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Introduction

The object of the present document is to present a synthesis of the work that I started
conducting after my PhD. Back then, I was not completely familiar with risk theory and was rather
focusing on topics related to so-called "fluid queues" and stochastic fluid networks. Basically, a fluid
queue is a one dimensional stochastic process (reflected at 0) that models the evolution of a buffer,
where data arrives, and which is processed continuously. It is supposed that data is so thin that
it can be represented as some fluid that arrives at some random rate in the buffer. The objective
is to propose a model that matches reality as accurately as possible, and to be able to do some
performance evaluation, i.e. determine quantities or stochastic measures such that distribution of
the fluid queue at some fixed time or its asymptotic distribution. A proposed model, very present
in my work, is a process that is modulated by an external continuous time Markov chain, which
may e.g. represent the different behaviour and trends of the outside world. This model is quite
flexible, and has the advantage that the fluid queue jointly to the state of the Markov chain is a
Markov process. It is also possible to add a bit of complexity by adding a diffusion part to this
process, that models jitter in this queue. For a state of the art on this, see [Asm03]. The methods
and tools used for determining these distributions range from probability techniques (study of
Markov processes, martingales, renewal theory) to numerical analysis for practical resolution of
partial differential equations that appear e.g. in the Kolmogorov equations satisfied by the cdf or
the Laplace transform of these distributions (see e.g. [GS07]). Extensive research is still undergone
while trying to generalize the one dimensional model to reflection at boundaries, brownian motion
markov modulated etc., see [Iva10, DIKM12, IP12].

A nice extension of this problem is to consider a network of such queues. Basically, what happens
is that a fraction of fluid exiting one queue is directed towards one or several other queues so that,
on the whole, data circulates in the network for a while before eventually departing forever. The
process describing these queues is now N dimensional valued (N being the number of queues in
the network). From the fact that complexity of the model increases, things naturally become more
difficult. Papers dealing with such issues are less frequent (as opposed to the single server queue),
see [Ram00, HMP10, PMG05].

The study of such queues lead me to study risk processes, and in particular multidimensional
risk processes. Motivation is simple and comes through reinsurance : some insurance companies
cannot afford to take excessive risks and need to cope with extreme events such as centennial
floods, hurricanes, earthquakes etc. Hence the need to subscribe to a reinsurance contract, which
will alleviate some of the incoming claims. Again, works on this domain are not as common as
for the more classical one dimensional risk process. Some references are e.g. [APP08b, APP08a,
BLMV10, Bia10, GBC12, HJ13, Ram12], though the list is not exhaustive.

Organization of the manuscript. The first Chapter is partly devoted to study of some
particular fluid queues in Sections 1.2 and 1.3. Concerning this topic, they cover articles [RS04,
Rab06b, Rab06a]. These papers were published after my thesis, but contain some material from
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my thesis. In fact, one of the motivations for this chapter is to establish a link with ruin theory
that may have first been established by Asmussen and Schock Petersen [ASP88], and to try to
broaden this correspondance to the multidimensional setting : see in particular Theorems 5 and 6
in Section 1.3.1. In that respect, results from [RS04, Rab06b, Rab06a] are seen a bit differently, as
it is attempted to see how those results are read from a risk theory point of view. Let us emphasize
out that, at this point, this is just an attempt, as it is a link between stochastic networks and rather
simple (and not so standard) ruin problems. However, this hopefully should lead in the future to
interesting perspectives. Likewise, Section 1.4 (which presents the first part of [Rab09]) starts by
considering a one dimensional risk process with interest rate, then shifts to see how some exit times
of a corresponding N dimensional process with interest rate and claims occurring along the same
process (but with different sizes) can be obtained as a (not straightforward) consequence.

The second chapter deals again with multidimensional risk theory, but focuses on the case
where claims arrive according to one source and are split among one or several (sub)companies.
This part covers the second part of [Rab09] as well as [BCR11] and [Rab12]. The reason why a
chapter is dedicated to such a scenario is that it is the most favorable case leading to explicit
formulas thanks to a geometric interpretation of the problem, as seen in Sections 2.1 and 2.2. In
these sections, particular attention is given to the two dimensional case for technical reasons, one
attempts to reduce the 2 dimensional problem to a series of easier problems, mainly by pointing
out absorbing sets for the bivariate risk process. When all else fails, one turns to asymptotics in
Section 2.3, where exact results seem anyway very difficult to derive because the model includes a
fractional brownian motion.

Finally, the last chapter addresses some other works, and covers [GR07, RCLT13, ALR09, PR13].
Section 3.1 sees an application of theory of admission control to a fluid queue problem, and sees
(via the duality result) how this translates to the risk theory setting. It basically discusses the
problem of how to plan acceptance/rejection of incoming packets of data (fluid) to the queue
so as not to asymptotically accept less than a given proportion p of packets. In Section 3.2 a
question that actually came from an N dimensional ruin problem is raised, which how to know
the join distribution of the ruin time and the amount of money that was spent up to that time ;
tools for solving this problem are standard and use optional stopping theorem, integro differential
equations, and embedding. Section 3.3 sees how to try to determine when the ruin probability can
be written as a so called Erlang expansion, in the case when there is a diffusion coefficient which
is quadratic with respect to the capital level. Finally, Section 3.4 sees a problem closely related to
risk theory, which deals with how to obtain closed expressions on the first and last passage of a
general spectrally Lévy process above a fixed level. This has some application in reliability, where
this process can be seen as the degradation level of a certain item.

A final word about the presentation of the document : all results published in my articles and
mentioned here are presented with only hints of the proofs (not full ones), trying to emphasise their
general backbones and highlight where the most delicate points stand out. Only Theorems 5 and 6
feature full (short) proofs, which rely heavily on some results from [Rab06b]. Those Theorems are
completely new and are, from my point of view and along with the discussions on multi dimensional
risk theory at the end of Sections 1.3.2 and 1.3.3, a starting point for future research. Furthermore,
I deliberately did not mention an ongoing work (even though it is very enjoyable) on a topic related
to branching random walks and which originally stemmed from a common project initiated with
other teams in a Computer Science and Biology/Ecology departments here at the Université of
Franche Comté. A remark on this aspect, as well as some ideas for future research, is given at the
end of the document in the "Perspectives and Ouvertures" chapter.
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Chapitre 1

From Fluid queues to Risk theory :

Duality revisited

1.1 Introduction

We present two tools that essentially provide a link between queueing and risk theory. The first
one finds mainly its origins in a paper by Asmussen and Schock Petersen [ASP88] (and was already
mentioned in [Sea72] for an M/G/1 queue), and found many applications and interpretations in
subsequent papers [SR00], [BLP11]. The second is rather standard and transforms a discontinuous
one into a continuous one, see [AAU02, BBdSS+05].

1.1.1 Duality

Let {Rt , t ≥ 0} be a risk process satisfying the following dynamics :

{
dRt = p(Rt)dt − dSt
R0 = u

(1.1)

For some positive continuous function p(.) (the premium rate), initial reserve u ≥ 0, and compound
Poisson process {St , t ≥ 0} (the aggregate claim amount). We then define the dual queueing
process {Q(t), t ≥ 0} related to {Rt , t ≥ 0}, which verifies





dQ(t) = −p(Q(t))dt + dSt + dLt

Lt =

∫ t

0
1{Q(s)=0}dLs

(1.2)

where {Lt , t ≥ 0}, often called the compensator, is a non decreasing process that prevents Q(t)
from becoming negative, so that the solution to (1.2) is a couple {(Q(t), Lt), t ≥ 0}. Let us define
the ruin time of risk process Rt by

τ := inf{t ≥ 0| Rt < 0}.

Asmussen and Schock Petersen prove in a short note the following theorem that links distribution
of τ and {Q(t), t ≥ 0}.
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CHAPITRE 1. FROM FLUID QUEUES TO RISK THEORY : DUALITY REVISITED

Theorem 1 ([ASP88]). Let T ∈ (0,+∞] and ψ(u,T ) := P (τ ≤ T | R0 = u) the finite horizon
ruin probability. Then

ψ(u,T ) = P(Q(T ) > u). (1.3)

where Q(∞) is understood as the limiting distribution of Q(t) as t → +∞.

This result can be extended to more complicated models, e.g. a risk process with a diffusion
coefficient say σ(Rt)dBt for some brownian motion {Bt , t ≥ 0}. However, one has to be careful on
defining the corresponding queueing dual process while reversing time, as the Ito integral σ(Rt)dBt

is transformed into a different (non anticipative) integral for Q(t), see Proposition 4.3 of [SR00].

1.1.2 Embedding

A particular case is when claims are Phase type distributed. Let us recall that a random variable
variable X is Phase type distributed with representation (γ,G , t) if it is the absorbing time of a
continuous time Markov chain of state space {1, ..., n+1}, with intensity matrix defined blockwise
by (

G t

0 0

)
,

where G is a subintensity n × n matrix, γ and t are vector columns of size n with γ being a
probability vector and t = −G1 (1 being the column vector of size n with all entries equal to 1).
We will say in short X ∼ PH(γ,G , t), see Section 1 of Chapter IX in [AA10]. It is then possible
to define a new continuous risk process that is such that :

– it evolves the same way as the original risk process in between claim occurences,
– downward jumps due to claims are replaced by oblique lines with slope −1/a for some a > 0.

Rt

u

Re
t

u

V

tT1 tT1

aV

T1 + aV

Figure 1.1 – Original risk process and corresponding continuous process Rt

Letting {Re
t , t ≥ 0} this continuous, embedded process, one has that it verifies Re

0 = u and

dRe
t = p(J(t),Re

t )dt (1.4)

where {J(t), t ≥ 0} is a Markov chain defined on an appropriate state space, and function p(., .) is
defined such that p(J(t),Re

t ) = −1/a whenever J(t) is in a state corresponding to occurrence of a
claim, and p(J(t),Re

t ) = p(Re
t ) otherwise, see Figure 1.1. This construction is very standard, and

is mainly motivated by the fact that the embedded process is a Markov modulated process, which
is a favorite topic in the Matrix Analytic Method community, see for instance [AAU02, BBdSS+05]
as well as Chapter VII of [AA10]. Value of a > 0 is, in the latter papers, equal to 1. Introducing
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1.2. FLUID QUEUE APPROACH IN DIMENSION 1

this extra parameter will enable us to get additional information on quantities other than the ruin
time of process {Rt , t ≥ 0}. Let us note that, by construction, ruin time of the embedded process
similarly defined as

τ e := inf{t ≥ 0| Re
t < 0}

is finite if and only ruin time of the original process is finite, which translates as, with the definition
given in Theorem 1, P(τ < +∞| R0 = u) = ψ(u, +∞). Finally, the analog counterpart of the
dual queueing process (1.2) can also be similarly constructed and is commonly called a Markov
modulated fluid queue, see e.g. Chapter 6 of [Neu81].

In the sequel, one will often use the same notation for the risk process or queueing process and
its embedded version, when no confusion is possible.

1.2 Fluid queue approach in dimension 1

In [RS04] we are interested in Markov modulated, embedded and diffusive version of (1.1)
and (1.2). The queueing process {Q(t), t ≥ 0} verifies the following linear stochastic differential
equation

dQ(t) = λ(X (t))dt − µ(X (t))Q(t)dt + σ(X (t))Q(t)dBt , (1.5)

where {X (t), ∈ R} and {Bt , t ∈ R} are respectively two sided (out of convenience) irreducible
finite stationary Markov chain and brownian motion. Note that, since X (t) has finite state space,
drift and diffusion coefficients in (1.5) are uniformly Lipschitz with respect to Q(t), so that (1.5)
admits a unique solution for a fixed initial condition Q(0). State space of the Markov chain is
denoted by S = {1, ...,N}, its generating matrix is given by Q = (qi j)i ,j∈S2 , and its (stationary)
distribution is denoted π = (πi)i∈S . λ(.), µ(.), σ(.) are non negative functions. Due to the form
of the stochastic differential equation satisfied by Q(t), one has that Q(t) ≥ 0 for all t ≥ 0, so
that compensator {Lt , t ≥ 0} in (1.2) is in fact equal to zero. In that case the corresponding dual
embedded risk process verifies

dRt = ρ(J(t))Rtdt + s(J(t))RtdBt − ν(I (t))dt (1.6)

where {J(t),≥ 0} is a finite Markov chain which has the same distribution as a reversed version of
{X (t), ∈ R}, λ(.) = ν(.), µ(.) = ρ(.)− s(.)2, s(.) = σ(.). In that case, one sees, comparing (1.6)
to (1.4), that Rt is a particular risk process with no premium, and only subject to risky investment
and claims which are Phase type distributed. Although this model is not very common from an
insurance point of view, the equivalent of (1.3) nonetheless holds and one has, letting

W :
D
= lim

t→+∞
Q(t), τ := inf{t ≥ 0| Rt < 0},

respectively the limiting distribution of the queue content and the ruin time, the duality equality

P(τ < +∞| R0 = u) = P(W > u). (1.7)

The aim of [RS04] is to give a closed expression of the first two moments of W . From a queueing
point of view, getting information on the expectation and variance of the steady limiting state of
the queue level is important. From a risk theory point of view, second moment of W can lead to an
upper bound of the probability of eventual ruin, thanks to Tchebychev’s inequality and (1.7). Due
to linearity of the stochastic differential equation (1.5), it turns out that W has a nice expression
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CHAPITRE 1. FROM FLUID QUEUES TO RISK THEORY : DUALITY REVISITED

which is given in the following result :

Theorem 2. Let us set for all t ∈ R

W (t) =

∫ t

−∞
exp

(
−
∫ t

s

[µ(X (v)) + σ(X (v))2/2]dv +

∫ t

s

σ(X (v))dBv

)
λ(X (s))ds. (1.8)

Then

1. W (t) is finite for all t.

2. {W (t), t ∈ R} is a stationary process solving (1.5).

3. Q(t) converges in distribution to W (0) := W , independently of the initial condition Q(0).

The main steps for proving Theorem (2) are the following. We first note that solution to (1.5)
is standard and is given by

Q(t) = Q(0) exp

(
−
∫ t

0
[µ(X (s)) + σ(X (s))2/2]ds +

∫ t

0
σ(X (s))dBs

)
, t ≥ 0.

Having this expression in mind, one then introduces family of processes {Qy
u (t), t ≥ u}, u ∈ R,

y ≥ 0, that satisfy (1.5) for all t ≥ u with Q
y
u (u) = y , so that, similarly,

Qy
u (t) = y exp

(
−
∫ t

u

[µ(X (s)) + σ(X (s))2/2]ds +

∫ t

u

σ(X (s))dBs

)

+

∫ t

u

exp

(
−
∫ t

s

[µ(X (v)) + σ(X (v))2/2]dv +

∫ t

s

σ(X (v))dBv

)
λ(X (s))ds. (1.9)

The main point of proof Theorem (2) is to be able to justify letting u → −∞ in (1.9).
We let Q∗ = (q∗i j)i ,j∈S be the generating matrix associated to the reversed Markov process

{X ∗(t) := X ((−t)+), t ≥ 0}. The relation between Q and Q∗ is given by q∗i j = πjqj ,i/πi .
Likewise, we let {B∗

t := B−t , t ≥ 0} the reversed version of {Bt , t ≥ 0} (both processes have
same distribution). The first moment is given by the following result.

Theorem 3. For all h : S −→ R,

E(W h(X (0))) = πH (Dµ − Q∗)−1
Λ1 (1.10)

where H = diag (h(1), ..., h(N)), Dµ = diag (µ(1), ...,µ(N)), Λ = diag (λ(1), ...,λ(N)) and
1 = (1, ..., 1)′ . In particular, if h(i) = 1 for all i ∈ S we get the expression of the first moment of
W :

E(W ) = π (Dµ − Q∗)−1
Λ1 (1.11)

Expression (1.11) is reminiscent of Expression (4) in [KS02], however with an original model
with Brownian component, which does not show in (1.11). The second moment exists and is given
under the following technical assumption that function σ(.) is not too large :

Assumption 1. ∀i ∈ S , µ(i) ≥ 4σ(i)2 and ∃i ∈ S , µ(i) > 4σ(i)2.

Theorem 4. Let us denote D2µ−σ2 := diag (2µ(1) − σ(1)2, ..., 2µ(N) − σ(N)2), Dµ−2σ2 :=
diag (µ(1)− 2σ(1)2, ...,µ(N)− 2σ(N)2). Then, under Assumption 1, E(W 2) is finite and has the
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1.2. FLUID QUEUE APPROACH IN DIMENSION 1

following expression

E(W 2) = 2π(D2µ−σ2 − Q∗)−1(Q∗ − Dµ−4σ2)−1Λ21

− 2π(Q∗ − Dµ−4σ2)−1Λ(Dµ − Q∗)−1Λ1. (1.12)

Let us skip proof of Theorem 3 and present a sketch of proof of Theorem 4. Assumption 1, at
the time of writing the article, was a sufficient condition ensuring finiteness of E(W 2). No further
thought were given ever since it was published, however it may be on closer look of the proof that
this condition is in fact necessary.

Having proved that second moment exists, we introduce the family of processes {Z u
t , t ≥ u},

u ∈ R, defined by the following linear equation
{

dZ u
t = 2λ(X (t))W (t)dt + [−2µ(X (t)) + σ(X (t))2]Z u

t dt + 2σ(X (t))Z u
t dBt

Z u
u = 0.

(1.13)

One observes resemblance between (1.13) and (1.5). The main difference being, that (1.13) features
the stationary process {W (t), t ∈ R}, of which not a lot is known at this stage. In view of similarity
between {Z u

t , t ≥ u} and {Qy
u (t), t ≥ u}, and of expression (1.8), the following lemma is not

surprising :

Lemma 1. Z 0
t converges in distribution as t → −∞ towards

∫ 0

−∞
exp

(
−
∫ 0

s

[2µ(X (v)) + σ(X (v))2]dt +

∫ 0

s

2σ(X (v))dBv

)
2λ(X (s))W (s)ds. (1.14)

Besides, this random variable is equal to W 2 in distribution.

The rest of the proof consists in computing E(W 2) by taking the expectation of (1.14), which
itself features process {W (t), t ∈ R}. We first make the change of variable t := −t in (1.14) and
obtain that W 2 has same distribution as

∫ ∞

0
exp

(
−
∫ s

0
[2µ(X ∗(v)) + σ(X ∗(v))2]dt +

∫ s

0
2σ(X ∗(v))dB∗

v

)
2λ(X ∗(s))W ∗(s)ds.

(1.15)
where W ∗(s) := W (−s), which in turn verifies from (1.8)

W ∗(s) =

∫ ∞

s

exp

(
−
∫ r

s

[µ(X ∗(h)) + σ(X ∗(h))2/2]dh +

∫ r

s

σ(X ∗(h))dB∗
h

)
λ(X ∗(r))dr .

We also let

M∗(s) := exp

(
−
∫ s

0
[2µ(X ∗(v)) + σ(X ∗(v))2]dv +

∫ s

0
2σ(X ∗(v))dB∗

v

)
,

so that (1.15) reads
∫ ∞

0
M∗(s) 2λ(X ∗(s))W ∗(s)ds.

13
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Generator A′ of Markov process {(W ∗(t),M∗(t),X ∗(t)), t ≥ 0} is given by

A′g(xw , xm, i) = [(µ(i) + σ(i)2)xw − λ(i)]∂xw g(xw , xm, i)

− [2µ(i)− σ(i)2]xm∂xmg(xw , xm, i)

+
1

2
σ(i)2xw2∂

2
xw
g(xw , xm, i) + 2σ(i)2xm2∂

2
xm
g(xw , xm, i)

+ 2σ(i)2xmxw∂xm∂xwg(xw , xm, i) +
∑

j∈S

q∗i jg(xw , xm, j)

for xw ≥ 0, xm ≥ 0, i ∈ S and smooth enough g : R×R×S −→ R. The rest of the proof consists
in finding an appropriate function g(., ., .) solving

A′g(xw , xm, i) = 2xmλ(i)xw , ∀xw ≥ 0, xm ≥ 0, i ∈ S ,

so that, after verifying that Dynkin’s formula is valid, one has

E

(∫ t

0
M∗(s). 2λ(X ∗(s))W ∗(s)ds

)
= E

(∫ t

0
A′g(W ∗(s),M∗(s),X ∗(s))

)

= E(g(W ∗(t),M∗(t),X ∗(t)))− E(g(W ∗(0),M∗(0),X ∗(0))) (1.16)

The righthandside of (1.16) converges to E(W 2) as t → +∞. As to the righthandside, one proves
that term E(g(W ∗(t),M∗(t),X ∗(t))) converges to zero and that E(g(W ∗(0),M∗(0),X ∗(0))) can
be computed and is actually equal to Expression (1.12) thanks to Theorem 1.10 applied to a similar
queueing process as (1.5) with different parameters.

1.3 Stability of stochastic networks and ruin probability in di-

mension N ≥ 2

We wish in this section to see how notion of duality exposed in Section 1.1.1 may be adapted
to a multidimensional setting. Articles presented in this section are [Rab06b] and [Rab06a]. At the
time when they were published, focus was primarily on stochastic networks, i.e. a queueing context.
In the subsequent sub section, we will present main results of those papers, but we will also show
how they can be seen from a risk theory point of view.

The model considered in [Rab06b] and [Rab06a] is that of an N dimensional network of contents
Q(t) = (Q1(t), ...,QN(t))′ that satisfies the analog of (1.2) :





dQ(t) = b(X (t),Q(t))dt + Σ (X (t),Q(t))dBt + (I − P ′)dL(t) for all t ≥ 0
Q(t) ≥ 0 for all t ≥ 0

Li (t) =

∫ t

0
1{Q i (s)=0}dL

i(s) for all t ≥ 0, i = 1, ...,N

(1.17)

where
– The process {X (t), t ∈ R} is ergodic with state space X.
– {Bt = (B1

t , ...,B
N
t )′, t ∈ R} is an N dimensional Brownian motion with independent entries,

independent from {X (t), t ∈ R}.
– For all x ∈ X and y = (y1, ..., yN )′, Σ (x , y) := diag (σ1(x , y1), ...,σN (x , yN)) is a diagonal

matrix, and b(x , y) = (b1(x , y1), ..., bN (x , yN))′ is a column vector.

14



1.3. STABILITY OF STOCHASTIC NETWORKS AND RUIN PROBABILITY IN DIMENSION N ≥ 2

– bi , and σi , i = 1, ...,N, are bounded and Lipschitz functions with respect to the last N

variables, i.e. there exists C > 0 such that for all (x , y1, ..., yN , z1, ..., zN ) ∈ X× [0,+∞)2N

N∑

i=1

|bi (x , y1, ..., yN )− bi(x , z1, ..., zN )| ≤ C

(
N∑

i=1

|y i − z i |
)

N∑

i=1

|σi (x , y i )− σi (x , z i )| ≤ C

(
N∑

i=1

|y i − z i |
)

– P = (pi j)i ,j=1,...,N is a matrix with pi i = 0, pi j ∈ [0, 1] and
∑

j 6=i pi j ≤ 1 and that verifies
the property

Pn → 0, n → ∞, (1.18)

so that (I −P)−1 =
∑∞

n=0 P
n exists and is non-negative. We say that P is an M-matrix, as

defined in [CY01].
P will be referred to as the routing matrix. Practically speaking, pi j corresponds in a queueing
network to the fraction of fluid (data) issued from queue i that is rerouted to queue j . Its inter-
pretation will be especially made clear in Theorem 9 in the following subsection 1.3.2.
N dimensional process {L(t) = (L1(t), ...LN (t))′, t ≥ 0} is, as in dimension 1 in (1.2), component-
wise non decreasing. Note that at first sight, it is not obvious that (1.17) admits a strong solution
{(Q(t), L(t)), t ≥ 0}. Yamada [Yam95] proved that, under the suitable Lipschitz conditions, and
when P is indeed an M-matrix, then indeed a solution to (1.17) exists and is unique when initial
condition Q(0) is fixed.
{X (t), t ∈ R} is commonly referred to the environment in the queueing theory literature. Al-
though, as one will see, it does not add a lot to the technicality to subsequent proofs, it plays an
important role from the modelling point of view, since it represents randomness due to exogenous
factors.

We will make one of the following assumption

Assumption 2. – N = 2
– b1(x , y1, .) and b2(x , ., y2) are non decreasing, for all x ∈ X, y1 ≥ 0, y2 ≥ 0.

Assumption 3. – Σ (., .) ≡ 0,
– bi(x , y1, ..., yN ) ≥ 0 for all x ∈ X, y1 ≥ 0,..., yN ≥ 0,
– for each i = 1, ...,N and each j 6= i , bi (x , y1, ..., yN ) is non decreasing in y j .

In the following we will write v ≥ u for two vectors v and u to express that each component
of v is larger than the corresponding component of u.

1.3.1 From N dimensional fluid network to N dimensional ruin problems.

We now motivate a potential link with multidimensional ruin theory by presenting the dual
embedded risk process in the particular case when Assumption 2 holds, and the external environment
{X (t), t ∈ R} is a finite stationary ergodic Markov chain. This risk process {Rt = (R1

t ,R
2
t )

′, t ≥
0} satisfies, similarly to (1.1) and with the embedding construction explained in Section 1.1.2,

{
dRt = −b(X ∗(t),Rt)dt = −b(X ∗(t),R1

t ,R
2
t )dt

R0 = (u1, u2)′
(1.19)

15



CHAPITRE 1. FROM FLUID QUEUES TO RISK THEORY : DUALITY REVISITED

where X ∗(t) = X ((−t)+) is the reversed Markov chain (as defined shortly after Theorem 2).
Remember that {Rt , t ≥ 0} is the embedded process, so that drift b(X ∗(t),Rt) accounts for
evolution of the process in between claims and during claims. The simplest example (which will be
detailed in the two next sub sections as applications) is the case where −b(X ∗(t),Rt) = −1 when
X ∗(t) is in a state corresponding to occurrence of a claim, and −b(X ∗(t),Rt) is the drift of the
risk process while X ∗(t) is in a state corresponding to evolution in between claims. We let

τ i := inf{t ≥ 0| R i
t < 0}, i = 1, 2.

Note that no matrix P is present in (1.19) (only the drift function as well as the environment
is specified), so that {Rt , t ≥ 0} is defined as the dual process of a process {Q(t), t ≥ 0}
corresponding to any reflecting matrix P . This actually gives a bit of flexibility, as different results
(which rely on upcoming comparison Theorem 7) are given according to whether this matrix is
zero or not. We present two types of results corresponding to these two cases.

Case P = 0. Here we have a bit of freedom and can describe what happens after one branch
hits zero, i.e. after min(τ1, τ2) (corresponding to hitting frontier of the first quadrant). We define
ruin time ν of process {Rt = (R1

t ,R
2
t ), t ≥ 0} as hitting time of point (0, 0)′, as follows. If say

R1
t hits 0 first (i.e. τ1 ≤ τ2) then it is killed and second process evolves according to the equation

dR2
t = −b2(X ∗(t),R1

t ,R
2
t )dt = −b2(X ∗(t), 0,R2

t )dt, t ≥ τ1 = min(τ1, τ2), (1.20)

then hits potentially zero at some random time ν. See Figure 1.2 for an illustration. If R2
t hits 0

τ1 t

R1

t
R2

t

drift −b1(X∗(t), R1

t
, R2

t
)

process killed

drift −b2(X∗(t), R1

t
, R2

t
)

drift −b2(X∗(t), 0, R2

t
)

u2

ν
t

u1

τ1

Figure 1.2 – Sample paths of {R1
t , t ≥ 0} and {R2

t , t ≥ 0} and ruin times.

first then ν is defined the same way by swapping roles of R1
t and R2

t . Then a partial analog of
Theorem 1 holds :

Theorem 5. Let P = 0 and T ∈ (0,+∞) and ψ(u,T ) := P (ν ≤ T | R0 = u) the finite horizon
ruin probability. Then

ψ(u,T ) ≤ P(Q1(T ) ≥ u1,Q2(T ) ≥ u2) ≤ P(min(τ1, τ2) ≤ T | R0 = u) (1.21)
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1.3. STABILITY OF STOCHASTIC NETWORKS AND RUIN PROBABILITY IN DIMENSION N ≥ 2

(1.21) also holds with T = +∞, where Q(∞) = (Q1(∞),Q2(∞)) is understood as the limiting
distribution of Q(t) as t → +∞.

Proof. We use comparison Theorem 7 (mentioned thereafter) in its simplest form when P = 0.
Since the analysis will be on sample paths we suppose w.l.o.g. that on [ν ≤ T ] we have τ1 ≤ τ2.
The starting point is approximately the same as in Theorem 2 : we define for all u ∈ R the
2 dimensional process {Qu

t = (Q1,u
t ,Q2,u

t )′, t ≥ u} that verifies Qu
u = (0, 0)′ and verifies

(1.17) for t ≥ u (replacing 0 by u in that equation), along with corresponding compensator
{Lut = (L1,ut , L2,ut )′, t ≥ u} satisfying Luu = 0. Let us also define {Yt , t ∈ [−ν, 0]} by Yt := R−t .
We note that

– solution {(Zt , Lt), t ∈ [−ν,−τ1]} of dZt = b2(X (t), 0,Zt)+ dLt with Z−ν = 0 is Zt = Y 2
t

and Lt = 0 (since Y 2
t > 0 on (−ν,−τ1]),

– Q2,−ν
−τ1

≥ Y 2
−τ1 , as indeed the fact that b2(x , ., y2) is increasing implies that drift b2(X (t),Q2,−ν

t , .)

of Q2,−ν
t on [−ν,−τ1] is larger than drift b2(X (t), 0, .) of Y 2

t on the same interval, and
since Y 2

−ν = Q2,−ν
−ν = 0. 1

Since in addition Q1,−ν
−τ1 ≥ 0 = Y 1

−τ1 , this entails by Theorem 7 that Q−ν
t ≥ Yt componentwise on

t ∈ [−τ1, 0]. In particular, one has Q−ν
0 ≥ Y0 = (u1, u2)

′. Since again by comparison Theorem 7
one has Q−T

t ≥ Q−ν
t on t ∈ [−ν, 0], one finally obtains on event [ν ≤ T , τ1 ≤ τ2]

Q−T
0 ≥ Q−ν

0 ≥ (u1, u2)
′,

which is also valid on [ν ≤ T , τ1 ≥ τ2] by switching roles of Q1,−T
t and Q2,−T

t , so holds on
[ν ≤ T ].

Now let us suppose that Q−T
0 ≥ (u1, u2)′ and prove that min(τ1, τ2) ≤ T . We actually prove

the stronger fact that min(τ1, τ2) > T ⇒ Q−T
0 < (u1, u2)′. So suppose that min(τ1, τ2) >

T ⇐⇒ Rt > 0 for all t ∈ [0,T ]. We set, as above, Yt := R−t on t ∈ [−T , 0], so that Yt > 0
for all t ∈ [−T , 0]. We remark that {Yt , t ∈ [−T , 0]} is solution to (1.17) with corresponding
compensator Lt = LYt ≡ 0 (remember that Yt is positive, t ∈ [−T , 0], so that compensation is
not necessary), and with Y−T = RT > 0. Since {Q−T

t , t ∈ [−T , 0]} also verifies (1.17) and
Q−T

−T = 0 < Y−T , we thus obtain by Theorem 7 that, at time 0, Q−T
0 < Y0 = R0 = (u1, u2)′.

We then have, all in all,

[ν ≤ T ] ⊂ [Q−T
0 ≥ (u1, u2)′] ⊂ [min(τ1, τ2) ≤ T ].

Since {X (t), t ∈ R} is stationary, Q−T
0 is equal in distribution to Q0

T . (1.21) follows. �

Case P 6= 0. We have the following result.

Theorem 6. Let P be an M-matrix and T ∈ (0,+∞]. One has the following bound for the
probability of hitting the frontier of the first quadrant

P(min(τ1, τ2) > T ) ≤ P(Q1(T ) < u1,Q2(T ) < u2) (1.22)

Proof. Proof of this result lies on the remark that Proof of inclusion [min(τ1, τ2) > T ] ⊂ [Q−T
0 <

(u1, u2)′] in Theorem 5 is valid for any reflection matrix P for process {Q(t), t ≥ 0} (not just

P = 0). We conclude again by the fact that Q−T
0

D
= Q0

T to obtain (1.22). �

1. Note that this is at this point that we need to assume that reflection matrix P is zero. We indeed use here
the famous standard comparison result that states that if two one dimensional, reflected at 0, processes Y

1
t and Y

2
t

satisfy dY
i
t = b

i (t,Y i
t )dt + dL

i
t with Y

1
0 ≤ Y

2
0 and their drifts verify b

1(t, .) ≤ b
2(t, .) for all t ≥ 0 then Y

1
t ≤ Y

2
t

for all t ≥ 0, see [EKCM78].
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We conclude by remarking that P is general in Theorem 6, but that the consequence is that
(1.22) is less accurate than (1.21). Both results are however compatible as, indeed, P(min(τ1, τ2) ≤
T ) ≥ P(ν ≤ T ).

1.3.2 Existence of an asymptotic distribution, and an application to risk theory.

We focus on model (1.17), with one of the Assumptions 2 or 3 holding. The objective of
[Rab06b] is to prove existence of a limiting distribution for Q(t) = (Q1(t), ...,QN (t))′ as t → +∞.
From a queueing point of view, such a result is important as this helps to know if congestion is
almost sure or not in the long run. All results presented in the next two results focus on N = 2. A
risk theory application will be given at the end of this section.

Let us define b̃(x , y1, y2) = (b̃1(., ., .), b̃2(., ., .))′, i = 1, 2, by

b̃(x , y1, y2) := (I − P ′)−1b(x , y1, y2).

The main results of [Rab06b] are the two following :

Theorem 7. Let us suppose that Assumption 2 holds. Let (Yt ,Kt) = ((Y 1
t ,Y

2
t ), (K

1
t ,K

2
t )) and

(Zt , Lt) = ((Z 1
t ,Z

2
t ), (L

1
t , L

2
t )) be two solutions to (1.17) satisfying Y0 ≥ Z0. Then Yt ≥ Zt and

Lt+h − Lt ≥ Kt+h − Kt for all t, h ≥ 0.

Theorem 8. Let us suppose that Assumption 2 holds and

E

(
lim sup
y1→∞

sup
y2≥0

b̃1(X (0), y1, y2)

)
< 0 and E

(
lim sup
y2→∞

sup
y1≥0

b̃2(X (0), y1, y2)

)
< 0. (1.23)

Then there exists a stationary process solution to (1.17). More precisely, there exists an a.s. finite
nonnegative stationary process {W (t) = (W 1(t),W 2(t))′, t ∈ R}, and a couple of processes
{L(t, v) = (L1(t, v), L2(t, v))′, t ≥ v}, nondecreasing in t and non increasing in v , such that for
t ≥ v





W (t) = W (v) +

∫ t

v

b(X (s),W (s))ds +

∫ t

v

Σ (X (s),W (s))dBs + (I − P ′)L(t, v)

L1(t, v) =

∫ s=t

s=v

1{W 1(s)=0}dL
1(s, v)

L2(t, v) =

∫ s=t

s=v

1{W 2(s)=0}dL
2(s, v).

(1.24)
In addition, bivariate process Q(t) = (Q1(t),Q2(t))′ converges in distribution to (W 1(0),W 2(0))
when the queues are initially empty, i.e. Q(0) = (0, 0)′. If (1.23) does not hold convergence in
distribution still holds, but the limiting distribution can be improper.

Theorem 7 resembles Theorem 4.1 of [Ram00]. However there are some differences as [Ram00]
considers the case where functions bi depends on the i -th component of the queue level and
its corresponding compensator, but, more crucially, assumes that this function is increasing with
respect to that queue level (as opposed to Theorem 7, where bi is non decreasing with respect to
the queue levels other than the i -th one). Also, no diffusion is present in [Ram00].

Theorem 8 is proved by using a standard Loynes argument (see [Loy62]) which is also used in a
continuous time case in dimension 1 in [SR00] and [RS03]. The main ingredient for this argument
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here is Theorem 7, which is a comparison theorem for (reflected) stochastic differential equations
in dimension 2. The idea of proof of this result is to obtain a Gromwall estimate of the form

E(NA((Z
1
t − Y 1

t )
+, (Z 2

t − Y 2
t )

+)) ≤ C

∫ t

0
E(NA((Z

1
s − Y 1

s )
+, (Z 2

s − Y 2
s )

+))ds (1.25)

for all t ≥ 0, for a constant C ≥ 0, where NA(.) is the square of an appropriate norm. Since the
initial conditions are such that E(NA((Z

1
0 −Y 1

0 )
+, (Z 2

0 −Y 2
0 )

+)) = E(NA(0, 0)) = 0, this will imply
that E(NA((Z

1
t −Y 1

t )
+, (Z 2

t −Y 2
t )

+)) = 0 for all t ≥ 0, i.e. Z 1
t ≤ Y 1

t and Z 2
t ≤ Y 2

t almost surely.
NA(x1, x2) is of the form (x1, x2)A(x1, x2)

′ for a well chosen definite positive symmetric matrix
A ∈ R

2×2. This choice for A is not completely trivial and depends on matrix P . Furthermore,
estimate (1.25) relies a lot (and it is not obvious at first glance) on the non decreasing properties
of b1(x , y1, .) and b2(x , ., y2) in Assumption 2.

Under Assumption 3 a result akin to Theorem 8 holds in dimension N. Rather than quoting it
in its generality, we will state such a result in a particular queueing context. Let us suppose that
in (1.17) b(., .) has the form

b(x , y1, ..., yN) = λ(x)− (I − P ′)µ(x , y1, ..., yN ) = (b1(x , y1, ..., yN ), ..., bN (x , y1, ..., yN))′

(1.26)
where λ(.) = (λ1(.), ...,λN (.))′ has positive entries and µ(x , y1, ..., yN) = (µ1(x , y1), ...,µN (x , yN))′.
We also suppose that the diffusion coefficient Σ (., .) is zero. This models the following behaviour :
let us suppose that fluid comes from out of the network to queue i at a rate λi (X (t)). We suppose
in this section that, for all i = 1, ...,N, the service rate for queue i , µi(X (t),Q i (t)) only depends
on the queue level Q i(t). We also suppose that µi (x , .) is non decreasing, is Lipschitz, and verifies
∀x , µi (x , 0) ≤ λi(x). In other words, the network does not waste resources by setting a service
rate larger than the exogenous arrival rate when one of the queues is empty. Then it is easy to
check that b(., .) defined in (1.26) satisfies Assumption 3.

In such a context, the equivalent of Theorem 8 is the following :

Theorem 9. Let us suppose that

(I − P ′)−1
E(λ(X (0))) < lim

y1,...,yN→+∞
E(µ(X (0), y1, ..., yN )). (1.27)

Then there exists a non negative stationary vector valued process {W (t) = (W 1(t), ...,W N (t))′, t ≥
0} such that for t ≥ v , W (t) = W (v) +

∫ t

v

b(X (s),W (s))ds, with b(., .) defined as in (1.26).

Moreover, Q(t) = (Q1(t), ...,QN (t))
′ satisfying (1.17) converges in distribution to W (0) as t

tends to infinity, when the network is initially empty.
If (1.27) is not satisfied then Q(t) still converges in distribution, but the limiting distribution

may be improper.

Let us note that when µ(x , y1, ..., yN) = µ(x) is independent from the queue levels, Condition
(1.27) is exactly Condition (1.3) in [KW96]. Furthermore, we underline that stability Conditions
(1.23) and (1.27) are not really intuitive and weaker than the usual conditions

E

(
lim sup
y1→∞

sup
y2≥0

b1(X (0), y1, y2)

)
< 0, E

(
lim sup
y2→∞

sup
y1≥0

b2(X (0), y1, y2)

)
< 0,(1.28)

E(λ(X (0))) < (I − P ′) lim
y1,...,yN→+∞

E(µ(X (0), y1, ..., yN )) (1.29)
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which roughly state that queues converge in distribution if, for each queue, mean drift is negative
for large values of queue levels. Let us point out that (1.28) and (1.29) respectively imply (1.23)
and (1.27) because matrix (I − P ′)−1 has, by propriety of M- matrices, non negative entries.
However the converse is not true in general.

We now present a very naive illustration of how Theorem 8 can be used in risk theory. Let us
consider two branches of an insurance company {(R1

t ,R
2
t ), t ≥ 0} with claims arriving according

to a Poisson process of intensity α > 0. We suppose that, initially, µ1 and µ2 are initial premium
rates for branches 1 and 2. The insurance company decides to adopt the following strategy : a
proportion p12µ1 of premium is sent to branch 2, and a proportion p21µ2 to branch 1, where p12
and p21 lie in (0, 1). Drifts for both branches pi , i = 1, 2, thus now verify, with this new strategy,

p :=

(
p1
p2

)
= (I − P ′)

(
µ1
µ2

)
:= (I − P ′)µ

where P =

(
0 p12
p21 0

)
, which will suppose is an M matrix (or, equivalently, which has a spectral

radius smaller than 1). Note that this strategy is economically saving as the instantaneous premium
rate for the sum of branches R1

t + R2
t is p1 + p2 ≤ µ1 + µ2, so that the difference may be e.g.

invested in other assets. We suppose that claims for both branches arrive at the same time, but are
independent with distribution E(β1) (for branch 1) and E(β2) (for branch 2). This is the situation
known as common shocks, as will be explained later in Section 1.4. {Rt = (R1

t ,R
2
t ), t ≥ 0} then

evolves according to

Rt =

(
u1

u2

)
+ (I − P ′)µt −

Nt∑

k=1

(
V 1
k

V 2
k

)

for some Poisson process Nt of intensity α, (V 1
k )k∈N i.i.d. ∼ E(β1), (V 2

k )k∈N i.i.d. ∼ E(β2). We
let

T := inf{t ≥ 0| Rt /∈ [0,+∞)2} = min(T 1,T 2) (where T i := inf{t ≥ 0| R i
t < 0})

the exit time of the first quadrant, i.e. the minimum of the ruin times of both branches. We embed
this two dimensional risk process similarly as in Section 1.4 (where things will be detailed in a
more general setting) : we consider a Markov chain {J(t), t ≥ 0} with state space {0, 1, 2} and
generating matrix

Q =




−α α 0
0 −β1 β1
β2 0 −β2


 .

The embedded process, that we again call Rt , evolves like the original process when J(t) is in state
0. States 1 and 2 correspond to occurence of claims for both branches. When in state 1, R1

t drops
with rate −1 while R2

t remains frozen ; in state 2, it is R2
t drops with rate −1 while R1

t remains
constant. See Figure 1.3 for an illustration. Embedded process then verifies

{
dRt = (I − P ′)µ(J(t))dt − λ(J(t))dt,
R0 = (u1, u2)′

where µ(0) = (µ1,µ2)
′, µ(1) = µ(2) = (0, 0)′, λ(0) = (0, 0)′, λ(1) = (1, 0)′, λ(2) = (0, 1)′.

Let τ = min(τ1, τ2) be the exit time of the embedded process out of the first quadrant. τ and
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1: premium

1: premium

2: linear drop ∼ E(β1)

3: linear drop ∼ E(β2)

2: jump ∼ (E(β1), E(β2))

Orginal process Embedded process

R1

t

R2

t

R1

t

R2

t

Figure 1.3 – Embedding.

T do not have the same distribution (in fact, τ is stochastically larger than T ). However we have
the equivalence

[τ = min(τ1, τ2) < +∞] ⇐⇒ [T < +∞].

We are interested in finding an upper bound for P(T = +∞| R0 = (u1, u2)′) = P(τ = +∞| R0 =
(u1, u2)′). This quantity is positive if the relative safety loading for each branch is positive, i.e. that
the following holds componentwise

(I − P ′)µ > α

(
1/β1
1/β2

)
. (1.30)

which, as was stated before, is stronger than (1.27). Let us introduce a dual queue {Q(t) =
(Q1(t),Q2(t)), t ≥ 0} associated to embedded risk process {Rt , t ≥ 0} satisfying





dQ(t) = λ(J∗(t))dt − (I − P ′)µ(J∗(t))dt + (I − P ′)dLt
Q(0) = (0, 0)′

Li(t) =
∫ t

0 1{Q i (s)=0}dL
i(s), i = 1, 2,

(1.31)

where {J∗(t), t ≥ 0} is the reversed version of Markov chain {J(t), t ≥ 0}. The following gives
an upper bound for P(T = +∞| R0 = (u1, u2)′).

Proposition 1. P(T = +∞| R0 = (u1, u2)′) verifies the following upper bound

P(T = +∞| R0 = (u1, u2)′) ≤ P(W 1 ≤ u1,W 2 ≤ u2) (1.32)

where the corresponding dual queue {Q(t), t ≥ 0} of bivariate risk process {Rt , t ≥ 0} converges
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in distribution to a finite random variable W = (W1,W2)
′.

Proof. We use Theorem 6 with T = +∞, which exactly reads (1.32). �

Let us note that W depends on matrix reflection P in (1.31) in term (I − P ′)dLt (which
happens to be the same one appearing in drift λ(J∗(t))− (I − P ′)µ(J∗(t)), for reasons explained
later). By taking a matrix reflection equal to 0, it is not too difficult to see that the upper bound
in (1.32) would have been replaced by P(W 0,1 ≤ u1,W 0,2 ≤ u2) from the middle term of (1.21)
in Theorem 5 for some W 0 = (W 0,1,W 0,2) which is the limit in distribution of process, say
{Q0(t), t ≥ 0}, with same drift as {Q(t), t ≥ 0} but with reflection matrix 0 (remember that
Theorem 5 corresponds to a reflection matrix which is zero). However, this latter upper bound
would not be as tight as the one in (1.32) : this due to the fact that process {Q0(t), t ≥ 0}
verifies Q0(t) ≤ Q(t) by (4.6) of Theorem 4.1 of [Ram00] (thanks to the fact that 0 ≤ pi j , which
is exactly assumption (4.2) in that theorem).

There now remains to be convinced why upper bound in (1.32) is more easily dealt with than
directly P(T = +∞| R0 = (u1, u2)′). It seems that studying the asymptotic stationary distribution
W is an active topic. [Miy13] provides some information on the behavior of P(W 1 ≤ u1,W 2 ≤ u2)
as (u1, u2) tends to infinity, which could provide upper asymptotic bounds for P(T = +∞| R0 =
(u1, u2)′). Also, we did not consider the case where premium rates depend on queue level for
presentation purpose, although this aspect would have been even more interesting and challenging
(and more difficult).

1.3.3 Linear rates in a stochastic fluid network and case of a risk process with
reinvestment

We consider in [Rab06a] the particular model (1.17) where {X (t), t ≥ 0} is a finite stationary
Markov chain on a state space S = {1, ...,K}, b(., .) has the form (1.26) seen in the previous
subsection, and where service rates are constant and equal to µi , i = 1, ...,N. Letting

A := (I − P ′)diag(µ1, ...,µN) = (ai j)(i ,j)∈{1,...,N}2, (1.33)

then b(x , y1, ..., yN) in (1.26) reads

b(x , y1, ..., yN ) = λ(x)− A(y1, ..., yN )′.

Note that this model is the N dimensional counterpart to the one dimensional model (1.5) studied in
Section 1.2 without noise. Solution to (1.17) is in that case L(t) = (0, ...0)′ (there is no reflection)
and Q(t) given by

Q(t) = exp(−At)Q(0) +

∫ t

0
exp(−A(t − s))λ(X (s))ds.

The following is the analog of Theorem 1.8 in an N-dimensional setting :

Proposition 2. Q(t) converges in distribution independently of the initial conditions to

W = (W1, ...,WN )
′ :=

∫ 0

−∞
exp(As)λ(X (s))ds,
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which by making the variable change s := −s is

W =

∫ ∞

0
exp(−As)λ(X ∗(s))ds. (1.34)

The remaining of this subsection is devoted to finding joint moments of the Wi ’s. We define
the joint Laplace transform of W given X ∗(0) : ∀i ∈ S , ∀u = (u1, ..., uN )

′ ∈ (−∞, 0]N ,

φi (u) := E(exp(u′W )|X ∗(0) = i) = E

(
exp

(
N∑

k=1

ukWk

)∣∣∣∣∣X
∗(0) = i

)

and we set φ(u) := (φ1(u), ...,φK (u))
′. In order to avoid too cumbersome notation we will let

N := {1, ...,N}. We also set

∀l ∈ S Λ(l) := diag (λ1(l), ...,λN (l)).

In the following we will use the following notation for indices in N n

ln := (l1, ...ln), kn := (k1, ...kn).

By a classical renewal argument, one has the following differential equation for φ(.) (remember
that Q∗ is the matrix generator of reversed Markov chain {X ∗(t), t ∈ R}) :

Proposition 3. φ satisfies the following differential equation for u ∈ (−∞, 0]N :

∇φ(u) A′u = (F (u) + Q∗)φ(u) (1.35)

where F (u) := diag (u′λ(1), ..., u′λ(K )), and ∇φ(u) is the K ×N matrix of which (i , j)th element
is ∂jφi (u), i ∈ S , j ∈ N (gradient of φ).

Proving Proposition 3 is done in two steps. First, one proves by a classical renewal argument
that φ(u) satisfies some integral equation of the form

φ(u) =

∫ ∞

0
χν(u, x)φ(exp(−A′x)u)dx

for a smooth enough χν : (−∞, 0]N × [0,+∞) −→ R

K×K , and where ν is some large enough
positive parameter, issued from uniformization of Markov chain {X ∗(t), t ∈ R}. This in particular
entails that φ(.) is (infinitely) differentiable. Then one obtains (1.35) by manipulating the above
integral equation and letting ν → +∞.

We aim at determining recursively the following quantities

mn
i (ln) = mn

i (l1, ..., ln) := E(Wl1 ...Wln |X ∗(0) = i), i ∈ S , ln ∈ N n

from which joint moments E(W n1
1 ...W nN

N |X ∗(0) = i), n1, ..., nN ∈ NN , are available. We set

mn(ln) := (mn
1(ln), ...,m

n
K (ln))

′ ∈ RK×1,

mn := {mn(ln), ln ∈ N n}.

mn is thus a family of column vectors indexed by N n, with m0 := (1, ..., 1)′ ∈ RK×1. We also
introduce
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• A(n) =
(
a
(n)
ln,kn

)
(ln,kn)∈N

n×N n
the Nn × Nn matrix defined by

a
(n)
ln,kn

=





∑n
i=1 ali li if ln = kn
aliki if lj = kj , j 6= i , and li 6= ki
0 otherwise.

(1.36)

• for all n ∈ N the (Nn × K )× (Nn−1 × K ) block matrix by

Λ(n) =
(
b
(n)
ln,kn−1

)
(ln,kn−1))∈N

n×N n−1

where each b
(n)
ln,kn−1

is a K × K matrix defined by

b
(n)
ln,kn−1

:=





diag (λki (1), ...,λki (K )) if lp = kp , p = 1, ..., i − 1,
and lp+1 = kp , p = i , ..., n − 1

0 otherwise.

• Finally, we denote by IS and IN n respectively the K × K and Nn × Nn identity matrices.

Before stating the result that gives relation between mn and mn−1, we first observe that (1.35)
reads for each j ∈ S

∑

p∈N

(
∑

k∈N

akpuk

)
∂pφj (u) =

(
∑

i∈N

uiλ
i (j)

)
φj(u) +

∑

k∈S

q∗jkφk(u). (1.37)

Differentiating the above with respect to li , i = 1, ..., n, and evaluating at u = (0, ..., 0)′ , we then
arrive at

∑

p∈N

n∑

i=1

alipm
n
j (l1, ..., li−1, p, li+1, ..., ln) =

n∑

i=1

λli (j)mn−1
j (l1, ..., li−1, li+1, ..., ln)

+
∑

k∈S

q∗jkm
n
k(l1, ..., ln)

for all ln = (l1, ..., ln), which reads in a more compact form

(
A(n) ⊗ IS

)
mn = Λ(n)mn−1 + (IN n ⊗Q∗)mn

⇐⇒
(
A(n) ⊗ IS − IN n ⊗ Q∗

)
mn = Λ(n)mn−1 (1.38)

where we recall that if M = (mi j) is a d × d matrix and N is a p× p matrix, M ⊗N ∈ Rdp×dp is
the Kronecker product of matrices M and N.

One then sees that, provided that the (NnK )× (NnK ) matrix

M(n) := A(n) ⊗ IS − IN n ⊗ Q∗

is invertible, then one gets from (1.38) an expression of mn in function of mn−1. This is in fact
not obvious, and is precisely the point of the following result, which states that this is true under
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certain hypothesis on matrix A :

Theorem 10. Suppose that A verifies

(C1)





∀i = 1, ...,N,

n∑

j=1

ai j ≥ 0,

∃i0 ∈ {1, ...,N},
n∑

j=1

ai0j > 0.

Then A(n) ⊗ IS − IN n ⊗ Q∗ is invertible and (mn)n∈N is determined recursively by the relation

mn =
(
A(n) ⊗ IS − IN n ⊗ Q∗

)−1
Λ(n)mn−1 (1.39)

with m0 = (1, ..., 1)′ .

We recall that A is defined by (1.33). It is easy to check that A′ satisfies (C1). This is due to
the fact that matrix P is stochastic and verifies (1.18). However, A does not necessarily satisfisfies
this condition. The general case will be dealt with in a subsequent result, but we are first going to
give some elements of proof of Theorem 10. We first say that some square matrix R satisfies (C2)
if

(C2) • R satisfies (C1),
• R is of the form R = DR − CR where DR is a diagonal matrix with positive diagonal

elements, and CR is a matrix with 0’s on its diagonal and non-negative off-diagonal
elements,

• CR is irreducible (in the sense that its corresponding directed graph is strongly connected,
see Definition 2 p.50 of [Gan66]).

The following lemma is a consequence of Lemma 2.2.1 in [Neu81] :

Lemma 2. Let R be a matrix satisfying (C2). Then R is invertible.

One then first proves that A(n) satisfies (C2), then that A(n) ⊗ IS also satisfies this condition.
Thus it has a decomposition of the form A(n) ⊗ IS = DA(n)⊗IS

−CA(n)⊗IS
as explained in Condition

(C2). Since Q∗ is the generating matrix of a Markov chain, IN n ⊗ Q∗ is a matrix of negative
diagonal elements and non-negative off-diagonal elements, of which sums on each row add up to
zero. This implies that M(n) has a decomposition of the form

M(n) = DM(n) − CM(n).

The final step consists in veryfying that M(n) verifies (C1) and that CM(n) is irreducible, which
implies that it is invertible thanks to Lemma 2.

We now turn to the case where A does not verify (C1). The trick is to notice that A′ = Dµ(I−P)
satisfies (C2), then to write A′ in the form

A′ = J − L

where J is a diagonal matrix and, most importantly, L is the generating matrix of an irreducible
stationary Markov chain say {Y (t), t ∈ R}. If we let (ν1, ..., νK ) its distribution and H :=
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diag (ν1, ..., νN ), then L∗ := H−1L′H is the generating matrix of its reversed version {Y ∗(t) :=
Y ((−t)+), t ∈ R}. One can check that this in particular implies that

Â := J − L∗

verifies (C2). Since J and H are diagonal matrices, one has that

Â = H−1AH ⇐⇒ A = HÂH−1.

Let us set λ̄(.) := H−1λ(.), and consider

Ŵ :=

∫ ∞

0
exp(−Âs)H−1λ(X ∗(s))ds =

∫ ∞

0
exp(−Âs)λ̄(X ∗(s))ds

= H−1W .

Since Â satisfies (C2), one can obtain all joint moments of Ŵ by replacing A by Â and λ(.) by
λ̄(.) in Theorem 10. This yields joint moments of W thanks to relation W = HŴ .

To finish this subsection, and as in subsection 1.3.2, we link how these results can be applied
to the 2 dimensional simple continuous ruin model (1.19) which here reads

{
dRt = ARtdt − λ(X ∗(t))dt
R0 = (u1, u2)′.

(1.40)

This is a model with two branches R1
t ,R

2
t , where claims (modelled by λ(X ∗(s))dt) are paid to

subscribers at a continuous (modulated) rate. The most interesting part in (1.40) is that each
branch i ∈ {1, 2} is continuously reinvested at rate µi , but also that funds are transferred
from branch i to branch j at rate pj iµ

jR
j
t . Thus we have a simple 2 dimensional risk process

with transactions, however without premium rate, as in the 1 dimensional application (1.6). As
explained in Theorem 5, ruin probability ψ(u, +∞) = P(ν < +∞| R0 = u) (where definition
of ruin time ν is explained in Section 1.3.1) is related to the stationary limiting random variable

W
D
= limt→∞Q(t) where {Q(t) = (Q1(t),Q2(t))′, t ≥ 0} is defined along with its compensator

{Lt = (L1t , L
2
t )

′, t ≥ 0} by the reflected equation





dQ(t) = λ(X (t))dt − ARtdt + dLt
Lit =

∫ t

0 1{Q i (s)=0}dL
i
s , i = 1, 2,

Q0 = (0, 0)′.

(1.41)

where matrix reflection here is P = 0 with notation of Section 1.3.1. As recalled in the beginning
of the present section, the compensator is Lt ≡ (0, 0)′, so that W is given by (1.34) in Proposition
2. By inequality (1.21) in Theorem 5 with T = +∞, W = (W 1,W 2)′ is thus such that

ψ(u, +∞) ≤ P(W 1 ≥ u1,W 2 ≥ u2), (1.42)

so bounds for ψ(u, +∞) are available thanks to moments of W = (W 1,W 2)′ computed in this
section. Note that point (0, 0)′ has a special role for risk process {Rt , t ≥ 0}. It turns out that it
is the summit of cone C := {(r1, r2) ∈ R2| µ1r1 − p21µ

2r2 < 0, µ2r2 − p12µ
1r1 < 0} = {(r1, r2) ∈

R

2| r2 > µ1

µ2
1
p21

r1, r2 <
µ1

µ2 p12r1} ⊂ R2 illustrated in Figure 1.4. Besides, it can be checked that C
is absorbing for process {Rt , t ≥ 0} if direction of claims −λ(i), i = 1, ...,K , is included in cone
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cone C

R1

t

R2

t

(u1, u2)

(R1

ν
, R2

ν
)

(R1

τ1 , R2

τ1) (case τ1 ≤ τ2)

Figure 1.4 – Cone C and sample path up to ruin, no premium.

C. In other words, risk process {Rt , t ≥ 0} enters C through its summit and (0, 0)′ can be seen as
a "definitive ruin threshold" for this model without premium. This terminology will be used in the
forthcoming Section 1.4.

One might wonder what kind of result one has if one introduces premium rates for Rt . Let us
then suppose that it satisfies, instead of (1.40),

{
dRt = pdt + ARtdt − λ(X ∗(t))dt
R0 = (u1, u2)′

(1.43)

where p = (p1, p2)
′ are premium rates, with pi > 0, i = 1, 2. Remembering that A = (I −

P ′)diag(µ1,µ2), the trick is to set R̃t := Rt+diag(1/µ1, 1/µ2)(I−P ′)−1p. Then R̃t satisfies (1.40)
with a different initial condition R̃0 = ũ = (ũ1, ũ2)′ = (u1, u2)′ + diag(1/µ1, 1/µ2)(I − P ′)−1p.
The ruin probability ν of R̃t verifies inequality analog to (1.42)

P(ν < +∞| R̃0 = ũ) ≤ P(W 1 > ũ1,W 2 > ũ1).

Ruin probability ν for R̃t is interpreted for Rt as follows : it corresponds to first hitting time of Rt ,
starting from (u1, u2)′, of point

(s∗1 , s
∗
2 )

′ := −diag(1/µ1, 1/µ2)(I − P ′)−1p ∈ (−∞, 0)2.

As for the case without premium, (s∗1 , s
∗
2 )

′ can also be seen as a "definitive ruin threshold", see
Figure 1.5.

A future work is to complexify model and either add modulation for matrix A or replace
continuous decreasing process −λ(X ∗(s))dt by a negative jump process dSt . Adding a premium
rate to (1.40), as explained in section 1.2, amounts to consider the time of absolute ruin, rather
than time of ruin. This is precisely the point of the following section.
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(u1, u2)
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2
)

R2

t

Figure 1.5 – Cone C and sample path up to ruin, with premium.

1.4 A particular multidimensional risk model with common shocks

We present here the part of [Rab09] dealing with risk processes in dimension larger than 1 with
reinvestment. Note that this corresponds to model (1.40) studied in the previous subsection without
injection to one capital from the other branches, but with premium rates and claim occurrences
modelled by a jump process. We first start by giving results for a certain risk process in dimension
1 associated to its dual fluid queue, then explain, by again a duality argument, how one can pass
from results related to this fluid queue to the multidimensional ruin problem.

1.4.1 Risk processes with reinvestment and absolute ruin.

We consider the following risk process
{

dRt = δ(Φ(t))Rtdt + c(Φ(t))dt − dS(t)
R0 = x .

(1.44)

Notation differ slightly from the previous sections :
– The process {Φ(t), t ≥ 0} is an underlying finite continuous time stationary irreducible

Markov chain of state space denoted by EΦ , describing the state of the environment, and of
infinitesimal matrix M. We let π = (πi , i ∈ EΦ) be its stationary distribution.

– S(t) is the aggregate claim amount at time t. It is a non decreasing, piecewise constant
process, of which jumps occur when a separate independent irreducible stationary Markov
chain ΦS(t) reaches certain states. Given the state of the underlying Markov chain Φ(t) = i

at time t, its jumps follow a Phase type distribution PH(γi ,Gi , ti ), as defined in the beginning
of Section 1.1.2.

– δ(Φ(t)) > 0 is the instant rate of credit interest when the surplus Rt > 0, and the instant
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rate of debit interest when Rt ≤ 0 (see e.g. [CGY06] for details).
– c(Φ(t)) is the premium rate.

In other words, process (1.44) is one dimensional risk process with Phase type distributed inter-
claims, Markov modulated reinvestment and premium rate, and Phase type distributed claims (of
which distribution is also modulated). According to SubSection 1.1.2, the corresponding embedded
process, also denoted by {Rt , t ≥ 0} verifies

{
dRt = δ(ϕ(t))Rtdt − h(ϕ(t))dt
R0 = x ,

(1.45)

for an extended Markov chain {ϕ(t), t ∈ R} of extended state space Eϕ, with infinitesimal
generator matrix T . We recall that a parameter a > 0 has to be taken into account in embedding
(1.45), although dependence of Rt on a is not mentioned.

Contrarily to the previous sections, we are here going to study the time of absolute ruin defined
by

T∗(x) := inf{s ≥ 0 | Rs < s∗},
and its counterpart for the embedded process τ∗a(x) (here dependence on a is recalled), where
s∗ < 0 is the definitive ruin threshold defined by

s∗ = min{−c(i)/δ(i), i ∈ EΦ}.

This definitive ruin threshold is justified by the fact that, once below this value, process Rt can
never recover and can no longer return to set [s∗, +∞), see e.g. [GY07]. The corresponding dual
queueing process is in that case

{
dQt = −δ(ϕ∗(t))Qtdt + h(ϕ∗(t))dt
Q0 = s∗.

(1.46)

Qt is here reflected at s∗, not 0, because we are interested in the first passage time below s∗. Let
us note that in that case corresponding compensator {Lt , t ≥ 0} is zero as process {Qt , t ≥ 0}
defined in (1.46) is always larger than s∗.

In view of introducing distributions of T∗(x) and τ∗a(x), we let

Fi (t, x) = P(τ∗(x) < t, ϕ(0) = i), for i ∈ Eϕ

Fi (t, x) = P(T∗(x) ≤ t, Φ(0) = i) for i ∈ EΦ

the cdf of (absolute) ruin times of respectively the original and embedded process. The reason why
one is interested in τ∗a(x) and not just in T∗(x) is that τ∗a(x) accounts for the lump of money
V∗(x) that the insurance company can pay up to (absolute) ruin. This means that S(T∗(x))−V∗(x)
is the shortage of money that has to be paid in order to credit the very last claim that caused ruin,
i.e. the ruin severity. Free parameter a > 0 enables to consider joint Laplace transform of T∗(x)
and V∗(x) ; this is done in the following result :

Proposition 4. The Laplace transform ψ∗i (u, v) := E
(
exp(−uT∗(x)− vV∗(x))1{Φ(0)=i}

)
of the

joint distribution of (T∗(x),V∗(x)), x ≥ 0, and Φ(0) = i , i ∈ EΦ , verifies

ψ∗i (u, v) =
πai
πi

∫ ∞

0
e−tg∗i (v/u, dt/u)
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for all u, v > 0, where g∗i (a, t) = P(τ∗a(x) ≤ t, ϕ(0) = i), x ≥ s∗.

Duality between the embedded risk and queueing process is given by the analog of Theorem
1 :

Proposition 5. For all t ≥ 0, x ≥ s∗ and i ∈ Eϕ, P(τ∗(x) < t, ϕ(0) = i) = P(Qt > x , ϕ∗(t) = i).

We present results concerning the Laplace transforms in x of x 7→ (Fi (t, x))i∈Eϕ and x 7→
(Fi (t, x))i∈EΦ

. We introduce

ck(t, i) :=

∫ +∞

s∗
xkFi(t, x)dx , ck(t) := (ck(t, i), i ∈ Eϕ), k ∈ N. (1.47)

It can be proved that expression of the ck(t) is given recursively in the form

ck(t) =

(∫ t

0
(ck−1(u)kH +∆k(u))e

−(T∗−(k+1)Dδ)udu

)
e(T

∗−(k+1)Dδ)t , k ≥ 1, (1.48)

where T ∗ is the matrix generator of reversed Markov process {ϕ∗(t), t ≥ 0}, Dδ = diag(δ(i), i ∈
Eϕ), H = diag(h(i), i ∈ Eϕ), and for some matrix valued function ∆k(.). The Laplace transform
of x 7→ (Fi(t, x))i∈Eϕ is then denoted by

Ψ∗(t, θ) :=

∫ ∞

s∗
eθxF (t, x)dx =

∞∑

k=0

θk

k!
ck(t). (1.49)

We note that, thanks to Fubini and duality relation in Proposition 5, one can check that Ψ∗(t, θ)
is related to Laplace transform of the corresponding dual queue level E(eθQt ) via

θΨ∗(t, θ) = E(eθQt1{ϕ∗(t)=.})− eθs
∗

πa. (1.50)

A similar approach yields an expression of Laplace transform of x ∈ [s∗, +∞) 7→ (Fi (t, x))i∈EΦ

∫ ∞

s∗
eθxF(t, x)dx

which we will suppose has some closed expression. We will also suppose from now on that, thanks
to an inverse Laplace transform, Fi(t, x) and Fi (t, x) are available for all i , t and x ≥ s∗, although
one is aware that, from a practical point of view, efficient and computationally fast inversion of
Laplace transform is not always easy to perform.

Another aspect mentioned in [Rab09], is that double Laplace tranforms in x and t of distribution
of first passage times below zero

T (x) = inf{s ≥ 0 | Rs < 0}

and τa(x) (for the embedded process) are available, only when jumps are exponentially distributed
with same parameter, and when Markov chain Φ(t) has a special structure (for example, when
interclaims have same Phase type distribution). This again rises the computational issue of inverting
the Laplace Transform to get e.g. the cumulative distibution function of T (x).
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1.4.2 The RK valued risk process.

We now consider a K -dimensional analog of (1.45). Let {Rt = (R1
t , ...,R

K
t ), t ≥ 0} be a

process , of which R i
t will be referred to as the i -th branch, satisfying

{
dRt = δ(Φ(t))Rtdt + c(Φ(t))dt − dS(t)
R0 = x = (x1, ..., xK )

′ ∈ RK .
(1.51)

where {Φ(t), t ≥ 0} is a modulating Markov chain, ci (Φ(t)), δ(Φ(t)) and Si(t) respectively are
the premium rate, interest rate (which is identical for all branches) and the total claim amount at
time t for the ith branch. Claims are assumed Phase type distributed, with possible correlations.
As in the one dimensional case, one objective is to embed this risk process into a continuous one.
However, there are several ways of doing this embedding, that vary in function of structure of the
K -dimensional jump process {S(t), t ≥ 0}. We will detail the construction when all processes
Si (t) jump at the same time. This means that claims occur at the same moment, when they do
occur ; in particular this includes the case where a claim amount is equal to zero (i.e., no claim)
for one branch and positive for another.

The embedding process, again denoted by {Rt = (R1
t , ...,R

K
t ), t ≥ 0}, is as follows : at the

time of occurrence of a claims, the vertical jump due to the claim (if any) for branch 1 is replaced
by an oblique line with slope −1/a1 where a1 > 0 is a free parameter. In the meantime, all other
branches are "frozen". Then, vertical jump due to the claim for branch 2 is replaced by an oblique
line with slope −1/a2 and other branches are frozen, and so on. This construction is graphically
illustrated in Figures 1.6 and 1.7. The continuous embedded process then verifies the analog of

T

V1

t

x1

R1
t

T

V2

x2

t

R2
t

Figure 1.6 – Original risk processes

(1.45) : {
dRt = δ(ϕ(t))Rtdt − h(ϕ(t))dt
R0 = x = (x1, ..., xK )

′ ∈ RK (1.52)

where ϕ(t) is, as in subsection 1.4.1, an extension of the initial Markov chain Φ(t) that depends
on several positive free parameters a1,...,aK , and h(ϕ(t)) = (h1(ϕ(t)), ..., hK (ϕ(t))) is now a
K -dimensional process. For each process, one can define as in subsection 1.45 the definitive ruin
threshold s∗k = min{−ck(i)/δ(i), i ∈ EΦ}, k = 1, ...,K , and times of absolute ruin τk∗ak (x),
k = 1, ...,K for each branch. The goal of this section is study joint distribution of

(τ1∗a1(x), ..., τ
K
∗aK (x)),
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Figure 1.7 – Corresponding embedded risk processes

and in particular in the exit time τ∗(x) = τ∗a1,...,aK (x) out of domain D defined as

D =

K∏

i=1

[s∗i , +∞) ⊂ RK ,

τ∗(x) = inf{t ≥ 0| Rt /∈ D} = min(τ1∗a1(x), ..., τ
K
∗aK

(x)).

Since the s∗i ’s are definitive ruin thresholds, D can be seen as a recovery zone for the multidi-
mensional risk process, which means that, even if one of the branch is negative (i.e. Rt exits set
[0,+∞)K ), then it can always (with positive probability) become solvable again later on so long
as it stays in D. See Figure 1.8 for a sample path. Also note that RK \D is an absorbing set for
{Rt = (R1

t , ...,R
K
t ), t ≥ 0}. The exit time out of D of the original (not embedded) risk process is

denoted by T∗(x). Similarly to Proposition 4 in the one dimensional case, the point of working with
τ∗(x) = τ∗a1,...,aK (x) and not T∗(x), is that free parameters a1,..., aK allow for some flexibility and
yield joint distribution of T∗(x) and the amount of money V∗i (x) (i = 1...K ) paid by each branch
upon exiting D :

Proposition 6. Let x = (x1, ..., xK ) ∈ D. The Laplace transform

ψ∗i (u, v1, ..., vK ) = ψ∗i (x , u, v1, ..., vK ) := E
(
exp(−uT∗(x) − v1V∗1(x)− ...− vKV∗K (x))1{Φ(0)=i}

)

of the joint distribution of (T∗(x),V∗1(x), ...,V∗K (x)), x ≥ 0, and Φ(0) = i , i ∈ EΦ, verifies

ψ∗i (u, v1, ..., vK ) =
π
v1/u,...,vK/u
i

πi

∫ ∞

0
e−tgi (v1/u, ..., vK /u, dt/u)

for all u, v1, ..., vK > 0, where gi (a1, ..., aK , t) = P(τ∗a1,...,aK (x) ≤ t, ϕ(0) = i).
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Figure 1.8 – Sample path of the multidimensional risk process

The remaining of this section is devoted to determining the Laplace transform in x =
(x1, ..., xK )

′ ∈ D of quantity P(τ∗a1,...,aK (x) ≤ t, ϕ(0) = i), i.e.
∫

x∈D
ev

′x
P(τ∗a1,...,aK (x) ≤ t, ϕ(0) = i)dx , v = (v1, ..., vK )

′ ∈ [0,+∞)K , i ∈ EΦ (1.53)

so that in turn it will be possible from Proposition 6 to get the Laplace transform in x of
ψ∗i (x , u, v1, ..., vK ) :

∫

x∈D
ev

′xψ∗i (x , u, v1, ..., vK )dx , v = (v1, ..., vK )
′ ∈ [0,+∞)K , i ∈ EΦ.

Again, we recall that a subsequent issue is to practically invert these multivariate Laplace transforms.
Getting back to (1.53), one has, thanks to the inclusion-exclusion formula :

P(τ∗a1,...,aK (x) ≤ t, ϕ(0) = i) = P




K⋃

j=1

[τ j∗(xj) < t], ϕ(0) = i




=
∑

I⊂{1,...,K}

(−1)Card(I )+1
P



⋂

j∈I

[τ j∗(xj) < t], ϕ(0) = i




=
∑

I⊂{1,...,K}

(−1)Card(I )+1
P

(
AI
t , ϕ(0) = i

)
(1.54)
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where AI
t = AI

t(x) :=
⋂

j∈I [τ
j
∗(xj ) < t], so that computing (1.53) amounts from (1.54) to find

∫

x∈D
ev

′x
P

(
AI
t(x), ϕ(0) = i

)
dx . (1.55)

Step 1 : a duality result. As in Proposition 5, one has the following duality between embedded
process {Rt = (R1

t , ...,R
K
t ), t ≥ 0} verifying (1.52) and a K -dimensional dual queue {Qt =

(Q1
t , ...,Q

K
t ), t ≥ 0} that verifies

{
dQt = −δ(ϕ∗(t))Qtdt + h(ϕ∗(t))dt
Q0 = s∗ = (s∗1 , ..., s

∗
K )

′.
(1.56)

Proposition 7. For all t ≥ 0, x ∈ D, I ⊂ {1, ...,K} and i ∈ Eϕ, P(AI
t , ϕ(0) = i) = P(C I

t , ϕ
∗(t) =

i), where C I
t = C I

t (x) :=
⋂

j∈I [Q
j
t > xj ].

Step 2 : the dual queue. We introduce for all v = (v1, ..., vK )
′ ∈ [0,+∞)K

qvt := v ′Qt .

Since Qt satisfies the linear equation (1.56), it easy to check that {qvt , t ≥ 0} verifies the following
one dimensional linear equation

{
dqvt = −δ(ϕ∗(t))qvt dt + v ′h(ϕ∗(t))dt
qv0 = v ′s∗ = v1s

∗
1 + ... + vK s

∗
K .

(1.57)

A crucial remark is that, up to notation, {qvt , t ≥ 0} satisfies a linear equation similar to the one
dimensional equation (1.46) (replacing s∗ by v ′s∗ and h(.) by v ′h(.)). Thus we are exactly in the
situation of subsection 1.4.1, so that from (1.50) one has expression of E(

(
exp(qvt )1{ϕ∗(t)=i}

)
) =

E
(
exp(v ′Qt)1{ϕ∗(t)=i}

)
for all v = (v1, ..., vK )

′ ∈ [0,+∞)K .
Step 3 : Achieving computation of (1.55), hence of (1.53). Thanks to Proposition 7 , and
by Fubini, for all I ⊂ K and i ∈ EΦ :

∫

x∈D
ev

′x
P

(
AI
t(x), ϕ(0) = i

)
dx

=

∫

x=(x1,...,xK)∈D
ev

′x
P



⋂

j∈I

[τ j (xj) < t], ϕ(0) = i


 dx

= E



∫

x=(x1,...,xK )∈D
ev

′x
∏

j∈I

1
{Q j

t>xj}
dx1{ϕ∗(t)=i}




= E



∏

j∈I

1

vj

[
evjQ

j
t − e

vj s
∗
j

]∏

j /∈I

1

vj
e
vjs

∗
j 1{ϕ∗(t)=i}




=
K∏

j=1

1

vj

∏

j /∈I

e
vj s

∗
j ×

∑

A⊂I

[
∏

k /∈A

(−evk s
∗
k )E

(
∏

k∈A

evkQ
k
t 1{ϕ∗(t)=i}

)]
. (1.58)

Since, by Step 2, E
(∏

k∈A evkQ
k
t 1{ϕ∗(t)=i}

)
has an explicit expression, one plugs (1.58) into the
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integral with respect to x ∈ D of (1.54) to obtain expression of (1.53).
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Chapitre 2

Proportional Reinsurance

This chapter is dedicated to a special case of multidimensional risk theory. We will consider
here a two dimensional risk process verifying the following conditions :

– Premia are paid at fixed (possibly modulated) rates for each branch.
– There are up to two sources of incoming claims ; each claim from a source is split according

to a fixed proportion towards each branch.
– There may be a common interest force for each branch.

Traditionnally, one branch plays the role of an insurance company (the "cedent") which needs to
have some of its risky claims covered, and the other one is a reinsurance company, which covers
those claims. The situation described here corresponds to quota share reinsurance. In the following
sections, each aspect (but not all at a time) will be present. The quantities that will be studied in
this chapter will be redefined in each part, but will essentially be one of the following

– the exit time out of the first quadrant, i.e. the ruin time of one of the branches,
– the exit time out of the third quadrant, which corresponds to simultaneous ruin of all

branches.
In Section 2.1 we consider a model with one source of incoming claims and an interest rate. In
Section 2.2 a model with two sources, reinsurance on one source, but no interest rate is considered.
At first sight it may seem that Section 2.1 deals with a more general case ; In fact this is not true
as the arguments used in Section 2.1 are specific to the model and cannot be used when there is
no interest rate. Finally, in Section 2.3 we consider a model with two sources of claims (and no
interest rate).

Notation, especially on the model, will be set at the beginning of each section.

2.1 A model with interest rate and one source of claims

This section essentially concerns Section 5.2 of [Rab09], which is somewhat independent from
the rest of the article. We consider the following two dimensional risk process :





dR1
t = δR1

t dt + c1dt − αdS(t)
dR2

t = δR2
t dt + c2dt − (1− α)dS(t)

(R1
0 ,R

2
0 ) = x = (x1, x2) ∈ [0,+∞)2

(2.1)

which is model (1.51) in the previous chapter with K = 2 and no modulating Markov chain. This
is for clarity purpose, although the model is a bit more general in [Rab09], and it may certainly be
possible in some cases to be even more general than in the paper without adding further technical
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difficulties in what follows. δ > 0, c1 ≥ 0 and c2 ≥ 0 are respectively the interest rate and premium
rates for each branches. α ∈ (0, 1) is the proportion of incoming claims taken in charge by branch
1, the remaining 1−α taken by branch 2. Also, we will suppose that {S(t), t ≥ 0} is a compound
Poisson process, although here again some more general case may be considered.

We recall definition of the definitve ruin thresholds for both lines (see Section 1.4.1) :

s∗1 = −c1/δ, s∗2 = −c2/δ.

We study in this Section the exit time out of the first quadrant defined as

T (x) = T (x1, x2) := inf{t ≥ 0| Rt /∈ [0,+∞)2}.

This is to be compared with absolute ruin time T∗(x) defined as exit time out of D := [s∗1 , +∞)×
[s∗2 , +∞) in Section 1.4.2. Studying distribution of T (x) is more delicate as, as was underlined in
the multidmensional case in Section 1.4.2, an important property of D is that R2\D is absorbing
for Rt = (R1

t ,R
2
t )

′. This is no longer the case for R2\[0,+∞)2.

Before turning to the two dimensional problem, a central assumption is that the corresponding
one dimensional problem is solved, i.e. that cdf’s of ruin times

Gj(t, xj ) := P(Tj(xj) ≤ t), Tj(xj) := inf{t ≥ 0| R j
t < 0}, j = 1, 2,

are available. We recall that the Laplace transforms of Gj (t, xj) in the xj and t variables were com-
puted in [Rab09] when jumps are exponentially distributed (see comment at end of Section 1.4.1),
and when interclaims are e.g. Phase type equally distributed. In fact the case when {S(t), t ≥ 0} is
a plain compound Poisson process and claims admit a density is treated in [WWZ05] (see Theorem
3.1 therein), where the authors establish explicit expressions for the density of Tj(xj), jointly to
surplus before and on ruin of the risk process.

The objective is to get an expression of the cdf of T (x),

G(t, x) = G(t, x1, x2) = P(T (x1, x2) ≤ t), x = (x1, x2) ∈ D.

A first approach would be to use the Markovian structure of {Rt = (R1
t ,R

2
t ), t ≥ 0} and establish

a renewal or partial differential equation for G(., .) or its Laplace Transform with respect to one or
several variables t and x . However, one would have to tackle the difficulty of solving this equation,
which may not be easy, one of the reasons being the number of variables involved. We propose
an alternative, geometric approach, that turns out well in the present situation, and that yields an
explicit expression of G(t, x) in function of the Gj (t, xj)’s. Let us first notice that, if one represents
trajectories of Rt in R2, then jumps are all directed along vector (−α,−1 + α). We split domain
D into three sets

D = A ∪ B1 ∪ B2

defined on Figure 2.1, where αc2 > (1 − α)c1 without loss of generality (otherwise, one has just
to swap R1

t and R2
t ). Lines D1 and D2 are defined by the fact that they contain point (s∗1 , s

∗
2 ) and

are parrallel to direction of claims, so have the following equation

D1 : r2 =
1− α

α
r1 +

1

δ

(
1− α

α
c1 − c2

)
,

D2 : r2 =
1− α

α
r1.
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Figure 2.1 – Partitioning D in the case of proportional reinsurance

Let n := (1 − α,−α) be a vector perpendicular to direction of jumps. We define Xt :=<n,Rt>.
Xt is such that Xt > 0 iff Rt ∈ A ∪ B1, and Xt < 0 iff Rt ∈ B2. Furthermore, it is not hard to
check that {Xt , t ≥ 0} verifies the linear deterministic differential equation

{
dXt = δXtdt + (n.c)dt
X0 = n.x = (1− α)x1 − αx2

where c = (c1, c2)
′. Note that the fact n.c = (1− α)c1 − αc2 < 0 implies that

Rt ∈ B1 ∪ B2 ⇐⇒ δXtdt + (n.c) < 0 ⇐⇒ Xt is decreasing,
Rt ∈ A ⇐⇒ δXtdt + (n.c) > 0 ⇐⇒ Xt is increasing.

(see again Figure 2.1 for the illustration of this property), so that :

– if (R1
0 ,R

2
0 ) = (x1, x2) ∈ A then {Rt = (R1

t ,R
2
t ), t ≥ 0} always remains in A,

– if (R1
0 ,R

2
0 ) = (x1, x2) ∈ B2 then {Rt = (R1

t ,R
2
t ), t ≥ 0} always remains in B2,

– if on the other hand (R1
0 ,R

2
0 ) = (x1, x2) ∈ B1, then it will eventually enter B2, as the trend

makes the process move away from D1.

Sets A, B1 and B2 thus have the following properties : A and B2 are absorbing sets for the
markovian process {Rt = (R1

t ,R
2
t ), t ≥ 0}, and B1 is transient. This means that if Rt starts

in A (resp. in B2) then it will leave first quadrant [0,+∞)2 iff R2
t (resp. R1

t ) hits 0. And, since
{Xt , t ≥ 0} is deterministic, entrance time T (x) = T (x1, x2) of {Rt , t ≥ 0} from (x1, x2) ∈ B1

into B2 is deterministic. Easy calculation yields

T (x) = T (x1, x2) :=
1

δ
ln

(
(1− α)c1 − αc2

(1− α)(δx1 + c1)− α(δx2 + c2)

)
. (2.2)
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All these remarks are summed up in the following result :

Theorem 11. The expression of G(t, x1, x2) is given in the following cases :

1. If x = (x1, x2) ∈ A then G(t, x1, x2) = G2(t, x2).

2. If x = (x1, x2) ∈ B2 then G(t, x1, x2) = G1(t, x1).

3. If x = (x1, x2) ∈ B1 then

G(t, x1, x2) =
{

G2(t, x2), t < T (x)
G2(T (x), x2) + G1(t, x1)− G1(T (x), x1), t ≥ T (x),

where T (x) is entrance time of {Rt , t ≥ 0} into B2, given by (2.2).

2.2 A model with two sources of claim.

This section concerns [BCR11]. We consider the following risk process {Yt = (Y 1
t ,Y

2
t ), t ≥ 0}

that satisfies 



dY 1
t = p1 dt − a dLt − dSt ,

dY 2
t = p2 dt − (1− a) dLt ,

(Y 1
0 ,Y

2
0 ) = (y1, y2),

(2.3)

p1 and p2 are the premium rates. Claim sources are represented by {Lt , t ≥ 0} and {St , t ≥ 0},
two independent compound Poisson processes with general jump (claim) distribution. a ∈ (0, 1) is
the proportion of claims from Lt taken in charge by Y 1

t , and 1− a is taken in charge by Y 2
t . Since

reinsurance is made on one type of claim, we will call Y 2 the reinsurer and Y 1 the cedent, so that
claims from process St are entirely covered by the cedent. This can also of course model a scenario
where Y 1

t and Y 2
t are two branches of one insurance company, and branch 2 covers a part of one

type of claims.
We aim at determining the Laplace transform E(y1,y2)(e

−βτ ) of the exit time out of the first
quadrant defined as in the previous section

τ = inf{t ≥ 0|Yt /∈ [0,+∞)2} = inf{t ≥ 0|min(Y 1
t ,Y

2
t ) < 0} = min(τ1, τ2). (2.4)

where τi = inf{t ≥ 0|Y i
t < 0} is ruin time of process Y i

t , i = 1, 2. Note that this generalizes
[APP08a] and [APP08b], where the authors consider a model where reinsurance is also made on
one type of claims, but where jumps are exponentially distributed, and there is only one source of
claims.

2.2.1 Prior geometrical remarks : exhibiting an absorbing set A− ⊂ R2.

As in Section 2.1, we will resort to geometric considerations in order to tackle this problem.
We will suppose that the following inequality holds

p2

p1
>

1− a

a
. (2.5)

Let us try to interpret Condition (2.5). Let θ1 > 0 and θ2 > 0 be safety loadings of cedent with
respect to claims Lt and St . Likewise, let θ3 > 0 be the safety loading for reinsurer with respect
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to claims Lt (the only ones he reinsures). Then premium rates may be written as

p1 = (1 + θ1)aE[L1] + (1 + θ2)E[S1]

p2 = (1 + θ3)(1 − a)E[L1].

A healthy assumption is that θ3 > θ1, i.e. that the second line has a higher safety loading. Indeed,
Y 2
t potentially takes a risk by reinsuring Y 1

t , so it seems legitimate that, by compensation, it has
a high security loading. In that case (2.5) reads

E[L1]

E[S1]
>

1 + θ2
a(θ3 − θ1)

,

which roughly says that claims issued from Lt are in average larger and more frequent (i.e., riskier)
than those from St . Therefore, it sounds logical to especially reinsure those riskier claims.

As in Section 2.1, we turn to geometrical considerations. We define line ∆ ⊂ R2 of equation

∆ : y =
1− a

a
x ,

so that claims occurring according to Lt are thus parallel to ∆. Next, sets A+ and A− ⊂ R2 are
defined by

A+ := {x ∈ R2| < x , v > > 0}, and A− := {x ∈ R2| < x , v > < 0}, where v = (1−a,−a)′.

Vector v is orthogonal to ∆ (and thus to direction of claims). Similarly to Section 2.1, we define
Xt by Xt :=<v, (Y 1

t ,Y
2
t )>. Xt may be seen as an (algebraic) distance between Yt ∈ R2 and ∆,

and is such that

Xt > 0 ⇐⇒ (Y 1
t ,Y

2
t ) ∈ A+, Xt < 0 ⇐⇒ (Y 1

t ,Y
2
t ) ∈ A−.

Last, a central remark is that Condition 2.5 implies that A− is an absorbing set. This is illustrated
in Figure 2.2 This absorbing property can be easily seen thanks to the fact that Xt verifies

{
dXt = [(1− a)p1 − ap2] dt − (1− a) dSt ,

X0 =<v, (y1, y2)>= (1− a)y1 − ay2
(2.6)

with (1 − a)p1 − ap2 < 0, so is decreasing. Note that, contrarily to [APP08a], [APP08b] and
Section 2.1, Xt is no longer deterministic.

2.2.2 Strategy for determining E(y1,y2)(e
−βτ ).

In function of where Yt lies at t = 0, two outcomes are possible in order to determine Laplace
transform of τ . Either Y0 = (y1, y2) ∈ A− : Then, Yt remains in this absorbing set, and τ = τ1
corresponds to ruin time of Y 1

t . Or Y0 = (y1, y2) ∈ A+. In that case, there is a competition
between hitting time τX of line ∆ and ruin time τ2 of Y 2

t :

– if Y 2
t is ruined before process Yt hits ∆ then exit out of the first quadrant is at time τ = τ2,

– if on the other hand Yt hits ∆ before Y 2
t hits 0 then Yt will then remain in A− and exit out

of the first quadrant (if it happens) will correspond to ruin of Y 1
t .
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∆ : Y 2
t = 1−a

a
Y 1

t
Y 2

t

Y 1
t

A−

A+

Lt claims

St claims

Xt

(0, 0)

(y1, y2)

drift

Figure 2.2 – A sample path of {(Y 1
t ,Y

2
t ), t ≥ 0}.

In the case where (y1, y2) ∈ A−, τ = τ1 corresponds to ruin time of a classical Cramer model
with Poisson arrival and claims admitting a density, or more broadly to a special case of spectrally
negative Lévy process, of which Laplace transform can be found in the literature (see e.g. Lemma
3.1 p.126 of [AA10], or Theorem 8.1 (ii) of [Kyp06] for a representation that involves so-called
scale functions) ; alternatively, its density may also be found in [DW05]. We will then suppose that

(y1, y2) ∈ A+

which is the most delicate case. The ingredients for determining Laplace transform of τ are the
following : We will require

– expression of the distribution of ruin of Xt and deficit at ruin, (τX ,XτX ),
– expression of the distribution of Y 2

t conditioned to stay positive.

Another important remark is that, as observed from (2.3) and (2.6), {Y 2
t , t ≥ 0} and {Xt , t ≥ 0}

respectively depend on {Lt , t ≥ 0} and {St , t ≥ 0} so are independent.
Step 1 : Expression of distribution of ruin of Xt and deficit at ruin. We rewrite (2.6) as

dXt = −c dt − dSa
t , X0 = x , (2.7)

with c = ap2−(1−a)p1 > 0 and Sa
t = (1−a)St . Since, from (2.7), Xt is a decreasing process with

negative jumps, τX admits a mass at x/c and XτX at 0. By using a renewal equation verified by
the Laplace transform of (τX ,XτX ), then adequately inverting it, one gets an expression of quantity

Px(τX ∈ dt,XτX ∈ dz) = kX δx/c(dt) + hC (t|x)dt.δ0(dz) + hJ(z , t|x)dtdz (2.8)

for some constant kX > 0 and densities hC (.|x) and hJ(., .|x). These densities feature multiple
convolutions of densities of claim sizes, which is not very convenient from a practical point of
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2.2. A MODEL WITH TWO SOURCES OF CLAIM.

view ; however one may be relieved to know that, when these claims admit for instance Erlang
distributions then closed form expressions of these densities are available.
Step 2 : distribution of Y 2

t conditioned to stay positive. We write evolution of Y 2
t in (2.3)

more simply
dY 2

t = p2 dt − dLat (2.9)

where we here specify λL and fa,L(.) as respectively intensity and density of jumps in Lat . The
starting point is formula from e.g. Lemma 1 of [Ber96]

∫ ∞

t=0
e−βt

Py2

(
inf
s≤t

Y 2
s > 0,Y 2

t ∈ du

)
dt =

[
e−ρuW (β)(y2)− 1{y2≥u}W

(β)(y2 − u)
]
du,

(2.10)
where W (β)(.) is the scale function defined via its Laplace transform

∫ ∞

0
e−sxW (β)(x) dx =

1

p2s − (λL + β) + λL f̃a,L(s)
, s > ρ, (2.11)

where f̃a,L(s) =
∫∞
0 e−sx fa,L(x) dx , and ρ appearing in (2.10) is the unique non-negative root to

the equation (in ξ)
p2ξ − (λL + β) + λL f̃a,L(ξ) = 0.

It is not always easy to get explicit expressions for W (β)(x). However, it turns out that computation
of the lefthandside of (2.10) appears in [CL10] in terms of convolutions of fa,L(.). As in for the
expressions of hC (.|x) and hJ(., .|x) in Step 1, those convolutions may be practically complex to
implement numerically. However again, one can be comforted by the fact that those scale functions
have closed expressions in many cases, e.g. when claims are Erlang or Phase type distributed (see
multiple examples in [HK11]). All in all, one proves that one has an expression of the form

Py2

(
inf
s≤t

Y 2
s > 0,Y 2

t ∈ du

)
= kY δy2+p2t(du) + ζ(y2, t, u) du (2.12)

for some mass kY > 0 at u = y2 + p2t and a density ζ(y2, t, .).
Step 3 : Laplace transform of τ starting from (y1, y2) ∈ A+. According to whether Y 2

t hit 0
before Yt hit ∆ or not, we decompose the Laplace transform in

E(y1,y2)

[
e−βτ1{τ<∞}

]
= E(y1,y2)

[
e−βτ21{τX>τ2}

]
+ E(y1,y2)

[
e−βτ11{τX≤τ2,τ1<∞}

]
. (2.13)

Since τX and τ2 are independent, first term on the righthandside of (2.13) is easily dealt with as

E(y1,y2)

[
e−βτ21{τX>τ2}

]
=

∫ ∞

u=0

∫ ∞

t=u

e−βt
Px(τX ∈ dt)Py2(τ2 ∈ du), (2.14)

where x = (1 − a)y1 − ay2. Px(τX ∈ dt) is given by (2.8), and Py2(τ2 ∈ du) is available e.g. in
[DW05]. Let us turn to second term on the righthandside of (2.13). Noticing that, on crossing ∆,
position of cedent is

Y 1
τX

=
a

1− a
Y 2
τX

+
1

1− a
XτX ,
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one uses (2.8) and (2.12) as well as the Markov property and writes

E(y1,y2)

[
e−βτ11{τX≤τ2,τ1<∞}

]
=

∫ ∞

t=0

∫ 0

z=−∞

∫ ∞

u=0
E a

1−a
u+ 1

1−a
z

[
e−βτ11{τ1<+∞}

]

.Py2

(
inf
s≤t

Y 2
s > 0,Y 2

t ∈ du

)
Px(τX ∈ dt,XτX ∈ dz)

=

∫ ∞

t=0

∫ 0

z=−∞

∫ ∞

u=0
E a

1−a
u+ 1

1−a
z

[
e−βτ11{τ1<+∞}

]

. [kY δy2+p2t(du) + ζ(y2, t, u) du]

.
[
kX δx/c(dt) + hC (t|x)dt.δ0(dz) + hJ(z , t|x)dtdz

]

where we recall that E a
1−a

u+ 1
1−a

z

[
e−βτ11{τ1<+∞}

]
is available from [AA10], or by integrating

density of τ1 in [DW05].

2.3 Another model with no absorbing set.

This section concerns [Rab12]. The two dimensional risk process studied here is denoted by
{(X 1

t ,X
2
t ), t ≥ 0} and satisfies





X 1
t = x1 +

∫ t

0
p1(J(s))ds − aSt − bBt ,

X 2
t = x2 +

∫ t

0
p2(J(s))ds − (1− a)St − (1− b)Bt ,

(2.15)

where {J(s), s ≥ 0} is an irreducible stationary finite Markov chain of generator matrix Q =
(qi j)i ,j=1,...,K and distribution the row vector π = (πi )i=1,...,K . {St , t ≥ 0} is a Markov additive
process, i.e. a pure jump process of which the jumps occur at transition times of the Markov chain,
of which jumps are of size distributed as Un

i j at time Tn such that J(s) jumps from state i to j a
Tn. We suppose that the (Un

i j)n∈N are independent, light tailed, with moment generating function

ϕi j(x) = E(exUi j ).

{Bt , t ≥ 0} is an independent fractional Brownian motion of Hurst parameter H ∈ [1/2, 1), and
a and b lie in (0, 1).

The model is motivated by the following remarks :
– {St , t ≥ 0} models occurrence of claims, as in Sections 2.1 and 2.2. a (resp. 1− a) is the

proportion of those claims taken in charge by branch X 1
t (resp. X 2

t ).
– even though it is a continuous process, {Bt , t ≥ 0} can be seen as an approximation of a risk

process where claims are strongly dependent (see [Mic98] and [Bur00] for the approximation
procedure), which corresponds to the "diffusion approximation" when claims are independent
(see Chapter V, Section 5 of [AA10]) or the equivalent "heavy traffic" approximation in
queueing theory (see e.g. Chapter 6 Section 4 of [CY01]). b is the proportion of these claims
taken in charge by X 1

t , and 1− b by X 2
t .

Since process {Bt , t ≥ 0} is an approximation of a risk process (which is why it is not increasing),
b also affects its premium rate and is standardly referred to as the risk exposure, see Introduction
of [TM03]. Since {Bt , t ≥ 0} is continuous and obtained by dilating time and shrinking claim sizes
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2.3. ANOTHER MODEL WITH NO ABSORBING SET.

in the risk process, we may consider it as risk process with small claims, as opposed to {St , t ≥ 0}
that models large claims. For example, {Bt , t ≥ 0} models minor (but nonetheless serious !)
events that happen very frequently such as car accidents, personal injuries, small fire, etc., whereas
{St , t ≥ 0} may model more dramatic and rarer events such as flash floods, major earthquakes
and so on.

In the sequel we let the K ×K matrices of moment generating functions and mean jump sizes

ϕ(x) := (ϕi j(x))i ,j=1,...,K , M = (mi j)i ,j=1,...,K := (E(Ui j))i ,j=1,...,K = ϕ′(0).

We are interested in this section in the exit times out of the first quadrant [0,+∞)2 and entrance
time into third quadrant (−∞, 0]2 :

τor := inf{t ≥ 0| X 1
t < 0 or X 2

t < 0},
τsim := inf{t ≥ 0| X 1

t < 0 and X 2
t < 0},

which respectively corresponds to ruin of one or both branches, see Figure 2.3. Mainly because

(large) claims

X1

t

X2

t X2

t

X1

t

(x1, x2) (x1, x2)

Figure 2.3 – Ruin of one or both branches : a reinsurance problem.

of the presence of the fractional Brownian motion, {Xt = (X 1
t ,X

2
t ), t ≥ 0} does not have nice

properties such as being a Markov process, a martingale etc., so that it appears very difficult to
derive the exact distribution of τor or τsim using standard tools and techniques. Note that, even
in the one dimensional case, few is known of the first hitting time of 0 of a drifted fractional
Brownian motion (a bound on its Laplace transform is available in [DN08]). Not only that, but
the mix of Markov additive process and {Bt , t ≥ 0} makes the problem even less tractable. It
may however be interesting to know that, in the case of a pure N dimensional Gaussian process,
asymptotics results already exist concerning τsim, as seen in [DKMR10], or in discrete time setting
as in [Has05]. We will therefore consider the two following probabilities of eventual ruin starting
from (X 1

0 ,X
2
0 ) = (x1, x2)

ψor(x1, x2) := P
(
τor < +∞| (X 1

0 ,X
2
0 ) = (x1, x2)

)
, ψsim := P

(
τsim < +∞| (X 1

0 ,X
2
0 ) = (x1, x2)

)
.

Since exact expressions for these quantities look difficult to obtain, we are looking for asymptotics
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CHAPITRE 2. PROPORTIONAL REINSURANCE

of the form

1

x2−2H
1

lnψor(x1, x2),
1

x2−2H
1

lnψand(x1, x2) ∼ −C ∗, x1 → +∞, x2/x1 = β,

where C ∗ > 0 does depend on H, β, as well as on other parameters of the model. In the Lévy case,
these kind of asymptotics are investigated in [APP08b]. In fact, H = 1/2, i.e. when Bt is a Lévy
process (a brownian motion), is a special case that is dealt with in [Rab12] but not mentioned in
the present document. In upcoming Subsection 2.3.1, we will study τor. In Subsection 2.3.2, we
will study τsim in the case of no Markov modulation, i.e. when St is a plain compound Poisson
process, and in the particular case when Hurst parameter verifies H ∈ (5/6, 1). Although we believe
that considering a Markov additive process may be possible but may just only add technicalities,
condition on the Hurst parameter is a real technical constraint, and, surprisingly, proofs do not
seem to work if H ∈ [1/2, 5/6] although we suspect that the same results hold in that case.

The central steps that we will use for proving asymptotics for ψor(x1, x2) and ψsim(x1, x2)
are the following. We will first reduce the two dimensional problem to a 1 dimensional one, as is
implicitly done in [APP08b] as well as in Sections 2.1 and 2.2. Then we will use a result by Duffield
and O’Connell [DO95] which may be summed up in the following way (tailored to our need) :

Theorem 12 (Duffield, O’Connell (95)). Let {Wt , t ≥ 0} be a real valued process. Let us suppose
that the following assumptions hold :

(i) the cumulant generating function defined as

λ(θ) := lim
t→+∞

1

t2−2H
lnEeθt

1−2HWt

exists in [−∞, +∞] and verifies λ(θ) < 0 for θ > 0 close to 0,

(ii) W ∗
n := sup0≤r<1 Wn+r verifies lim supn→+∞

1
n2−2H lnEeθn

1−2H (W ∗
n −Wn) = 0 for all θ > 0.

Then, if the Fenchel-Legendre function

λ∗(x) := sup
θ∈R

{θx − λ(θ)}

is continuous on x ≥ 0, one has that

lim
b→+∞

1

b2−2H
lnP

(
sup
t≥0

Wt > b

)
= − inf

z>0
z−(2−2H)λ∗(z). (2.16)

The main technical issues will essentially

– to be able to identify {Wt , t ≥ 0} in each case τor and τsim,
– then to determine closed expressions of the corresponding cumulant generating function λ(θ)

and its associated Fenchel-Legendre tranform λ∗(x).

Condition on W ∗
n will of course also be checked, although it turns out this is not the most demanding

part.

Before giving main results, we set p̄1 =
∑K

i=1 p1(i)πi , p̄2 =
∑K

i=1 p2(i)πi and introduce the
safety loadings, that we suppose positive,

ρ1 :=
p̄1

aE(S1)
− 1 > 0, ρ2 :=

p̄2

(1− a)E(S1)
− 1 > 0 (2.17)
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where E(S1) =
∑

i ,j=1,...,K πiqi jmi j . For presentation purpose, we will suppose that 1−b
b

< (1−a)ρ2
aρ1

,
although similar results hold when inequality is reversed. We also let

θβ := 2
p̄1 − p̄2/β + (−a + (1− a)/β)E(S1)

b2 − (1− b)2/β2
, (2.18)

2.3.1 Asymptotics for ψor(x1, x2).

The result obtained in the case H ∈ (1/2, 1) is the following :

Theorem 13. Letting

λ1(θ) := θ [−p̄1 + aE(S1)] + b2
θ2

2

λ2(θ) := θ
−p̄2 + (1− a)E(S1)

β
+

(1− b)2

β2
θ2

2
,

(2.19)

λ(θ) = max (λ1(θ),λ2(θ)) .

Then the following asymptotic holds

lim
x1→+∞, x2/x1=β

1

x2−2H
1

lnψor(x1, x2) = − inf
z>0

z−(2−2H)λ∗(z) := −C ∗
or(H,β) (2.20)

where λ∗(.) is given by Figure 2.4.

Contrarily to Sections 2.1 and 2.2, there is no absorbing set inR2 for process {(X 1
t ,X

2
t ), t ≥ 0}

because of the fractional brownian motion. However, there seems to be three characteristic regions
(cones) in R2 as represented in Figure 2.4 where behavior of the ruin probability is different when
the initial reserves tend to infinity along a direction contained in those cones.

The main steps for proving Theorem 13 are given in the following.
Step 1 : reduction to one dimensional problem. We have the following equivalences :

τor < +∞ ⇐⇒ inf
t≥0

X 1
t < 0 or inf

t≥0
X 2
t < 0 ⇐⇒ inf

t≥0
X 1
t < 0 or inf

t≥0

1

β
X 2
t < 0

⇐⇒ sup
t≥0

−x1 −
∫ t

0
p1(J(s))ds + aSt + bBt > 0

or sup
t≥0

1

β

[
−x2 −

∫ t

0
p2(J(s))ds + (1− a)St + (1− b)Bt

]
> 0

⇐⇒ sup
t≥0

max

(
−x1 −

∫ t

0
p1(J(s))ds + aSt + bBt ,

1

β

[
−x2 −

∫ t

0
p2(J(s))ds + (1− a)St + (1− b)Bt

])
> 0. (2.21)
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x2

x1

x 7→





[((1−a)E(S1))ρ2/β+x]
2

2(1−b)2/β2 , 0 < x <
(1−b)

2
θβ

2β2 +
λ(θβ)

θβ

θβx− λ2(θβ),
(1−b)

2
θβ

2β2 +
λ(θβ)

θβ
≤ x <

b
2
θβ

2
+

λ(θβ)

θβ

[aE(S1)ρ1+x]
2

2b2
,

b
2
θβ

2
+

λ(θβ)

θβ
≤ x.

x 7→





[aE(S1)ρ1+x]
2

2b2
, 0 < x <

b
2
θβ

2
+

λ(θβ)

θβ

θβx− λ1(θβ),
b
2
θβ

2
+

λ(θβ)

θβ
≤ x <

(1−b)
2
θβ

2β2 +
λ(θβ)

θβ

[((1−a)E(S1))ρ2/β+x]
2

2(1−b)2/β2 ,
(1−b)

2
θβ

2β2 +
λ(θβ)

θβ
≤ x.

β < 1−b

b

β > (1−a)ρ2

aρ1

x 7→ [aE(S1)ρ1+x]
2

2b2

1−b

b
< β < (1−a)ρ2

aρ1

Figure 2.4 – Expressions of λ∗(.) in the "or" case.

As a consequence, we set

A1
t := −

∫ t

0
p1(J(s))ds + aSt + bBt , (2.22)

A2
t :=

1

β

[
−
∫ t

0
p2(J(s))ds + (1− a)St + (1− b)Bt

]
. (2.23)

Zor
t := max

(
A1
t ,A

2
t

)
,

so that from (2.21) we have, along x2/x1 = β,

ψor(x1, x2) = ψor (x1,βx1) = P

(
sup
t≥0

max
(
A1
t ,A

2
t

)
> x1

)
= P

(
sup
t≥0

Zor
t > x1

)
. (2.24)

The objective is then to use Theorem 12 with Wt := Zor
t so defined.

Step 2 : Determining λ(θ) in the "or" case. one writes

E

(
eθt

1−2HZor
t

)
= E

(
eθt

1−2HA1
t 1{A2

t≤A1
t }

)
+ E

(
eθt

1−2HA2
t 1{A2

t>A1
t }

)
:= P1(t) + P2(t).
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The starting point is the following set of inequalities :

E

(
eθt

1−2HA1
t

)
≥ P1(t) ≥ E

(
eθt

1−2HA1
t

)
− E

(
eθt

1−2HA2
t

)
. (2.25)

E

(
eθt

1−2HA2
t

)
≥ P2(t) ≥ E

(
eθt

1−2HA2
t

)
− E

(
eθt

1−2HA1
t

)
, (2.26)

which shows intuitively that

lim
t→+∞

1

t2−2H
lnEeθt

1−2HZor
t = lim

t→+∞

1

t2−2H
lnE [P1(t) + P2(t)]

=





limt→+∞
1

t2−2H lnE
(
eθt

1−2HA1
t

)
,

or limt→+∞
1

t2−2H lnE
(
eθt

1−2HA2
t

)
,

(2.27)

according to whichever is predominant. One then proves rigorously that equality, which then leads
to determining an expression for

λi(θ) := lim
t→+∞

1

t2−2H
lnE

(
eθt

1−2HAi
t

)
, i = 1, 2. (2.28)

Considering for example λ1(θ), using definition (2.22), as well as the fact that {(J(t),St), t ≥ 0}
is independent from {Bt , t ≥ 0},

E

(
eθt

1−2HA1
t

)
= E

(
eθt

1−2H [−
∫ t

0
p1(J(s))ds+aSt ]

)
.E
(
eθt

1−2HbBt

)
(2.29)

with E

(
eθt

1−2HbBt

)
= eb

2θ2t2−2H/2. The trickiest part lies in finding

lim
t→+∞

1

t2−2H
lnE

(
eθt

1−2H [−
∫ t
0
p1(J(s))ds+aSt ]

)
.

which is done through a famous martingale result by Asmussen and Kella on Markov additive
processes (more precisely, Lemma 2.1 of [AK00]) as well as technicalities not detailed here. All in
all, one proves that λ1(θ) defined by (2.28) has Expression (2.19), and that λ(θ) is from (2.27),
given by λ(θ) = max(λ1(θ),λ2(θ)).
Step 3 : Determining λ∗(x) and checking all conditions in Theorem 12. Without giving too
many details, it turns out that λ(θ) determined previously is defined piecewise, on different intervals,
and is either linear or quadratic on each of these intervals, which simplifies a bit computation of
λ∗(x). As to the technical condition in Theorem 12 concerning W ∗

n , one essentially uses simple
properties on the supremum of continuous gaussian processes on a finite interval, of which tail is
fast decreasing.

2.3.2 Asymptotics for ψsim(x1, x2).

As mentioned before, we suppose here that we are in the nonmodulated case, which means
that there is no external Markov chain {J(t), t ≥ 0}, that pi (.) = pi , i = 1, 2, is a constant, and
that process {St , t ≥ 0} is a plain Poisson process of intensity λ > 0 of which jumps have an
expectation m.

The result obtained in the case H ∈ (5/6, 1) is the following :
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Theorem 14. In the case H ∈ (5/6, 1), we have

lim
x1→+∞, x2/x1=β

1

x2−2H
1

lnψsim(x1, x2) = − inf
z>0

z−(2−2H)λ∗(z) := −C ∗
sim(H,β) (2.30)

where the Fenchel Legendre transform λ∗(.) is given by Figure 2.5.

x2

x1

β < 1−b

b

β > (1−a)ρ2

aρ1

x 7→





[(1−a)E(S1)ρ2/β+x]
2

2(1−b)2/β2 , x < −(1− a)E(S1)ρ2

β
+

E(S1)

(
−aρ1+

(1−a)ρ2
β

)

(1−b)/β−b

1−b

β

[aE(S1)ρ1+x]
2

2b2
, x ≥ −(1− a)E(S1)ρ2

β
+

E(S1)

(
−aρ1+

(1−a)ρ2
β

)

(1−b)/β−b

1−b

β

x 7→





[aE(S1)ρ1+x]
2

2b2
, x < −(1− a)E(S1)ρ2

β
+

E(S1)

(
−aρ1+

(1−a)ρ2
β

)

(1−b)/β−b

1−b

β

[(1−a)E(S1)ρ2/β+x]
2

2(1−b)2/β2 , x ≥ −(1− a)E(S1)ρ2

β
+

E(S1)

(
−aρ1+

(1−a)ρ2
β

)

(1−b)/β−b

1−b

β

x 7→ [(1−a)E(S1)/β+x]
2

2(1−b)2/β2

1−b

b
< β < (1−a)ρ2

aρ1

Figure 2.5 – Expressions of λ∗(.) in the "sim" case.

As in the previous subsection, we provide a sketch of proof :
Step 1 : reduction to one dimensional problem. A similar argument as in the "or" problem
yields, with same notation (2.22) and (2.23), and as in (2.24) :

ψsim(x1, x2) = P

(
sup
t≥0

Z sim
t > x1

)

with Z sim
t := min(A1

t ,A
2
t ).

Step 2 : Determining λ(θ) in the "sim" case. One writes this time

E

(
eθt

1−2HZsim
t

)
= E

(
eθt

1−2HA2
t 1{A2

t≤A1
t }

)
+ E

(
eθt

1−2HA1
t 1{A2

t>A1
t }

)
:= Q1(t) + Q2(t).

The main difference with the "or" case is that a set of inequalities of the kind (2.25) or (2.26)
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do not hold with Q1(t) and Q2(t). However, one proves that if drift of A1
t − A2

t is positive (resp.

negative) then Q2(t) = o(Q1(t)) and Q1(t) ∼ E

(
eθt

1−2HA2
t

)
(resp. Q1(t) = o(Q2(t)) and

Q2(t) ∼ E

(
eθt

1−2HA1
t

)
) as t → ∞. This is at this stage that Condition H ∈ (5/6, 1) plays a part.

Since sign of drift of A1
t − A2

t depends on whether β lies in different intervals, one thus gets a
different expression for λ(θ) in function of in which of these intervals β lies.
Step 3 : Determining λ∗(x) and checking all conditions in Theorem 12. As in the "or" case,
the fact that λ∗(x) has different expressions on separate intervals comes from definition of λ(θ).
And, the technical condition in Theorem 12 is verified similarly.
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Chapitre 3

Other topics

We present here published works that are not directly related to the previous chapters. They are
however "Risk" or "Queueing" theory flavored, as their applications or tools concern one (or both)
of these two fields. In Section 3.1 we study an open-loop optimization problem in a simple queueing
network. In Section 3.2 we see how the embedding method can, as in Section 1.4, be adapted to
risk process perturbed by a Brownian motion. In Section 3.3, we are interested in a particular risk
process with diffusion and we try to find ways of giving a representation more appealing from a
computational point of view. Last, in Section 3.4, we see how some results on one sided jump Lévy
processes can be applied in a Reliability setting.

3.1 Queues and optimization

This part concerns [GR07]. Let a = {an, n ≥ 1} be a stationary sequence of Bernoulli
distributed random variables. Let {Nt(a), t ≥ 0} be a jump process with i.i.d. interjump times
{δn = Tn+1 − Tn, n ≥ 0} (Tn being instant of the nth jump, with T0 = 0), of which size jump
at time t = Tn is

Nt(a)− Nt−(a) =

κ(n)∑

k=κ(n−1)+1

σk , (3.1)

with the usual convention
∑i

k=j = 0 whenever i < j , and where

κ(i) :=

i∑

j=1

aj

and {σn, n ≥ 1} is a stationary sequence of non negative random variables (not necessarily
independent). We suppose that a = {an, n ≥ 1}, {δn = Tn+1 − Tn, n ≥ 0} and {σn, n ≥ 1}
are independent. Note that jumps of process {Nt(a), t ≥ 0} are indentically distributed but not
independent, and potentially of size 0. We then define process {Qt(a), t ≥ 0} that satisfies the
linear equation {

dQt(a) = dNt(a)− µQt(a)dt
Q0(a) = 0

(3.2)

for some µ > 0. The main problem addressed is the following : if {σn, n ≥ 1} and {δn =
Tn+1−Tn, n ≥ 0} are fixed throughout, what is the optimal stationary sequence a = {an, n ≥ 1}
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that solves the following problem





Minimize E(h(Q∞(a)))

s.t. lim inf
N→∞

1

N

N∑

n=1

an ≥ p
(3.3)

for some fixed p ∈ (0, 1) and non decreasing convex function h(.), where Q∞(a) is the limiting
random variable in distribution of QTn

(a) as n → +∞ ? (the existence of this convergence in
distribution will be justified in upcoming Proposition 8).

Practically, Qt(a) may be interpreted as a fluid queue with linear service rate µ. Packets of (fluid)
data are of size distributed as σ1, and arrive according to process {Nt(a), t ≥ 0} that satisfies (3.1).
In other words, a packet of size distributed as σ1 arriving at time Tn is either accepted if an = 1,
or rejected if an = 0. Problem (3.3) aims at finding the optimal acceptance/rejection sequence
minimizing the cost function E(h(Q∞(a))), such that in the long run a minimum proportion p of
packet is accepted. This problem is an open loop problem, meaning that policy a = {an, n ≥ 1} is
chosen in advance, once and for all, independently of the evolution of the queue. A result by Altman,
Gaujal and Hadjek [AGH03] basically states that, provided that certain functions are multimodular
(of which definition is given hereafter), then the sequence a = {an, n ≥ 1} that solves Problem
(3.3) will turn out to be a so-called bracket sequence.

Before tackling the problem, we introduce definition and tools that will enable us to deal with
it. We introduce the notion of multimodularity of a function (see Definition 1 p.13 of [AGH03]) :

Definition 1. Let e1, en, si , i = 1, ..., n − 1 be vectors in Rn defined by e1 := (1, 0, ..., 0),
en := (0, ..., 0, 1) and si := (0, ..., 0, 1,−1, 0, ..., 0) (with 1 on (i − 1)-th position and −1 on i -th
position), and Fn := {e1,−s1, ...,−sn−1,−en}. A function f : Nn −→ R is multimodular on Nn

if for all x ∈ Nn and all v and w in Fn, v 6= w , one has

f (x + v) + f (x + w) ≥ f (x) + f (x + v + w).

Before stating the main result, we justify that for all stationary sequence a = {an, n ≥ 1},
QTn

(a) converges in distribution to some r.v. W (a) as n → +∞. The following result is rather
standard, as seen e.g. in Expression (3.13) in [AK96] or in Expression 1.8 in Chapter 2. For this
result as well as for the rest of this section, it will be more convenient to consider double sided
versions a = {an, n ∈ Z}, {σn, n ∈ Z} and {δn, n ∈ Z}.
Proposition 8. QTn

(a) converges in distribution as n → ∞ to

W (a) =

∫ 0

−∞
exp(µs)dNs(a).

Note that we did not impose a specific distribution to the interarrival times δn, so that
convergence in distribution of QTn

(a) towards W (a) as n → ∞ does not imply convergence
of Qt(a) as t → ∞ towards the same limit, except, from the PASTA property, when the δn’s are
exponentially distributed i.e. when arrivals occur according to a Poisson process.

The main result is the following :

Theorem 15. Let Θ be U([0, 1]) distributed and independent from {σn, n ≥ 1} and {δn, n ≥ 1}.
The bracket sequence

ai = ui (Θ, p) := ⌊p(i + 1) +Θ⌋ − ⌊pi +Θ⌋, i ∈ N, (3.4)
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solves Problem (3.3).

The existence and form of the optimal sequence (3.4) comes from application of Theorem 6
p.25 of [AGH03]. In order to apply it, one however needs to verify the following points

1. that an = (a1, ..., an) 7→ E(h(QTn
(an))) is non decreasing in each ai .

2. if n < m, E(h(QTn
(am−n+1, ..., am))) ≤ E(h(QTm

(a1, ..., am))),

3. if n < m, E(h(QTn
(a1, ..., an))) = E(h(QTm

(0, ..., 0, a1, ..., an))),

4. an = (a1, ..., an) 7→ E(h(QTn
(an))) is multimodular.

Here we use notation QTn
(an) = QTn

(a1, ..., an) to underline that Qt(a) only depends on (a1, ..., an)
on t ∈ [0,Tn]. Proving these properties, especially the multimodularity in Point 4., is done
thanks to linearity of Equation (3.2) satisfied by {Qt(a), t ≥ 0}, which implies that, if v ∈ Fn,
{Qt(a + v), t ≥ 0} is the sum of two processes that satisfy linear Equations of the form (3.2).

Another aspect in [GR07] is another optimization problem that involves how to optimally send
packets of fluid data to two queues that satisfy Equation (3.2). To conclude this section, we
will present how Theorem 15 translates to a risk theory framework. Let a = {an, n ∈ Z} and
{Nt(a), t ≥ 0} be defined as before, and consider the following risk process

{
R0(a) = u > 0,

dRt(a) = (c + µRt(a))dt − dNt(a)
(3.5)

where c > 0 is the global premium rate and µ > 0 is the interest force. Evolution of Rt(a) is
explained as for Qt(a) : whenever a claim of size distributed as σ1 occurs at time Tn, it is either
taken in charge if an = 1 or rejected (for example sent to another branch of the same insurance
company) if an = 0. It turns out that the ruin time defined as the first passage of Rt(a) under zero
is difficult to study here, so we will rather consider the definitive ruin time defined, as in Section
1.4.1, by

τ(a) := inf{t ≥ 0| Rt(a) < −c/µ}.
The corresponding optimization problem is the following : If g : [0,+∞) −→ [0,+∞) is a
continuous, concave and increasing function,





minimize
∫ ∞

0
Pg(u)(τ(a) < +∞)du

subject to lim inf
N→∞

1

N

N∑

n=1

an ≥ p,
(3.6)

where Pg(u)(τ(a) < +∞) is the (absolute) ruin probability starting from g(u). This problem is the
straight counterpart of (3.3) by simply remarking that, thanks to a duality relation in the same
vein as that in Proposition 5

∫∞
0 Pg(u)(τ(a) < +∞)du = E(h(Q∞(a))) with h = g−1. In other

words, Problem (3.6) is about minimizing a weighted functional of the ruin probability, with the
constraint that a minimum proportion p of claims is accepted (that is, not refused or redispatched
to some other branch) in the long run. There is freedom in choosing g , so long as it meets the
requirement and, importantly, that the integral in the cost function converges. For example, one
might take g(u) = ln(1 + u)/β for some β > 0, in order for the cost function be exponentially
weighted :

∫∞
0 Pg(u)(τ(a) < +∞)du =

∫∞
0 Pv (τ(a) < +∞) exp(βv)dv . This choice gives more

importance to the ruin probability when initial reserve is large. The analog of Theorem 15 is the
following :
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Theorem 16. Let Θ a random variable with uniform distribution on [0, 1], independent from the
{Tk+1 − Tk} and the {σk}. {an, n ∈ N} defined by

ai = u−i (Θ, p) = ⌊p(−i + 1) +Θ⌋ − ⌊−pi +Θ⌋

solves (3.6).

To finish, we mention that, as in the fluid queue context, a problem is addressed in [GR07] on
how to optimally dispatch incoming claims to two branches of an insurance company.

3.2 What is the amount of claim that caused ruin ?

This part concerns [RCLT13]. The motivation is the following : Let us consider the following
risk process

Rt = u + c t − St + σBt , t ≥ 0, (3.7)

where u is the initial capital of the risk process, c is the premium rate received per unit time, the
aggregate claim amount {St =

∑Nt

k=1 Vk , t ≥ 0} is a compound Poisson process with intensity λ,
the number of claims up to time t, {Nt , t ≥ 0}, is a Poisson process with parameter λ (St = 0
when Nt = 0), V1,V2, . . . are the independent and identically distributed jumps (claim amounts),
and {Bt , t ≥ 0} is the standard brownian motion. [RCLT13] attempts to address the following
issues :

– obtaining the joint distribution of the aggregate claim amount up to ruin time jointly to the
ruin time,

– knowing whether ruin occurred thanks to "oscillation" (i.e. because of the brownian part) or
by jumps.

Those will be dealt with using the following standard scheme : embedding (in the case where claims
are say exponentially distributed), then devising a Lundberg equation.

The embedding process is very similar to that of Section 1.1.2. Let us suppose that the Vk ’s are
E(µ) distributed. Replacing vertical jumps by oblique lines of slope −1/a yields continuous process
{Rt = Ra

t , t ≥ 0} as illustrated on Figure 3.1. The associated Markov chain {J(t), t ≥ 0} has state
space {1, 2}, 1 being the state corresponding to evolution of the brownian motion, and state 2 to
occurrence of a claim. However, in what follows some results may be, as usual, generalized to Phase

type claims. We let Q = (qi j)i ,j=1,2 =

(
−λ λ
µ/a −µ/a

)
the transition matrix of {J(t), t ≥ 0}.

Ruin times for both processes are denoted by

T := inf{t ≥ 0 |Rt ≤ 0}, τ = τa := inf{t ≥ 0 |Rt ≤ 0}.

Similarly to Proposition 4, relation between (T ,ST ) and (τ , J(τ)) is given by

Proposition 9. For all q ≥ 0 and a > 0, we have

E[ e−q (T +a ST ) |RT = 0, T < +∞ ] = E[ e−q τ | J(τ) = 1, τ < +∞ ]

and
E[ e−q (T +a ST ) |RT < 0, T < +∞ ] =

µ

µ+ aq
E[ e−q τ | J(τ) = 2, τ < +∞ ].
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V1

V2

V1

V2

aV1

aV2

τ

t

t

Rt

T

Rt

Figure 3.1 – Embedding

The above Proposition imply that Laplace transform E[ e−α T −β ST |A, T < +∞ ], with A =
[RT = 0] (ruin by oscillation) or [RT < 0] (ruin through a jump) for all positive α and β is
available simply by setting q = α and a = β/α. Thus we are interested from now on to joint
distribution of (τ , J(τ)), i.e. for example in quantities of the form

E[e−qτϕ(J(τ))] (3.8)

for a large class of ϕ(.). Note that this is where things are a bit different from setting in Section
1.1.2, where only τ is considered. First remark that generator of Markov process {(Rt , J(t)), t ≥ 0}
is

Af (x , i) =
σ(i)2

2
f ′′(x , i) + h(i)f ′(x , i) +

∑

j=1,2

qi ,j f (x , j)

where f (., i) is twice differentiable, i = 1, 2. σ(.) and h(.) come from the embedding process and
and are such that σ(1) = σ, σ(2) = 0, h(1) = c , h(2) = −1/a. This may be written in matrix
form

Af (x) = Sf ′′(x) + Hf ′(x) + Qf (x)
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where S := diag
[
σ(1)2/2,σ(2)2/2

]
= diag

[
σ2/2, 0

]
, H = Ha := diag[h(1), h(2)] = diag[c ,−1/a],

and f (x) := (f (x , 1), f (x , 2))′. The following result shows that finding the eigenvector of A asso-
ciated to eigenvalue q can contribute to computing quantity (3.8).

Lemma 3. For all q ≥ 0, let f be a solution to the following matrix equation

Af (x) = qf (x). (3.9)

such that limx→+∞ f (x) = 0 (and, implicitly, that f (x , i) is twice differentiable with respect to x).
Then we have E

[
e−qτ f (0, J(τ))1{τ<+∞}

]
= f (u, J(0)) = f (u, 1).

This lemma bears some similarity with Theorem 2.1 (ii) of [PG97], with the difference that no
boundary condition are required at x = 0 (in fact, the boundary condition appears in f (0, J(τ))).
Before proceeding further with Equation (3.9), let us see how Lemma 3 can be applied in order
to obtain (3.8). Let us suppose that f verifies in addition f (0, j) = 1{j=1}, j = 1, 2, (i.e.
f (0) = (1, 0)′), then Lemma 3 reads

E[ e−qτ1{J(τ)=1, τ<+∞} ] = f (u, J(0)) = f (u, 1).

Similarly, taking solution f to (3.9) such that f (0) = (0, 1)′ yields E[ e−qτ1{J(τ)=2, τ<+∞} ] =
f (u, J(0)), and setting the initial condition f (0) = (1, 1)′ gives E[ e−qτ1{τ<+∞} ] = f (u, J(0)),
the Laplace transform of the time of ruin.

Let us now focus on Equation (3.9) with condition limx→+∞ f (x) = 0. This equation can be
written in matrix form as

Sf ′′(x) + Hf ′(x) + (Q − qI )f (x) = 0. (3.10)

which is closely linked to the Lundberg equation

det(z2S + zH + Q − qI ) =

∣∣∣∣
σ2z2/2 + cz − λ− q λ

µ/a −z/a− µ/a − q

∣∣∣∣ = 0 (3.11)

which shows up in many papers (see [BB08, RL09]). In fact, solutions to (3.10) are of the form

f (x) =

3∑

i=1

aie
zixφi ,

where the ai ’s are scalars, z1, z2, z3 are the three solutions to (3.11) (that we suppose are distinct,
although there is a discussion in [RCLT13] on how all subsequent results are modified in case of
multiple roots), and φ1 and φ2 are the corresponding eigenvectors satisfying

(z2i S + ziH + Q − qI )φi = 0.

To identify which of these solutions fit requirement limx→+∞ f (x) = 0 in Lemma 3, one needs to
censor out whichever solution zi , i = 1, 2, 3, has positive real part, i.e. needs to know location of
roots of Lundberg equation (3.11). The following proposition addresses this issue and says how to
obtain solutions f satisfying (3.11) with the vanishing at infinity condition limx→+∞ f (x) = 0.

Proposition 10. Equation (3.11) has exactly two roots z1 and z2 with negative real part and one
real non-negative root z3. Besides, in the case where a > 0 and q ≥ 0 are such that z1 and z2 are
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distinct (multiplicity equal to 1), (3.9) admits a unique solution f satisfying limx→+∞ f (x) = 0
with any fixed boundary condition f (0) = (f (0, 1), f (0, 2))′.

Some remarks concerning the above result :
– In the case where claims and interclaim times are Phase type distributed with respective

phases n+ and n− then (3.10) involves Rn×n matrices with n = n+ + n−. In that case
Proposition 10 generalizes to a result where one needs to locate solutions of the corresponding
Lundberg equation (3.11), which this times admits 2n++n− solutions. This problem is already
present in various problems in queueing or risk theory where there is Markov modulation,
and is solved thanks to a modification of Gershgorin’s disc theorem, see e.g. [KK95] for the
case q = 0.

– A similar approach mentioned in [RCLT13] is used for considering the double sided exit
problem, which in risk theory is translated as a ruin problem of a risk process with dividend.

– There seems to have been substantial improvement concerning determination of hitting time
distribution of Markov additive process which may complete or even generalize some results
in [RCLT13]. In particular, one major result in [IP12] is determination of Laplace transforms
of hitting times of a Markov additive process in terms of its corresponding scale function.

To conclude this section, we discuss what happens when claims are no longer exponentially or Phase
type distributed but have a density p(.). Embedding is now irrelevant. However one can hope to use
standard tools in risk theory and expect to obtain an integrodifferential equation for the Laplace
transform of ruin time jointly to the associated aggregated claim. We are only interested in ruin
by oscillation

φd (u) := E[ e−αT −βST 1{T <+∞,RT =0}].

Theorem 17. φd is a twice differentiable function on (0,+∞). It verifies the integro-differential
equation

σ2

2
φ′′d (u) + c φ′d (u) + λ

∫ u

0
e−βxφd (u − x) p (x) dx = (λ+ α)φd (u), u > 0, (3.12)

and the renewal equation

φd (u) =

∫ u

0
φd (u − y)g(y)dy + e−b u , (3.13)

where ρ = ρ(α,β) is the unique positive root of generalized Lundberg equation

λ

∫ ∞

0
e−(ρ+β)up(u)du = λ+ α− cρ− σ2

2
ρ2, (3.14)

b := 2c/σ2+ρ, and g is a function that depends on paramters of the model and density of claims.

Although (3.12), (3.13), (3.14) are very close to standard equations, especially in the presence
of a perturbating brownian motion (see [Tsa01, TW02]), there are all the same some changes due
to presence of the aggregate claim at time of ruin (which translates as presence of factor β in the
Lundberg equation (3.14)). The reason why integro differential equation concerns ruin by oscillation
and not by jump is that, in the latter case, we could not prove that the corresponding Laplace
transform in the latter case is indeed twice differentiable. Note that proving sufficient regularity for
the ruin probability or Laplace transforms in risk models is not always straightforward, and is one
of the assumptions sometimes made prior to deriving integro differential equations (see Theorem
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2.1 (i) of [PG97]). The approach adopted here is to first establish a renewal equation for φd then
to prove that the integrand has sufficient regular properties ; this approach bears some similarities
with earlier papers, see e.g. Equation (2.3) of Theorem 2.1 as well as Theorems 2.2 and 2.3 in
[WW01].

3.3 Ruin time of a Wong Pearson diffusion risk process

We consider in [ALR09] the following model

dXt = c(Xt)dt + σ(Xt)dBt − dSt . (3.15)

St :=
∑Nt

i=1 Zi is the aggregate claim amount. {Nt , t ≥ 0} is a Poisson process with intensity λ,
{Bt , t ≥ 0} is a brownian motion, and the Zi ’s are i.i.d. claim sizes with cdf F (.), density f (.)
and first moment m1 (which we suppose exists). Drift and diffusion coefficients are given by

c(x) = p + rx

σ(x) =
√
σ20 + σ21x + σ22x

2.

p and r respectively represent the premium rate and interest force. Xt is defined on a random
interval such that σ20 + σ21Xt + σ22X

2
t ≥ 0 on that interval. This kind of diffusion with (negative)

jumps is the so called generalized Wong Pearson diffusion, characterized by the fact that c(.) is
an affine function and σ(.)2 is quadratic. This model covers a wide range (some of which will be
focused on later on) such as

– the generalized Black Scholes model with paramaters c(x) = rx and σ(x) = σ2x ,
– the generalized Ornstein-Uhlenbeck (GOU) process with parameters c(x) = p + rx and
σ(x) = σ0 > 0.

– the generalized Cox Ingersoll Ross (GCIR) model with c(x) = p + rx and σ(x) = σ1
√
x .

In the following we will use the more convenient notation

d(x) =
σ2(x)

2
=
σ20 + σ21x + σ22x

2

2
= d0 + d1x + d2x

2,

and we define the following quantities :

– the ruin time of {Xt , t ≥ 0} :

τ := inf{t ≥ 0 : Xt < 0},

– the probability of eventual ruin starting from X0 = x and the survival probability

ψ(x) := Px(τ < +∞), ψ̄(x) := 1− ψ(x),

– the Laplace transform of τ starting from x

ψq(x) := Ex(e
−qτ 1{τ<+∞}).
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The aim of [ALR09] is to identify in which case it is possible to expand ψ(x) or ψq(x) in the
following form

ψ̄(x) =
∞∑

n=0

anE (n,αx), ψ̄q(x) = 1− ψq(x) =
∞∑

n=0

a∗n(q)E (n,αx), (3.16)

for some real valued sequences (an)n∈N and (an(q))n∈N, and where Ē (n,αx) is the Erlang com-
plementary cumulant distribution function defined as

Ē (n,αx) = P

{
n∑

i=1

Ei (α) > x

}
=

1

Γ (n)

∞∫

αx

yn−1e−ydy

= e−αx
n−1∑

j=0

(αx)j

j!
= 1− E (n,αx), n ∈ N,

where
∑n

i=1 Ei(α), n ≥ 1 is a random variable with an Erlang distribution, that is a sum of
independent exponential random variables Ei(α), i = 1, . . . , n with parameter α > 0 (and

Ē (0,αx) = 0), and Γ (x) is the Gamma integral function
∫ ∞

0
tx−1e−tdt.

Expansions of the form (3.16) are investigated for the cdf of ruin time τ starting from x in
[Tay78] for the case c(x) = p constant and σ(x) = 0, and in [ATT01] for c(x) = p + rx and
σ(x) = 0. It is motivated by the fact that the set of functions {x 7→ E (n,αx), n ∈ N} is closed
by convolution, i.e.

x∫

0

E (n,α(x − y))E (m,α dy) = E (n +m,αx), n,m ∈ N. (3.17)

Besides, xk ∂
∂xE (n,αx), k = 0, 1, xk ∂2

∂x2
E (n,αx), k = 0, 1, 2, can all be expressed in terms of

E (j ,αx) for j = 0, 1, 2. These properties are particularly important, since ψ and ψq verify the
following integro differential equations

0 = c(x)ψ′(x) + d(x)ψ′′(x) +

∫ ∞

0
[ψ(x − z)− ψ(x)] λf (z)dz := Gψ(x), (3.18)

qψq(x) = c(x)ψ′
q(x) + d(x)ψ′′

q (x) +

∫ ∞

0
[ψq(x − z)− ψq(x)]λf (z)dz = Gψq(x).(3.19)

These equations are very standard in risk theory, and require some extra boundary and regularity
conditions not mentioned here, which will be made clear in the particular cases studied in the
following (Note that (3.19) is the same as (3.9)). In order for (3.16) to be obtained, one needs
however to focus on several technical points. For one thing, one needs to make clear what boundary
conditions accompany (3.18) and (3.19) in order to characterize the finite ruin probability and
Laplace transform. Then one needs to check that an expansion (3.16) satisfies these conditions,
and is a convergent series. This indeed will not be always the case, and will depend on the different
parameters. The next subsections present some cases where everything turns out fine, in the case
of exponentially distributed jumps.
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Prior to that, we present two general results. One concerns the so-called transience condition
of the risk process (3.15), which states that limx→∞ ψ̄(x) = 1, an essential boundary condition. In
the case of such a model with no jump, these conditions are well known and are the following :

(C1) d(x) = d0 and p > 0 (Brownian motion).
(C2) d(x) = d2x

2 and r > d2 (Black-Scholes).
(C3) d(x) = d0 and r > 0 (Ornstein Uhlenbeck).
(C4) d(x) = d1x and r > 0 (CIR).

In the case of jumps, it is not obvious that such conditions are sufficient, in particular in view of
the brownian case, where condition turns out to be p > λm1 (positive safety loading). [Pau98]
proves that Condition (C2) is sufficient in the generalized Black-Scholes case, see also [FKP02].
The following result states that this is true in the case of exponentially distributed jumps.

Proposition 11. Let the risk process Xt satisfy (3.15) with the Zn (jumps) being E(α) distributed.
We have ψ̄(x) −→ 1 as x → +∞ in the following cases :

(C2) r > d2 in the Generalised Black-Scholes model d(x) = d2x
2.

(C3) r > 0 in the Generalised Ornstein Uhlenbeck model d(x) = d0.
(C4) r > 0 in the Generalised CIR model d(x) = d1x .

The second result is much more computational, and presents necessary relations satisfied by
sequences (an)n∈N and (an(q))n∈N if ψ and ψq have expansions (3.16) and satisfy (3.18) and
(3.19), using (3.17) and relations with derivatives of the Erlang distribution function, in a general
case when the cdf of the Zn’s is expressed in terms of the E (n,αx).

Theorem 18. Assume that the claim distribution function admits an Erlang expansion

F (y) = P {Zi ≤ y} =

N∑

n=1

fnE (n,αy), where

N∑

n=1

fn = 1,

where N may be infinite. Then :

1. coefficients (an)n∈N satisfy the following relations :

n = 0 : d0α
2a2 + a1(pα− d0α

2)− λa0 = 0 (3.20)

n ≥ 1 : d0α
2an+2 + an+1(pα− 2d0α

2 + d1αn)

+an(rn − pα+ d0α
2 − (2n − 1)d1α+ d2n(n− 1)− λ)

+an−1(−r(n − 1) + d1α(n − 1)− 2d2(n − 1)2)

+d2(n − 1)(n − 2)an−2 = −λ
min(n,N)∑

i=1

fi an−i (3.21)

2. coefficients (a∗n = a∗n(q))n∈N satisfy the same recurrence (3.20), (3.21), but adding qa∗n −
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q1{n=0} to the right-hand side :

n = 0 : d0α
2a∗2 + a∗1(pα− d0α

2)− λa∗0 = qa∗0 − q (3.22)

n ≥ 1 : d0α
2a∗n+2 + a∗n+1(pα− 2d0α

2 + d1αn) +

a∗n(rn − pα+ d0α
2 − (2n − 1)d1α+ d2n(n − 1)− λ)

+a∗n−1(−r(n − 1) + d1α(n − 1)− 2d2(n − 1)2)

+d2(n − 1)(n − 2)a∗n−2 = −λ
min(n,N)∑

i=1

fi a
∗
n−i + qa∗n (3.23)

As some parameters among p, r , d0, d1, d2 will vanish in what follows, relations (3.20), (3.21),
(3.22) and (3.23) will greatly simplify.

3.3.1 Generalized Ornstein-Uhlenbeck process, and Brownian motion with
jumps.

We consider here case
c(x) = p + rx , d(x) = d0 > 0,

with Z1 ∼ E(α) and r ≥ 0. In that case, Theorem 2.1 (i) of [PG97] says that a bounded twice diffe-
rentiable solution to the integro differential equation (3.18) with ψ(0) = 1 and limx→+∞ ψ(x) = 0
is the probability of eventual ruin. Therefore sufficient conditions for an expansion of ψ(x) of the
form (3.16) are

– that
∑∞

n=0 |an| < +∞, i.e. that
∑∞

n=0 an is absolutely convergent,
– that the following normalization holds

lim
x→+∞

ψ̄(x) =

∞∑

k=0

ak = 1. (3.24)

(the limit being justified because of the absolute convergence of the series), as justified by
Proposition 11,

– that
a0 = ψ̄(0) = 0.

Note that boundedness and differentiability will be automatically satisfied, again by absolute
convergence of

∑∞
n=0 an. Concerning expression of coefficients, Theorem 18 simplifies to

Lemma 4. In the case of E(α) distributed jumps, (an)n∈N is expressed recursively in the following
manner :

an+2 =

(
1− p

d0α

)
an+1 +

λ− rn

d0α2
an. (3.25)

A sequence (an)n∈N satisfying (3.25) obviously does not always meet the absolute convergence
of its series requirement. We present two cases where everything works out fine.
A finite expansion in the Generalized Ornstein-Uhlenbeck model . Let us suppose that

p = d0α and λ = r(2N + 1) for some N ≥ 0. (3.26)

The first condition ensures that an = 0 for n even, thanks to Lemma 4 and the fact that a0 = 0.
The second condition yields that an = 0 as soon as n ≥ 2N + 3, so that expansion is for odd
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indexes and finite. The expression of an for n = 2k + 1 is thus given by

a2k+1 = a1

k∏

i=1

λ− r(2i − 1)

d0α2
, 0 < k < N.

Note that Condition (3.26) resembles Condition λ = rN for some N ∈ N of Theorem 1 of [ATT01]
in which authors express the cdf of the ruin time, not just probability of eventual ruin, and where
a finite expansion is established. Indeed, when λ = rN and d0 = 0 then one can express an+1 in
function of an, then prove that an = 0 for n ≥ N + 1, by considering (3.26) multiplied by d0.
Condition (3.26), which enables Erlang expansions of the ruin probability, is of course not always
satisfied. However it yields upper and lower bounds for the survival probability. For example let us
suppose that p = d0α but that λ

r
/∈ 2N+ 1. Let us set N := ⌊12

(
λ
r
− 1
)
⌋, λN := r(2N + 1) and

λN+1 := r(2(N + 1) + 1). Then the probabilities of survival ψ̄N and ψ̄N+1 associated to arrival
rates of claims λN and λN+1 have each a finite Erlang expansion and provide upper and lower
bounds of ψ̄ :

ψ̄N(x) ≥ ψ̄(x) ≥ ψ̄N+1(x).

Likewise, if say p > d0α then one can get upper and lower Erlang expanded bounds for ψ̄(x)
repsecively by considering the same model but with mean claim sizes α0 := p/d0 and premium
rate p0 := d0α. Of course the resulting bounds may not be tight, but they are very easy to compute.
An infinite expansion in the brownian motion case. When r = 0 then the solution of (3.25)
is of the form

an = C1r
n
1 + C2r

n
2

for some constants C1 and C2, and where r1 and r2 are the two roots of equation X 2 −(
1− p

d0α

)
X − λ

d0α2
= 0. If λ is small enough, or if α is large enough, then one can check

that r1 and r2 lie in (−1, 1), so that
∑∞

n=0 |an| < +∞. Constants C1 and C2 are determined from
a0 = C1 + C2 = 0 as well as normalization (3.24), which translates as 1 = C1

1−r1
+ C2

1−r2
.

3.3.2 A finite expansion for an affine process.

We consider here case
c(x) = p + rx , d(x) = d0 + d1x ,

with d0, d1 > 0. We suppose that there is no jump, i.e. λ = 0. Since Theorem 2.1 of [PG97]
does not cover this case, it is conjectured that if a function is a twice differentiable solution to
the integro differential equation (3.18) with ψ(0) = 1 and limx→+∞ ψ(x) = 0 then it is the
probability of eventual ruin (note in particular that condition ψ(0) = 1 is due to d0 > 0).Therefore
a candidate expansion of the form (3.16) for ψ(x) should verify, as in the previous subsection, that∑∞

n=0 |an| < +∞, a0 = 0 as well as normalization condition (3.24).
Theorem 18 simplifies to

Lemma 5. (an)n∈N is expressed recursively in the following manner :

an+2 =
−p + d0α− d1n

d0α
an+1 +

−rn + αd1n

d0α2
an. (3.27)

Since there is no jump, α > 0 is here a free parameter. We note that a finite expansion is

64



3.3. RUIN TIME OF A WONG PEARSON DIFFUSION RISK PROCESS

possible if

− p +
d0

d1
r = d1N for some integer N. (3.28)

Indeed, choosing α = r/d1 yields ψ̄(x) =
N+1∑

n=1

anE (n, r/d1.x) with

an =
1

(d0r/d1)n−1

n∏

k=2

[−p + d0r/d1 − d1(k − 2)]a1, n ≥ 2,

with a1 obtained from normalization (3.24). Again, Condition (3.28) is not always verified in
practise, but upper and lower bounds for ψ̄(x) that have an Erlang expansion can be provided,
by using the same trick as in the Generalized Ornstein Uhlenbeck case in subsection 3.3.1, using

N := ⌊ 1
d1

(
−p + d0

d1
r
)
⌋, and premium rates pN := d0

d1
r − d1N and pN+1 :=

d0
d1
r − d1(N + 1).

3.3.3 Expansion of the Laplace transform for a generalized CIR process.

We consider
c(x) = p + rx , d(x) = d1x ,

with Z1 ∼ E(α). We focus here on trying to find in what condition an expansion (3.16) of ψq(x)
is possible. Since [PG97] is again not applicable, we start by proving the following result

Lemma 6. Let q ∈ (0,+∞). If ψq(x) is twice differentiable and satisfies

1. ψq and ψ′
q have logarithmic growth, i.e. |ψq(x)| and |ψ′

q(x)| being O(ln(x)),

2. ψq(x) = ψq(0) = 1 if x < 0,

3. ψq satisfies (3.19) on x ∈ [0,+∞),

then ψq(x) = Ex(e
−qτ ).

Note that Condition ψq(x) = 1 if x < 0 is a bit artificial and is here for technicalities. We also
note that when x = 0 then ruin occurs at time t = 0 ; this is typical of the CIR process and is
different from e.g. the geometric brownian case d(x) = d2x

2. The objective is to prove that en
expansion of ψq(x) verifies points 1. Theorem 18 simplifies and we obtain the following expansion
result

Theorem 19. a∗n(q) = a∗n is defined by





a∗0 = 0

a∗1 = −q
pα

a∗n+1 =
(
1− γn +

q−r
α(p+d1n)

)
a∗n + γna

∗
n−1

(3.29)

with γn := −λ+(r−d1α)(n−1)
α(p+d1n)

. Furthemore, under Condition

0 < r − d1α < d1α, (3.30)

ψ̄q(x) = 1− ψq(x) = 1− Ex(e
−qτ ) has the Erlang expansion (3.16) for q ∈ (0, r ].
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The key for proving this theorem is to prove that, with (a∗n(q))n∈N defined as (3.29), x 7→∑∞
n=0 a

∗
n(q)E (n,αx) has logarithmic growth, so that Lemma 6 can be applied. Let us remark that

expansion (3.16) is valid on an interval q ∈ (0, r ] that does not contain 0. Indeed, proof of Theorem
19 does not seem to work for q = 0.

3.4 Risk theory and reliability

We present here [PR13]. We consider a Lévy process {Dt , t ≥ 0} of the form

∀t ≥ 0 , Dt = Gt + σBt (3.31)

where {Gt , t ≥ 0} is a subordinator, i.e. a Lévy process with non decreasing sample paths, and
{Bt , t ≥ 0} is an independent brownian motion. The objective of [PR13] is to determine the
following quantities

φw (δ, b) = E(e−δTbw(DTb−,DTb
)), (3.32)

P(Lb < t), (3.33)

E[e−δLb1{b−DLb−
∈dy , DLb

−b∈dw}], (3.34)

E

[
e−δL∗

b

]
, (3.35)

for all δ ≥ 0, b ≥ 0, y ≥ 0, w ≥ 0, where w : R×R −→ R is a so called penalty function, and

Tb := inf {t ≥ 0 ; Dt ≥ b}

is the first passage time above level b of {Dt , t ≥ 0},

Lb := sup{0 ≤ u| Du ≤ b} and L∗b := sup{0 ≤ u| D∗
u ≤ b}

are last passage times below b of processes {Dt , t ≥ 0} and its reflected {D∗
t , t ≥ 0} defined by

∀t ≥ 0, D∗
t := Dt − inf

0≤s≤t
(Ds ∧ 0). (3.36)

These kind of problems are obviously related to risk theory, and are motivated this time by reliability.
More precisely, Dt represents degradation state of a certain component or system at instant t.
Traditionally, one consider that this component is deteriorated when it reaches a certain level
b > 0 for the first time (see e.g. [PP05] in the simple case when Gt is a gamma process and
σ = 0, with a more statistical oriented study). However, a recent suggestion by Barker and Newby
[BN09] is to rather consider the last passage time of the process as the degradation time. This
has a nice interpretation in reliability, as even if {Dt , t ≥ 0} reaches and goes beyond b, resulting
in a temporarily degraded state of the device, it can still always recover by getting back below b

provided this was not the last passage time through b. On the other hand, if this is the last passage
time then no recovery is possible afterwards.

We first introduce some notation. The Laplace exponent of {Dt , t ≥ 0} is denoted by ϕD and
verifies

∀u ∈ R, etϕD (u) = E[e−uDt ] = exp(tϕG (u)) exp(tϕB(u)),
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where ϕG and ϕB are the Laplace exponents of {Gt , t ≥ 0} and {Bt , t ≥ 0} and are such that
(remember that Gt is a subordinator)

ϕB(u) =
1

2
u2σ2, ϕG (u) = −µu +

∫ ∞

0
[e−ux − 1]Q(dx),

for some µ ≥ 0, where Q(.) is a measure with support in (0,+∞) (see Section 2.6.2 of [Kyp06]).

3.4.1 First passage time.

We first focus on Tb. We first note that what we are interesting in exact formulas for
(3.32). However, interesting properties were discovered about the behavior of joint distribution
of (Tb,DTb−,DTb

) as b → +∞ in [RVV08], where the authors prove that, surprisingly, Tb be-
comes asymptotically independent from (DTb−,DTb

), and give an explicit expresion of the Laplace
transform of the correctly renormalized limiting distribution of the triplet.

We aim at confronting two approaches for determining (3.32). One is the use of scale functions,
which were already introduced previously in Section 2.2 (see Formula (2.11)).

Definition 2. We define for all δ ≥ 0 the scale function W (δ) of process {Dt , t ≥ 0} through the
following Laplace transform

∫ ∞

0
e−λxW (δ)(x)dx =

1

ϕD(λ)− δ
, λ > ρ(δ), (3.37)

where ρ(δ) is solution of the Lundberg equation

δ − σ2

2
ρ2 = ϕG (ρ) ⇐⇒ δ = ϕD(ρ). (3.38)

It turns out that the following result from [BK10] gives a bit more than expression (3.32).

Theorem 20 (Theorem 1 [BK10]). Let us define the last maximum before hitting time Tb as
DTb− := supt<Tb

Dt . Then

E

[
e−δTbw(DTb−,DTb

,DTb−)
]
=

∫

(0,+∞)3
1{v≥y}w(u + b,−v − b,−y − b)K

(δ)
b (du, dv , dy),

(3.39)
where function w(., ., .) verifies w(., b, .) = 0 and

K
(δ)
b (du, dv , dy) := e−ρ(δ)(v−y)

[
W (δ)′(b − y)− ρ(δ)W (δ)(b − y)

]
Q(du + v)dydv .

In particular :

φw (δ, b) =

∫

(0,+∞)2
w(u + b,−v − b)K̃

(δ)
b (v)Q(du + v)dv (3.40)

where K̃
(δ)
b (v) :=

∫ v

y=0
e−ρ(δ)(v−y)

[
W (δ)′(b − y)− ρ(δ)W (δ)(b − y)

]
dy .

Several remarks spring to mind while reading this result. First, K
(δ)
b (du, dv , dy) requires

implicitly that W (δ) be differentiable : a sufficient condition for this is that Dt has unbounded
variation, which is the case here since we suppose σ > 0. Second, the computational issue of how
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to obtain W (δ) in practice is raised, so as to get closed forms for quantities (3.39) and (3.40).
Recent papers deal with this practical aspect and give expressions of this scale function when
{Gt , t ≥ 0} is a compound Poisson process with Phase type distributed jumps, or more generally
when it is meromorphic, see [HK11, MK13, EY12], or give approximations of those scale functions.
It is not known at the moment how to have an expression for W (δ) when {Gt , t ≥ 0} is for
example a Gamma process, which is a process that is traditionally used in reliability for modelling
degradation.

This leads to the second approach for determining expression of (3.32). By using the fact that
process {Gt , t ≥ 0} is the (pointwise) limit of a sequence of compound Poisson processes with
jumps of which is related to measure Q(.), we arrive at the following result using a method similar
to [GM06] (we recall that that convolution of two functions f and g defined from [0,+∞) to R
is defined by f ⋆ g(z) =

∫ z

0 f (x)g(z − x)dx).

Proposition 12. Let ω(x) :=
∫∞
x

w(x , y − x)Q(dy). Function φ(δ, ·) = φw (δ, ·) satisfies the
renewal equation

φ(δ, b) = φ(δ, ·) ⋆ g(δ, ·)(b) + h(δ, b) (3.41)

where functions g(·, ·) and h(·, ·) defined by

g(δ, y) =
2

σ2

∫ y

0
e−[−2µ/σ2+ρ(δ)](y−s)

∫ ∞

s

e−ρ(δ)(x−s)Q(dx)ds (3.42)

h(δ, y) = e−[−2µ/σ2+ρ(δ)]y +
2

σ2

∫ y

0
e−[−2µ/σ2+ρ(δ)](y−s)

∫ ∞

s

e−ρ(δ)(x−s)ω(x)dxds.(3.43)

Hence φw (δ, b) is given by the expansion formula

φw (δ, b) =
∞∑

k=0

g⋆k(δ, .) ⋆ h(δ, .)(δ, b). (3.44)

The downside is that Formula (3.44) is in practise not easy to use numerically since it involves
multiple integrals due to the convolutions(as well as an infinite series which in practise is truncated).
However, this approach might be more profitable than the one in Theorem 20 in cases where the
scale function does not have a close form, as indeed in Theorem 20 one has to get an approximation
of W (δ) by inverse Laplace transform, then that of its derivative, then plug this approximation in
(3.40).

Incidentally, combining both approaches theoretically gives yet another expression for the scale
function. Indeed, we recall that, from Expression (4) p.19 of [KP05],

E[e−δTb ] = 1 + δ

∫ b

0
W (δ)(y)dy − δ

ρ(δ)
W (δ)(b). (3.45)

Since the lefthandisde of (3.45) is no less that φw (δ, b) with w ≡ 1, it has from Proposition
12 some expression of the form (3.44) expressed as a series of convoluted functions. By deriving
(3.45) one observes that W (δ) satisfies the first order differential equation of the form W (δ)′(x)−
ρ(δ)W (δ)(x) = H(δ, x) where H(δ, x) is expressed as an infinite series. The fact that σ2 > 0
entails by Lemma 8.6 p.222 of [Kyp06] says that W (δ)(0) = 0, so that solving that differential
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equation yields the following expression for W (δ)(x)

W (δ)(x) =

∫ x

0
e−ρ(δ)(x−y)H(δ, y)dy . (3.46)

Again, Formula (3.46) is not a miracle since it involves again series with mutliple integrals. However
this is to be compared with directly inverting (3.37) using a Bronwich integral, see Section 5 of
[KKR13] for tricks enabling the inversion to be numerically more efficient.

3.4.2 Last passage time, and an application.

We now turn to Lb and L∗b and focus on determining (3.33), (3.34) and (3.35). Surprisingly,
there seems to be few results concerning L∗b in the literature. As to Lb, we may mention [CY05]
where the authors determine last exit times distribution, and [Bau09] where the author determine
distribution of the last exit times before an exponentially distributed time. Both papers consider the
class of spectrally negative Lévy processes, on the other hand the distribution is expressed in terms
of Laplace transform, not of e.g. cumulative distribution function. This time, the only available
option seems to be using scale functions. We have the following result.

Theorem 21. For all t ≥ 0 and a ∈ R, δ ≥ 0, b > y ≥ 0, w > 0, (3.33) and (3.34) have the
expressions

P(Lb < t) =

∫ ∞

b

E[D1]W (a− b)fDt
(a)da

E[e−δLb1{b−DLb−
∈dy , DLb

−b∈dw}] =

[
eρ(δ)(b−y) 1

ϕ′
D(ρ(δ))

−W (δ)(b − y)

]
dy

.[1− e−ρ(0)w ]Q(dw + y)

where fDt
(.) is density of r.v. Dt and W (.) = W (δ)(.) with δ = 0. The Laplace transform (3.35)

of L∗b is given by

E

[
e−δL∗

b

]
= E[D1]

∫ ∞

b

W ′(a − b)φ(δ, a)da

where φ(δ, a) := E[e−δTa ] = φw (δ, a) with w ≡ 1.

In fact, a side product of Theorem 21 is that it is possible to get P(Lb ≥ t, Dt ∈ da) for all
a ≥ b This is a bit more general than P(Lb < t), and will be useful for the upcoming application.
A key result and starting point that was used for establishing (3.34) is a Corollary 2 of [KPR10],
which expresses the joint distribution of many quantities (that involve the last passage time, but
also the minimum of Dt , t ≥ 0, its minimum after t etc.) but that require some measures on
(0,+∞)2 which are again charactarized through their (double) Laplace transform, whereas (3.34)
only features scale functions. Let us also remind that in E

[
e−δL∗

b

]
, φ(δ, a) is obtained as (3.45) (a

function of scale function W (δ)(.)), or as (3.44) with w ≡ 1 (for the renewal approach).
We finish this section by seeing how Theorem 21 can be applied to compute degradation

measures in a reliability context. We consider a component of which degradation is represented by a
process {Xt , t ≥ 0}. Lifetime is distributed as Lb without maintenance ; i.e., without maintenance,
{Xt , t ≥ 0} has same distribution as {Dt , t ≥ 0}, and deterioration corresponds to its last passage
time. We now suppose that inspections occur at times (Ui )i=1,2,... such that inter inspection time
verifies Ui+1 − Ui = m(XUi+), where m(.) is some non increasing (general) function. We also
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suppose that component undergoes some maintenance upon inspection if it did not fail since
last inspection through some function d : R −→ R which is some "maintenance function". On
inspection at time Ui , one of the following actions is undertaken :

– either the system did not fail in interval (Ui−1,Ui ], in which case preventive maintenance
occurs and degradation process evolves like {Dt , t ≥ 0} with initial condition D0 = d(x)
up until time Ui+1, where x is degradation state at instant Ui− ; in other words one has
XUi

= d(XUi−),
– or the system failed in interval (Ui−1,Ui ] in which case it is repaired and degradation process

starts anew, i.e. evolves like {Dt , t ≥ 0} with initial condition D0 = 0.
What is studied is the joint distribution of the following quantities :

– the r.v. I as the first inspection after which system is completely repaired, i.e.

I = inf{i ∈ N| failure occurred in (Ui−1,Ui ]},

– the unavailability period of time during which component is down until next scheduled
inspection :

∆∗ := T ∗ − Hb ∈ [0,UI − UI−1]

where Hb ∈ [UI−1,UI ] is the failure time of the component.
See Figure 3.2 for an illustration of these quantities. Their distributions (point mass probability
for I or cdf for ∆∗) are available thanks to Theorem 21. Note that those could not have been

b

tU1
U2 U3

U4 U6 = UI = T ∗
0

U5

Xt

failure

idle time ∆∗

Hb

Figure 3.2 – Sample path of degradation process {Xt , t ≥ 0}, with failure in (U5,U6].

obtained if the Laplace transform of Lb had been derived instead of its cumulative distribution
function (3.33).
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As a conclusion, I am presenting here some of the topics I would like to investigate (or that I
am starting to investigate), some of which already involve some of my colleagues.

Multidimensional risk processes. An objective is to carry on and try find some correspondance
between N dimensional risk theory and stochastic networks. A plan would first to find an adequate
N dimensional equivalent of Theorem 1. This is already difficult, and a first attempt was done in
the present document at the end of Section 1.3.1, however, we are that section in the presence of
bounds, not equalities. Then, it would be nice to see if such a correspondance could be profitable
to both sides, the "queueing theory" community, or the "ruin theory" community. For example,
there exists results concerning the asymptotic distribution of a multidimensional brownian motion
reflected in the orthant with a certain reflection matrix (with certain condition ensuring that this
limit does exist). There exists some cases where this distribution admits a so-called "product form"
which is very convenient because it is simple and interesting numerically, albeit restricted to a
limited number of cases of such reflected brownian motions (see [KW95]). Since such a reflected
process is a model for particular networks, this might in turn provide some information on a corres-
ponding adequately defined multidimensional ruin problem. Conversely, some multidimensional ruin
problem that were solved might give additional insight or give information on relative stochastic
networks.

Reliability. This subject is related to ANR project AMMSI (www-ljk.imag.fr/AMMSI/index.html)
in which I take part and which started in March 2012. Problem investigated in Section 3.4 is very
close to what is encountered in risk theory, except maybe the application in Section 3.4.2 where
notion of preventive maintenance is important. It is in fact that very notion which is specific in
that field, and which is interesting to explore. There are many kinds of defining maintenance :
one is to modify the state of the degradation process on inspection times (this is what happens
in Section 3.4.2). Some are more subtle : for example maintenance can consist in, on inspection
time, resetting the degradation process with a value which has the same value as the one at a
random (properly defined) time since last inspection ; an extensive description of this ageings and
maintenances can be found in [GD11]. Moreover, these maintenances may be performed differently
whether the degradation process lies between two different boundaries. An example of such me-
chanisms may be found in [MC13].
Note that, similarly to multidimensional risk theory, there is some interest in multivariate models
in reliability where failure time is defined by the entering into certain subsets of a RN valued
degradation process, see e.g. [MP12]. These degradation processes have, componentwise, non de-
creasing sample paths ; however one may imagine a situation where maintenances are performed
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periodically, which leads to a model with degradation processes with negative jumps, much closer
to the ones present in the present document.

Genome and branching random walks. This topic is almost completely disconnected from
the previous ones and concerns modelling of evolution of transposable elements on a DNA strand.
It is related to the "Projet Région" entitled "Modélisation Mathématiques des Éléments Transpo-
sables" which officially started in July 2013 and in which I participate. This is still work in progress.
A transposable element is a small sequence of nucleobases, of which size is considered negligible,
compared to the size of the strand. At each generation, a transposable element is either deleted,
stays in place, or generates an identical twin at some random distance of which distribution varies
with time. This is modelled by the following branching random walk. Let (Zn)n∈N be a classical
Galton Watson process with offspring number having the distribution of the generic r.v. ξ with
values in {0, 1, 2} and distribution

pi = P(ξ = i), i = 0, 1, 2.

We let m := p1 + 2p2 the mean number of offspring of each element, and we suppose that we
are in the superciritcal case m > 1. Positions of the transposable elements at generation n are
denoted by X n

k , k = 1, ...,Zn , on the event of non extinction, which take their values in some set
S. We let V n

k the distance between elements k at time n and its future offspring (if any), and we
suppose that for each n, sequence (V n

k )k∈N is identically distributed (not necessarily independent)
as a random variable V n that varies with n. In this work we are interested in the two following
empirical measures and their random generating functions

νn :=
1

Zn
1{Zn>0}

Zn∑

k=1

δX n
k
, Mn(u) :=

1

Zn
1{Zn>0}

Zn∑

k=1

euX
n
k , u ∈ R,

ν̂n :=
1

mn
1{Zn>0}

Zn∑

k=1

δX n
k
, M̂n(u) :=

1

mn
1{Zn>0}

Zn∑

k=1

euX
n
k , u ∈ R,

(3.47)

and their almost sure limit ν∞ and ν̂∞ as n → +∞, which is equivalent to the pointwise conver-
gence of Mn(u) and M̂n(u). When the V n’s have identical distribution with moment generating
function ϕ(u) = E(euV

n
), M̂n(u) is related to Biggin’s martingale Wn(u) =

1
m(u)n 1{Zn>0}

∑Zn

k=1 e
uX n

k

where m(u) is a renormalizing factor which here has the simple expression m(u) := p1 + p2ϕ(u).
So far in this project we have done or are doing the following :

1. We have exhibited a martingale related to Mn(u) which is different from Biggin’s martingale.
By standard positive martingale and bounded submartingale theory, this entails the conver-
gence of Mn(u) as n → +∞, when the V n decrease fast enough as n becomes large, to
some M∞(u).

2. We are trying to give some characteristic on M∞(u). For the moment, we are trying to find
how to obtain some expression of its expectation E(M∞(u)) by the standard method of
conditioning with respect to the state of the branching random walk at generation n = 1.

Two kinds of sets S have been studied in the above points : S = R, and S = T, the torus on [0, 1].
In the case S = T, distribution ov the V n’s may be assumed constant ; in fact one practical aspect
when it is exponentially or Laplace distributed, as shown on Figure (3.3). Let us note that one
central tool for studying Point 2) is the so-called Many to one Lemma (see Lemma 2.1 of [Mal13])
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which links distribution branching random walks to one dimensional classical random walks.
Furthermore, we also study the model where particles are potentially trapped in some subsets

of S, i.e. such that, whenever an element is spawned in one of these subsets then all its descendants
are located in its exact place. This is motivated by the fact that, in practice, a transposable element
may be duplicated in a "dead" zone on the DNA strand, which is not likely to produce such elements
in the future. Using the Many to one Lemma, we are trying to find an integral equation satisfied
by x E(Mx

∞(u)) (where x is position of the initial element) when S = T and/or when there is
such a dead zone.

0 ∼ 1

L(µ)

L(µ)

duplicate

duplicate

Trapping zone A

Figure 3.3 – Duplication mechanism in the torus case S = T, when displacements are Laplace
distributed.
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