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martingales et applications à
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Résumé

La théorie des martingales est une direction de recherche étroitement liée à

beaucoup d’autres domaines tels que l’analyse harmonique, l’analyse stochastique

et la théorie des espaces de Banach. Elle a aussi de nombreuses applications aux

mathématiques finanères, à l’analyse de risques, à la théorie de l’information. Plus

récemment, des chercheurs commencent à s’intéresser à d’autres espaces que les

espaces Lp usuels avec p ≥ 1. Par exemple, les Lp avec 0 < p < 1, les espace de Hardy

Hp (0 < p < 1) et les espace de Lorentz Lp,q. Ces espaces ne font pas partie en général

de l’étude classique mais ont des applications varées. D’autre part, par rapport aux

fonctions, les martingales peuvent mieux reféter les processus, l’information et le

rapprochement. C’est la raison principale pourquoi beaucoup de chercheurs portent

leur attention à la théorie des martingales. A titre de comparaison, on a relativement

plus de résultats sur les espaces de Lorentz Lp,q dans l’analyse harmonique; mais ce

n’est pas le cas pour les espaces H∗
p,q, HS

p,q, et Hs
p,q de martingales. C’est pourquoi

nous recherchons à accomplir la recherche sur les espaces de Lorentz de martingales.

L’objectif de la présente thèse est d’étudier les espaces de Lorentz de martin-

gales formés par les fonctions maximales, les fonctions carrées, les fonction carrées

conditionnelles. On s’intéresse en particulier aux relations entre ces espaces, aux

inégalités de martingales vérifiées par eux et à leur interpolation. Nos outils princi-

pales sont diverses décompositions atomiques, la transformation de martingales. A

part des martingales commutatives, nous nous intéresser aussi aux celles non com-

mutatives. La théorie des martingales non commutatives a connu un développement

remarquable ces dernières années. Nous obtenons ici les inégalités de Burkholder-

Gundy et les inégalités de Burkholder pour les martingales non commutatives dans

des espaces de Lorentz.
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Nous décrivons maintenant le contenu de la thèse. Dans le chapitre 1, nous don-

nons quelques résultats bien connus et élémentaires sur la théorie des martingales,

introduisons plusieurs espaces de Lorentz de martingales, rappelons les decomposi-

tions atomiques des espaces de Hardy de martingales pondérés et les transformées de

martingales. Dans le chapitre 2, nous étudions l’interpolation des espaces de Lorentz

de martingales pondérés et identifions les espaces d’interpolation réels entre Hp et

Hp,∞. Dans le chapitre 3, nous étudions la bornitude des applications sous-linéaires

en utilisant les decompositions atomiques des espaces de Lorentz de martingales.

Nous y obtenons certaines inégalités de martingales et prouvons aussi le théorème

d’interpolation de type restreint faible. Dans le chapitre 4, nous discutons de trans-

formées de martingales à valeurs vectorielles sur les espaces de Lorentz. Avec ces

transformées nous construisons des plongements des espaces de Lorentz de martin-

gales à valeurs dans un espace de Banach. Ces plongements dependent des propriétés

géométriques de l’espace de Banach en question telles que la convexité (ou lissité)

uniforme, la propriété de Radon-Nikodym, etc. Dans le chapitre 5 nous obtenons des

relation entre les mesures de Carleson et la norme BMO de martingales vectorielles,

qui sont étroitement liées aux propriétés géométriques de l’espace de Banach sous-

jacent. Dans le chapitre 6, nous démontrons les inégalités de Burkholder-Gundy et

les inégalités de Burkholder, qui étendent certaines résultats de Junge et Xu.

Mots clés: Espaces de Lorentz de martingales; décomposition atomique; in-

terpolation; inégalités pondérées; mesures de Carleson; BMO; martingales noncom-

mutatives; inégalité de Burkholder; propriétés géométriques des espaces de Banach.
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Chapter 1 Preliminaries

§ 1.1 Notations and classical results

Let {Σn}n≥0 be a nondecreasing sequence of sub-σ-fields of Σ such that Σ =
∨

Σn.

We denote the expectation operator and the conditional expectation operator rel-

ative to Σn by E and En, respectively. For a martingale f = (fn)n≥0, we define

∆nf = fn−fn−1, n ≥ 0 (with the convention that f−1 = 0, Σ−1 = {Ω, Φ}) and adopt

the notions of its maximal function, quadratic function and conditional quadratic

function as follows, respectively:

Mn(f) = sup
0≤i≤n

|fi|, M(f) = sup
n≥0

|fn|,

Sn(f) = (

n∑

i=0

|∆if |
2)1/2, S(f) = (

∞∑

n=0

|∆nf |2)1/2,

sn(f) = (
n∑

i=0

Ei−1|∆if |
2)1/2, s(f) = (

∞∑

n=0

En−1|∆nf |2)1/2.

Denote by Λ the set of all non-decreasing, non-negative and adapted r.v. sequences

ρ = (ρn)n≥0 with ρ∞ = limn→∞ ρn. We shall say a martingale f = (fn)n≥0 has

predictable control in Lp if there is a sequence ρ = (ρn)n≥0 ∈ Λ such that

|fn| ≤ ρn−1, ρ∞ ∈ Lp.

As usual, we define the following martingale spaces (see [35] and [59])

Lp = {f = (fn)n≥0 : ‖f‖p = sup
n

‖fn‖p < ∞}

H∗
p = {f = (fn)n≥0 : ‖f‖Hp = ‖M(f)‖p < ∞},

Hs
p = {f = (fn)n≥0 : ‖f‖Hs

p
= ‖s(f)‖p < ∞},

HS
p = {f = (fn)n≥0 : ‖f‖HS

p
= ‖S(f)‖p < ∞},

Qp = {f = (fn)n≥0 : ∃(ρn)n≥0 ∈ Λ, s.t.Sn(f) ≤ ρn−1, ρ∞ ∈ Lp},

‖f‖Qp = inf
ρ
‖ρ∞‖p

Dp = {f = (fn)n≥0 : ∃(ρn)n≥0 ∈ Λ, s.t. |fn| ≤ ρn−1, ρ∞ ∈ Lp},
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‖f‖Dp = inf
ρ
‖ρ∞‖p.

Remark The norms of Qp and Dp are attainable respectively. For example, there

exists (ρn)n≥0 ∈ Λ, Sn(f) ≤ ρn−1, ρ∞ ∈ Lp such that ‖f‖Qp = ‖ρ∞‖p, which is also

called the optimal control.

Theorem1.1.1(Burkholder-Gundy-Davis) For 1 ≤ p < ∞§we have

‖Mf‖p ≈ ‖S(f)‖p.

The Burkholder-Gundy-Davis inequality shows if 1 ≤ p < ∞ thenH∗
p = HS

p

with equivalent norm. Moreover, if 1 < p < ∞, it is well known that HS
p = H∗

p = Lp

with equivalent norms. {Σn}n≥0 is called regular if there exists R > 0 such that

|fn| ≤ R|fn−1| (∀n ∈ N).

This condition is denoted by the R condition, and we refer to [59] for more details.

Theorem1.1.2 If R condition holds, then for all 0 < p < ∞§we have

‖Mf‖p ≈ ‖S(f)‖p ≈ ‖s(f)‖p ≈ ‖f‖Qp ≈ ‖f‖Pp.

§ 1.2 Atomic decompositions of Hardy martingale spaces

Let (Ω, Σ, P ) be complete probability space and f a measure function defined on Ω.

Its distribution function is

λf(t) = P (x : |f(x)| > t), t ≥ 0,

and its decreasing rearrangement function f ∗ is defined as

f ∗(t) = inf{s > 0 : λf(t) ≤ t} t ≥ 0.

The Lorentz space Lp,q(Ω) = Lp,q, 0 < p < ∞, 0 < q ≤ ∞, consists of those

measurable functions f with finite quasinorm ‖f‖p,q given by

‖f‖p,q = (
q

p

∫ ∞

0

[t1/pf ∗(t)]q
dt

t
)1/q, 0 < q < ∞,

‖f‖p,∞ = sup
t>0

t1/pf ∗(t), q = ∞.

It will be convenient for us to use an equivalent definition of ‖f‖p,q, namely

‖f‖p,q = (q

∫ ∞

0

[tP (|f(x)| > t)1/p]q
dt

t
)1/q, 0 < q < ∞,
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‖f‖p,∞ = sup
t>0

tP (|f(x)| > t)1/p, q = ∞.

To check that these two expressions are the same, simply make the substitution

y = P (|f(x)| > t) and then integrate by parts.

It is well known that if 1 < p < ∞ and 1 ≤ q ≤ ∞, or p = q = 1, then Lp,q

is a Banach space, and ‖f‖p,q is equivalent to a norm. However, for other values

of p and q, Lp,q is only a quasi-Banach spaces. In particular, if 0 < q ≤ 1 ≤ p or

0 < q ≤ p < 1 then ‖f‖p,q is equivalent to a q-norm. Recall also that a quasi-norm

‖ · ‖ in X is equivalent to a p-norm, 0 < p < 1, if there exists c > 0 such that for

any xi ∈ X, i = 1, ..., n

‖x1 + · · ·+ xn‖
p ≤ c(‖x1‖

p + · · ·+ ‖xn‖
p).

For all these properties, and more on Lorentz spaces, see for example [5], [19] and

[2]. The Holder inequality for Lorentz spaces is the following,

‖fg‖p,q ≤ c‖f‖p1,q1
‖g‖p2,q2

for all 0 < p, q, p1, q1, p2, q2 ≤ ∞ such that 1
p

= 1
p1

+ 1
p2

and 1
q

= 1
q1

+ 1
q2

.

Let ω be a strict positive r.v. on (Ω, Σ, P ) and ω(A) =
∫

A
ωdP for every A ∈ Σ.

The distribution function of f with respect to ω is defined as

λf,ω(y) = ω(x ∈ Ω : |f(x)| > y), y > 0

the non-increasing rearrangement function of f with respect to ω is defined as

f ∗
ω(t) = inf{y : λf,ω(y) ≤ t}, t > 0

and the average function of f with respect to ω is defined as

f ∗∗
ω (t) =

1

t

∫ t

0

f ∗
ω(y)dy, t > 0.

The weighted Lorentz spaces Lp,q;ω is defined as all of the r.v. f on (Ω, Σ, P ) such

that ‖f‖p,q;ω < ∞, where

‖f‖p,q;ω =






( q
p

∫ ∞

0
[t1/pf ∗

ω(t)]q dt
t
)1/q, 0 < p < ∞, 0 < q < ∞

sup
t>0

t1/pf ∗
ω(t), 0 < p ≤ ∞, q = ∞.
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Remark The Lorentz space Lp,q increases as the second exponent q increases,

namely, for 0 < p < ∞ and 0 < q1 < q2 ≤ ∞ one has Lp,q1
⊂ Lp,q2

. Moreover,

one has Lr,s ⊂ Lp,q for 0 < p < r ≤ ∞ and 0 < q, s ≤ ∞.

Then for 0 < p, q ≤ ∞, we define the weighted Lorentz martingale spaces as

follows:

Hs
p,q;ω = {f = (fn)n≥0 : ‖f‖Hs

p,q;ω
= ‖s(f)‖p,q;ω < ∞},

Qp,q;ω = {f = (fn)n≥0 : ∃(ρn)n≥0 ∈ Λ, s.t.Sn(f) ≤ ρn−1, ρ∞ ∈ Lp,q;ω},

‖f‖Qp,q;ω = inf
ρ
‖ρ∞‖p,q;ω

Pp,q;ω = {f = (fn)n≥0 : ∃(ρn)n≥0 ∈ Λ, s.t.|fn| ≤ ρn−1, ρ∞ ∈ Lp,q;ω},

‖f‖Pp,q;ω = inf
ρ
‖ρ∞‖p,q;ω.

Remark If p = q, the weighted Lorentz martingale spaces are respectively reduced

to the weighted Hardy martingale spaces.

In general, however, ‖.‖p,q;ω is not a norm since the Minkowski inequality may

be fail. If replacing f ∗
ω(t) by f ∗∗

ω (t) in the above definition of ‖f‖p,q;ω, we obtain a

new norm ‖.‖(p,q);ω for every q ≥ 1 :

‖f‖(p,q);ω =






( q
p

∫ ∞

0
[t1/pf ∗∗

ω (t)]q dt
t
)1/q, 0 < p < ∞, 0 < q < ∞

sup
t>0

t1/pf ∗∗
ω (t), 0 < p ≤ ∞, q = ∞.

We state a result in [5] as a lemma.

Lemma 1.2.1 If 1 < p ≤ ∞, 0 < q ≤ ∞, then for a measurable function f ,

‖f‖p,q;ω ≤ ‖f‖(p,q);ω ≤
p

p − 1
‖f‖p,q;ω.

Now we consider atomic decompositions of Hardy martingale spaces. We refer to

[97], [101] and [39] for some definitions of atoms.

Definition 1.2.2 A measurable function α is called (1, p,∞) atom, if there exists

a stopping time τ such thatµ

(i) an = Ena = 0§n ≤ τ ,

(ii) ‖s(a)‖∞ ≤ P{τ < ∞}−
1
p .

Replacing (ii) by (ii)′ ‖S(a)‖∞ ≤ P{τ < ∞}−
1
p or (ii)′′ ‖M(a)‖∞ ≤ P{τ <

∞}−
1
p , we get the concept of (2, p,∞) atom or (3, p,∞) atom.
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Definition 1.2.3 A measurable function a is called w-1-atom (or, w-2-atomic, w-

3-atomic), if there exists a stopping time τ such that

(i) an = Ena = 0, ∀n ≤ τ,

(ii) ‖s(a)‖∞ < ∞ (or (ii)‖S(a)‖∞ < ∞, (ii)‖M(a)‖∞ < ∞).

Lemma 1.2.4 Let 0 < p < ∞. Then f = (fn)n≥0 ∈ wHs
p(or wQp, wDp) if and only

if there exists a sequence of w-1-atom (or, w-2-atomic, w-3-atomic) (ak)k∈Z and the

corresponding stopping time sequence (τk)k∈Z such that

(i) fn =
∑

k∈Z Enak, ∀n ∈ N

(ii) For some constant A ≥ 0, s(ak) ≤ A2k(or S(ak) ≤ A2k, M(ak) ≤ A2k),

and

sup
k∈Z

2kpP (τk < ∞) < ∞.

Definition 1.2.5 A measurable function α is called a (1, p,∞) atom with respect

to w§if there exists a stopping time τ such that

(i) an = Ena = 0§n ≤ τ ,

(ii) ‖s(a)‖∞ ≤ w{τ < ∞}−
1

p .

Replacing (ii) by (ii)′ ‖S(a)‖∞ ≤ w{τ < ∞}−
1

p or (ii)′′ ‖M(a)‖∞ ≤ w{τ <

∞}−
1

p
§we get the concept of (2, p,∞) atom with respect to w or (3, p,∞) atom

with respect to w.

Many atomic decomposition theorems of Hardy martingale spaces can be trans-

formed to be of weighted Hardy martingale spaces. In the following we state some

of them as Lemmas, their proofs are similar to those in [97] and [54], so here we

only prove one of them and omit others.

Lemma 1.2.6 If f = (fn)n≥0 is in Hs
p;ω, 0 < p < ∞, then there exist a sequence

(ak)k∈Z of (1, p,∞)-atoms with respect to ω and a sequence µ = (µk)k∈Z ∈ lp of real

numbers such that for every n ∈ N

∑

k∈Z

µkEnak = fn, (1)

and

(
∑

k∈Z

|µk|
p)1/p ≤ Cp‖f‖Hs

p;ω
, (2)

where (1) is convergent in Hs
p;ω.

Proof Assume f ∈ Hs
p;ω. Considering the following stopping times

τk = inf{n ∈ N : sn+1(f) > 2k}, k ∈ Z.

5



It is obvious that the sequence of these stopping times is non-decreasing and easy

to see

fn =
∑

k∈Z

(f τk+1

n − f τk
n ).

Let µk = 2k3ω(τk 6= ∞)1/p and

ak
n =

f
τk+1
n − f τk

n

µk

.

It is clear that, for a fixed k, (ak
n) is a martingale. Since s(f τk

n ) ≤ 2k and s(f
τk+1
n ) ≤

2k+1,

s(ak
n) ≤

1

µk
(s(f τk

n ) + s(f τk+1

n )) ≤ ω(τk 6= ∞)−1/p.

Consequently,(ak
n) is L2-bounded, so there exists L2-bounded measurable function,

also denoting by ak, such that

Enak = ak
n, ∀n ≥ 0.

ak
n = 0 when n ≤ τk , thus ak is really a (1, p,∞) atom. By Abel rearrangement we

get

∑

k∈Z

|µk|
p = 3p

∑

k∈Z

2kpω(τk 6= ∞) = 3p
∑

k∈Z

2kpω(s(f) > 2k)

=
3p

2p − 1

∑

k∈Z

[(2p)k+1 − (2p)k]ω(sp(f) > (2k)p)

=
3p

2p − 1

∑

k∈Z

(2p)kω((2p)k−1 < sp(f) ≤ (2p)k)

≤
3p

2p − 1
‖f‖p

Hs
p;ω

which proves (2). Obviously,

f −
m∑

k=l

µka
k = (f − f τm+1) + f τl.

Because s(f τl) ≤ 2l −→ 0, as l −→ −∞ and as m −→ +∞

sp(f − f τm+1) = [s2(f) − s2(f τm+1)]p/2 −→ 0, a.e.,

by the majorized convergence theorem, (1) holds in Hs
p;ω norm.

This finishes the proof.
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Lemma 1.2.7 If f = (fn)n≥0 is in Qp;ω, 0 < p < ∞, then there exist a sequence

(ak)k∈Z of (2, p,∞)-atoms with respect to ω and a sequence µ = (µk)k∈Z ∈ lp such

that for every n ∈ N
∑

k∈Z

µkEnak = fn

and

(
∑

k∈Z

|µk|
p)1/p ≤ Cp‖f‖Qp;ω ,

where the series is convergent in Qp;ω.

Lemma 1.2.8 If f = (fn)n≥0 is in Pp;ω, 0 < p < ∞, then there exist a sequence

(ak)k∈Z of (3, p,∞)-atoms with respect to ω and a sequence µ = (µk)k∈Z ∈ lp such

that for every n ∈ N
∑

k∈Z

µkEnak = fn

and

(
∑

k∈Z

|µk|
p)1/p ≤ Cp‖f‖Pp;ω ,

where the series is convergent in Pp;ω.

Now we introduce operator-valued martingale transform.

Burkholder’s martingale transforms (see[10] and [11]) are defined by using

scalar-valued multiplying sequences. One main tool in our proofs will be martingale

transforms with operator-valued multiplying sequences, defined and studied in [69]

and [68].

Definition 1.2.9 Let X1 and X2 be two Banach spaces. Let L(X1, X2) denote

the space of all bounded linear operators from X1 to X2. Let υ = {υn}n≥1 be a

predictable sequence such that υn ∈ L∞(L(X1, X2)) and supn≥1 ‖υn‖L∞(L(X1,X2)) ≤

1. Then the martingale transform T associated to υ is defined as follows. For any

X1-valued martingale f = {fn}n≥1

(Tf)n =

n∑

k=1

υkdfk .

We refer to [69] and [68] for some basic results.

§ 1.3 Real interpolation spaces

In this section we introduce some properties and results of real interpolation. We

refer to [5] and [57] for more details .
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Suppose that A0 and A1 are two quasi-normed spaces embedded continuously

in a topological space A. The interpolation spaces between A0 and A1 are defined

by means of an interpolating function K(t, f, A0, A1),

K(t, f, A0, A1) = inf
f=f0+f1

{‖f0‖A0
+ t‖f1‖A1

}.

For 0 < θ < 1, 0 < q ≤ ∞§the interpolation spaces (A0, A1)θ,q is defined as the

space of all functions f ∈ A0 + A1 such that

‖f‖(A0,A1)θ,q
=

(∫ ∞

0

(t−θK(t, f, A0, A1))
q dt

t

) 1
q

< ∞, q < ∞

‖f‖(A0,A1)θ,∞
= sup

t>0
t−θK(t, f, A0, A1), q = ∞

Lemma 1.3.1 Let a quasilinear operator T defined on A0 + A1§if

T : A0 → B0, T : A1 → B1,

is bounded§then for 0 < θ < 1, 0 < q ≤ ∞§

T : (A0, A1)θ,q → (B0, B1)θ,q

is also bounded.

Lemma 1.3.2 (Reiteration theorem) Let 0 ≤ θ0 < θ1 ≤ 1, 0 < q0, q1 ≤

∞§(A0, A1) be an interpolation couple. If Xi = (A0, A1)θi,qi
, i = 0, 1. then for

0 < η < 1, 0 < q ≤ ∞§

(X0, X1)η,q = (A0, A1)θ,q,

where θ = (1 − η)θ0 + ηθ1.

The following is the Hardy inequality.

Lemma 1.3.3 Let 0 < q ≤ ∞§0 < r < q§q0 = min(1, q)§then for any

nonnegative function f on [0,∞),

(∫ ∞

0

(1

t

∫ t

0

f(x) dx
)q

tr
dt

t

) 1

q

≤
( q

q − r

) 1
q0

(∫ ∞

0

f(t)qtr
dt

t

) 1
q

.
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Chapter 2 Interpolation on Lorentz martingale

spaces

§ 2.1 Introduction

Since its invention in the late 1950’s, interpolation theory has been a tremendous

development and applied to different fields of mathematics, for example partial dif-

ferential equations, numerical analysis, approximation theory and so on. Moreover,

it has also attracted considerable interest in itself. In particular, as well known, in

1958 Stein and Weiss [95] proved an interpolation theorem on Lp spaces which allows

one to change measures simultaneously with changing exponents; in 1966 Calderón

[16] and Hunt [41] proved an interpolation theorem on Lorentz spaces Lp,q. But in

1997 Ferreyra [34] gave an example to show that Weiss’ result is not true in Lp,q

spaces. Thus it is worth to seek a such interpolation theorem for Lp,q spaces. In re-

cent years, real interpolation and weighted inequality theorem have been developed

by [29], [21] and [98]. At the same time, weighted Lorentz spaces have been studied

in [17], [18], [19] and other papers. We also mention the following interpolation the-

orem on weighted Lorentz spaces, which is proved by Moritoh, Niwa and Sobukawa

[74] in 2006 (for the notations see section 2):

Theorem 2.1.1 Let i = 0, 1 and 1 ≤ p0 < p1 ≤ ∞, 1 ≤ ri ≤ ∞ with r0 6= r1,

0 ≤ qi, si ≤ ∞. Put 1/p = (1− θ)/p0 + θ/p1, 1/r = (1− θ)/r0 + θ/r1 for 0 < θ < 1.

If υ, ωi are two nonnegative measurable functions and T is a nonnegative sublinear

operator from Lpi,qi;υ to Lri,si;ωi
, then there exists a constant C such that

‖Tf‖r,∞;ω ≤ C‖f‖p,1;υ,

where ω1/r = ω
(1−θ)/r0

0 ω
θ/r1

1 .

In this section, we prove several similar versions of this theorem on martingale

Lorentz spaces over weighted measure spaces. Our proofs are different from those

in [74], and the atomic decomposition method plays an important role.
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§ 2.2 Interpolation on weighted Lorentz martingale spaces

Theorem 2.2.1 Let i = 0, 1, 0 < pi ≤ qi ≤ ∞, 1 < ri ≤ ∞ and υ, ωi be nonnegative

r.v. Put

1/r = (1 − θ)/r0 + θ/r1, 1/p = (1 − θ)/p0 + θ/p1, 0 < θ < 1.

If T is a bounded linear operator from Hs
pi,qi;υ

to Hs
ri,∞;ωi

, then T is bounded from

Hs
p,q;υ to Hs

r,∞;ω, i.e., there exists a constant C such that

‖Tf‖Hs
r,∞;ω

≤ C‖f‖Hs
p,q;υ

,

where q ≤ p ≤ 1 and ω1/r = ω
(1−θ)/r0

0 ω
θ/r1

1 .

Proof Assume that f ∈ Hs
p,q;υ ⊂ Hs

p,υ, from Lemma 1.2.6, there is a sequence (ak)k∈Z

of (1, p,∞)-atoms with respect to υ and a sequence µ = (µk)k∈Z ∈ lp such that

(1), (2) are true for Hs
p,υ, and the series

∑
k∈Z µka

k converges to f in Hs
p,υ. Without

loss of generality, we suppose p0 < p < p1, then Hs
p1,q1;υ

⊂ Hs
p;υ ⊂ Hs

p0,q0;υ
.Thus as

K → ∞

‖
∑

|k|≤K

µka
k − f ‖Hs

p0,q0;υ
≤‖

∑

|k|≤K

µka
k − f ‖Hs

p;υ
−→ 0.

T is bounded from Hs
p0,q0;υ

to Hs
r0,∞;ω0

, so
∑

|k|≤K µkTak converges to Tf in Hs
r0,∞;ω0

norm. Consequently

Tf =
∑

k∈Z

µkTak a.e.

Of course for every n ∈ N,

(Tf)n =
∑

k∈Z

µk(Tak)n a.e.

Thus

‖Tf‖Hs
r,∞;ω

= ‖s(Tf)‖r,∞;ω ≤ ‖s(Tf)‖(r,∞);ω

≤
∑

k∈Z

|µk|‖s(Tak)‖(r,∞);ω

≤
r

r − 1

∑

k∈Z

|µk|‖s(Tak)‖r,∞;ω. (2.1)

Now it is only to estimate ‖s(Tak)‖r,∞;ω. Since T is a bounded operator from

Hs
pi,qi;υ

to Hs
ri,∞;ωi

, then

t1/ri(s(Tak))∗ωi
(t) ≤ C‖s(ak)‖pi,qi;υ , i = 0, 1.
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By taking t = λs(Tak),ωi
(y), we have

y(λs(Tak),ωi
(y))1/ri ≤ C‖s(ak)‖pi,qi;υ, i = 0, 1.(2.2)

Using Hölder inequality and ω1/r = ω
(1−θ)/r0

0 ω
θ/r1

1 , we obtain

y(λs(Tak),ω(y))1/r = y(

∫

{x:s(Tak)>y}

ω(x)dP )1/r

≤ y(

∫

{x:s(Tak)>y}

ω0(x)dP )(1−θ)/r0(

∫

{x:s(Tak)>y}

ω1(x)dP )θ/r1

= [y(λs(Tak),ω0
(y))1/r0]1−θ[y(λs(Tak),ω1

(y))1/r1 ]θ. (2.3)

From (2.2) and (2.3) ,

y(λs(Tak),ω(y))1/r ≤ C‖s(ak)‖1−θ
p0,q0;υ‖s(a

k)‖θ
p1,q1;υ. (2.4)

Thus we get

‖s(Tak)‖r,∞;ω ≤ C‖s(ak)‖1−θ
p0,q0;υ

‖s(ak)‖θ
p1,q1;υ

. (2.5)

Notice that p0 ≤ q0, we have

‖ak‖Hs
p0,q0;υ

≤ ‖ak‖Hs
p0,p0;υ

= ‖ak‖Hs
p0;υ

= (

∫

Ω

|s(ak)|p0υ(x)dp)1/p0.

From the definition of (1, p,∞)-atom,

χ{τk≥n}En−1|∆nak|2 = En−1[χ{τk≥n}|∆nak|2] = 0,

thus s(ak) = 0 on set {τk = ∞}, where τk is a stopping time with respect to the

atom ak. Consequently,
∫

Ω

|s(ak)|p0υ(x)dp =

∫

{τk<∞}

|s(ak)|p0υ(x)dP

≤ ‖s(ak)‖p0

∞υ({τk < ∞}).

In other words ,

‖s(ak)‖1−θ
p0,q0;υ

≤ ‖s(ak)‖1−θ
∞ υ({τk < ∞})(1−θ)/p0 . (2.6)

It is the same for ‖s(ak)‖p1,q1;υ, i.e.

‖s(ak)‖θ
p1,q1;υ ≤ ‖s(ak)‖θ

∞υ({τk < ∞})θ/p1. (2.7)

Since ak is (1, 1,∞)-atom with respect to υ,

‖s(ak)‖∞ ≤ υ({τk < ∞})−1/p.
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Then from (2.5), (2.6), (2.7), we get

‖s(Tak)‖r,∞;ω ≤ C‖s(ak)‖∞υ({τk < ∞})(1−θ)/p0+θ/p1 ≤ C.

Thus from (2.1), we get

‖Tf‖Hs
r,∞;ω

≤
Cr

r − 1

∑

k∈Z

|µk| ≤ C(
∑

k∈Z

|µk|
p)1/p

≤ C‖f‖Hs
p;υ

≤ C‖f‖Hs
p,q;υ

.

This finishes the proof of the theorem.

Theorem 2.2.2 Let i = 0, 1, 0 < pi ≤ qi ≤ ∞, 1 < ri ≤ ∞ and υ, ωi are nonnegative

r.v. Put

1/r = (1 − θ)/r0 + θ/r1, 1/p = (1 − θ)/p0 + θ/p1, 0 < θ < 1.

If T is a bounded operator from Qpi,qi;υ to Qri,∞;ωi
, then T is bounded from Qp,q;υ

to Qs
r,∞;ω, i.e., there exists a constant C such that

‖Tf‖Qr,∞;ω ≤ C‖f‖Qp,q;υ,

where q ≤ p ≤ 1 and ω1/r = ω
(1−θ)/r0

0 ω
θ/r1

1 .

Proof We also assume f ∈ Qp,q;υ ⊂ Qp;υ, from Lemma 1.2.7, there exist a sequence

(ak)k∈Z of (2, p,∞)-atoms with respect to υ and a sequence µ = (µk)k∈Z ∈ lp such

that (1) and (2) hold for Qp;υ, and the series
∑

k∈Z µka
k converges to f in Qs

p,υ.

Similarly to Theorem 3.1, we have

(Tf)n =
∑

k∈Z

µk(Tak)n a.e.

Thus

Sn(Tf) = (

n∑

m=0

|∆m(Tf)|2)1/2 = (

n∑

m=0

|
∑

k∈Z

µk∆m(Tak)|2)1/2

≤
∑

k∈Z

|µk|Sn(Tak). (2.8)

We set ρk = (ρk
n)n≥0 is the optimal control of Tak, i.e., ρk = (ρk

n)n≥0 is an r.v.

sequence of non-decreasing, non-negative and adapted such that

Sn(Tak) ≤ ρk
n−1, ‖Tak‖Qri,∞;ωi

= ‖ρk
∞‖ri,∞;ωi

. (2.9)

From (2.8),

Sn(Tf) ≤
∑

k∈Z

|µk|ρ
k
n−1.

12



Thus by the definition of Qr,∞;ω,

‖Tf‖Qr,∞;ω ≤ ‖
∑

k∈Z

|µk|ρ
k
∞‖r,∞;ω ≤ ‖

∑

k∈Z

|µk|ρ
k
∞‖(r,∞);ω

≤
r

r − 1

∑

k∈Z

|µk|‖ρ
k
∞‖r,∞;ω. (2.10)

To estimate ‖ρk
∞‖r,∞;ω, in this time since T is bounded from Qpi,qi;υ to Qri,∞;ωi

, and

by (2.9)

‖ρk
∞‖ri,∞;wi

= ‖Tak‖Qri,∞;ωi
≤ C‖ak‖Qpi,qi;υ

.

In other words,

y(λρk
∞

,ωi
(y))1/ri ≤ C‖ak‖Qpi,qi;υ

, (2.11)

By the Hölder inequality, we get

y(λρk
∞

;ω(y))1/r = y(

∫

{x:ρk
∞

>y}

ω(x)dP )1/r

≤ y(

∫

{x:ρk
∞

>y}

ω0(x)dP )1−θ/r0(

∫

{x:ρk
∞

>y}

ω1(x)dP )θ/r1

= [y(λρk
∞

,ω0
(y))1/r0]1−θ[y(λρk

∞
,ω1

(y))1/r1]θ

≤ C‖ak‖1−θ
Qp0,q0;υ

‖ak‖θ
Qp1,q1;υ

. (2.12)

And then

‖ρk
∞‖r,∞;ω ≤ C‖ak‖1−θ

Qp0,q0;υ
‖ak‖θ

Qp1,q1;υ
. (2.13)

We set ξk
n = χ{τk≤n}‖S(ak)‖∞, and it is easy to see that ξk

n is non-decreasing, non-

negative, and adapted. By the definition of atom, we have

∞∑

n=0

χ{τk≥n}|∆nak|2 = 0.

Then

Sn(ak) = (
n∑

n=0

|∆nak|2)1/2 ≤ (
∞∑

n=0

χ{τk<n}|∆nak|2)1/2

≤ χ{τk≤n−1}‖S(ak)‖∞ = ξk
n−1.

Consequently,

‖ak‖1−θ
Qp0,q0;υ

≤ ‖ξk
∞‖1−θ

p0,q0;υ ≤ ‖ξk
∞‖1−θ

p0;υ ≤ (

∫

Ω

‖S(ak)‖p0

∞υ(x)dp)(1−θ)/p0 . (2.14)

Now S(ak) = 0 on the set {τk = ∞}, where τk is a stopping time with respect to

the atom ak. Consequently,
∫

Ω

‖S(ak)‖p0

∞υ(x)dp =

∫

{τk<∞}

‖S(ak)‖p0

∞υ(x)dp

= ‖S(ak)‖p0

∞υ({τk < ∞}). (2.15)
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(2.14) and (2.15) show,

‖ak‖1−θ
Qp0,q0;υ

≤ ‖S(ak)‖1−θ
∞ υ({τk < ∞})(1−θ)/p0 .

Similarly

‖ak‖θ
Qp1,q1;υ

≤ ‖S(ak)‖θ
∞υ({τk < ∞})θ/p1.

From the definition of (2, p,∞)−atom we have

‖ρk
∞‖r,∞;ω ≤ C‖S(ak)‖∞υ(τk < ∞)1/p ≤ C.

From (2.10)

‖Tf‖Qr,∞;ω ≤
Cr

r − 1

∑

k∈Z

|µk| ≤ C(
∑

k∈Z

|µk|
p)1/p

≤ C‖f‖Qp;υ ≤ C‖f‖Qp,q;υ .

This finishes the proof of the theorem.

Theorem 2.2.3 Let pi, qi, ri and p, r, υ, ωi as in theorem 2.2.2, if T is a bounded

operator from Ppi,qi;υ to Pri,∞;ωi
, then T is bounded from Pp,q;υ to P s

r,∞;ω, i.e., there

exists a constant C such that

‖Tf‖Pr,∞;ω ≤ C‖f‖Pp,q;υ ,

where q ≤ p ≤ 1 and ω1/r = ω
(1−θ)/r0

0 ω
θ/r1

1 .

Proof We suppose f ∈ Pp,q;υ ⊂ Pp,υ. From the Lemma 1.2.8, there exist a sequence

(ak)k∈Z of (3, p,∞) atoms with respect to υ(x) and a sequence µ = (µk)k∈Z ∈ lp

such that (1) and (2) hold for Pp;υ, and the series
∑

k∈Z µka
k converges to f in P s

p,υ.

Similarly to Theorem 2.2.1, we have

(Tf)n =
∑

k∈Z

µk(Tak)n, a.e. (2.16)

Let ρk = (ρk
n)n≥0 is the optimal control of Tak, i.e., ρk = (ρk

n)n≥0 is a sequence

of non-decreasing, non-negative and adapted functions such that

|(Tak)n| ≤ ρk
n−1 , ‖Tak‖Pri,∞;ωi

= ‖ρk
∞‖ri,∞;ωi

. (2.17)

From (2.16),

|(Tf)n| ≤
∑

k∈Z

|µk|ρ
k
n−1.

14



Thus by the definition of Pr,∞;ω and Lemma 1.2.1

‖Tf‖Pr,∞;ω ≤ ‖
∑

k∈Z

|µk|ρ
k
∞‖r,∞;ω

≤ ‖
∑

k∈Z

|µk|ρ
k
n‖(r,∞);ω

≤
r

r − 1

∑

k∈Z

|µk|‖ρ
k
∞‖r,∞;ω.

Similarly to Theorem 2.2.2, we get

‖ρk
∞‖r,∞;ω ≤ C‖ak‖1−θ

Pp0,q0;υ
‖ak‖θ

Pp1,q1;υ
.

We set ξk
n = χ{τk≥n}‖a

k∗

‖∞. It is easy to see that ξk
n is non-decreasing, non-negative,

adapted and from the atomic definition

ak
n ≤ χ{τk≤n−1}‖a

k∗

‖∞ + χ{τk≥n}‖a
k∗

‖∞ ≤ ξk
n−1.

Similarly to Theorem 2.2.2 we have

‖ak‖1−θ
Pp0,q0;υ

≤ ‖ak∗

‖1−θ
∞ υ({τk < ∞})(1−θ)/p0.

and

‖ak‖θ
Pp1,q1;υ

≤ ‖ak∗

‖θ
∞υ({τk < ∞})θ/p1.

The rest of the proof is similar to the one in Theorem 2.2.2.

First we introduce a new space. Let 0 < p ≤ ∞, denote all of the scalar adapted

process

Vp = {ν = (νn)n≥1 : ‖ν‖Vp = ‖ sup
n

|νn|‖p < ∞}.

With ν ∈ Vp as a multiplier, we define Tν : f = (fn)n≥1 → Tνf , where

(Tνf)n =

n∑

1

νk−1∆kf , n ≥ 1.

According to the theorems above, here we give some inequalities of martingale trans-

form operator Tν .

Theorem 2.2.4 Suppose that 0 < pi ≤ qi ≤ ∞, 1 < ri ≤ ∞, i = 0, 1. Put

1/p = (1 − θ)/p0 + θ/p1, 1/r = (1 − θ)/r0 + θ/r1, 0 < θ < 1.

If υ is strict positive weight function and ν ∈ V ripi
pi−ri

;υ, then Tν is bounded from

Hs
p,q;υ to Hs

r,∞;υ, i.e., ∃C > 0 s.t.

‖Tνf‖Hs
r,∞;υ

≤ C‖ν‖V ripi
pi−ri

;υ
‖f‖Hs

p,q;υ
, q ≤ p ≤ 1.
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Proof From ν ∈ V pi−ri
ripi

;υ
, we know that Tν is bounded from Hs

pi;υ
to Hs

ri;υ
. In fact,

s(Tνf) = (
∞∑

1

ν2
n−1|∆nf |2)1/2 ≤ sup

n
|νn(x)|s(f).

By the relation 1/ri = 1/pi + pi−ri

ripi
and Hölder inequality , we get

‖Tνf‖Hs
ri;υ

≤ C‖ν‖V ripi
pi−ri

;υ
‖f‖Hs

pi;υ
.

Now we assume that ωi = υ, pi = qi, then Tν satisfies the conditions of Theorem

2.2.1. Consequently,

‖Tνf‖Hs
r,∞;υ

≤ C‖ν‖V ripi
pi−ri

;υ
‖f‖Hs

p,q;υ
.

The theorem is proved.

Under the conditions of Theorem 2.2.4 with p = q, we get

Corollary 2.2.5 Tν is of (Hs
p;v, wHs

r;v)-type , i.e. the inequality

λs(Tνf);υ(y) ≤ C(y−1‖f‖Hs
p;v

)r, y > 0

holds.

The following lemma can be found in [22].

Lemma 2.2.6 Let 0 < p ≤ ∞, 0 < q < ∞, ν ∈ Vp and 1/r = 1/p + 1/q. Then Tν

is of (Pq, Pr) and (Qq, Qr)-types with ‖Tν‖ ≤ C‖ν‖Vp.

Theorem 2.2.7 Suppose that 0 < pi ≤ qi ≤ ∞, 1 < ri ≤ ∞, i = 0, 1. Put

1/p = (1 − θ)/p0 + θ/p1, 1/r = (1 − θ)/r0 + θ/r1, 0 < θ < 1.

If υ is strict positive weight function and ν ∈ V ripi
pi−ri

;υ, then Tν is bounded from Qp,q;υ

to Qr,∞;υ, i.e., ∃C > 0 s.t.

‖Tνf‖Qr,∞;υ ≤ C‖ν‖V ripi
pi−ri

;υ
‖f‖Qp,q;υ , q ≤ p ≤ 1.

Proof By 1/ri = 1/pi + pi−ri

ripi
and Lemma 2.2.6, we have

‖Tνf‖Qri;υ
≤ C‖ν‖V ripi

pi−ri
;υ
‖f‖Qpi;υ

.

Thus Tν satisfies the conditions of Theorem 2.2.2.

Theorem 2.2.8 Suppose that < pi ≤ qi ≤ ∞, 1 < ri ≤ ∞, i = 0, 1. Put

1/p = (1 − θ)/p0 + θ/p1, 1/r = (1 − θ)/r0 + θ/r1, 0 < θ < 1.
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If υ is strict positive weight function and ν ∈ V ripi
pi−ri

;υ, then Tν is bounded from Pp,q;υ

to Pr,∞;υ, i.e., ∃C > 0 s.t.

‖Tνf‖Pr,∞;υ ≤ C‖ν‖V ripi
pi−ri

;υ
‖f‖Pp,q;υ , q ≤ p ≤ 1.

Proof By the relation 1/ri = 1/pi + pi−ri

ripi
and Lemma 4.3, we get

‖Tνf‖Pri;υ
≤ C‖ν‖V ripi

pi−ri
;υ
‖f‖Ppi;υ

, i = 0, 1.

Thus Tν satisfies the conditions of Theorem 2.2.3.

§ 2.3 Real interpolation spaces between Hp and Hp,∞

In harmonic analysis it is well known if 1/p = (1 − η)/p0 + η/p1, 0 < η < 1, then

(wLp0
, Lp1

)θ,p = Lp.

In this section we give similar version in the martingale setting; and the weak atomic

decomposition is the main tool (see [39] and [101]).

Theorem 2.3.1 (wHs
p0

, Hs
∞)θ,p = Hs

p , 1/p = (1 − θ)/p0, 0 < θ < 1.

Proof Suppose that f ∈ wHs
p0

. For any fixed y = (sf)∗(tp0), choose j ∈ Z such that

2j ≤ y < 2j+1. From Lemma 1.2.4 there exist a sequence (ak)k∈Z of w-1-atoms and

the corresponding stopping times (τk)k∈Z such that

fn =
∑

k∈Z

ak
n =

j−1∑

k=−∞

ak
n +

∞∑

k=j

ak
n =: gn + hn

and s(ak) ≤ A2k for some constant A > 0. Then

s(g) ≤

j−1∑

k=−∞

s(a)k ≤

j−1∑

k=−∞

A2k = A2j ≤ A(sf)∗(tp0)

From the definition of w-1-atom,

χ{τk≥n}En−1|∆nak|2 = En−1[χ{τk≥n}|∆nak|2] = 0,

thus s(ak) = 0 on set {τk = ∞}. Recall that the stopping times

τk = inf{n ∈ N : sn+1(f) > 2k}(inf φ = ∞),

and τk ↑ ∞(k → ∞). Then {τk < ∞} = {s(f) > 2k}.
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So we have

P (s(h) > y) ≤ P (s(h) > 0) ≤
∞∑

k=j

P (s(ak) > 0)

=

∞∑

k=j

P (τk < ∞) ≤ 2−jp0

∞∑

k=j

2kp0P (τk < ∞)

≤ cy−p0

∞∑

k=j

2kp0P (s(f) > 2k)

≤ cy−p0

∫

{s(f)≥2j}

s(f)p0dP

≤ cy−p0

∫

{s(f)≥y}

s(f)p0dP

Thus

‖h‖p0

wHs
p0

≤ c

∫

{s(f)≥y}

s(f)p0dP ≤ c

∫

{s(f)≥(sf)∗(tp0 )}

s(f)p0dP

≤ c

∫ tp0

0

(sf)∗(x)p0dx

By Hardy inequality and 1
p

= 1−θ
p0

, we obtain

∫ 1

0

(t−θ‖h‖p0

wHs
p0

)pdt

t
≤ c

∫ 1

0

t−θp(

∫ tp0

0

(sf)∗(x)p0dx)p/p0
dt

t

= c

∫ 1

0

t(1−θ)p/p0(
1

t

∫ t

0

(sf)∗(x)p0dx)p/p0
dt

t

= c

∫ 1

0

t(1−θ)p/p0(sf)∗(x)p dt

t

≤ c

∫ 1

0

(sf)∗(x)pdt

= c‖f‖p
Hs

p

On the other hand,
∫ 1

0

(t−θ‖g‖p0

Hs
∞

)pdt

t
≤ c

∫ 1

0

t(1−θ)p(sf)∗(tp0)p dt

t

≤ c

∫ 1

0

(sf)∗(t)pdt ≤ c‖f‖p
Hs

p

By the definition of the functional K,

K(t, f ; wHs
p0

, Hs
∞) ≤ ‖h‖wHs

p0
+ t‖g‖Hs

∞
.

Henceforth,

‖f‖p
(wHs

p0
,Hs

∞
)θ,p

=

∫ 1

0

(t−θK(t, f ; wHs
p0

, Hs
∞))pdt

t
≤ c‖f‖p

Hs
p
.
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To prove the converse consider the sublinear operator T : f 7→ s(f). By the defini-

tion T : Hs
∞ → L∞ and T : wHs

p0
→ wLp0

are bounded. Therefore, by the Lemma

2.4 and Lemma 2.5

T : (wHs
p0

, Hs
∞)θ,p → (wLp0

, L∞)θ,p = Lp

is bounded, too, that is to say f ∈ (wHs
p0

, Hs
∞)θ,p implies

‖f‖Hs
p

= ‖Tf‖Lp ≤ c‖f‖p
(wHs

p0
,Hs

∞
)θ,p

.

Theorem 2.3.2 (wHs
p0

, Hs
p1

)η,p = Hs
p , 1/p = (1 − η)/p0 + η/p1, 0 < η < 1.

Proof Choose θ and θ1 satisfying

1/p = (1 − θ)/p0, θ = ηθ1, 1/p1 = (1 − θ1)/p0.

Then by Theorem 2.3.1 and the Reiteration Theorem, we obtain

(wHs
p0

, Hs
p1

)η,p = (wHs
p0

, (wHs
p0

, Hs
∞)θ1,p)η,p = (wHs

p0
, Hs

∞)θ,p = Hs
p

Theorem 2.3.3 (wQp0
, Q∞)θ,p = Qp, 1/p = (1 − θ)/p0, 0 < θ < 1.

Proof Suppose that f ∈ Qp ⊂ wQp0
. Let β = (βn)n≥0 is the optimal control of

Sn(f), i.e., β ∈ Λ, Sn(f) ≤ βn−1, ‖f‖Qp = ‖β∞‖p. From Lemma 1.2.4 there exist a

sequence (ak)k∈Z of w-2-atoms and the corresponding stopping times (τk)k∈Z such

that

fn =
∑

k∈Z

ak
n =

j−1∑

k=−∞

ak
n +

∞∑

k=j

ak
n =: gn + hn

and S(ak) ≤ A2k for some constant A > 0. Remember that the stopping times

τk = inf{n ∈ N : βn > 2k}(inf φ = ∞),

and τk ↑ ∞(k → ∞).

Define

λn =
∑

k∈Z

χ{τk≤n}‖S(ak)‖∞ (n ∈ N).

For any fixed t ∈ [0, 1], y = β∗(tp0), choose j ∈ Z such that 2j ≤ y < 2j+1.Then

λn =

j−1∑

k=−∞

χ{τk≤n}‖S(ak)‖∞ +
∞∑

k=j

χ{τk≤n}‖S(ak)‖∞ =: λ(1)
n + λ(2)

n
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It is obvious that (λ
(1)
n )n≥0 and (λ

(2)
n )n≥0 are non-negative, nondecreasing and adapted

sequences. From the definition of w-2-atoms, Sn+1(a
k) = 0 on the set {τk > n}.

Hence

Sn+1(g) ≤

j−1∑

k=−∞

Sn+1(a
k) =

j−1∑

k=−∞

χ{τk≤n}Sn+1(a
k)

≤

j−1∑

k=−∞

χ{τk≤n}‖Sn+1(a
k)‖∞ = λ(1)

n ,

and

Sn+1(h) ≤
∞∑

k=j

Sn+1(a
k) =

∞∑

k=j

χ{τk≤n}Sn+1(a
k)

≤
∞∑

k=j

χ{τk≤n}‖Sn+1(a
k)‖∞ = λ(2)

n .

Thus

‖g‖Q∞
≤ ‖λ(1)

∞ ‖∞ ≤

j−1∑

k=−∞

‖S(ak)‖∞ ≤

j−1∑

k=−∞

A2j ≤ Ay = Aβ∗(tp0).

Now we shall estimate ‖h‖wQp0
.From the definition of w-2-atom,

χ{τk≥n}E|∆nak|2 = E[χ{τk≥n}|∆nak|2] = 0,

thus S(ak) = 0 on set {τk = ∞}, and noting that {τk < ∞} = {β∞ > 2k}, we have

P (λ(2)
∞ > y) ≤ P (λ(2)

∞ > 0) ≤
∞∑

k=j

P (τk < ∞)

≤ 2−jp0

∞∑

k=j

2kp0P (τk < ∞)

≤ cy−p0

∞∑

k=j

2kp0P (β∞ > 2k)

≤ cy−p0

∫

{β∞≥2j}

βp0

∞dP

≤ cy−p0

∫

{β∞≥y}

βp0

∞dP

Hence

‖h‖p0

wQp0
≤ c

∫

{β∞≥y}

βp0

∞dP ≤ c

∫

{β∞≥β∗
∞

(tp0 )}

βp0

∞dP

≤ c

∫ tp0

0

β∗
∞(x)p0dx
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By Hardy inequality and 1
p

= 1−θ
p0

, we obtain

∫ 1

0

(t−θ‖h‖p0

wQp0
)p dt

t
≤ c

∫ 1

0

t−θp(

∫ tp0

0

β∗
∞(x)p0dx)p/p0

dt

t

= c

∫ 1

0

t(1−θ)p/p0(
1

t

∫ t

0

β∗
∞(x)p0dx)p/p0

dt

t

= c

∫ 1

0

t(1−θ)p/p0β∗
∞(x)p dt

t

≤ c

∫ 1

0

β∗
∞(x)pdt

= c‖f‖p
Qs

p

On the other hand,

∫ 1

0

(t−θ‖g‖p0

Q∞
)p dt

t
≤ c

∫ 1

0

t(1−θ)pβ∗
∞(tp0)pdt

t

≤ c

∫ 1

0

β∗
∞(t)pdt ≤ c‖f‖p

Qs
p

By the definition of the functional K,

K(t, f ; wQp0
, Q∞) ≤ ‖h‖wQp0

+ t‖g‖Q∞
.

Henceforth,

‖f‖p
(wQp0

,Q∞)θ,p
=

∫ 1

0

(t−θK(t, f ; wQp0
, Q∞))p dt

t
≤ c‖f‖p

Qp
.

To prove the converse consider the sublinear operator T : f 7→ S(f). By the

definition T : Q∞ → L∞ and T : wQp0
→ wLp0

are bounded. Therefore, by the

interpolation property and Lemma 1.3.1

T : (wQp0
, Q∞)θ,p → (wLp0

, L∞)θ,p = Lp

is bounded, too, that is to say f ∈ (wQp0
, Q∞)θ,p implies

‖f‖Qp = ‖Tf‖Lp ≤ c‖f‖p
(wQp0

,Q∞)θ,p
.

Theorem 2.3.4 (wQp0
, wQp1

)η,p = Qp, 1/p = (1 − η)/p0 + η/p1, 0 < η < 1.

Proof Choose θ and θ1 satisfying

1/p = (1 − θ)/p0, θ = ηθ1, 1/p1 = (1 − θ1)/p0.

21



Then by Theorem 2.3.3 and the Reiteration Theorem, we obtain

(wQp0
, Qp1

)η,p = (wQp0
, (wQp0

, Q∞)θ1,p)η,p = (wQp0
, Q∞)θ,p = Qp

Theorem 2.3.5 (wDp0
, D∞)θ,p = Dp, 1/p = (1 − θ)/p0, 0 < θ < 1.

Proof Suppose that f ∈ Dp ⊂ wDp0
. Let β = (βn)n≥0 is the optimal control of

fn, i.e., β ∈ Λ, fn ≤ βn−1, ‖f‖Dp = ‖β∞‖p. From Lemma 1.2.4 there exist a sequence

(ak)k∈Z of w-3-atoms and the corresponding stopping times (τk)k∈Z such that

fn =
∑

k∈Z

ak
n =

j−1∑

k=−∞

ak
n +

∞∑

k=j

ak
n =: gn + hn

and M(ak) ≤ A2k for some constant A > 0. Remember that the stopping times

τk = inf{n ∈ N : βn > 2k}(inf φ = ∞),

and τk ↑ ∞(k → ∞).

Define

λn =
∑

k∈Z

χ{τk≤n}‖M(ak)‖∞ (n ∈ N).

For any fixed t ∈ [0, 1], y = β∗(tp0), similarly to the proof of Theorem 2.3.3, we

obtain
∫ 1

0

(t−θ‖h‖p0

wDp0
)pdt

t
≤ c‖f‖p

Ds
p
,

∫ 1

0

(t−θ‖g‖p0

D∞
)pdt

t
≤ c‖f‖p

Ds
p

By the definition of the functional K,

K(t, f ; wDp0
, D∞) ≤ ‖h‖wDp0

+ t‖g‖D∞
.

Henceforth,

‖f‖p
(wDp0

,D∞)θ,p
=

∫ 1

0

(t−θK(t, f ; wDp0
, D∞))p dt

t
≤ c‖f‖p

Dp
.

The rest proof is similar to one of Theorem 2.3.3.

Theorem 2.3.6 (wDp0
, wDp1

)η,p = Dp, 1/p = (1 − η)/p0 + η/p1, 0 < η < 1.

Proof Choose θ and θ1 satisfying

1/p = (1 − θ)/p0, θ = ηθ1, 1/p1 = (1 − θ1)/p0.

Then by Theorem 2.3.4 and the Reiteration Theorem, we obtain

(wDp0
, Dp1

)η,p = (wDp0
, (wDp0

, D∞)θ1,p)η,p = (wDp0
, D∞)θ,p = Dp. 2
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Chapter 3 Bounded operators on Lorentz

martingale spaces

§ 3.1 Atomic decompositions of Lorentz martingale spaces

Now we can present the atomic decompositions for Lorenz martingale spaces.

Theorem 3.1.1 If the martingale f ∈ Hs
p,q, 0 < p < ∞, 0 < q ≤ ∞ then there exist

a sequence ak of (1, p,∞) atoms and a positive real number sequence (µk) ∈ lq such

that

fn =
∑

k∈Z

µka
k
n, ∀n ∈ N

and

‖(µk)k∈Z‖lq � ‖f‖Hs
p,q

.

Conversely, if 0 < q ≤ 1, q ≤ p < ∞, and the martingale f has the above decompo-

sition, then f ∈ Hs
p,q and

‖f‖Hs
p,q

≤ c inf ‖(µk)k∈Z‖lq ,

where the inf is taken over all the preceding decompositions of f .

Proof Assume that f ∈ Hs
p,q, q 6= ∞. Now considering the following stopping time

for all k ∈ Z :

τk = inf{n ∈ N : sn+1(f) > 2k}(inf φ = ∞).

The sequence of these stopping times is obviously non-decreasing. It easy to see

that

∑

k∈Z

(f τk+1

n − f τk
n ) =

∑

k∈Z

(
n∑

m=0

χ{m≤τk+1}∆mf −
n∑

m=0

χ{m≤τk}∆mf)

=
∑

k∈Z

(
n∑

m=0

χ{τk<m≤τk+1}∆mf) = fn.

Let

µk = 2k3P (τk < ∞)
1

p ,

and
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ak
n =

f
τk+1
n − f τk

n

µk

.

If µk = 0 then let ak
n = 0. Then for a fixed k, (ak

n) is a martingale. Since s(f τk
n ) ≤

2k, s(f
τk+1
n ) ≤ 2k+1,

s(ak
n) ≤

s(f
τk+1
n ) + s(f τk

n )

µk
≤ P (τk < ∞)−

1

p , ∀n ∈ N,

which implies (ak
n) is a L2-bounded martingale, so there exists ak ∈ L2 such that

Enak = ak
n. If n ≤ τk then ak

n = 0, so we get ak is really a (1, p,∞) atom. And

(
∑

k∈Z

|µk|
q)

1
q = 3(

∑

k∈Z

(2kP (τk < ∞)
1
p )q)

1
q = 3(

∑

k∈Z

(2kP (s(f) > 2k)
1
p )q)

1
q

≤ c(
∑

k∈Z

∫ 2k

2k−1

yq−1dyP (s(f) > 2k)
q
p )

1
q

≤ c(
∑

k∈Z

∫ 2k

2k−1

yq−1P (s(f) > y)
q
p dy)

1
q

≤ c(

∫ ∞

0

yq−1P (s(f) > y)
q
p dy)

1
q

≤ c‖f‖Hs
p,q

If q = ∞, it only needs to make a standard rectification.

Conversely, if f has the above decomposition, then from ‖s(ak)‖∞ ≤ P (τk <

∞)−
1
p and

P (s(ak) > y) ≤ P (s(ak) 6= 0) ≤ P (τk < ∞),

we get

‖ak‖q
Hs

p,q
= q

∫ ∞

0

yq−1P (s(ak) > y)
q
p dy = q

∫ P (τk<∞)
−

1
p

0

yq−1P (s(ak) > y)
q
p dy

≤ P (τk < ∞)
q
p

∫ P (τk<∞)
−

1
p

0

yq−1dy ≤
1

q
.

For 0 < q ≤ 1, q ≤ p < ∞, ‖ · ‖p,q is equivalent to a q-norm,

‖f‖q
Hs

p,q
≤ ‖

∑

k∈Z

µks(a
k)‖q

p,q ≤
∑

k∈Z

µq
k‖s(a

k)‖q
p,q ≤ c

∑

k∈Z

µq
k,

which gives the desired result.

Theorem 3.1.2 If the martingale f ∈ Qp,q, 0 < p < ∞, 0 < q ≤ ∞, then there exist

a sequence ak of (2, p,∞) atoms and a real number sequence µk ∈ lq such that

fn =
∑

k∈Z

µka
k
n, ∀n ∈ N
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and

(
∑

k∈Z

|µk|
q)

1
q ≤ c‖f‖Qp,q .

Conversely, if 0 < q ≤ 1, q ≤ p < ∞, and the martingale f has the above decompo-

sition, then f ∈ Qp,q and

‖f‖Qp,q ≤ c inf(
∑

k∈Z

|µk|
q)

1
q ,

where the inf is taken all the above decompositions.

Proof Suppose that f ∈ Qp,q. Let β = (βn)n≥0 is the optimal control of Sn(f), i.e.,

β ∈ Λ, Sn(f) ≤ βn−1, ‖f‖Qp,q = ‖β∞‖p,q. The stopping times τk are defined in this

case by

τk = inf{n ∈ N : βn > 2k}(inf φ = ∞).

Let ak and µk(k ∈ Z) be define as in the proof of Theorem 3.1.1. Then for a fixed

k, (ak
n) is also a martingale. Since S(f τk

n ) = Sτk
(f) ≤ βτk−1

≤ 2k, S(f
τk+1
n ) ≤ 2k+1,

S(ak
n) ≤

S(f
τk+1
n ) + S(f τk

n )

µk
≤ P (τk < ∞)−

1

p , ∀n ∈ N.

Similarly to Theorem 3.1.1, we can show ak is really a (2, p,∞) atom. And

(
∑

k∈Z

|µk|
q)

1
q = 3(

∑

k∈Z

(2kP (τk < ∞)
1
p )q)

1
q = 3(

∑

k∈Z

(2kP (β∞ > 2k)
1
p )q)

1
q ≤ c‖β∞‖p,q = ‖f‖Qp,q .

Conversely, if the ak is (2, p,∞)-atom, one can show ‖ak‖q
HS

p,q
≤ 1

q
. The rest can be

proved similarly to Theorem 3.1.1.

Theorem 3.1.3 If the martingale f ∈ Dp,q, 0 < p < ∞, 0 < q ≤ ∞, then there exist

a sequence ak of (3, p,∞) atoms and a real number sequence µk ∈ lq such that

fn =
∑

k∈Z

µka
k
n, ∀n ∈ N

and

(
∑

k∈Z

|µk|
q)

1
q ≤ c‖f‖Dp,q .

Conversely, if if 0 < q ≤ 1, q ≤ p < ∞, and the martingale f has the above

decomposition, then f ∈ Dp,q and

‖f‖Dp,q ≤ c inf(
∑

k∈Z

|µk|
q)

1
q ,

where the inf is taken all the above decomposition.

The proof of Theorem 3.1.3 is similar to one of Theorem 3.1.2, so here omit it.
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§ 3.2 Boundedness on sublinear operator

As one of applications of the atomic decompositions, we shall obtain a sufficient

condition for a sublinear operator to be bounded from Lorentz martingale spaces to

function Lorentz spaces. Applying the condition to Mf, Sf and sf , we deduce a

series of inequalities on Lorentz martingale spaces.

An operator T : X → Y is called a sublinear operator if it satisfies

|T (f + g)| ≤ |Tf | + |Tg|, |T (αf)| ≤ |α||Tf |,

where X is a martingale space, Y is a measurable function space.

Theorem 3.2.1 Let T : Hs
r → Lr be a bounded sublinear operator for some

1 ≤ r < ∞. If

P (|Ta| > 0) ≤ cP (τ < ∞)

for all (1, p,∞)-atoms a, where τ is the stopping time associate with a, then for

0 < p < r, 0 < q ≤ ∞, we have

‖Tf‖p,q ≤ c‖f‖Hs
p,q

, f ∈ Hs
p,q.

Proof Assume that f ∈ Hs
p,q. By Theorem 2.1, f can be decomposed into the sum

of a sequence of (1, p,∞)−atoms. For any fixed y > 0 choose j ∈ Z such that

2j ≤ y < 2j+1 and let

f =
∑

k∈Z

µka
k =

j−1∑

k=−∞

µka
k +

∞∑

k=j

µka
k =: g + h.

Recall that µk = 2k3P 1/p(τk < ∞) and s(ak) = 0 on the set {τk = ∞}. we have

‖g‖Hs
r

≤ (

∫

Ω

(

j−1∑

k=−∞

µks(a
k))rdP )1/r ≤

j−1∑

k=−∞

µk(

∫

Ω

(s(ak))rdP )1/r

≤

j−1∑

k=−∞

µkP
− 1

p (τk < ∞)P
1
r (τk < ∞)

=

j−1∑

k=−∞

2kP
1
r (τk < ∞)

=

j−1∑

k=−∞

2kP
1
r (s(f) > 2k)
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It follows from the boundedness of T that

P (|Tg| > y) ≤ y−rE|Tg|r ≤ cy−r‖g‖r
Hs

r

≤ cy−r(

j−1∑

k=−∞

2kP
1
r (s(f) > 2k))r

= y−r(

j−1∑

k=−∞

2k(1− p
r
)2k p

r P
1
r (s(f) > 2k))r

≤ cy−r(y
p
r P

1

r (s(f) > 2k))r(

j−1∑

k=−∞

2k(1− p
r
))r

≤ cP (s(f) > y)

On the other hand, since |Th| ≤
∑∞

k=j µk|Tak|, we get

P (|Th| > y) ≤ P (|Th| > 0) ≤
∞∑

k=j

P (|Tak| > 0)

�
∞∑

k=j

P (τk < ∞) =
∞∑

k=j

2−kp2kpP (sf > 2k)

≤ cyP (sf > y)

∞∑

k=j

2−kp

≤ cP (s(f) > y)

Since T is subliear, (|Tf |)∗(t) ≤ (|Tg| + |Th|)∗(t) ≤ |Tg|∗( t
2
) + |Th|∗( t

2
), thus

‖Tf‖p,q ≤ ‖Tg‖p,q + ‖Th‖p,q ≤ ‖f‖Hs
p,q

.

Similarly to the proof of Theorem 3.1, we can prove the following Theorems 3.2

and 3.3 by using Theorems 2.2 and 2.3, respectively. Here we only give the theorems

and omit the proofs.

Theorem 3.2.2 Let T : Qr → Lr be a bounded sublinear operator for some 1 ≤

r < ∞. If

P (|Ta| > 0) ≤ cP (τ < ∞)

for all (2, p,∞)−atoms a, where τ is the stopping time associate with a, then for

0 < p < r, 0 < q ≤ ∞, we have

‖Tf‖p,q � ‖f‖Qp,q , f ∈ Qp,q.

Theorem 3.2.3 Let T : Dr → Lr be a bounded sublinear operator for some 1 ≤

r < ∞. If

P (|Ta| > 0) ≤ cP (τ < ∞)
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for all (3, p,∞)-atoms a, where τ is the stopping time associate with a, then for

0 < p < r, 0 < q ≤ ∞,

‖Tf‖p,q ≤ c‖f‖Dp,q , f ∈ Dp,q.

Theorem 3.2.4 For all martingale f = (fn)n≥0 the following inequalities hold:

1)If 0 < p < 2, 0 < q ≤ ∞,

Hs
p,q →֒ H∗

p,q, Hs
p,q →֒ HS

p,q,

if p > 2, 0 < q ≤ ∞,

H∗
p,q →֒ Hs

p,q, HS
p,q →֒ Hs

p,q,

2) If 0 < p < ∞, 0 < q ≤ ∞,

Qp,q →֒ H∗
p,q, Qp,q →֒ HS

p,q, Qp,q →֒ Hs
p,q

Dp,q →֒ H∗
p,q, Dp,q →֒ HS

p,q, Dp,q →֒ Hs
p,q

Proof 1) The maximal operator Tf = Mf is sublinear, and ‖Mf‖2 ≤ ‖sf‖2. If a

is any (1, p,∞)−atom and τ is the corresponding stopping time, then {|Ta| > 0} =

{|Ma| > 0} ⊂ {τ < ∞} and hence P (|Ta| > 0) ≤ cP (τ < ∞). It follows from

Theorem 3.1 that

‖Mf‖p,q ≤ c‖f‖Hs
p,q

, (0 < p < 2).

Similarly, consider the operator Tf = Sf we get ‖Sf‖p,q � ‖f‖Hs
p,q

. Conversely, we

use interpolation by considering the following operator to obtain the case p > 2, 0 <

q ≤ ∞. In fact, consider operator Q : Lp(l∞) → Lp by Q(f) = s(f), then Q is

bounded for all p ≥ 2. So by interpolation, Q is bounded from Lp,q(l∞) to Lp,q for

p > 2, 0 < q ≤ ∞.

2) For all 0 < r < ∞, ‖Mf‖r, ‖Sf‖r, ‖sf‖r � ‖f‖Qr and ‖Mf‖r, ‖Sf‖r, ‖sf‖r �

‖f‖Dr . Note that ak
n = 0 on the set {n ≤ τk}, thus

χ(n ≤ τk)En−1|∆nak|2 = En−1χ(n ≤ τk)|∆nak|2 = 0.

Hence s(ak) = 0 on the set {τk = ∞}. By Theorem 3.2.2 and 3.2.3, we can complete

the proofs.

Remark If put p = q in the above embedding, Theorem 2.11 in [97] can be deduced;

if put q = ∞, Theorem 7 and Theorem 8 in [39] can be concluded.

Remark We conjecture that for 1 ≤ p < ∞, 0 < q ≤ ∞, HS
p,q = H∗

p,q, however our

method doesn’t show these.
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§ 3.3 Restricted weak interpolation

We say that a sublinear operator T is of restricted weak-type (p, q) if T maps

Hs
p,1 to Lp,∞. Then we have the next interpolation from one restricted weak-type

estimate to another.

Theorem 3.3.1 Let T is of restricted weak-type (pi, qi) for i = 0, 1, and 1 < pi, qi <

∞. Put
1

p
=

1 − θ

p0
+

θ

p1
,
1

q
=

1 − θ

q0
+

θ

q1
, ∀0 ≤ θ ≤ 1.

Then T is also of restricted weak-type (p, q).

Proof Suppose that f ∈ Hs
p,1, from Theorem 2.1, f =

∑
k∈Z µka

k, ak is (1, p,∞)-

atoms with respect to stopping time τk, and
∑

k∈Z |µk| � ‖f‖Hs
p,1

. Now we can

estimate ‖Tak‖q,∞ ≤ c. In fact

‖Tak‖q,∞ = sup
t>0

t
1
p (Tak)∗(t) = sup

t>0
(t

1
q0 (Tak)∗(t))1−θ(t

1
q1 (Tak)∗(t))θ

≤ ‖Tak‖1−θ
q0,∞‖Tak‖θ

q1,∞

≤ c‖sak‖1−θ
p0,1‖sa

k‖θ
p1,1

≤ c‖sak‖1−θ
2p0,2p0

‖χ{τk<∞}‖
1−θ
2p0,l‖sa

k‖θ
2p1,2p1

‖χ{τk<∞}‖
θ
2p1,m

≤ cP (τk < ∞)−
1
p (P (τk < ∞)

1−θ
2p0 P (τk < ∞)

θ
2p1 )2

≤ c,

where l = 2p0

2p0−1
and m = 2p1

2p1−1
. Consequently,

‖Tf‖q,∞ ≤
∑

k∈Z

|µk|‖Tak‖q,∞ ≤ c
∑

k∈Z

|µk| � ‖f‖Hs
p,1

.

The proof is finished.

Now we show how restricted weak-type estimate can be transferred to strong

type. It is also the version of the classical Marcinkiewicz interpolation theorem in

the martingale setting(see Theorem 4.13 in [5]).

Theorem 3.3.2 Let T is of restricted weak-type (pi, qi) for i = 0, 1, and 1 < pi <

∞, 1 < qi ≤ ∞, q0 6= q1. Put

1

p
=

1 − θ

p0
+

θ

p1
,
1

q
=

1 − θ

q0
+

θ

q1
, ∀0 ≤ θ ≤ 1.

Then T is of type (Hs
p,r, Lq,r), for 0 < r < 1 and r ≤ q.

Proof For 0 < r < 1 and r ≤ q, we know ‖ · ‖q,r is equivalent to a r−norm, so

it is enough to prove ‖Ta‖q,r ≤ c, for all (1, p,∞)-atoms. Once it is proved, from
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Theorem 3.2.1,

‖Tf‖r
q,r ≤

∑

k∈Z

µr
k‖Ta‖r

q,r ≤ c
∑

k∈Z

µr
k ≤ c‖f‖r

Hs
p,r

.

Now we shall show ‖Ta‖q,r ≤ c. Consider the case q1, q2 < ∞. From the previous

proof, it is easy to know

‖a‖pi

Hs
pi,1

≤ cP (τ < ∞)1−
pi
p , i = 0, 1.

Thus, say q0 < q < q1, we get

1

q
‖Ta‖q

q,r =

∫ ∞

0

yr−1P (|Ta| > y)
r
q dy

≤

∫ δ

0

yr−1(
1

y
‖a‖Hs

p0,1
)

q0r
q dy +

∫ ∞

δ

yr−1(
1

y
‖a‖Hs

p1,1
)

q1r
q dy

≤ c(δ
r
q
(q−q0)P (τ < ∞)

rq0
q

( 1
p0

− 1
p
)
+ δ

r
q
(q−q1)P (τ < ∞)

rq1
q

( 1
p1

− 1
p
)
)

Taking δ = P (τ < ∞)α, with α satisfying

qα = (
1

p0
−

1

p
)/(

1

q
−

1

q0
) = (

1

p1
−

1

p
)/(

1

q
−

1

q1
)

In fact, from 1
p

= 1−θ
p0

+ θ
p1

, 1
q

= 1−θ
q0

+ θ
q1

we can know qα = ( 1
p0

− 1
p1

)/( 1
q1
− 1

q0
), and

r

q
[α(q − q0) + q0(

1

p0
−

1

p
)] =

r

q
[α(q − q1) + q1(

1

p1
−

1

p
)] = 0.

Then ‖Ta‖q
q,r � c.

When one of qi is ∞, say q1 = ∞, the proof is unchanged. More precisely, we

have

‖Ta‖∞ ≤ c‖a‖Hs
p1,1

≤ cP (τ < ∞)
1

p1
− 1

p .

Thus, from 1
p

= 1−θ
p0

+ θ
p1

, 1
q

= 1−θ
q0

1

q
‖Ta‖q

q,r =

∫ ‖Ta‖∞

0

yr−1P (|Ta| > y)
r
q dy

≤

∫ ‖Ta‖∞

0

yr−1(
1

y
‖a‖Hs

p0,1
)

q0r
q dy

≤ cP (τ < ∞)
rq0
q

( 1
p0

− 1
p
)
P (τ < ∞)

r
q
(q−q0)(

1
p1

− 1
p
)

≤ c

We complete the proof.

Remark From Theorems 3.2.2 and 3.2.3, we can conclude that the familiar results

hold for Qp,1 and Dp,1. We shall not state these explicitly. 2
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Chapter 4 Embeddings on vector-valued Lorentz

martingale spaces

§ 4.1 Introductions and Notations

As we all know that Lorentz spaces are the extensions of Lebesgue spaces, and

some important facts in Lebesgue spaces have been found to have their satisfactory

counterparts in Lorentz spaces. Many papers have tried to reveal these results. It is

also well known the validity of a classical (scalar-valued) result in the vector-valued

setting, i.e., for functions or martingale with values in a Banach space, depends on

the geometric properties of the underlying Banach space; the relevant properties are

often the uniform convexity and smoothness. Let us recall Pisier’s celebrated work

[80]on martingale inequalities in uniformly convex spaces. Let 1 < q < ∞. Then a

Banach space X has an equivalent q-uniformly convex norm iff for one 1 < p < ∞

(or equivalently, for every 1 < p < ∞) there exists a positive constant C such that

∥∥∥
(
‖f1‖

q +
∑

n≥2

‖fn − fn−1‖
q
)1/q∥∥∥

p
≤ C sup

n≥1
‖fn‖p (4.1)

for all Lp-martingales f with values in X. The validity of the converse inequality

amounts to saying that X has an equivalent q-uniformly smooth norm. Then the

main goal of the present paper is to extend (4.1) to the Lorentz spaces case. More

precisely, we obtain the following results. Let 1 < q < ∞. Then a Banach space X

has an equivalent q-uniformly convex norm iff for some 1 < r < ∞, 1 ≤ s ≤ ∞ (or

equivalently, for every 1 < r < ∞, 1 ≤ s ≤ ∞) there exists a positive constant C

such that ∥∥∥
(
‖f1‖

q +
∑

n≥2

‖fn − fn−1‖
q
)1/q∥∥∥

r,s
≤ c sup

n≥1
‖fn‖r,s (4.2)

for all Lr,s-martingales f with values in X. Again, the validity of the converse

inequality amounts to saying that X has an equivalent q-uniformly smooth norm.

In the preceding papers, the main methods to deal with martingale theory are the

stopping time, atomic decomposition, scalar-valued martingale transform, interpola-

tion and so on, see for instance [35] [54] [59] [97]. It should be mentioned that in this
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chapter we employ operator-valued martingale transforms, which were introduced

by Martinez and Torrea [68] in 2000. Replacing the scalar-valued multiplying se-

quences by operator-valued multiplying sequences, they generalized the Burkholder

martingale transforms [10]. The key fact in order to get our desired results is to

identify the p-variant operator S(p)(f) of a Banach-valued martingale f with the

maximal operator of a ℓp-valued martingale transform. As we can see, under this

point of view, it is so short and transparent to obtain our desired martingale in-

equalities. Finally we give a equivalent characterization of UMD Banach lattices in

the Lorentz spaces setting.

Let X be a Banach space. For 1 ≤ p ≤ ∞ the usual Lp-space of strongly

p-integrable X-valued functions on (Ω,F , P ) will be denoted by Lp(Ω; X) or simply

by Lp(X). Let {Fn}n≥1 be an increasing sequence of sub-σ-fields of F such that

F =
∨

Fn. By an X-valued martingale relative to {Fn}n≥1 we mean a sequence

f = {fn}n≥1 in L1(X) such that E(fn+1

∣∣Fn) = fn for every n ≥ 1. Let dfn = fn−fn−1

with the convention that f0 = 0. {dfn}n≥1 is the martingale difference sequence of

f . We will use the following standard notations from martingale theory

Mn(f) = sup
1≤k≤n

‖fk‖ , M(f) = sup
n≥1

‖fn‖ ;

S(q)
n (f) =

( n∑

k=1

‖dfk‖
q
)1/q

, S(q)(f) =
( ∞∑

k=1

‖dfn‖
q
)1/q

.

For 1 < r < ∞, 1 ≤ s ≤ ∞, we define the following martingale spaces:

H∗
r,s = {f = (fn)n≥1 : ‖M(f)‖r,s < ∞}

qH
S
r,s = {f = (fn)n≥1 : ‖S(q)(f)‖r,s < ∞}

We refer to [35] [59] and [97]for more facts on scalar martingale theory, and [27] and

[56] for vector-valued case.

Given a X-valued martingale f = (fn)n≥1, we define

‖f‖p,q = sup
n

‖fn‖p,q.

§ 4.2 Operator-valued martingale transform

Lemma 4.2.1 Let X1 and X2 be two Banach space, T a martingale transform op-

erator as above. Then the following statements are equivalent:
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(1) There exists a positive constant C such that

P (M(Tf) > λ) ≤ C‖M(f)‖1 ∀λ > 0

(2) For any 1 < p < ∞, 1 ≤ q ≤ ∞, there exists C = Cp,q > 0 such that

‖M(Tf)‖p,q ≤ C‖Mf‖p,q

(3) For some 1 < p0 < ∞, 1 ≤ q0 ≤ ∞, there exists C = Cp0,q0
> 0 such that

‖M(Tf)‖p0,q0
≤ C‖Mf‖p0,q0

Lemma 4.2.2 Let (An)n≥1 be a nonnegative, increasing and adapted sequence, Y ≥

0. If E(A∞ − Aτ−1|Fτ) ≤ E(Y |Fτ) for any stopping time τ, then we have

‖A∞‖p,q ≤ C‖Y ‖p,q , 1 < p < ∞, 1 ≤ q ≤ ∞.

Proof For any fixed λ > 0, setting stopping time τ = inf{n : An > λ}, then

Aτ−1 ≤ λ, and {A∞ > λ} = {τ < ∞} ∈ Fτ , by the condition, we get
∫

{A∞>λ}

(A∞ − λ) ≤

∫

{A∞>λ}

Y.

For t ∈ [0, 1], setting λ = A∗
∞(t), the inequality above implies

∫ t

0

A∗
∞(s)ds ≤

∫ t

0

Y ∗(s)ds + tA∗
∞(t).

Observe that, for any t ∈ [0, 1] and fixed t0 ∈ (0, 1) we have
∫ t

0

A∗
∞(s)ds ≥

∫ t0t

0

A∗
∞(s)ds + (1 − t0)tA

∗
∞(t) = t0

∫ t

0

A∗
∞(t0s)ds + (1 − t0)tA

∗
∞(t)

The preceding inequalities yield
∫ t

0

A∗
∞(t0s)ds ≤

1

t0

∫ t

0

Y ∗(s)ds + tA∗
∞(t) ≤

∫ t

0

(
A∗

∞(s) +
1

t0
Y ∗(s)

)
ds,

which leads to

A∗∗
∞(t0t) ≤ A∗∗

∞(t) +
1

t0
Y ∗∗(t).

A change of variable gives

(t0)
−1/p‖A∞‖(p,q) ≤ ‖A∞‖(p,q) + (t0)

−1‖Y ‖(p,q).

Noting t0 ∈ (0, 1), we finally have

‖A∞‖p,q ≤ C‖Y ‖p,q. 2
Remark In Lemma 2.3 it is sufficient to verify E(A∞ − Aτ−1|Fτ) ≤ E(Y |Fτ) for

stopping times taking constant values n, see for example [59].
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Lemma 4.2.3 Let 1 < p < ∞, 1 ≤ q ≤ ∞. Then for any X-valued martingale

f = (fn)n≥1 ∈ H∗
p,q we have f = g + h, where g and h are martingales satisfying the

following conditions :

(1)‖dgn‖ ≤ 4Mn−1(df); (2)
∥∥ ∑∞

n=1 ‖dhn‖
∥∥

p,q
≤ C‖M(df)‖p,q

Proof Setting Fi = dfi1{‖dfi‖≤2Mi−1(df)} and Gi = dfi1{‖dfi‖>2Mi−1(df)}. Now we let

dgi = Fi − E(Fi|Fi−1), gn =

n∑

i=1

dgi ; dhi = Gi − E(Gi|Fi−1), hn =

n∑

i=1

dhi

It is obvious that g = (gn)n≥1 and h = (hn)n≥1 are martingales, and ‖dgn‖ ≤

4Mn−1(df). Note that ‖Gi‖ = 2‖Gi‖ − ‖Gi‖ ≤ 2Mi(df) − 2Mi−1(df), we get

∞∑

i=n

‖dhi‖ ≤ 2
∞∑

i=n

(
Mi(df) − Mi−1(df)

)
+ 2

∞∑

i=n

E
(
Mi(df) − Mi−1(df)

∣∣Fi−1

)

≤ 2M(df) + 2

∞∑

i=1

E
(
Mi(df) − Mi−1(df)

∣∣Fi−1

)

≤ 2M(df) + 2γ∞

where γ∞ =
∑∞

i=1 E
(
Mi(df) − Mi−1(df)

∣∣Fi−1

)
. Then by Corollary 2 in [?],

‖γ∞‖p,q ≤ C‖
∞∑

i=1

Mi(df) − Mi−1(df)‖p,q ≤ C‖M(df)‖p,q.

Thus

E
( ∞∑

i=n

‖dhi‖
∣∣Fi−1

)
≤ E

(
2M(df) + 2γ∞

∣∣Fi−1

)
.

It follows from Lemma 2.4 that

∥∥
∞∑

n=1

‖dhn‖
∥∥

p,q
≤ C‖M(df) + γ∞‖p,q ≤ C‖M(df)‖p,q + C‖γ∞‖p,q ≤ C‖M(df)‖p,q.2

Now we can give the proof of Lemma 2.3.

Proof of Lemma 4.2.1 (1) ⇒ (2) Considering a martingale f ∈ H∗
p,q, by Lemma

2.6 we can decompose f as f = g + h, then

‖M(Tf)‖p,q ≤ C‖M(Tg)‖p,q + C‖M(Th)‖p,q (4.3)

Since the boundedness of the sequence (υk) we get

‖M(Th)‖p,q =
∥∥ sup

n
‖

n∑

k=1

υkdhk‖X2

∥∥
p,q

≤
∥∥ sup

n

n∑

k=1

‖υk‖‖dhk‖X1

∥∥
p,q

≤
∥∥ sup

n

n∑

k=1

‖dhk‖X1

∥∥
p,q

=
∥∥

∞∑

k=1

‖dhk‖X1

∥∥
p,q

≤ C‖M(f)‖p,q
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Setting Wn = 4Mn−1(df), then Wn is nondecreasing and Fn−1-measurable. Fix

λ > 0. For β > 0, δ > 0 satisfying β > δ + 1, define the stopping times:

µ = inf{n : ‖(Tg)n‖X2
> λ}, ν = inf{n : ‖(Tg)n‖X2

> βλ}, σ = inf{n : ‖gn‖X1

∨
Wn+1 > δλ}.

Now we denote un = 1{µ<n≤ν
∧

σ}. Since {µ < n ≤ ν
∧

σ} is Fn−1-measurable,

we can consider the martingale an =
∑n

k=1 ukdgk and its martingale transform

(Ta)n =
∑n

k=1 υkukdgk. Note that ‖dgn‖ ≤ Wn, by the definition of stopping time

σ, we have M(a) ≤ 2δλ in the set {µ < ∞} and M(a) = 0 in {µ = ∞}. Then

‖M(a)‖1 ≤ 2δλP (µ < ∞) = 2δλP
(
M(Tg) > λ

)
.

By the condition (1), we get

P
(
M(Ta) > (β − δ − 1)λ

)
≤

C‖M(a)‖1

(β − δ − 1)λ
≤

2Cδ

β − δ − 1
P

(
M(Tg) > λ

)
.

If w ∈ {µ < n ≤ ν
∧

σ}, then (Ta)n = (Tg)n; it is easy to see

P
(
M(Tg) > βλ, M(W ) ≤ δλ

)
≤ P

(
M(Ta) > (β − δ − 1)λ

)
.

Thus

P
(
M(Tg) > βλ

)
≤ P

(
M(Tg) > βλ, M(W ) ≤ δλ

)
+ P

(
M(W ) > δλ

)

≤
2Cδ

β − δ − 1
P

(
M(Tg) > λ

)
+ P

(
M(W ) > δλ

)

Denote ρ = 2Cδ
β−δ−1

. By the equivalent definition of Lp,q-norm, we get

β−1‖M(Tg)‖p,q ≤ ρ1/p‖M(Tg)‖p,q + δ−1‖M(W )‖p,q

≤ ρ1/p‖M(Tg)‖p,q + δ−1‖4M(df)‖p,q

≤ ρ1/p‖M(Tg)‖p,q + 8δ−1‖M(f)‖p,q

Now we take δ to satisfy 1 − βρ1/p > 0, then ‖M(Tg)‖p,q ≤ C‖M(f)‖p,q. Finally it

follows from (6.10),

‖M(Tf)‖p,q ≤ C‖M(f)‖p,q.

(2) ⇒ (3) It is obvious.

(3) ⇒ (1) We shall use Gundy’s decomposition, see [59]. Fix λ > 0 we can decom-

pose f = a + b + e with a, b, c being martingales and satisfying respectively:

λP
(
sup ‖dan‖ 6= 0

)
≤ C‖f‖1;

∫ ∞∑

k=1

‖dbk‖dP ≤ C‖f‖1; sup
n

‖en‖ ≤ Cλ and ‖e‖1 ≤ C‖f‖1.
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Then

P
(
M(Tf) > λ

)
≤ P

(
M(Ta) > λ/3

)
+ P

(
M(Tb) > λ/3

)
+ P

(
M(Te) > λ/3

)
.

Moreover, we have

P
(
M(Ta) > λ/3

)
≤ P

(
sup ‖dan‖ 6= 0

)
≤

C

λ
‖f‖1 ≤

C

λ
‖M(f)‖1.

and

P
(
M(Tb) > λ/3

)
≤

3

λ

∫
sup

n
‖(Tb)n‖dP =

3

λ

∫
sup

n
‖

n∑

k=1

υkdbk‖dP

≤
3

λ

∫
‖

∞∑

k=1

dbk‖dP ≤
C

λ
‖f‖1 ≤

C

λ
‖M(f)‖1.

It is clear that Lp0,1 →֒ Lp0,q0
→֒ Lp0,∞ for 1 < p0 < ∞, 1 ≤ q0 ≤ ∞. Using the

hypothesis and noting supn ‖en‖ ≤ Cλ, we get

‖M(Te)‖p0,∞ ≤ C‖M(Te)‖p0,q0
≤ C‖M(e)‖p0,q0

≤ C‖e‖p0,q0
≤ C‖e‖p0,1

= sup
n

∫ ∞

0

P (‖en‖ > t)1/p0dt ≤ C sup
n

∫ Cλ

0

(
t−1‖en‖1

)1/p0dt

= Cλ1−1/p0‖e‖1/p0

1

which leads to

P
(
M(Te) > λ/3

)
≤

C

λ
‖e‖1 ≤

C

λ
‖f‖1 ≤

C

λ
‖M(f)‖1. 2

§ 4.3 Embeddings

Regarding the the maximal operator and p-variant operator as two martingale trans-

form operators respectively and applying Lemma 4.2.1, by handling the two con-

crete martingale transform operators, we easily obtain some embeddings between

vector-valued Lorentz martingale spaces. As usual, the geometric properties of the

underlying Banach space are important. The following two lemmas are due to Liu

[56].

Lemma 4.3.1 Let X be a Banach space. For 2 ≤ q < ∞, the following statements

are equivalent:
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(1) X is isomorphic to a q-uniformly convex space

(2) For any X-valued martingale f there exists a constant C > 0 such that

λP (S(q)(f) > λ) ≤ C‖M(f)‖1 , ∀λ > 0.

Lemma 4.3.2 Let X be a Banach space. For 1 < q ≤ 2, the following statements

are equivalent:

(1) is isomorphic to a q-uniformly smooth space

(2) For any X-valued martingale f there exists a constant C > 0 such that

λP (M(f) > λ) ≤ C‖S(q)(f)‖1 , ∀λ > 0.

Theorem 4.3.1 Let X be a Banach space. For 2 ≤ q < ∞, the following statements

are equivalent:

(1) X is isomorphic to a q-uniformly convex space

(2) For any 1 < r < ∞, 1 ≤ s ≤ ∞ (or equivalently, for some)

H∗
r,s →֒ qH

S
r,s , ∀f ∈ H∗

r,s

Proof Considering the martingale transform operator T from the family of X-

valued martingales to that of ℓq(X)-valued martingales. Let υk ∈ L
(
X, ℓq(X)

)
be

the operator defined by υkx = {xj}∞j=1 for x ∈ X, where xj = x if j = k and xj = 0

otherwise. T is the martingale transform associated to the multiplying sequence

(υk) :

(Tf)n =

n∑

k=1

υkdfk = (df1, df2, ..., dfn, 0, ...)

Then

M(Tf) = sup
n

‖(Tf)n‖ℓq(X) = S(q)(f)

Since X is isomorphic to a q-uniformly convex space, by Lemma 4.3.1, the martingale

transform operator T satisfies (1) in Lemma 4.2.1. Thus the equivalence is obtained

immediately. 2
Theorem 4.3.2 Let X be a Banach space. For 1 < q ≤ 2, the following statements

are equivalent:

(1) X is isomorphic to a q-uniformly smooth space

(2) For any 1 < r < ∞, 1 ≤ s ≤ ∞ (or equivalently, for some)

qH
S
r,s →֒ H∗

r,s , ∀f ∈ qH
S
r,s

37



Proof Let ℓq(X)-valued martingale F = (Fn)n≥1, Fn =
∑n

k=1 Dk, Dk = (Dj
k)j≥1.

Define the martingale transform operator R from the family of ℓq(X)-valued mar-

tingales to that of X-valued martingales. Let υk ∈ L
(
ℓq(X), X

)
be the operator

defined by υkx = xk for all x = {xj}j≥1 ∈ ℓq(X). R is the martingale transform

associated to the multiplying sequence (υk) :

(RF )n =

n∑

k=1

υkDk =

n∑

k=1

Dk
k .

Now for any X-valued martingale f with fn =
∑n

k=1 dfk, we can choose the ℓq(X)-

valued martingale F = (Fn)n≥1 with Dj
k = dfk if j = k and Dj

k = 0 if j 6= k.

Then

(RF )n =

n∑

k=1

Dk
k =

n∑

k=1

dfk = fn, M(RF ) = M(f)

and

‖Fn‖ℓq(X) = ‖(df1, df2, ..., dfn, 0, ...)‖ℓq(X) = S(q)
n (f), M(F ) = S(q)(f).

Since X is isomorphic to a q-uniformly smooth space, by Lemma 4.2.1, the mar-

tingale transform operator R satisfies (1) in Lemma 4.3.2. Thus the equivalence is

obvious. 2
Corollary 4.3.1 Let X be a Banach space.The following statements are equivalent:

(1) X is isomorphic to a Hilbert space

(2) For any 1 < r < ∞, 1 ≤ s ≤ ∞ (or equivalently, for some)

2H
S
r,s = H∗

r,s

Proof It is well known that a space which is 2-uniformly smooth and 2-uniformly

convex is isomorphic a Hilbert space. 2
Now we can summarize martingale inequalities on Lorentz martingale spaces.

Theorem 4.3.3 The following inequalities are true

‖f‖H∗
p,q

≤ c‖f‖Hs
p,q

, ‖f‖HS
p,q

≤ c‖f‖Hs
p,q

(0 < p < 2, 0 < q ≤ ∞)

‖f‖Hs
p,q

≤ c‖f‖H∗
p,q

, ‖f‖Hs
p,q

≤ c‖f‖HS
p,q

(2 < p < ∞, 0 < q ≤ ∞)

‖f‖H∗
p,q

≈ ‖f‖HS
p,q

(1 ≤ p < ∞, 1 ≤ q ≤ ∞)

‖f‖H∗
p,q

≤ c‖f‖Pp,q , ‖f‖HS
p,q

≤ c‖f‖Qp,q (0 < p < ∞, 0 < q ≤ ∞)

‖f‖H∗
p,q

≤ c‖f‖Qp,q , ‖f‖HS
p,q

≤ c‖f‖Pp,q (0 < p < ∞, 0 < q ≤ ∞)

‖f‖Hs
p,q

≤ c‖f‖Pp,q , ‖f‖Hs
p,q

≤ c‖f‖Qp,q (0 < p < ∞, 0 < q ≤ ∞).
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Chapter 5 Carleson measures and vector-valued

BMO martingales

§ 5.1 Introductions and Preliminaries

This paper deals with vector-valued martingale inequalities. It is well known that

the validity of a classical (scalar-valued) result in the vector-valued setting, i.e.

for functions or martingales with values in a Banach space X, depends on the

geometrical or topological properties of X. For instance, the a.s. convergence of

bounded Lp-martingales (1 < p < ∞) with values in X amounts to saying that X

has the Radon-Nikodym property (see [27]). On the other hand, the validity of a

one-sided Burkholder-Gundy inequalities for X-valued martingales is equivalent to

the uniform convexity (smoothness) of X (see [80]).

It is also well known that martingale theory is intimately related to harmonic anal-

ysis. It was exactly with this in mind that Xu [104] developed the vector-valued

Littlewood-Paley theory, which was inspired by Pisier’s celebrated work [80] on mar-

tingale inequalities in uniformly convex spaces. Very recently, Ouyang and Xu [76]

studied the endpoint case of the main results of [70] and [104] by means of the clas-

sical relationship between BMO functions and Carleson measures. Let us recall the

main results of [76]. For a cube I ⊂ R
n let Î denote the tent over I. Let 1 < q < ∞

and X be a Banach space. Then X has an equivalent norm which is q-uniformly

convex iff there exists a positive c such that

sup
I cube

1

|I|

∫

Î

(t‖∇f(x, t)‖)q dxdt

t
≤ cq‖f‖q

BMO(Rn;X), ∀ f ∈ BMO(Rn; X), (5.1)

where f also denotes the Poisson integral of f on R
n+1
+ , and where

‖∇f(x, t)‖ =
∥∥ ∂

∂t
f(x, t)

∥∥ +

n∑

i=1

∥∥ ∂

∂xi
f(x, t)

∥∥.

The validity of the converse inequality is equivalent to the existence of an equiva-

lent q-uniformly smooth norm. Inequality (5.1) means that (t‖∇f(x, t)‖)q dxdt
t

is a

Carleson measure on R
n+1
+ for every f ∈ BMO(Rn; X).
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The main goal of the present paper is to give the martingale version of Ouyang-Xu’s

results. This can be considered as the endpoint case of Pisier’s theorem quoted

previously, which we now recall as follows. Let 1 < q < ∞. Then a Banach space X

has an equivalent q-uniformly convex norm iff for one 1 < p < ∞ (or equivalently,

for every 1 < p < ∞) there exists a positive constant c such that

∥∥(
‖f1‖

q +
∑

n≥2

‖fn − fn−1‖
q
)1/q∥∥

p
≤ c sup

n≥1
‖fn‖p (5.2)

for all finite Lp-martingales f with values in X. Again, the validity of the converse

inequality amounts to saying that X has an equivalent q-uniformly smooth norm.

Ouyang-Xu’s arguments heavily rely on Calderon-Zygmund singular integral theory.

In fact, the Lusin function Sq in [70] and [76] can be represented as a singular integral

operator with a regular operator-valued kernel. Similarly, Our proofs depend on

martingale transform theory. More precisely, we will use operator-valued martingale

transform theory as developed by T. Martinez and J.L. Torrea in [68] and [69].

In the remainder of this section we give some preliminaries necessary to the

whole paper. The main object of this paper is the BMO space given in the following

Definition 5.1.1 Let 1 ≤ p < ∞ and X be a Banach space. The space BMOp(X)

consists of all functions f ∈ L1(Ω; X) such that

‖f‖BMOp(X) = sup
n≥1

∥∥E(‖f − fn−1‖
p
∣∣Fn)

1/p
∥∥
∞

< ∞.

Remark The following facts are well known in the scalar-valued case (see [35], [59]

and [102]). Their proofs go straightforward over the Banach-valued setting.

(1) The spaces BMOp(X) are independent of p and all corresponding norms

are equivalent. This allows us to denote any of them by BMO(X).

(2) L∞(X) ⊂ BMO(X) ⊂ Lp(X) for 1 ≤ p < ∞.

(3) We have

‖f‖BMO(X) = sup
τ

P (τ < ∞)−1/p‖f − fτ−1‖Lp(X) , 1 ≤ p < ∞, (5.3)

where the supremum is taken over all stopping times τ. On the other hand a function

f ∈ Lp(X), 1 ≤ p < ∞, belongs to BMO(X) iff there exists an adapted process

(θn)n≥0 such that θ0 = 0 and

Cθ = sup
n

∥∥E(‖f − θn−1‖
p
∣∣Fn)1/p

∥∥
∞

< ∞ .

In this case, ‖f‖BMO(X) ≈ infθ Cθ.
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Lemma 5.1.1 With the assumptions above the following statements are equivalent:

(1) There exists a positive constant c such that

‖Tf‖BMO(X2) ≤ c ‖f‖BMO(X1) , ∀ f ∈ BMO(X1).

(2) There exists a positive constant c such that

‖(Tf)∗‖BMO(X2) ≤ c ‖f‖BMO(X1) , ∀ f ∈ BMO(X1).

(3) For some 1 ≤ p < ∞ (or equivalently, for every 1 ≤ p < ∞) there exists a

positive constant c such that

‖Tf‖p ≤ c ‖f ∗‖p , ∀ f ∈ Lp(X1).

The classical notion of Carleson measures in harmonic analysis has the following

martingale analogue.

Definition 5.1.2 Let µ be a nonnegative measure on Ω × N, where N is equipped

with the counting measure dm. µ is called a Carleson measure if

‖µ‖C =: sup
µ(τ̂)

P (τ < ∞)
< ∞,

where the supremum runs over all stopping times τ and where τ̂ denotes the “tent” over

τ :

τ̂ =
{
(w, k) ∈ Ω × N : τ(w) ≤ k, τ(w) < ∞

}
.

Throughout the paper we will use A ≈ B to abbreviate c−1B ≤ A ≤ cB for

some positive constant c. The letter c will denote a positive constant, which may

depend on p but never on the martingales in consideration, and which may change

from line to line.

§ 5.2 Main results

The following theorem is the main result of this section. Recall that τ̂ denotes

the tent over a stopping time τ.

Theorem 5.2.1 Let X be a Banach space and 2 ≤ q < ∞. Then the following

statements are equivalent:

(1) There exists a positive constant c such that for any finite X-valued martingale

sup
τ

1

P (τ < ∞)

∫

τ̂

‖dfk‖
qdP ⊗ dm ≤ cq‖f‖q

BMO . (5.4)

(2) X has an equivalent norm which is q−uniformly convex.
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Inequality (5.4) means that ‖dfk‖qdP ⊗ dm is a Carleson measure on Ω×N for

every f ∈ BMO(X).

Lemma 5.2.1 Let 1 ≤ p < ∞. Then

‖f‖BMO(X) ≈ inf
θ

sup
τ

P (τ < ∞)−1/p‖f − θτ−1‖p,

where the supremum runs over all stopping times τ and the infimum over all adapted

processes θ such that θ∞ = f.

Proof Assume that f ∈ BMO(X). Let τ be a stopping time. Then by Remark (3)

‖f − θτ−1‖
p
p = E‖f − θτ−1‖

pχ{τ<∞}

= E

(
E(‖f − θτ−1‖

p|Fτ)χ{τ<∞}

)

≤ Cp
θ P (τ < ∞).

This implies

inf
θ

sup
τ

P (τ < ∞)−
1
p‖f − θτ−1‖p ≤ inf

θ
Cθ ≤ c‖f‖BMO(X).

Conversely, assume β = infθ supτ P (τ < ∞)−1/p‖f − θτ−1‖p < ∞, τ is any stopping

time, ∀F ∈ Fτ , F ⊂ {τ < ∞}. By defining τF = τ, if ω ∈ F ; otherwise τF = ∞, we

get

1

P (F )

∫

F

‖f − θτ−1‖
pdP = P (τF < ∞)−1

∫

F

‖f − θτF −1‖
pdP

= P (τF < ∞)−1‖f − θτF −1‖
p
p,

which leads to

sup
τ

‖E(‖f − θτ−1‖
p|Fn)

1/p‖∞ ≤ P (τF < ∞)−1/p‖f − θτF −1‖p.

Thus

‖f‖BMO(X) ≤ c inf
θ

Cθ ≤ c inf
θ

sup
τ

P (τ < ∞)−1/p‖f − θτ−1‖p. 2
Proof of Theorem 2.1 (1)=⇒(2). Assume that (1) holds. We first claim that

‖S(q)(f)‖BMO ≤ c‖f‖BMO(X), ∀f ∈ BMO(X).
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Indeed, by Lemma 5.2.1

‖S(q)(f)‖BMO ≤ c sup
τ

P (τ < ∞)−
1
q ‖S(q)(f) − S

(q)
τ−1(f)‖q

≤ c sup
τ

P (τ < ∞)−
1
q

(
E

∞∑

k=τ

‖dfk‖
qχ{τ<∞}

) 1
q

= c sup
τ

P (τ < ∞)−
1
q

(∫

τ̂

‖dfk‖
qdP ⊗ dm

) 1
q

≤ c‖f‖BMO(X).

We now consider a martingale transform operator Q from the family of X−valued

martingales to that of lq(X)−valued martingales. Let υk ∈ L(X, lq(X)) be the

operator defined by υkx = {xj}∞j=1 for x ∈ X, where xj = x if j = k and xj = 0

otherwise. Q is the martingale transform associated to the sequence (υk) :

(Qf)n =
n∑

k=1

υkdfk = (df1, df2, ..., dfn, 0, ...).

Then

(Qf)∗ = sup
n

‖(Qf)n‖lq(X) = S(q)(f).

It is clear that by the claim above Q satisfies the statement (2) in Lemma 5.1.1.

Therefore, Q is Lq−bounded. Namely

‖S(q)(f)‖Lq = ‖(Qf)∗‖Lq ≤ c‖f‖Lq(X).

Thus by Pisier’ theorem X has an equivalent q−uniformly convex norm.

(2)=⇒(1). Suppose that X has an equivalent q−uniformly convex norm. By

Pisier’ theorem, we find for any 1 ≤ n ≤ m

E(

m∑

i=n

‖dfi‖
q|Fn) ≤ cE(‖fm − fn−1‖

q|Fn) ≤ cE(‖f − fn−1‖
q|Fn) ≤ c‖f‖q

BMO(X).

This implies

E(
∞∑

i=n

‖dfi‖
q|Fn) ≤ c‖f‖q

BMO(X).
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Now let τ be a stopping time. We then have

P (τ < ∞)−
1
q

(∫

τ̂

‖dfk‖
qdP ⊗ dm

) 1
q

= P (τ < ∞)−
1
q

(
E

∞∑

k=τ

‖dfk‖
qχ{τ<∞}

) 1
q

= P (τ < ∞)−
1
q

(
E
(
E(

∞∑

k=τ

‖dfk‖
q|Fτ)χ{τ<∞}

)) 1
q

≤ cP (τ < ∞)−
1
q

(
E‖f‖q

BMO(X)χ{τ<∞}

) 1
q

≤ c‖f‖BMO(X).

Taking the supremum over all stopping times τ, we get the desired inequality.

Theorem 5.2.2 Let X be a Banach space and 1 < p ≤ 2. Then the following

statements are equivalent:

(1) There exists a positive constant c such that for any X−valued martingale

|f‖p
BMO(X) ≤ cp sup

τ
P (τ < ∞)−1

∫

τ̂

‖dfk‖
pdP ⊗ dm. (5.5)

(2) X has an equivalent p−uniformly smooth norm.

Inequality (5.5) means f ∈ BMO(X), if ‖dfk‖pdP ⊗ dm is a Carleson measure on

Ω × N.

Proof (1) =⇒ (2). Suppose that (1) holds, then for any X−valued martingale we

have

(2.3) ‖f‖BMO(X) ≤ c sup
τ

P (τ < ∞)−
1
p

(
E

∞∑

k=τ

‖dfk‖
pχ{τ<∞}

) 1
p
.

Let X∗ be the dual space of X. It suffice to prove X∗ has an equivalent q−uniformly

smooth norm, where q is the conjugate index of p.

To this end, we intend to claim for any X∗−valued martingale g,

‖S(q)(g)‖1 ≤ c‖g∗‖1 = c‖g‖H1(X∗).

Since
(
L1

(
lq(X

∗)
))∗

= L∞

(
lp(X)

)
, for any martingale g ∈ H1(X

∗),

‖S(q)(g)‖1 = sup
{
|
∑

< dgk, ak > | : ‖(ak)‖
L∞

(
lp(X)

) ≤ 1
}

= sup
{
|
∑

< dgk, E(ak) − Ek−1(ak) > | : ‖(ak)‖
L∞

(
lp(X)

) ≤ 1
}
.
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Setting dfk = Ek(ak) − Ek−1(ak), f =
∑

dfk; then f is a X−valued martingale. We

have

|
∑

< dgk, ak > | = |
∑

< dgk, dfk > | = | < g, f > | ≤ ‖g‖H1(X∗)‖f‖BMO(X).

Now we shall estimate E
∑∞

k=τ ‖dfk‖pχ{τ<∞} under the condition of ‖(ak)‖
L∞

(
lp(X)

) ≤

1. Indeed,

E(
∞∑

k=τ

‖dfk‖
pχ{τ<∞}) ≤ 2p

(
E

∞∑

k=τ

‖Ek(ak)‖
pχ{τ<∞} + E

∞∑

k=τ

‖Ek−1(ak)‖
pχ{τ<∞}

)

= 2p(I + II)

We shall estimate I and II respectively.

I ≤ E

∞∑

k=τ

Ek‖ak‖
pχ{τ<∞} ≤ EEτ

( ∞∑

k=0

Ek(‖ak‖
pχ{τ≤k})

)

= E

( ∞∑

k=0

‖ak‖
pχ{τ≤k}

)
= E

( ∞∑

k=τ

‖ak‖
pχ{τ<∞}

)

≤ E

(∥∥∥
∞∑

k=τ

‖ak‖
p
∥∥∥
∞

χ{τ<∞}

)

≤ P (τ < ∞).

Similarly to I, we get

II = E‖Eτ−1aτ‖
pχ{τ<∞} + E

∞∑

k=τ−1

‖Ek−1(ak)‖
pχ{τ<∞}

≤ 2P (τ < ∞).

From (2.3) we then have ‖f‖BMO(X) ≤ c. Therefore, we finally obtain

‖S(q)(g)‖1 ≤ c‖g‖H1(X∗), ∀g ∈ H1(X
∗).

By Piser’s theorem, we get X∗ has an equivalent q−uniformly norm. Thus we

complete the proof of (1) =⇒ (2).

(2) =⇒ (1). By the Remark 1.2, we have

‖f‖BMO(X) = sup
τ

P (τ < ∞)−
1
p‖f − fτ−1‖Lp(X), ∀1 < p ≤ 2.

Now we consider the new nondecreasing σ−field sequence {Fk∨τ}k≥1 and the corre-

sponding martingale f̃ generated by f −fτ . Then by Doob’s stopping time theorem,

we have

f̃k = E(f − fτ |Fk∨τ) = E(f |Fk∨τ) − fτ = fk∨τ − fτ .
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From the condition (2), we have ‖f̃‖p ≤ c‖S(p)(f̃)‖p. Thus

E‖f − fτ‖
p = E‖f̃‖p ≤ cE

∞∑

k=1

‖df̃k‖
p = cE

∞∑

k=1

‖f(k+1)∨τ − fk∨τ‖
p

= cE
∞∑

k=τ

‖fk+1 − fk‖
p = cE

∞∑

k=τ

‖dfk‖
pχ{τ<∞}

Therefore,

E‖f − fτ−1‖
p ≤ 2p

(
E‖f − fτ‖

p + E‖fτ − fτ−1‖
p
)
≤ 2p+1cE

∞∑

k=τ

‖dfk‖
pχ{τ<∞}.

Then we obtain

‖f‖BMO(X) ≤ c sup
τ

P (τ < ∞)−
1
p

(
E

∞∑

k=τ

‖dfk‖
pχ{τ<∞}

) 1

p
.

So the theorem is proved.

Corollary 5.2.1 Let X be a Banach space. Then the following statements are equiv-

alent:

(1) There exists a positive constant c such that for any finite X−valued martingale

c−2 sup
τ

P (τ < ∞)−1

∫

τ̂

‖dfk‖
2dP⊗dm ≤ ‖f‖2

BMO ≤ c2 sup
τ

P (τ < ∞)−1

∫

τ̂

‖dfk‖
2dP⊗dm.

(2) X is isomorphic to a Hilbert space.

Proof It is well known that a space which is both 2-uniformly smooth and 2-

uniformly convex is isomorphic to a Hilbert space.

§ 5.3 UMD Banach lattice

Definition 5.3.1 A Banach space X is said to satisfy UMD property if there exists

a positive constant c such that for 1 < p < ∞,

‖ε1df1 + ... + εndfn‖p ≤ c‖df1 + ... + dfn‖p, ∀n ≥ 1

for all X−valued martingale difference sequences (df1, df2, ...) and all εk = ±1.

This definition is due to Burkholder [11]. It is known that the existence of

one p0 satisfying the inequality is enough to assure the existence of the rest of p,

1 < p < ∞.
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X will denote a Banach lattice in this section. Without loss of generality we

assume that X is a Banach lattice of measurable functions on some measure space

(Σ, dµ). The reader is referred to [58] for informations about Banach lattices. In the

Banach lattice case, it is nature to consider the following variant of square function

S(2)(f).

Definition 5.3.2 Let X be a Banach lattice and f = {fn}n≥1 a X−valued martin-

gale, fn =
∑n

k=1 dfk. We define the operators

S̃nf(w) = (

n∑

k=1

|dfk(w)|2)
1
2 , S̃f(w) = sup

n
S̃nf(w).

On the one hand for every fixed w ∈ Ω, S̃f(w) can be regard as a function defined

Σ; on the another hand ‖S̃f‖ can be seen as the norm of the element (df1, df2, ...)

in the Banach space

X(l2) =
{
(a1, a2, ...) :

∥∥( ∞∑

k=1

|ak(w)|2
) 1

2
∥∥ < ∞

}
.

X(l2) is also a Banach lattice when X is a Banach lattice. The following lemma is

well known; see [89].

Lemma 5.3.3 Given a Banach lattice X, the following statements are equivalent :

(1) X satisfies the UMD property.

(2) There exists p, 1 < p < ∞, and a constant c such that

c−1‖f‖Lp(X) ≤ ‖S̃f‖Lp(X) ≤ c‖f‖Lp(X),

for any X−valued martingale.

Now we can prove the following characterization of UMD Banach lattices.

Theorem 5.3.4 Given a Banach lattice X, the following statements are equivalent:

(1) X satisfies the UMD property.

(2) There exists a positive constant c such that for any X−value martingale,

c−1‖f‖BMO(X) ≤ sup
τ

P (τ < ∞)−
1
2

(
E‖(

∞∑

k=τ

|dfk|
2)

1
2‖2χ{τ<∞}

) 1

2

≤ c‖f‖BMO(X).

Proof (2) =⇒ (1). Assume that (2) holds. By

‖
∑

k

dfk‖BMO(X) ≈ sup
τ

P (τ < ∞)−
1
2

(
E‖(

∞∑

k=τ

|dfk|
2)

1
2‖2χ{τ<∞}

) 1
2

,

we get

‖
∑

k

εkdfk‖BMO(X) ≤ c‖f‖BMO(X), ∀εk = ±1.

47



For any fixed εk and any X-valued martingale f , (Qf)n =
∑n

k=1 εkdfk is a martingale

transform operator from X to itself. By Lemma 1.4, we get

‖Qf‖Lp(X) ≤ c‖f‖Lp(X), ∀p > 1.

By the definition of UMD space, we get X satisfies UMD property.

(1) =⇒ (2). We now consider the X-valued martingale f̃ defined in the proof of

Theorem 2.3. By X satisfying UMD property, we have

‖f̃‖L2(X) ≈ ‖S̃f̃‖L2(X).

Then

E‖f − fτ‖
2 = E‖f̃‖2 ≤ cE‖(

∞∑

k=1

|df̃k|
2)1/2‖2 = cE‖(

∞∑

k=1

|f(k+1)∨τ − fk∨τ |
2)1/2‖2

= cE‖(
∞∑

k=τ

|dfk|
2)1/2‖2χ{τ<∞}

It is obvious that E‖fτ − fτ−1‖2 ≤ E‖(
∑∞

k=τ |dfk|2)1/2‖2χ{τ<∞}. Then

E‖f − fτ−1‖
2 ≤ c

(
E‖f − fτ‖

2 + E‖fτ − fτ−1‖
2
)
≤ cE‖(

∞∑

k=τ

|dfk|
2)1/2‖2χ{τ<∞}.

Conversely,

E‖(
∞∑

k=τ

|dfk|
2)1/2‖2χ{τ<∞} ≤ cE‖f̃‖2 = E‖f − fτ‖

2

≤ c
(

E‖f − fτ−1‖
2 + E‖fτ − fτ−1‖

2
)

≤ cE‖f − fτ−1‖
2

Thus

E‖f − fτ−1‖
2 ≈ E‖(

∞∑

k=τ

|dfk|
2)1/2‖2χ{τ<∞}

Recalling ‖f‖BMO(X) = supτ P (τ < ∞)−
1
2‖f−fτ−1‖L2(X), we obtain the desired

inequality. Thus the theorem is proved.
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Chapter 6 Noncommutative Lorentz martingale

spaces

§ 6.1 Introductions and Preliminaries

Martingale inequalities and sums of independent random variables are important

tools in classical harmonic analysis. A fundamental result duo to Burkholder [9]

and [12]can be stated as follows. Given a probability space (Ω, F , P ), let {Fn}n≥1

be a nondecreasing sequence of σ-fields of F such that F = ∨Fn and En the

conditional expectation operator relative to Fn. Given 2 ≤ p < ∞ and an Lp-

bounded martingale f = (fn)n≥1, we have

‖f‖Lp ≈
∥∥∥
( ∞∑

k=1

Ek−1(|dfk|
2)

)1/2∥∥∥
Lp

+
∥∥∥
( ∞∑

k=1

|dfk|
p
)1/p∥∥∥

Lp
. (6.1)

The first term on the right is called the conditioned square function of f , while the

second is called the p-variation of f. Rosenthal’s inequalities [88] can be regarded as

the particular case while the sequence df = (df1, df2, ...) is a family of independent

mean-zero random variables dfk = ak. In this case it is easy to reduce Rosenthal’s

inequalities to

‖
∞∑

k=1

ak‖Lp ≈
( ∞∑

k=1

‖ak‖
2
2

)1/2

+
( ∞∑

k=1

‖ak‖
p
p

)1/p

. (6.2)

The noncommutative analogues of the above inequalities were successfully obtained

by Junge and Xu in [50] and [51]. They replaced conditioned expectations onto

the σ-subfields by the conditioned expectations onto an increasing sequence of von

Neumann subalgebras of a given von Neumann algebra. More precisely, for 2 ≤ p <

∞, and any finite noncommutative Lp(M)-martingale x = (xn)n≥1, (1.1) has the

following noncommutative version,

‖x‖Lp(M) ≈ max
{∥∥

(∑

k

|dxk|
p
)1/p∥∥

Lp(M)
,
∥∥sc(x)

∥∥
Lp(M)

,
∥∥sr(x)

∥∥
Lp(M)

}
, (6.3)

where sc(x) and sr(x) denote column and row versions of conditioned square func-

tion. Moreover, they obtained a simpler inequality for 1 < p ≤ 2 by duality.
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Recently, Randrianantoanina [84] proved a weak-type inequality for conditioned

square functions, which implies Junge-Xu’s noncommutative Burkholder’ inequali-

ties by interpolation. This alternate approach yields better constants some of which

are optimal.

Our original motivation comes from the classical extension for Lorentz spaces

of Rosenthal’s inequalities (6.2) by Carothers and Dilworth [20], i.e., for 2 < p <

∞, 0 < q ≤ ∞ and any independent mean zero random variables f1, f2, ..., fn,

‖
n∑

k=1

fk‖Lp,q(Ω) ≈ max
{∥∥

n∑

k=1

fk

∥∥
L2(Ω)

‖,
∥∥

n∑

k=1

⊕fk

∥∥
Lp,q(0,∞)

}
, (6.4)

where
∑n

k=1 ⊕fk denotes the disjoint sum of f1, f2, ..., fn, which is a function on

(0,∞) with df(t) =
∑n

k=1 dfk
(t).

Inspired by (6.3) and (6.4), in this paper we consider Burkholder’ inequalities

in noncommutative Lorentz spaces Lp,q(M), 1 < p < ∞, 1 ≤ q ≤ ∞. And one of our

main results can be stated as follows (see Theorem 3.1 for the detailed statement):

for 2 < p < ∞, 1 ≤ q ≤ ∞, and any finite Lp,q(M)-martingale x, we have

‖x‖Lp,q(M) ≈ max
{∥∥

∑

k

dxk ⊗ ek

∥∥
Lp,q(M⊗ℓ∞)

,
∥∥sc(x)

∥∥
Lp,q(M)

,
∥∥sr(x)

∥∥
Lp,q(M)

}
.

(6.5)

Note that if p = q, we come back the inequalities (6.3). We also extend this in-

equalities to the case 1 < p < 2, 1 ≤ q ≤ ∞. Our main results are contained in

section 3. Note that the proofs of these inequalities for Lp-spaces in [81] and [51]

use an iteration argument; however this iteration seems inefficient (or more compli-

cated) for the case of Lorentz spaces. We will adopt a different approach based on

Randrianatoanina’ weak type (1,1) inequality.

Now we introduce the noncommutative Lorentz spaces. Let (M, τ) be a tracial

noncommutative probability space. Namely M is a von Neumann algebra with a

normal faithful normalized trace τ . We refer to [13] for noncommutative integration

and more historical references. We only briefly recall some elementary facts on

noncommutative Lorentz spaces. Let L0(M) denote the topological ∗-algebra of all

measurable operators with respect to (M, τ). For x ∈ L0(M), define its generalized

singular number by

µt(x) = inf{λ > 0 : τ
(1(λ,∞)(|x|)

)
≤ t}, t > 0.

Then for 0 < p < ∞,

Lp(M) = {x ∈ L0(M) : τ(|x|p) < ∞}
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and

‖x‖p
Lp(M) = τ(|x|p) =

∫ ∞

0

(
µt(t)

)p
dt.

Of special interest in this paper is the noncommutative Lorentz spaces Lp,q(M)

associated with (M, τ) :

Lp,q(M) = {x ∈ L0(M) : ‖x‖Lp,q(M) < ∞},

where

‖x‖Lp,q(M) =
(∫ ∞

0

(
t1/pµt(x)

)q dt

t

)1/q

for 0 < q < ∞ and with the usual modification for q = ∞.

The noncommutative Lorentz spaces behave well with respect to the real inter-

polation. Let 0 < θ < 1, 0 < pk, qk ≤ ∞, k = 0, 1 and p0 6= p1. Then

Lp,q(M) = [Lp0,q0(M), Lp1,q1(M)]θ,q,

where 1/p = (1 − θ)/p0 + θ/p1, 0 < q ≤ ∞.

The usual Hölder inequality also extends to the noncommutative setting. Let

0 < pk, qk ≤ ∞, k = 0, 1 and 1/p = 1/p0 + 1/p1, 1/q = 1/q0 + 1/q1. Then for any

x ∈ Lp0,q0(M), y ∈ Lp1,q1(M),

‖xy‖Lp,q(M) ≤ C‖x‖Lp0,q0 (M)‖y‖Lp1,q1 (M) (6.6)

In particular, if p = q = 1,

|τ(xy)| ≤ ‖xy‖L1(M) ≤ ‖x‖Lp0,q0 (M)‖y‖Lp1,q1 (M), ∀x ∈ Lp0,q0(M), y ∈ Lp1,q1(M).

For 1 < p < ∞, 1 ≤ q < ∞, this defines a natural duality:

(
Lp,q(M)

)∗

= Lp′,q′(M),

where p′, q′ denote the conjugate index of p, q respectively, and 〈x, y〉 = τ(xy).

Let (Mn)n≥1 be an increasing sequence of von Neumann subalgebra of M such

that the union of M′
ns is weak∗-dense in M. For each n ≥ 1, it is well known

that there is unique normal faithful conditional expectation En from M onto Mn.

Moreover, En extends to a bounded projection from Lp,q(M) onto Lp,q(Mn) for

1 < p < ∞, 1 ≤ q ≤ ∞ which we still denote by En.

For 1 ≤ p < ∞, 1 ≤ q ≤ ∞, and a finite sequence a = (an)n≥1 in M, we define

‖a‖Lp,q(M;ℓ2c) =
∥∥∥
(∑

n

|an|
2
)1/2∥∥∥

Lp,q(M)
, ‖a‖Lp,q(M;ℓ2r) =

∥∥∥
(∑

n

|a∗
n|

2
)1/2∥∥∥

Lp,q(M)
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and

‖a‖Lp,q(M,En−1;ℓ2c) =
∥∥∥
(∑

n

En−1|an|
2
)1/2∥∥∥

Lp,q(M)
, ‖a‖Lp,q(M,En−1;ℓ2r) =

∥∥∥
(∑

n

En−1|a
∗
n|

2
)1/2∥∥∥

Lp,q(M)
.

Now, any finite sequence a = (an) in Lp,q(M) can be regarded as an element in

Lp,q(M⊗ B(ℓ2)). Therefore, ‖ · ‖Lp,q(M,ℓ2c) defines a quasi-norm on the family of all

finite sequences in Lp,q(M). The corresponding completion is a quasi-Banach space,

denoted by Lp,q(M, ℓ2
c)(if q = ∞ the competition should be taken in a certain weak

topology). It is shown in [47] that ‖ · ‖Lp(M,En−1;ℓ2c) is a quasi-norm. Similarly, we

can show ‖ · ‖Lp,q(M,En−1;ℓ2c) defines a quasi-norm on the family of all finite sequences

in Lp,q(M). The corresponding completion is a quasi-Banach space, denoted by

Lp,q(M, En−1; ℓ
2
c). There are same arguments for Lp,q(M, ℓ2

r) and Lp,q(M, En−1; ℓ
2
r).

Recalled that a noncommutative martingale with respect to the filtration (Mn)n≥1

is a sequence x = (xn)n≥1 in L1(M, τ) such that

En(xn+1) = xn, ∀n ≥ 1.

If additionally, x ∈ Lp,q(M) for some 1 < p < ∞, 0 < q ≤ ∞, then x is called

an Lp,q(M)-martingale. In this case, we set

‖x‖Lp,q(M) = sup
n≥1

‖xn‖Lp,q(M).

If ‖x‖Lp,q(M) < ∞, then x is called a bounded Lp,q(M)-martingale. The difference

sequence dx = (dxn)n≥1 is defined by dxn = xn − xn−1 with the usual convention

that x0 = 0. For concrete natural examples of noncommutative martingale, we refer

to [105].

We describe the square functions and conditional square functions of noncom-

mutative martingales. Following [81] and [47] , we will consider the following column

and row versions of square function and conditional quare function: for a finite mar-

tingale x = (xn), set (recalling that E0 = E1)

Sc(x) =
(∑

n

|dxn|
2
)1/2

, Sr(x) =
( ∑

n

|dx∗
n|

2
)1/2

;

sc(x) =
(∑

n

En−1|dxn|
2
)1/2

, sr(x) =
( ∑

n

En−1|dx∗
n|

2
)1/2

.

Observe that

‖Sc(x)‖Lp,q(M) = ‖dx‖Lp,q(M;ℓ2c), ‖sc(x)‖Lp,q(M) = ‖dx‖Lp,q(M,En−1;ℓ2c).
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Now we define Hardy spaces Hp(M). For 1 ≤ p < 2,

Hp(M) = Hc
p(M) + Hr

p(M),

with the norm

‖x‖Hp = inf{‖y‖Hc
p
+ ‖z‖Hr

p
: x = y + z, y ∈ Hc

p(M), z ∈ Hr
p(M)}

For 2 ≤ p < ∞,

Hp(M) = Hc
p(M)

⋂
Hr

p(M),

with the norm

‖x‖Hp = max{‖x‖Hc
p
, ‖x‖Hr

p
}.

§ 6.2 The Burkholder-Gundy inequality

We now extend the noncommutative Burkholder-Gundy’s inequalities in the Lorentz

spaces setting. One should note we cant directly obtain the Burkholder-Gundy

inequalities from the results in [13]. We employ the recent results in [73], which

play an important role in our proof. First we give a lemma.

Lemma 6.2.1 Let 1 < p < ∞, 0 < q < ∞, and (εn) be Redermacher sequence. Then

there is a positive constant C such that for all finite martingale x ∈ Lp,q(M), we have

‖
∑

n

dxn ⊗ εn‖Lp,q(M⊗L∞(Ω)) ≈ ‖x‖Lp,q(M).

Proof Consider the operator

T : Lp(M) −→ Lp(M⊗ L∞(Ω))

by

Tx =
∑

n

dxn ⊗ εn, ∀x ∈ Lp(M) and xn = En(x).

By Theorem 2.1 in [81], it is easy to know

‖x‖Lp(M) = ‖
∑

n

dxn‖Lp(M) ≈ ‖
∑

n

dxn ⊗ εn‖Lp(M⊗L∞(Ω)).

Then T is bounded in Lp(M) for all 1 < p < ∞. Thus by interpolation we obtain

‖
∑

n

dxn ⊗ εn‖Lp,q(M⊗L∞(Ω)) ≤ C‖x‖Lp,q(M).
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In order to prove the inverse inequality, we consider the operator

S : Lp(M⊗ L∞(Ω)) −→ Lp(M)

by

S(
∑

n

an ⊗ εn) =
∑

n

En(an) − En−1(an), ∀(an) ∈ Lp(M)

Note that (En(an) − En−1(an)) is a martingale difference sequence, we have

‖
∑

n

En(an) − En−1(an)‖Lp(M) ≤ C‖
∑

n

(En(an) − En−1(an)) ⊗ εn‖Lp(M)⊗L∞(Ω)

≤ ‖
∑

n

En(an) ⊗ εn‖Lp(M)⊗L∞(Ω)

+ ‖
∑

n

En−1(an) ⊗ εn‖Lp(M)⊗L∞(Ω).

By Khintchine inequality and Stein inequality, for p ≥ 2,

‖
∑

n

En(an) ⊗ εn‖Lp(M)⊗L∞(Ω) ≤ C‖(
∑

n

En(an)∗En(an))1/2‖Lp(M) ∨ ‖(
∑

n

En(an)En(an)∗)1/2‖Lp(M)

≤ C‖(
∑

n

a∗
nan)1/2‖Lp(M) ∨ ‖(

∑

n

ana∗
n)1/2‖Lp(M)

≤ C‖
∑

n

an ⊗ εn‖Lp(M⊗L∞(Ω))

If 1 < p < 2, let an = bn+cn with bn and cn in Lp(M), then En(an) = En(bn)+En(cn)

‖
∑

n

En(an) ⊗ εn‖Lp(M)⊗L∞(Ω) ≤ C‖(
∑

n

En(bn)∗En(bn))1/2‖Lp(M) + ‖(
∑

n

En(cn)En(cn)∗)1/2‖Lp(M)

≤ C‖(
∑

n

b∗nbn)1/2‖Lp(M) + ‖(
∑

n

cnc∗n)
1/2‖Lp(M)

Taking the infimum over all decompositions an = bn + cn with bn and cn in Lp(M),

then

‖
∑

n

En(an) ⊗ εn‖Lp(M)⊗L∞(Ω) ≤ C‖
∑

n

an ⊗ εn‖Lp(M⊗L∞(Ω))

Similarly, ‖
∑

n En−1(an) ⊗ εn‖Lp(M)⊗L∞(Ω) ≤ C‖
∑

n an ⊗ εn‖Lp(M⊗L∞(Ω)). Thus for

all 1 < p < ∞, S is bounded from Lp(M ⊗ L∞(Ω)) to Lp(M). By interpolation

again, we have

‖
∑

n

En(an) − En−1(an)‖Lp,q(M) ≤ C‖
∑

n

an ⊗ εn‖Lp,q(M⊗L∞(Ω)).

Taking (an) = (dxn), we obtain the desired inequality. This complete the proof.

54



Theorem 6.2.1 Let x = (xn)n≥1 be any finite Lp,q(M)-martingale. Then x is

bounded Lp,q(M) iff x ∈ Hp,q(M); moreover, if this is the case, there is a positive

constant C,

‖x‖Lp,q(M) ≈ ‖x‖Hp,q(M).

Proof By the recent results, Corollary 4.2 in [73], we have

‖
∑

n

dxn⊗εn‖Lp,q(M⊗L∞(Ω)) ≈ max{‖Sc(x)‖Lp,q(M), ‖Sr(x)‖Lp,q(M)}, 2 < p < ∞, 0 < q ≤ ∞,

and

‖
∑

n

dxn⊗εn‖Lp,q(M⊗L∞(Ω)) ≈ inf{‖Sc(y)‖Lp,q(M)+‖Sr(z)‖Lp,q(M)}, 1 < p < 2, 0 < q ≤ ∞.

Then by Lemma 3.1, we immediately obtain the desired equivalence.

Identifying bounded Lp,q(M)-martingales with their limits, we may reformulate

Theorem 3.2 as follows.

Corollary 6.2.1 Let 1 < p < ∞, p 6= 2, 0 < q ≤ ∞. Then Lp,q(M) = Hp,q(M) with

equivalent norms.

§ 6.3 The Burkholder inequality

We now investigate the Burkholder inequality for noncommutative Lorentz spaces.

The principal result of this section is the following

Theorem 6.3.1 Let 1 < p < ∞, 1 ≤ q ≤ ∞ and x = (xn)n≥1 be a finite Lp,q(M)-

martingale. Then

(1) for 2 < p < ∞

‖x‖Lp,q(M) ≈ max
{∥∥

∑

n

dxn ⊗ en

∥∥
Lp,q(M⊗ℓ∞)

, ‖sc(x)‖Lp,q(M), ‖sr(x)‖Lp,q(M)

}
; (6.7)

(2) for 1 < p < 2

‖x‖Lp,q(M) ≈ inf
x=y+z+w

{∥∥
∑

n

dyn ⊗ en

∥∥
Lp,q(M⊗ℓ∞)

+ ‖sc(z)‖Lp,q(M) + ‖sr(w)‖Lp,q(M)

}
,

(6.8)

where the infimum runs over all decompositions dxn = dyn + dzn + dwn with dyn, dzn

and dwn being martingale difference sequences.
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We will employ the discrete version of the J-method. For 0 < θ < 1 and

1 ≤ q ≤ ∞, we denote by λθ,q the space of all sequences (αm)∞m=−∞ for which

‖(αm)‖λθ,q =
( ∑

m∈Z

(2−mθ|αm|)
q
)1/q

< ∞.

Let (E0, E1) be a compatible couple and suppose that 0 < θ < 1 and 1 ≤ q ≤ ∞.

The interpolation space (E0, E1)θ,q;J consists of elements x ∈ E0 + E1 which admit

a representation

x =
∑

m∈Z

um (convergence in E0 + E1) (6.9)

with um ∈ E0

⋂
E1 and such that

‖x‖θ,q;J = inf
{∥∥{J(um, 2m)}

∥∥
λθ,q

}
< ∞,

where the infimum is taken over all representation of x as in (6.9) .

The following lemma from [84] is the key ingredient of our proof.

Lemma 6.3.1 Let x = (xn)1≤n≤N be a finite L2 martingale. Then there exist three

adapted sequences a = (an)1≤n≤N , b = (bn)1≤n≤N and c = (cn)1≤n≤N in L2(M, τ) such

that:

(1) for every 1 ≤ n ≤ N , we have the decomposition

dxn = an + bn + cn;

(2) the L2-norms satisfy

‖a‖L2(M,ℓ2c) + ‖b‖L2(M,ℓ2c) + ‖c‖L2(M,ℓ2r) ≤ K‖x‖L2(M);

(3) the conditional square functions satisfy the weak-type (1,1) inequality:

‖
∑

n

an ⊗ en‖L1,∞(M⊗ℓ∞) + ‖(
∑

n

En−1|bn|
2)1/2‖L1,∞(M)

+ ‖(
∑

n

En−1|c
∗
n|

2)1/2‖L1,∞(M) ≤ K‖x‖L1(M)

where (en) denotes the canonical unit of ℓ∞ and K is an absolute constant.

Proof of Theorem 6.3.1

Step 1. We first combine Lemma 6.3.1 and the J-method to prove the low

estimate of (6.8). Let x = (xn)1≤n≤N be any finite Lp,q-martingale. For 1 < p < 2,

we choose θ satisfying 1/p = (1 − θ) + θ/2. Fix (um)∞m=−∞ in L2(M) such that

xN =
∑

m∈Z

um
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and
∥∥{J(um, 2m)}

∥∥
λθ,q ≤ 2‖xN‖θ,q;J ,

where the J-functional and the interpolation are relative to the couple (L1(M), L2(M)).

By Lemma 6.3.1 , for each fixed m ∈ Z, we can find three finite adapted se-

quences am, bm and cm in L2(M), and an absolute constant K > 0 such that:

(1) En(um) − En−1(um) = am
n + bm

n + cm
n , 1 ≤ n ≤ N ;

(2) J(
∑

n≥1 am
n ⊗ en, t ; L1,∞(M⊗ ℓ∞), L2(M⊗ ℓ∞)) ≤ KJ(um, t), t > 0;

(3) J
(( ∑

n≥1 En−1|bm
n |

2
)1/2

, t ; L1,∞(M), L2(M)
)
≤ KJ(um, t), t > 0;

(4) J
((∑

n≥1 En−1|cm
n
∗|2

)1/2
, t; L1,∞(M), L2(M)

)
≤ KJ(um, t), t > 0, Then

we deduce that

∥∥∥
{

J
(∑

n≥1

am
n ⊗ en, 2m

)}∥∥∥
λθ,q

≤ 2K
(
‖xN‖θ,q;J

)
, (6.10)

∥∥∥
{
J
((∑

n≥1

En−1|b
m
n |

2
)1/2

, 2m
)}∥∥∥

λθ,q
≤ 2K‖xN‖θ,q;J (6.11)

and ∥∥∥
{

J
(( ∑

n≥1

En−1|c
m
n

∗|2
)1/2

, 2m
)}∥∥∥

λθ,q
≤ 2K‖xN‖θ,q;J . (6.12)

From (6.10) and the definition of ‖ · ‖θ,q;J , we get that for any finite subset S ⊂ Z

∥∥∥
∑

m∈S

∑

n≥1

am
n ⊗ en

∥∥∥[
L1,∞(M⊗ℓ∞), L2(M⊗l∞)

]
θ,q;J

≤
∥∥∥
{

J
(∑

n≥1

am
n ⊗ en, 2m

)}∥∥∥
λθ,q

≤ 2K‖xN‖θ,q;J

For fixed m ∈ S, am =
∑

n≥1 am
n ⊗ en is an element of the Banach space

[
L1,∞(M⊗

ℓ∞), L2(M⊗ ℓ∞)
]
θ,q;J

. Then

∥∥∥
∑

m∈S

±am
∥∥∥[

L1,∞(M⊗ℓ∞), L2(M⊗ℓ∞)
]

θ,q;J

≤ 4K‖xN‖θ,q;J .

This means (since the constant C is independent of the finite subset of Z) that the

formal series
∑

m∈Z
am is weak unconditionally Cauchy (see for instance Diestel [27]

P.44 Theorem 6); but since the Banach space
[
L1,∞(M ⊗ ℓ∞), L2(M ⊗ ℓ∞)

]
θ,q;J

contains no copy of c0 (in fact it is reflexive), this implies that the series
∑

m∈Z
am

is (unconditionally) convergent. Hence if we set

a :=
∑

m∈Z

am
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then the sequence a = (an)n≥1 satisfies

∥∥∥
∑

n≥1

an ⊗ en

∥∥∥[
L1,∞(M⊗ℓ∞), L2(M⊗ℓ∞)

]
θ,q;J

≤ 2K‖xN‖θ,q;J . (6.13)

Now we consider the space L2(M, En−1; ℓ
2
c) as the column subspace of L2(M⊗

B(ℓ2(N2))), and view the sequence bm = (bm
n )n≥1 as a column vector with entries

from L2(M⊗ B(ℓ2(N2))) (see [47]for more details). Then for any fixed m ∈ Z,

J
((∑

n≥1

En−1|b
m
n |

2
)1/2

, 2m
)

= max
{∥∥∥

(∑

n≥1

En−1|b
m
n |

2
)1/2

∥∥∥
L1,∞(M)

, 2m
∥∥∥
( ∑

n≥1

En−1|b
m
n |

2
)1/2

∥∥∥
L2(M)

}

= J
(
bm, 2m; L1,∞(M⊗ B(ℓ2(N2)), L2(M⊗ B(ℓ2(N2))

)

Then (6.11) becomes

∥∥∥
{

J
(
bm, 2m; L1,∞(M⊗ B(ℓ2(N2)), L2(M⊗ B(ℓ2(N2))

)}∥∥∥
λθ,q

≤ 2K‖xN‖θ,q;J .

Similarly, if we set b :=
∑

m∈Z
bm, then b = (bn)n≥1 as a column vector, satisfies

∥∥b
∥∥[

L1,∞(M⊗B(ℓ2(N2)),L2(M⊗B(ℓ2(N2))
]

θ,q;J

≤ 2K‖xN‖θ,q;J . (6.14)

Again, if setting c :=
∑

m∈Z
cm, we have

∥∥c
∥∥[

L1,∞(M⊗B(ℓ2(N2)),L2(M⊗B(ℓ2(N2))
]

θ,q;J

≤ 2K‖xN‖θ,q;J . (6.15)

Note that a, b and c are adapted sequences. Moreover, it is clear from the construc-

tion that for 1 ≤ n ≤ N,

dxn = an + bn + cn.

Now we use the following well-known equalities, for 1/p = (1− θ) + θ/2, 1 ≤ q ≤ ∞

and any semifinite von Neumann algebra N ,

[
L1,∞(N ), L2(N )

]
θ,q;J

= Lp,q(N ) and
[
L1(N ), L2(N )

]
θ,q;J

= Lp,q(N ).

Combining the previous inequalities, we conclude that there is positive constant

C > 0 such that

∥∥∥
∑

n≥1

an⊗en

∥∥∥
Lp,q(M⊗ℓ∞)

+
∥∥∥
( ∑

n≥1

En−1|bn|
2
)1/2∥∥∥

Lp,q(M)
+

∥∥∥
(∑

n≥1

En−1|c
∗
n|

2
)1/2∥∥∥

Lp,q(M)
≤ C‖x‖Lp,q(M).

To complete the proof, it is enough to set for n ≥ 1,

dyn = an − En−1(an), dzn = bn − En−1(bn), dwn = cn − En−1(cn).
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Then (dyn)≥1, (dzn)≥1 and (dwn)≥1 are martingale difference sequences with dxn =

dyn + dzn + dwn. Note that En−1 is bounded in Lp(M), by interpolation we have for

1 < p < ∞, 1 ≤ q ≤ ∞

∥∥
∑

En−1(an) ⊗ en

∥∥
Lp,q(M)

≤ C
∥∥

∑
an ⊗ en

∥∥
Lp,q(M)

So
∥∥

∑

n

dyn ⊗ en

∥∥
Lp,q(M⊗ℓ∞)

≤ C
∥∥

∑
an ⊗ en

∥∥
Lp,q(M)

≤ C‖x‖Lp,q(M).

Noting that En−1(bn)∗En−1(bn) ≤ En−1(b
∗
nbn), we have

En−1|dzn|
2 = En−1(b

∗
nbn) − En−1(bn)∗En−1(bn) ≤ En−1(b

∗
nbn)

Then we finally deduce

∥∥
∑

n

dyn ⊗ en

∥∥
Lp,q(M⊗ℓ∞)

+ ‖sc(z)‖Lp,q(M) + ‖sr(w)‖Lp,q(M) ≤ C‖x‖Lp,q(M).

Step 2. Applying the inequality established in step 1, by duality, we now

prove the upper estimate of (6.7). Let x = (xn)n≥1 be any finite martingale, say,

xn = xN for all n ≥ N. We first consider the case 2 < p < ∞ and 1 ≤ q < ∞.

Let bN ∈ Lp′,q′(M), 1 < p′ < 2, 1 < q′ ≤ ∞. Then bN defines a finite martingale

b = (bn)n≥1,

bn = En(bN), n ≥ 1.

Let bn = yn + wn + zn be any decomposition of b satisfying the conditions in 2.2.

We then obtain by Holder’s inequality and Proposition 2.2,

|τ(x∗
NbN )| = |τ(

∑

n

dx∗
ndbn)|

≤ |τ(
∑

n

dx∗
ndyn)| + |τ(

∑

n

dx∗
ndwn)| + |τ(

∑

n

dx∗
ndzn)|

= |τ ⊗ tr(
∑

n

dx∗
n ⊗ endyn ⊗ en)| + |τ(

∑

n

En−1dx∗
ndwn)| + |τ(

∑

n

En−1dx∗
ndzn)|

≤ ‖
∑

n

dx∗
n ⊗ en‖Lp,q(M⊗ℓ∞)‖

∑

n

dyn ⊗ en‖Lp′,q′ (M⊗ℓ∞)

+ ‖sc(x)‖Lp,q(M)‖sc(w)‖Lp′,q′ (M) + ‖sr(x)‖Lp,q(M)‖sr(z)‖Lp′,q′ (M)

≤ C max
{∥∥

∑

n

dxn ⊗ en

∥∥
Lp,q(M⊗ℓ∞)

, ‖sc(x)‖Lp,q(M), ‖sr(x)‖Lp,q(M)

}
‖bN‖Lp′,q′(M)

Taking the supremum over all bN such that ‖bN‖Lp′,q′(M) ≤ 1, we deduce

‖x‖Lp,q(M) ≤ C max
{∥∥

∑

n

dxn ⊗ en

∥∥
Lp,q(M⊗l∞)

, ‖sc(x)‖Lp,q(M), ‖sr(x)‖Lp,q(M)

}
.

59



If 2 < p < ∞, q = ∞, considering the duality Lp,∞(M) =
(
Lp′,1(M)

)∗
, we similarly

obtain the desired result.

Step 3. Now we prove the low estimate of (6.7). First, we observe

∥∥
∑

n

dxn ⊗ en

∥∥
L2(M⊗ℓ∞)

≤ ‖x‖L2(M),
∥∥

∑

n

dxn ⊗ en

∥∥
L∞(M⊗ℓ∞)

≤ ‖x‖L∞(M)

Then by interpolation , we get for 2 < p < ∞, 0 < q ≤ ∞

∥∥
∑

n

dxn ⊗ en

∥∥
Lp,q(M⊗ℓ∞)

≤ C‖x‖Lp,q(M).

Thus it remains to majorize ‖sc(x)‖Lp,q(M) and ‖sr(x)‖Lp,q(M). Again, we view

Lp(M; En−1, ℓ
2
c) as a closed subspace of Lp(M ⊗ B((ℓ2(N2)))). Then there exists

a linear operator T such that

‖sc(x)‖Lp = ‖(dxn)‖Lp(M;En−1,ℓ2c) = ‖T (dxn)‖Lp(M⊗B((ℓ2(N2)))).

From Theorem 6.1 in [10], we know for any 2 ≤ r < ∞

‖T (dxn)‖Lr(M⊗B((ℓ2(N2)))) ≤ C‖x‖Lr(M).

By interpolation,

‖T (dxn)‖Lp,q(M⊗B((ℓ2(N2)))) ≤ C‖x‖Lp,q(M).

Thus we obtain

‖sc(x)‖Lp,q ≤ C‖x‖Lp,q(M).

The same argument can also be applied to ‖sr(x)‖Lp,q , we obtain the desired in-

equality.

Step 4. The low estimate of (6.8) is similar to step 2 by using the result in

step 3, therefore omit it. Thus the proof of Theorem 3.1 is complete. 2
As the commutative case, the noncommutative Rosenthal inequalities can be

deduced from the Buekholder inequalities established in section 3. To state the non-

commutative Rosenthal inequalities, we need to introduce a notion of independence

in the noncommutative setting. The following definition is introduced in [51].

Definition 6.3.1 Let (M, τ) be a noncommutative probability space and N and Ak

von Neumann subalgebras of M such that N ⊂ Ak for every k. The sequence Ak may

be finite.
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(1) We say that Ak are independent over N or with respect to EN if for every k

and for all x ∈ Ak and y in the von Neumann subalgebra generated by (Aj)j 6=k,

EN (xy) = EN (x)EN (y).

(2) A sequence (xk) ⊂ Lp,q(M) is said to independent with respect to EN if there

exist Ak such that xk ∈ Lp,q(Ak) and (Ak) is independent with respect to EN .

If N = C then EN = τ(·)1, we say these notions are independent with respect to

the state τ.

We refer to [51] and [105] for natural examples of independent sequences.

Now we investigate the Rosenthal inequalities in noncommutative Lp,q(M). In

this section we always assume that N and (An) are von Neumann subalgebras of M

such that (An) is independent with respect to the conditional expectation E = EN .

Let (An) be an independent sequence of von Neumann subalgebras such that

(xn) ⊂ Lp,q(M) with EN (xn) = 0. Let Mn be the von Neumann algebra generated

by (A1, ...,An). Then Mn is an increasing filtration of subalgebras of M. Let En be

the associated conditional expectations. The independence assumption implies that

for every b ∈ Mn−1,

EN (En−1(xn)b) = EN (xnb) = EN (xn)EN (b) = 0.

Therefor,

En−1(xn) = 0.

Thus (xn) is a martingale difference with respect to (Mn). Now we form a non-

commutative martingale y = (yn) by setting dyn = xn. Applying once more the

independence assumption, we get

En−1(xnx∗
n) = EN (xnx∗

n).

Thus we can directly deduce the following Rosenthal inequalities from the noncom-

mutative Burkholder inequalities.

Theorem 6.3.2 Given 2 < p < ∞ and 1 ≤ q ≤ ∞. Let (M, τ) be a noncommutative

probability space, and (xn) ⊂ Lp,q(M) be any finite sequence independently with respect

to E such that E (xn) = 0. Then

‖
∑

n

xn‖Lp,q(M) ≈ max
{∥∥

∑

n

xn ⊗ en

∥∥
Lp,q(M⊗ℓ∞)

, ‖(xn)‖Lp,q(M,E ;ℓ2c), ‖(xn)‖Lp,q(M,E ;ℓ2r)

}
.

61



In the case N = C, the theorem above takes a simpler form. We can explicitly

state as follows.

Corollary 6.3.1 Given 2 < p < ∞ and 1 ≤ q ≤ ∞. Let (M, τ) be a noncommutative

probability space, and (xn) ⊂ Lp,q be any finite sequence independently with respect to

τ such that τ(xn) = 0. Then

‖
∑

n

xn‖Lp,q(M) ≈ max
{∥∥

∑

n

xn ⊗ en

∥∥
Lp,q(M⊗ℓ∞)

,
(∑

n

‖xn‖
2
L2(M)

)1/2}
.

Now we can extend Theorem 6.3.2 to the case 1 < p < 2, 1 ≤ q ≤ ∞. We

start by considering the subspace Ip,q(M ⊗ ℓ∞) of Lp,q(M ⊗ ℓ∞) consisting of all

sequences (xn) such that xn ∈ Lp,q(An) with E (xn) = 0, 1 < p < ∞, 1 ≤ q ≤ ∞.

Alternately, Ip,q(M⊗ ℓ∞) can be defined as the closure in Lp,q(M⊗ ℓ∞). Similarly,

we define the corresponding subspaces of Lp,q(M, E ; l2c) and Lp,q(M, E ; ℓ2
r), which

are denoted respectively by Ip,q(M, E ; ℓ2
c) and Ip,q(M, E ; ℓ2

r).

Lemma 6.3.2 Let 1 < p < ∞, 1 ≤ q ≤ ∞. Then Ip,q(M⊗ ℓ∞) is complemented in

Lp,q(M⊗ ℓ∞). The similar statements hold for Ip,q(M, E ; ℓ2
c) and Ip,q(M, E ; ℓ2

r).

Proof Define the map T : Lp,q(M⊗ℓ∞) −→ Lp,q(M⊗ℓ∞) by T
(
(xk)

)
=

(
EAk

(xk)
)
.

Then

‖T
(
(xk)

)
‖p

Lp(M⊗ℓ∞) = ‖
(
EAk

(xk)
)
‖p

Lp(M⊗ℓ∞) =
∑

‖EAk
(xk)‖

p
Lp(M)

≤
∑

‖xk‖
p
Lp(M) = ‖(xk)‖

p
Lp(M⊗ℓ∞).

So T is a contraction on Lp(M⊗ℓ∞). By interpolation, T is bounded on Lp,q(M⊗ℓ∞)

for 1 < p < ∞, 1 ≤ q ≤ ∞. The same argument show F
(
(xk)

)
=

(
E (xk)

)
is

also bounded on Lp,q(M ⊗ ℓ∞). Then (id − F )T is the desired projection from

Lp,q(M⊗ ℓ∞) onto Ip,q(M⊗ ℓ∞). Similar arguments are true for Ip,q(M, E ; ℓ2
c) and

Ip,q(M, E ; ℓ2
r), we omit the details.

we complete the proof of this Lemma. 2
Theorem 6.3.3 Given 1 < p < 2, 1 ≤ q ≤ ∞. Let (M, τ) be a noncommutative

probability space, and (xn) ⊂ Lp,q be any finite sequence independently with respect to

E such that E (xn) = 0. Then

∥∥∥
∑

n

xn

∥∥∥
Lp,q(M)

≈ inf
{∥∥∥

∑

n

yn⊗en

∥∥∥
Lp,q(M⊗ℓ∞)

+‖(zn)‖Lp,q(M,E ;ℓ2c) +‖(wn)‖Lp,q(M,E ;ℓ2r)

}
.
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where yn, zn and wn are respectively independent with respect to E satisfying

E (yn) = E (zn) = E (wn) = 0.

Proof Let xn = yn +wn + zn be any decomposition satisfying the conditions above.

Then
∥∥∥

∑

n

xn

∥∥∥
Lp,q(M)

≤ C
(∥∥∥

∑

n

yn

∥∥∥
Lp,q(M)

+
∥∥∥

∑

n

wn

∥∥∥
Lp,q(M)

+
∥∥∥

∑

n

zn

∥∥∥
Lp,q(M)

)
.

For 1 < p < 2,
∥∥∥

∑

n

yn

∥∥∥
Lp(M)

≤ CE

(∥∥∥
∑

n

ynεk

∥∥∥
2

Lp(M)

)1/2

≤ C
(∑

‖yk‖
p
Lp(M)

)1/p

,

where (εk) denote the Rademacher sequence. Noting Lemma 6.3.2 and by interpo-

lation,

‖
∑

n

yn‖Lp,q(M) ≤ C
∥∥∥

∑

n

yn ⊗ en

∥∥∥
Lp,q(M⊗ℓ∞)

.

Denoting z =
∑

n zn, we have

‖z‖2
Lp,q(M) = ‖z∗z‖Lp/2,q/2(M) ≤ ‖E (z∗z)‖Lp/2,q/2(M) =

∥∥∥
( ∑

n

E (z∗nzn)
)1/2∥∥∥.

Passing to adjoint, we get the same argument,
∥∥∥

∑

n

wn

∥∥∥
Lp,q(M)

≤ C‖(wn)‖Lp,q(M,E ;ℓ2r).

To prove the converse inequality we use Theorem 6.3.2 and the duality again. Let

q 6= ∞. Note that the infimum above is the norm of (xn) in sum space Ip,q(M ⊗

ℓ∞)+ Ip,q(M, E ; ℓ2
c)+ Ip,q(M, E ; ℓ2

r). By the duality between sums and intersections

and Lemma 6.3.2, we have
(
Ip′,q′(M⊗ℓ∞)∩Ip′,q′(M, E;ℓ

2
c)∩Ip′,q′(M, E ; ℓ2

r)
)∗

= Ip,q(M⊗ℓ∞)+Ip,q(M, E ; ℓ2
c)+Ip,q(M, E ; ℓ2

r)

Now let (x′
n) ∈ Ip′,q′(M⊗ ℓ∞) ∩ Ip′,q′(M, E ; ℓ2

c) ∩ Ip′,q′(M, E ; ℓ2
r) such that

‖(x′
n)‖Ip′,q′ (M⊗ℓ∞)∩Ip′,q′(M,E ;ℓ2c)∩Ip′,q′(M,E ;ℓ2r) ≤ 1.

Then by Theorem 6.3.2, ∥∥∥
∑

x′
n

∥∥∥
Ip′,q′(M)

≤ C.

Thus by independence assumption and the Holder inequality
∣∣∣τ

(∑

n

x∗
nx′

n

)∣∣∣ =
∣∣∣τ

(∑

n

x∗
n

)(∑

n

x′
n

)∣∣∣ ≤ C
∥∥∥

∑

n

xn

∥∥∥
Ip,q(M)

.

If q = ∞, we can use Ip,∞(M) =
(
Ip′,1(M)

)∗
. We also deduce the desired inequality.

We complete the proof. 2
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