, so equation (3.7) is equivalent to
(3.8)

-1
w=—(= &+ 55 (0))  [g2ee(Paee + W) = Gaee (race) — Ghee (rce)w + (1 4+ rce + w)u?]

(= i 4 65e(0) [(Gaeelraee) = ghec(0)u].
In the same way, equation (1.10) can be written as
—u" + (¢ — Nu = ¢*(1 — (1 + roee + w)?)u.
For A < ¢?, the linear operator —% + ¢* — ) is invertible and (1.10) becomes
2

d
_ 2
(3.9) u=—¢q (_dx2

2

1
12 +¢* —)\) [(w? 4 2wrgee +2w)u).

1
+q2 - )\) [(Tgce +2T255)U] _q2 (
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We denote

—1
Hl(w> u) = ( - % + géca(o)) [g2ce(r2ce + w) - g2ce(r2ce) - géca(fr?ce)'w + (1 + T2ce + ’LU)U2],
_ 2 _ d* 2 _ -1 2
Hy(\w,u) =q ( g3+ q )\) [(w* + 2wrae: + 2w)ul,

M) = AN = @~ &+ = A) [ + 2rae )l

B(w) = ( - % + géc€(0>) [(gécs(r2c€> - géce(()))w]

It is easy to see that Ay, B : L — H are linear and continuous. Denote V,.. = {r €
H | r+ry € V}. It is obvious that Vs is open in H. Since H C C}(R) and H is an
algebra, H; and H, are well-defined and continuous from Vs.. x H and (—o0,¢*) x H x H,
respectively, to H.

If A < ¢?, then (\,r,u) satisfies the system (1.9)-(1.10) if and only if (A, w,u) (where
w =1 — Ty ) satisfies the system (3.8)-(3.9) which is equivalent to

(3.10) (ZJ):—(?i)(ﬁ)‘(flf&wwuzo)

We have already shown in Introduction that we cannot expect to have properness for
problem (1.9)-(1.10). The counterexample that we have seen is essentially due to the
invariance by translations of the system and to the fact that we have localized solutions.
Of course that passing from (1.9)-(1.10) to (3.10) should not prevent the same problems
to appear. To overcome this difficulty, we shall work on some weighted Sobolev space. As
a “weight”, we take a function W : R — R which satisfies the following properties :

(W1) W is continuous and even, i.e. W(x) = W(—x);
(W2) W >1and lim W(x) = oo;
(W3) There exists Cy > 0 such that W (a + b) < Cy (W (a) + W (b)).

It follows easily from (W1) and (W3) that there exist K, s > 0 such that W (z) < K|x|® for
|z| > 1. Indeed, from (W3) we infer that Va € R, W(2"a) < (2Cw)"W (a). If z € [2"71,2"]

and M = max W (z), then
z€(0,1]

W(z) < (2CW)"W(2%) < 20w M (20w )" = 2Cy M2 D0H1082 Cw) < 90y, Mgt H1o82 Cw
In particular, we get
(W4) Va >0, e "W()eL'nL®R).
For a function W satisfying (W1)-(W3) we consider the spaces
Ly ={peL|WpecL},
Hy ={pc H|Wep, W¢' We" € L},
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endowed with the norms ||¢||L,, = [|[Wel|r2, respectively ||¢|[f,, = |[Wel|7+|[W¢'|[72+
|[W¢"||2.. Equiped with these norms, Ly, and Hy, are Hilbert spaces. It is clear that
llellee < llelluws llellaz < |l¢llm, and Ly (respectively Hyy) is a dense subspace of L
(respectively of H).

Lemma 3.3 The embedding Hy, C C}(R) is compact.

Proof. Tt is clear that the embeddings Hy, € H?*(R) C C}(R) are continuous. To
prove compactness, consider an arbitrary sequence u, — 0 in Hy, and let us show that
u, — 0 in C}(R). Fix ¢ > 0. Let K = sup||uy||m, . There exists M > 0 such that

W(z) > £ if |z| > M. Tt follows that ||| | g2((—cearu(ar,e)) < €. By the Sobolev embedding
theorem, we have ||ty,|| Lo ((—oo,m1u[,00)) T ||Un || Loo (=00, M]UM,00)) < Cg€. On the other hand
Un(—ar ) — 0 in H*(—M,M). Since the embedding H*(—M,M) c C*'([-M,M]) is
compact, it follows that w, — 0 in C*([—=M, M]), s0 ||wn|| Lo (a0 + |0l || oo (= nr,0a) < €
if n is sufficiently big. Thus ||u,||ze®) + ||ty ||2e®) < (Cs + 1)e for n sufficiently big. As

€ was arbitrary, we infer that u,, — 0 in C}}(R) and the lemma is proved. O
Lemma 3.4 Let W satisfy (W1)-(W3). For anya > 0, the operator —%jta :Hy — Ly
d2

is bounded and invertible. Moreover, the norm of (—j 5 + a)~1 is uniformly bounded in
L(Lyw,Hyw) when a remains in a compact subinterval of (0, 00).

Proof. 1t is clear that

2

(=7 + el = 1 ="+ avlley < Cllvlln,

so the operator is bounded. Since —% +a: H — L is bounded and invertible, it is clear
that the restriction of —% + a to Hy is one to one and for any f € Ly C L there exists
an unique v € H such that (—% + a)v = f. It remains only to prove that v € Hy and
o]l < ||f]|L,,- Using the Fourier transform we get (€2 + a)3(¢) = f(€) or equivalently
5(8) = == f(€). Since F(e V) (¢) = 242 we infer that

= P+a = Ptar

(3.11) v= %(e—ﬁ') * f.

From (3.11) we get

@)W ()| = 52z W(@)| [ e f(y)dy

< G [ W (o — eV fy)| + VI ()] £ ()l dy

< Ci(a@)[(WemVerl) s [ fl) (@) + (emVoll) = (LF W) ()],

that is [vW| < Oy(a)[(We Vel x| f| + eVl x (| f|W)]. But
I(WemVerly s £ |le < IWemVerl [l fll2 < [[WeV M| o] flly

and
e s (|F[W)] |22 < [le™VH | | W £ 12

so we obtain from (3.11) that
(3.12) o]ty < Ca(a)]]fllLyw
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where C(a) remains bounded if a € [d, €], 0 < d < e < oc.
In the same way, we have v/(§) = 1£v(§) = £2+af(§), hence v'(x) = —1(, * f(x), where

Co(7) = sgn(x)e”Val?l. Repeating the above argument we find
(3.13) W W[z < Cs(a)l|f]lLw

where C5(a) remains bounded if @ is in a compact interval of (0, 00).
Finally, using the equation satisfied by v we get v = —f + av, hence

(3.14) W' W2 < | flluy + allvllLy, < (1+aCa(a))l[ Ly -

Lemma 3.4 follows from (3.12), (3.13) and (3.14). O

Note that the operator —% +a : Hy — Ly is not invertible if the weight W increases
too fast at infinity. Indeed, if f € C§°(R) and f > 0, it is easily seen (e.g., from (3.11))
that the solution v of —v” 4+ av = f behaves like e= V'l at +oo. If we take W (z) = el
and a < b?, then v does not belong to Hyy, so —% +a : Hy — Ly is not surjective.

The next lemma shows that we do not loose solutions if we work in Hy instead of H.

Lemma 3.5 Let (\,r,u) be a solution of (1.9)-(1.10) with r € H, v € H and \ < ¢*.
Then r and u belong to Hyy.

Proof.  We have already seen in Proposition 3.1 that —1 4+ v/2ce < r < 0. Applying
Proposition 2.1 iv) (see also Corollary 2.2, iii)) for V(z) = ¢*(r*(z) + 2r(z)), we infer that

for any € > 0, u, ' and u” decay at oo faster than e~V =2~ hence u € Hyy.
Since ¢h..(0) > 0 and r(z) — 0 as |r|] — oo, there exists M > 0 such that

7(2)g2e(r(2)) = 55 (0)r*(2) if || > M.

Consider a symmetric function x € C§°(R) such that x = 1 on [—1,1], x is non-
increasing on [0, 00) and supp(x) C [~2,2]. We multiply (1.9) by zr(z)x(%) and integrate
on [0,00). Integrating by parts, we get :

| E@ex@)de = 1r20) = § [Tr2@) (2Y(2) + #x(E))da
(3.15) +/ e (r(2) ) ()2 (£)da + / e (r(2))r (@) (£) da
T+ (@) (@)r(@)ex(E)de = 0.

By the Monotone Convergence Theorem, the first integral in (3.15) tends to / |7/ (z)|Pod
0

as n — oo, while the fourth integral tends to / Goce(T(x))r(z)xdz. The other three
M

integrals converge as n — oo by Lebesgue’s theorem on dominated convergence. Letting
n — oo in (3.15) we obtain :

I |r'|<>xdx—“ )+ [ et <>><>xdx

B0 st [ras e o

Since the second and the last integral in (3.16) are finite (because u decays exponentially
at +00), we infer that / |7/ |?(x)zdr < 0o and / G2c=(r(x))r(z)xdx < co. Consequently,
0 M

|z|2r(2) and |z|2r(z) belong to L2(R).
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We have go..(s) = g4..(0)s + h(s)s?, where h is continuous on (—1,00), hence h(r(x))
is bounded. Equation (1.9) can be written as

(3.17) —1" + gh (0)r = —(1 +7r)u? — h(r)r?,

which gives, as in the proof of Lemma 3.4,

(318) r = —¥e—\/MH * ((1 + T>u2 4 h(?")’f’2).

24/ 95¢:(0)

Suppose that |z|%(x) € L*(R) for some a > 0. Since |z|%u(z) € LP(R) for any 3 > 0 and
1 <p < oo, we have :

(@) < CI(| - Pre V%O s (L4 7)u® + h(r)r?) (2)

3.19 5
(3.19) e VIOH s (14 )] - [2 4 h(r)(| - 7)) (o)

and we infer that |- [**r € LP(R) for 1 < p < .

We have already proved that |z|zr(z) € L2(R), so it follows easily by induction that
|z|7r(z) € LP(R) for any 0 > 0 and 1 < p < oco. Since W (z) < K|z|* for some K, s > 0,
we infer that (1 + r)u® + h(r)r? € Ly,. Now it follows form (3.17) and Lemma 3.4 that
r € Hy and Lemma 3.5 is proved. O

Now we turn our attention to the operators A, B, H; and H, appearing in (3.10).
Lemma 3.6 We have :

i) For any A\ € (—o00,¢%), Ay : Hy — Hy is linear, compact and the mapping
(X, u) — Ax(u) is continuous from (—oo, ¢*) x Hy to Hyy and compact on closed bounded
subsets of [d,e] x Hy, for —oo < d < e < ¢*.

i1) The linear operator B : Hy — Hyy is compact.

iii) Hy : (V — roee) N Hy ) X Hy — Hy is continuous, compact on closed bounded
subsets wy of ((V — 1) NHy) X Hyy such that dist(wy, (Hy \ (V —rae.)) x Hy) > 0 and

(3.20) 1H:(w, )|l < Co, (1w, + llulli,).

i) Hy : (—00,q?) x Hy x Hy — Hyy is continuous, compact on closed bounded
subsets of [d,e] x Hy x Hy for —oo < d < e < ¢* and

(321)  [[H2(\w,u)lly < Caclllwli, + wllg, +lulld,)  for any A€ [d.e].

Proof. Tt is easy to see that u,, — u, in Hy, and v,, — v, in Hy, imply that w,v, — u,v,
in Ly. Indeed, (u,) and (v,) are bounded in Hy, and by Lemma 3.3 we have

(3.22) [lunvn —wvully < |[on=vul[ oo [[unl |y +[lun — ][ [[0] Ly — 0 as n — oo.

i) It is now clear that u —— (r3,. + 2r2._)u is a linear compact mapping from Hy to
Ly and we get i) by using Lemma 3.4 and the resolvent formula

d? 2 2 1, d? 1

(—dx2+q2_)\1)—1_(_jﬁ+q2_)\2)—1 _ ()\1_)\2)(_5x2+q2_)\1) (—@Jﬂf—)\g)_ .
ii) is obvious.
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iii) Let w; be as in Lemma 3.6. We claim that there exists > 0 such that for any
(w,u) € wy we have iglg(w(x) +roe(x)) > —14n. We argue by contradiction and suppose

that there exists a sequence (w,,u,) € w; such that a, := iglf{(wn(x) + roce () = (w, +

T9ce ) () tends to —1. The sequence (w,,) is bounded in Hyy, hence we may assume (passing
to a subsequence if necessary) that w,, — w, in Hy,. By Lemma 3.3, w,, + 7. — Wi+ 7oce
in C}(R). Since w,(z) + 79e(2) — 0 as  — oo, the sequence (x,) is bounded, say,
x, € [=M,M]. Take x € C§°(R) such that supp(x) C [-M —1,M + 1] and x = 1 on
[= M, M]. Then inf (wn ()47 () = (an+1)x(2)) = wn(2n) 4720 (n) = (@n+1)x(70) = —1,

so that w, + 7. — (a, + 1)x € V and
dist(wp, Hy \ (V = rae)) < dist(wp, w, — (a, + 1)x) = |1+ an| ||x]|@y — 0

as n — 00, contradicting the fact that (w,,u,) € wy. This proves the claim.
For a given w € V — ry.., we have

1
(92ee (T2ce + W) = Gace(Tace) = Yo (T2ee )W) () = /0 Gaee (T2ee + tw)w () dt — gy (race)w()

/ / G (Taee + tsw)(w)ds ¢ dt = w*(2)h (w) (),

where hy(w / / Gooe(Toce + tsw)(x)ds t dt.

To prove iii) it suffices to show that for any sequence (w,,, u,) € w; such that w, — w,
and u,, — u, in Hy,, we have Hy(w,,u,) — Hi(w,,u,) in Hy. In view of Lemma 3.4, it
suffices to show that

(3.23) hy(wn)w? + (1 + roee + wy)u2 — hy(w,)w? + (1 + roee + w, )u? in L.

The sequence (w,,) being bounded in Hy,, there exists K > 0 such that —1+min(777 V2ce) <
Toce () + stw,(z) < K for any € R, n € N and s, t € [0,1]. Since g4.. is uniformly
continuous on [—1 + min(n, v/2ce), K], it is standard to prove that h;(w,) — hi(w,) in
L>*(R) and then (3.23) follows from (3.22). Finally, using Lemma 3.4 we have for any
(w,u) € wy

1 Hi(w, 0)|lsy, < Cllha(w)w? + (14 raee +w)u’||ny, < Coy ([Jwllfy, + [Jullf, ).

iv) From the preceeding arguments it is easy to see that the mapping (w,u) — (w? +
2wryee + 2w)u is continuous from Hy, x Hyy to Ly and the image of any bounded set in
Hy, x Hyy is precompact in Ly, so iv) follows from Lemma 3.4 and the resolvent formula
above. The estimate (3.21) is straightforward. O

Lemma 3.7 For any A < ¢* we have :

i) Ker(Idm,, + Ax) # {0} if and only if X is an eigenvalue of the operator A = —% +
(1 + r9e.)%. In this case we have Ker(Idm,, + Ax)" = Span{uy} for any n € N*.

i) If X is not an eigenvalue of A, then ind(Idw,, + Ax,0) = (—=1)"N (where n(\) is
the number of eigenvalues of A less than X).
Proof. 1) It is easy to see that u € L and u+ Ayu = 0 is equivalent to u € H and Au = Au.
Recall that if A < ¢? is an eigenvalue of A in L, then the corresponding eigenvector wuy is
in Hy, by Corollary 2.2 iii). Consequently, we have Ker(Idg,, + Ay) = Ker(Idy + Ay) =
Ker(Mdg — A) = Span{u,}.

19



To prove i), it suffices to show that uy & Im(Idy + Ay). Suppose by contradiction
that there exists v € L such that v + Ayv = wu,. This is equivalent to v € H and
Av — M = —uf + (¢ — Nuy, that is —uf + (¢* — Nuy € Im(A — )). Since A — X is
self-adjoint on L, —u¥ + (¢*> — A\)uy must be orthogonal (in L) to Ker(A—\) = Span{u,},
which gives / |uh\|*dx + (¢* — )\)/ luy|*dz = 0, a contradiction.

R R

ii) A well-known result of Leray and Schauder asserts that if K is a compact operator
on a real Banach space X and 1 is not an eigenvalue of K, then

ind(Id — K,0) = (—1)”,

where (3 is the sum of all the (algebraic) multiplicities of eigenvalues of K greater than 1.
(see, e.g., [6], Theorem 4.6 p. 133).

Thus, for a given A which is not an eigenvalue of A, we are interested by the eigenvalues
> 1of —A,. Clearly, —A\u = pu is equivalent to

-1
q2( - -t q2 - )‘) ((Tgce + 2T20€)u) + pu = 07

that is .
"+ (1 7 ¢ (1= )= (14 7200w = D
W

In other words, p > 1 is an eigenvalue of —A, if and only if A is an eigenvalue of the
operator

2
M

1 1
— 2 2 2 21 2 2
p=— s T (L) 4 (1—;)[1—(1—}—7“205)]—A+q (1—;)[1—(1+%) ].

Remark that M, > A for any p > 1 and 0.45(M,) = [¢?, 00) by Weyl’s theorem. By
Proposition 2.1 iv), A € (=00, ¢?) is an eigenvalue of M, considered as an operator on Ly,
if and only if A is an eigenvalue of M, considered as an operator on L. We will work on L
because on this space M, is self-adjoint.

Given A < ¢® not an eigenvalue of A, we will prove that there are exactly n(\) values
1 € (1,00) such that A is an eigenvalue of M,,.

For 11 € [1,00), we define

M
(3.24) an(p) = sup inf Wi’;ﬁh
©O1yespn—1 EH YE{P1,spn—1}+ ||¢HL

By the Min-Max Principle ([13], Theorem XIIL.1 p. 76), either a,(x) is the n'* eigenvalue
of M, (counted with multiplicity) or a,(x) = ¢*. By Proposition 2.1 iii), the eigenvalues
of M, are simple, thus we have o, (1) < oy, (1) if p < n and a,(p) < ¢°.

It is obvious that the functions yt —— v, (1) are increasing on [1, 0o) because M, < M,
if 1 < py < po. In fact, a, is strictly increasing on {u € [1,00) | a,(p) < ¢*}. To see
this, consider p; < gy such that a,(ps) < ¢°. Then (i), ..., an(p2) are eigenvalues
of M,,. Let uy,...,u, € H be corresponding eigenvectors with ||u;||, = 1. Clearly,
Ui, ..., U, are mutually orthogonal in L and it is easily seen from the definition of M, that
(M ui,ui)y, < (Mp,ui, u)n, = oi(p2), @ = 1,...,n. Remark that the quantity N(u) =
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1
(/ 1—(1+ 7“265)2]|u|2dz) *is a norm on L. Since Span{ui,...,u,} is finite-dimensional,
R

there exists Ny > 0 such that N(u) > Nyl||ul|ly for any v € Span{us, ..., u,}. Therefore

n

= (Mm(éaiui), (iaiui)h — (M, — Mm(Zaiui), (iaiui)h

(325) n i 11 1 izln 2i:1
2 2 2
=) o))" —q¢(— — — / I — (1 + 7o a;u;| dw
S ol = ' =) [ () 3
< ap(p2)]] Y @il |f — ¢*(— — —)NT|| D aquil i,
i=1 Hi o H2 i=1
Thus for any u in the n-dimensional subspace Span{ug,...,u,} we have
2 1 Ly e 2
(M) < (o) = (5 = =) NF)

By the Min-Max Principle it follows that o, (u1) < o (ps) — qz(i - i)le

A standard argument shows that each «,, is continuous. Indeed, suppose by contra-
diction that p, € (1,00) is a discontinuity point. Then necessarily l; := sup a,(u) <
<
SR <e
Since o, (p2) > lo — €, there exist ¢, ..., ¢,—1 € H such that (M,,9,9)1, > lo — € for any
¥ € {p1,-- s} with ||y = 1. We have

<Mu2w7¢>L - <Mu1¢7w>L 1 .
=0k = ) [ (el < °C 0~ < e

M1 H2

uigg an(p) := . Take 0 < € < % and iy < s, fo > p,. such that q2(

thus (M, ¢, )1, > lo—2€ for any ¢ € {p1, ..., n—1} with [|¢]|r, = 1. Therefore ay,(u;) >
lo — 2¢, which is a contradiction.
We have also for any u € H,

2
q C
(Myu,uyy, = |Ju'l|72 + ¢||ullf, — m R[l — (14 roc)?]|ul?dz > ¢?|[ullf, — EllUHi,

2 — % — ¢* as u — oo. Consequently, a,(u) — ¢* as u — oo for any

hence aq (1) > g
n>1.

Note that A < ¢ is an eigenvalue of M, if and only if A = (1) for some n € N*. We
know that there are exactly n(\) eigenvalues of A less than A, say, Ay < Xy < ... < Ay <
A. We have «;(1) = \; because M; = A, the functions «; are strictly increasing (until they
reach the value ¢?, if this happens), continuous and tend to ¢* at infinity. We infer that for
each i € {1,...,n(\)}, there exists exactly one value y; such that a;(u;) = A. Moreover,
pa > fg > ... > gy > 1. For any n > n()), we have a,(1) > A, hence a, () > A for
p € (0,00) because a, is increasing.

Thus we have shown that the operator — A, has exactly n(\) eigenvalues greater than 1,
f > fla > ... > fin(n). Moreover, Ker(u; +Ay) = Ker(M,, — ). We know by Proposition
2.11iii) that Ker(M,, —\) is one dimensional. If this kernel is spanned by a function v;, then
v; & Im(p; + Ay). Indeed, piu+ Ayu = v; would imply (M, — N)u = i(—vg’ + (¢ = Mv;).
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Since M is self-adjoint, —v!' + (¢*> — A\)v; would be orthogonal to Ker(M,, — ) = Span{v;},
which gives a contradiction. Consequently, we have Ker(u; + Ay)" = Span{v;} for any
n € N*, that is p; is a simple eigenvalue of —A,.

As a consequence, we have ind(Idg,, + Ay,0) = (—1)"™ and Lemma 3.7 is proved. O
We are now in position to state the main result of this paper.

Theorem 3.8 Let S be the set of nontrivial solutions of the system (1.9)-(1.10) in R x
(HNV)xH. For any eigenvalue A\, < ¢* of A = —%4'(14'7’2&5)2, the set SU{(Am, 2¢e,0) }
contains a mazimal closed connected subset C,, in (—oo, ¢*) x Hy x Hy, such that CnNCp =10
if m # p and C,, satisfies at least one of the two properties :

i) Cp is unbounded in R x Hy, x Hy, or

ii) there exists a sequence (An, T, Uy) € Cpy such that X\, — ¢* as n — oc.
Proof.

We have already seen that (A, r,u) € (—00,¢*) x (HN V) x H is a nontrivial solution
of (1.9)-(1.10) if and only if (A, 7 — 79, u) belongs to (—00,¢*) x (Hy N (V — o)) x Hyy
and satisfies the system (3.8)-(3.9) (or, equivalently, (3.10)).

Let B = Hyy x Hiy, @ = (~00,%) x (Hy 0 (V = r2e0)) % Hip, Ly = ( oo )

0 —A,
—Hy(w,u)
—Hy(A\, w,u)
that on €2, (3.10) is equivalent to the equation (w,u) = G(A\,w,u). It follows easily from
Lemma 3.6 that L and H satisfy the assumptions a) and b) in Proposition 3.2.
We claim that Idg,, + B : Hy — Hy is invertible. Indeed, (Idg,, + B)u = v is
equivalent to —u” + ). (roce )u = (—% + gécs(O)) v. By Lemma 2.4, there exists an unique
u € H satisfying this equation. We have

and H(\, w,u) = < ) Let G(A\,w,u) = Ly(w,u) + H(A, w,u). It is obvious

d2
' GO0 = (= 47+ 55000)) 0+ (60) ) € Ty

(recall that v € Hyy and ¢5,..(0) — g4..(r2.-) decays exponentially at infinity). Using Lemma
3.4, we infer that u € Hyy.

For A < ¢, is is clear that Idg,, xm,, — Ly is not invertible if and only if Idg,, + A, is
not invertible, i.e. if and only if A is an eigenvalue of A. Let Ay < Xy < ... < Ay, < q* be
the eigenvalues of A below ¢2. If ) is not an eigenvalue of A, we infer using Lemma 3.7 that
i(\) == ind(Idu,, xm, — Ly, 0) = ind(Idg,, + Ay, 0)-ind(Idwu,,+B,0) = (—1)"Nind(Idg,, +
B,0) is constant on each of the intervals (—oo, A1), (A, Adi+1), (An,, ¢*) and changes sign at
each \;. Consequently, L, also satisfies assumption c) in Proposition 3.2 at any point
(Ai,0,0). Let Sy = {(\,w,u) € Q| (w,u) # (0,0) and (X, w, u) satisfies (3.10)} and let
S = 8\ {(A\, —72e,0) | A € (—00,¢?)}. Note that the solutions (X, =75, 0) of (3.10)
correspond to the solutions (X, 0,0) of (1.9)-(1.10) and SN ((—o0, ¢?) x (VNHy ) x Hy) =
S+ (0,72¢¢,0). We may apply Proposition 3.2 to infer that for any 1 < m < N, there
exists a maximal closed connected subset D,, (in Q) of Sy U {(An,0,0)} which contains
(A, 0,0) and satisfies at least one of the following properties :

1°. D,,, is unbounded.

2°. There exists a sequence (\,, w,, u,) € D, such that \, — q* as n — 0.

3°. There exists a sequence (\,, Wy, u,) € Dy, such that dist(w,, I((V —ra.) " Hy)) —
0, that is ;gff{(wn(:)s) + 79ee(x)) — —1 as n — oc.

4°. The closure in 2 of D,, contains a point (\;,0,0) with ¢ # m.
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Let us show first that D,,, cannot meet {(\, —rg..,0) | X € (—o0, ¢*)}. A straightforward
computation gives dyu)(Idp — G)(\, —rae,0) = Idp for any A < ¢*. By the Implicit
Functions Theorem, there exists a neighbourhood N, of (A, —rg.,0) in R x E such that
the only solutions of the equation (w,u) = G(\, w,u) in Ny are (g, —79.,0). Hence UyN)
is a neighbourhood of {(\, =7, 0) | A < ¢*} in Q which contains no other solutions of
(3.10). Consequently, we have D,, C S.

By Proposition 3.1, for any (A, w,u) € Sy we have %glg(w(:c) + Toee (1)) > —1 + V2,
hence D,, cannot satisfy property 3° above.

We will also eliminate the alternative 4°. Observe that if (\,7,u) € (—00,¢*) x H x H
is a nontrivial solution of (1.9)-(1.10), then, in particular, u is an eigenvector of the linear

operator —% + ¢?(1+17)? corresponding to the eigenvalue A. It is easily checked that this

operator is a compact perturbation of —% + ¢, so it has the essential spectrum [¢?, c0).

Since A < ¢?, the operator —% + ¢*(1 4+ r)? has only a finite number of eigenvalues less
than A\, say, p. We define z(\,r,u) = p. By Proposition 2.1 v), we know that u has exactly
p zeroes in (0,00). We also define z(\;, 7ace,0) =i — 1. We have :

Lemma 3.9 The function z is continuous on (S U {(N\;,72.,0) | ¢ = 1,...,N,}) N
((—o0,¢*) x H x H).

Assume for the moment that Lemma 3.9 holds. Obviously, the function z is also con-
tinuous for the R x E topology. Since z takes values in N, it must be constant on each
connected component of (S U {(\;,72e,0) | i =1,...,N,}) N ((—00,¢*) x Hx H) = (S +
(0, 7266, 0))U{ (N, 2, 0) | i = 1,..., N, }. In particular, it is constant on D,,,+(0, 75, 0) and
we find z(D,, + (0, 72¢e, 0)) = 2( A, T2ce, 0) = m—1. We have also z(D; + (0, 72¢¢,0)) = i — 1,
hence D,, and D; are disjoint if ¢ # m (in fact, we see that the closures of D,, and D; in
(—00,¢?) x H x H are disjoint if i # m). Thus D,, cannot satisfy the alternative 4° above,
hence it necessarily satisfies one of the alternatives 1° or 2°. Let C,,, = D,,, + (0,72, 0). It
is now clear that C,, satisfies i) or ii) in Theorem 3.8. O
Proof of Lemma 3.9.  Let (A\,r,u), (Vn,rnstn) € (S U{(NiyT2ee,0) | @ = 1,...,N,}) N
((—00,¢*) x H x H) be such that z(\,r,u) = p and (v, rp, u,) — (X, 7,u) as n — oo.
Let 11 < po < ... < ptps1 = A be the eigenvalues of the operator B = —% +¢*(1+7)*in
L and let uj, ..., u;,; = u be corresponding eigenvectors. Denote B,, = —% +¢*(1+7,)>

We prove that z(v,,r,,u,) > p if n is sufficiently big. There is nothing to do if
p = 0. Suppose that p > 1. Take 0 < e < *="2 and let ny be suficiently big, so that
[(rn = )2+ 70 +7)|[1 < 5 and A — € <1, < A+ € for any n > ng. For n > ng and
v € Span{uj,...uy} we have

(Byv,v)r, = (Bv,v)1, + ((B, — B)v,v)r,
< ppllvl[, +q2/R(7“n =) 2+ 1+ 1) vPdr < (pp + Il < (v — O)JV]IL.

By the Min-Max Principle, B,, has at least p eigenvalues less than or equal to v, — €, so
2(Uny Ty Up) > .
: <B¢7 ¢>L
Let piy,0 = sup inf —=
L ©1,..pp+1€EH we{ﬂplv"'ﬁOPJﬁl}l ||,l7b||]2'_.
eigenvalue of B by Proposition 2.1 iii), we know by the Min-Max Principle that either

lipr2 = ¢° OF fiyyo is an eigenvalue of B and ji,4o > piy41. Let € € (0, 2227F2E) - Take

: <Bwa ¢>L
ng as above and ©q,..., € H such that inf —
’ Pl vetormpni)t 1012

. Since A = j1,11 < ¢* and ) is a simple

> lp+2 — €. For any
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Y E{Q1,. s Ppr1tT, ¥ # 0 we have :

(Buth, V)L = (B, V)L + ((Bu — B), V) = (ttpe2 — O)[YIIL — el > (vn + )Y L.

It follows from the Min-Max Principle that for n > ng, either B, has at most p + 1
eigenvalues, or the (p + 2)™ eigenvalue is greater than v, + €. Since v, is an eigenvalue
of By, there are at most p eigenvalues of B, less than v,, hence z(v,, r,, u,) < p for any
n > ng. This finishes the proof of Lemma 3.9 and that of Theorem 3.8. O

We were not able to eliminate one or another of the alternatives in Theorem 3.8.
Up to now, we have proved the existence of branches of nontrivial symmetric solutions

(A, 7, u) to the system (1.9)-(1.10). For any such solution, (¢, ¢) is a travelling wave of (1.1)
for £2(c252 + k%) = X and satisfies the boundary condition (1.2), where ¢(z) = u(Z)ei®

£ £

and (z) = (L+7(2))e™@ (with ¢g(z) = /Ow {1 W}ds = ce/ %Tdﬂ Note

also that U(—x) = ¥(x), p(—x) = ¢(x), || > v/2ce by Proposition 2.1 and the phase 1 of
1) remains bounded because r decays at infinity faster than |z|® for any 3 > 0 (see the end
of the proof of Lemma 3.5). Since 2c?%¢? < A < ¢?, we have bounds on the single-particle
impurity energy : ¢?(2¢*> — §?) < k? < g—z — %5

Remark 3.10 It follows from Corollary 2.2 iv) V) that there is exactly one branch of
. The number of these
branches is the same as the number of eigenvalues of A, so it tends to infinity as ¢ — oc.

It is natural to ask how the branches C,, given by Theorem 3.8 behave in R x H x H.
The topology of Hy being stronger than that of H, any of the sets C,, is also connected in
R xHxH. Roughly speaking, either C,, approaches {¢*} x (HNV ) xH, or C,, is unbounded
in R x H x H or it remains bounded in R x H x H but the norm in R x Hy x Hy tends
to infinity along C,,, i.e. “there is some mass moving to infinity”.

Remark 3.11 The importance of Theorem 2.3 is that it gives a precise description of C,,
in a neighbourhood of (A, 72c¢, 0) in R x Hx H. Let C;} (respectively C;) be the maximal
subcontinuum in R x Hy, x Hy of C,, \ {(A(8), 72ce + sr( )y $(tum +u(s))) | s € (—n,0)},
(respectively of Cp, \ {(A(s), 726 + s7(s), s(um + u(s))) | s € (0,m)}), where the curve
s — (A(s),7(s),u(s)) is given by Theorem 2.3. It can be proved by using a variant of a
classical result of Rabinowitz (Theorem 1.40 p. 500 in [12]) that each of C and C,, satisfies
i) or ii) in Theorem 3.8.

Remark 3.12 It is not hard to prove that in dimension N = 1, 2 or 3 the Cauchy
problem for the system (1.1) is globally well-posed in (1 + H'(R")) x H'(R"). However,
the dynamics associated to (1.1) and the asymptotic behavior of solutions are not yet
understood.
Remark 3.13 The existence of solitary waves for (1.1) in dimension greater than 1 is an
open problem. Even the existence of “trivial” solitary waves (i.e., solutions of the form
(Y(x1—ct,z9,...,2xN),0) is a difficult problem. Note that if ¢ = 0, the system (1.1) reduces
to the Gross-Pitaevskii equation

27" — A -1 1

iy = AV F (W =1y, ] — 1as 2] — oo

The existence of travelling-waves moving with small speed for this equation was proved,
for instance, in [2] (in dimension N = 2) and [1], [3] (in dimension N > 3).
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