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Résumé

La théorie des martingales est une direction de recherche étroitement liée a
beaucoup d’autres domaines tels que ’analyse harmonique, 1’analyse stochastique
et la théorie des espaces de Banach. Elle a aussi de nombreuses applications aux
mathématiques finaneres, a ’analyse de risques, a la théorie de I'information. Plus
récemment, des chercheurs commencent a s’intéresser a d’autres espaces que les
espaces L, usuels avec p > 1. Par exemple, les L, avec 0 < p < 1, les espace de Hardy
H, (0 < p < 1)et les espace de Lorentz L, ,. Ces espaces ne font pas partie en général
de I'étude classique mais ont des applications varées. D’autre part, par rapport aux
fonctions, les martingales peuvent mieux reféter les processus, 'information et le
rapprochement. C’est la raison principale pourquoi beaucoup de chercheurs portent
leur attention a la théorie des martingales. A titre de comparaison, on a relativement
plus de résultats sur les espaces de Lorentz L, , dans I’analyse harmonique; mais ce
n’est pas le cas pour les espaces H* , H? et H; , de martingales. C’est pourquoi

p,q’ p,q’

nous recherchons a accomplir la recherche sur les espaces de Lorentz de martingales.

L’objectif de la présente these est d’étudier les espaces de Lorentz de martin-
gales formés par les fonctions maximales, les fonctions carrées, les fonction carrées
conditionnelles. On s’intéresse en particulier aux relations entre ces espaces, aux
inégalités de martingales vérifiées par eux et a leur interpolation. Nos outils princi-
pales sont diverses décompositions atomiques, la transformation de martingales. A
part des martingales commutatives, nous nous intéresser aussi aux celles non com-
mutatives. La théorie des martingales non commutatives a connu un développement
remarquable ces dernieres années. Nous obtenons ici les inégalités de Burkholder-
Gundy et les inégalités de Burkholder pour les martingales non commutatives dans

des espaces de Lorentz.



Nous décrivons maintenant le contenu de la these. Dans le chapitre 1, nous don-
nons quelques résultats bien connus et élémentaires sur la théorie des martingales,
introduisons plusieurs espaces de Lorentz de martingales, rappelons les decomposi-
tions atomiques des espaces de Hardy de martingales pondérés et les transformées de
martingales. Dans le chapitre 2, nous étudions l'interpolation des espaces de Lorentz
de martingales pondérés et identifions les espaces d’interpolation réels entre H, et
H, ~. Dans le chapitre 3, nous étudions la bornitude des applications sous-linéaires
en utilisant les decompositions atomiques des espaces de Lorentz de martingales.
Nous y obtenons certaines inégalités de martingales et prouvons aussi le théoreme
d’interpolation de type restreint faible. Dans le chapitre 4, nous discutons de trans-
formées de martingales a valeurs vectorielles sur les espaces de Lorentz. Avec ces
transformées nous construisons des plongements des espaces de Lorentz de martin-
gales a valeurs dans un espace de Banach. Ces plongements dependent des propriétés
géométriques de I'espace de Banach en question telles que la convexité (ou lissité)
uniforme, la propriété de Radon-Nikodym, etc. Dans le chapitre 5 nous obtenons des
relation entre les mesures de Carleson et la norme BMO de martingales vectorielles,
qui sont étroitement liées aux propriétés géométriques de I'espace de Banach sous-
jacent. Dans le chapitre 6, nous démontrons les inégalités de Burkholder-Gundy et

les inégalités de Burkholder, qui étendent certaines résultats de Junge et Xu.

Mots clés: Espaces de Lorentz de martingales; décomposition atomique; in-
terpolation; inégalités pondérées; mesures de Carleson; BMO; martingales noncom-

mutatives; inégalité de Burkholder; propriétés géométriques des espaces de Banach.
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Chapter 1 Preliminaries

§1.1 Notations and classical results

Let {¥,},>0 be a nondecreasing sequence of sub-o-fields of ¥ such that ¥ =\/3,.
We denote the expectation operator and the conditional expectation operator rel-
ative to ¥, by E and E,, respectively. For a martingale f = (f,)n>0, we define
A, f = fo— fan1,n > 0 (with the convention that f_; = 0,3_; = {Q, ®}) and adopt
the notions of its maximal function, quadratic function and conditional quadratic

function as follows, respectively:

Mn(f) = sup [fil,  M(f) =sup|ful,

0<i<n
Sa(f) = Q_IASPY, S = O 1Anf)2,
=0 n=0

su(f) = QO EialAif )2, s(f) = O Enal A1),
1=0 n=0

Denote by A the set of all non-decreasing, non-negative and adapted r.v. sequences
p = (pn)n>o With ps = lim, . p,. We shall say a martingale f = (f,)n>0 has

predictable control in L, if there is a sequence p = (pn)n>0 € A such that

|fn| S Pn—1, Poo S Lp-

As usual, we define the following martingale spaces (see [35] and [59])
Ly ={f = (fa)nzo : [[fllp = sup [ fullp < 00}

H:={f = (fa)nso : | fllm, = IM(F)]l, < oo},
HS ={f = (fu)nzo : 1 flms = [IS(F)ll, < o0},

Qp = {f= (fn>n20 : 3(pn>n20 € N, 5.t.9,(f) < pu-t1, P € L;n}v

my = |Is(f)llp < oo},

1£lle, = nf flpoll,

DP = {f = (fn)nZO . El(pn)nZO € A7 s.t. |fn‘ S Pn—1) Poo S Lp};
1



1Fllp, = 10t oo ll,-

Remark The norms of (), and D, are attainable respectively. For example, there
exists (pn)n>0 € A, Su(f) < pn-1,poo € Ly such that || f]lq, = [|peollp, which is also
called the optimal control.

Theorem 1.1.1(Burkholder-Gundy-Davis) For1 < p < oo, we have

M fllp 2= 1Sl

The Burkholder-Gundy-Davis inequality shows if 1 < p < oo then H; = HPS
with equivalent norm. Moreover, if 1 < p < oo, it is well known that HPS =H; =1,

with equivalent norms. {¥,},>¢ is called regular if there exists R > 0 such that
|fol < R|foo1] (VR €N).

This condition is denoted by the R condition, and we refer to [59] for more details.

Theorem 1.1.2 If R condition holds, then for all 0 < p < oo, we have

IMfllp = 1SNl = s(Hllo = [ flle, = 1f]l7,-

§1.2 Atomic decompositions of Hardy martingale spaces

Let (2,3, P) be complete probability space and f a measure function defined on €.

Its distribution function is
Ap(t) = Pz - [f(z)| > 1), =0,
and its decreasing rearrangement function f* is defined as
f(t) =1inf{s > 0: As(¢t) <t} t>0.

The Lorentz space L, ,(Q) = L,,0 < p < 00,0 < ¢ < 00, consists of those

measurable functions f with finite quasinorm || f||,, given by
4 [ asp g y70 9t
I£la = [ 75 @1 1,0 < g < o0,
P Jo t
[ fllp,00 = sup tl/pf*(t)a q = 0.
>0
It will be convenient for us to use an equivalent definition of || f||,,, namely

I£llna= (0 | PTG > 07100 < g < o,

2



11l = SUPEP(F(@)] > 1) g = oo

To check that these two expressions are the same, simply make the substitution
y = P(|f(z)| > t) and then integrate by parts.

It is well known that if 1 <p <ococand 1 <¢qg<oo,orp=gq=1,then L,,
is a Banach space, and ||f||,, is equivalent to a norm. However, for other values
of p and ¢, L, is only a quasi-Banach spaces. In particular, if 0 < ¢ <1 < p or
0 < ¢ <p<1then |f|,qis equivalent to a g-norm. Recall also that a quasi-norm
| - |l in X is equivalent to a p-norm, 0 < p < 1, if there exists ¢ > 0 such that for
any r; € X,i=1,...,n

[y -z < ez 4 - - -+ lza]]P).

For all these properties, and more on Lorentz spaces, see for example [5], [19] and

[2]. The Holder inequality for Lorentz spaces is the following,

||fg||p,q < C||f||p17q1||g||p27qz

for all 0 < p, q, p1, q1, P2, @2 < 00 such that % = pil + piz and % = qil + qiz.
Let w be a strict positive r.v. on (2, %, P) and w(A) = [, wdP for every A € 3.

The distribution function of f with respect to w is defined as

Arw(y) =w(z € Q:[f(2)] >y), y>0

the non-increasing rearrangement function of f with respect to w is defined as

fit) =inf{y : Apu(y) <t}, t>0

and the average function of f with respect to w is defined as

=1 [ Lo >0

The weighted Lorentz spaces Ly ., is defined as all of the r.v. f on (€, %, P) such
that || f]|p.q0 < 00, where

p

(2 o P f)) %), 0 <p <o00,0<g <o

||f“;n7q;w =

sup £/ f(t), 0<p<o0,q=o00c.
\ t>0



Remark The Lorentz space L,, increases as the second exponent ¢ increases,
namely, for 0 < p < oo and 0 < ¢; < ¢2 < oo one has L,, C L. Moreover,
one has L, C L,,for 0 <p<r <ooand 0 <gq,s < oo.

Then for 0 < p,q < oo, we define the weighted Lorentz martingale spaces as

follows:

S = F = ez 1tz = 1500 I < o3,
Qpaw = 1 = (fu)nz0: Ipn)nz0 € A, 5.8.5,(f) < pu1, Poo € Ly g}
1FllQ g = 10E [P g
Pygw = = (fu)nz0: Ipn)nz0 € A, s.t| ful < pui, poo € Lp g},

||f||Pp,q;w = 1%f ||p00||p7Q§w'

Remark If p = ¢, the weighted Lorentz martingale spaces are respectively reduced
to the weighted Hardy martingale spaces.

In general, however, |||/, 4.0 s not a norm since the Minkowski inequality may
be fail. If replacing f*(¢) by f3*(t) in the above definition of || f||, 4w, We obtain a
new norm ||.||(p,q) for every ¢ > 1:

;

(2 [T P fr ()] 9) e, 0 <p < 00,0 < g < o0
1 fll gy =

sup t1/7 f2*(t), 0<p<oo,q=0cc.
L >0

We state a result in [5] as a lemma.

Lemma 1.2.1 If 1 < p < 00,0 < ¢ < 00, then for a measurable function f,

p
1 llp.q < ||f||(p,q);w < Zi”f“zi,q;w

Now we consider atomic decompositions of Hardy martingale spaces. We refer to
[97], [101] and [39] for some definitions of atoms.
Definition 1.2.2 A measurable function « is called (1, p, 00) atom, if there exists
a stopping time 7 such that:

(i) apn=FE,a=0,n<r,

(i1) lls(a)]l < P{r < 00} 7.

Replacing (i7) by (i)' [|S(a)|le < P{7 < 00}™7 or(ii)" |M(a)|e < P{r <
oo}_%, we get the concept of (2, p, 00) atom or (3, p, c0) atom.
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Definition 1.2.3 A measurable function «a is called w-1-atom (or, w-2-atomic, w-
3-atomic), if there exists a stopping time 7 such that

(1) ap=FE,a=0, Vn<r,

(i) |ls(a)]lsc < o0 (or (it)[[S(a)llee < o0, (id)[[M(a)] < o0).
Lemma 1.2.4 Let 0 < p < oo. Then f = (f,)n>0 € wH,(or wQ,, wD,) if and only
if there exists a sequence of w-1-atom (or, w-2-atomic, w-3-atomic) (a*)rez and the
corresponding stopping time sequence (7j)gez such that

(i) fo=D ey End®, VneN

(ii) For some constant A > 0, s(a¥) < A2F(or S(a*) < A2F M(a*) < A2F),
and

sup 2" P(7, < 00) < oo.
ez

Definition 1.2.5 A measurable function « is called a (1, p, c0) atom with respect
to w, if there exists a stopping time 7 such that

(1) apn=FE,a=0,n<r,

(i1) [ls(@)l < wir < 00},

Replacing (i) by (i7)" [|S(a)|le < w{r < oo}_% or (17)" || M(a)]le < w{r <
oo}_%, we get the concept of (2,p,00) atom with respect to w or (3,p,00) atom
with respect to w.

Many atomic decomposition theorems of Hardy martingale spaces can be trans-
formed to be of weighted Hardy martingale spaces. In the following we state some
of them as Lemmas, their proofs are similar to those in [97] and [54], so here we
only prove one of them and omit others.

Lemma 1.2.6 If f = (fu)n>0 is in H3.,,0 < p < oo, then there exist a sequence
(a*)rez of (1, p, 00)-atoms with respect to w and a sequence p = (jug)rez € I, of real

numbers such that for every n € N
Z,UkEnak = fm (1)
keZ

and

O )7 < Gyl /]

keZ

Hp.wo (2)

where (1) is convergent in H}, .

Proof Assume f € H,, . Considering the following stopping times

7 =1inf{n € N : 5,1 (f) > 2"}, ke Z
D



It is obvious that the sequence of these stopping times is non-decreasing and easy
to see

fo= > _(f7r = f79).

keZ

Let 1, = 2F3w (73, # 00)'/? and

Tk+1 _ Tk
af =22 In Ju )

n i
It is clear that, for a fixed k, (a¥) is a martingale. Since s(f7*) < 2% and s(fn""") <

k+1
257,

s(ak) < i(S(fZ’“) T+ 5(f71)) < wimg # 00) WP,

Consequently,(a¥) is Ly-bounded, so there exists Ly-bounded measurable function,

also denoting by a*, such that

E,d" = d*

n’

Vn > 0.

a* = 0 when n < 7 , thus a” is really a (1,p, 00) atom. By Abel rearrangement we

get

Sl = 37 2Mw(n £ 00) =37 ) 2Mw(s(f) > 2F)

TS - @l ) > @)
keZ
S @ <o) < (2
3P »
< 2,

which proves (2). Obviously,

F=> " mat = (f = fr) + .

k=l

Because s(f™) < 2! — 0, as | — —o0 and as m — +00

SP(f = [y = [$2(f) = S — 0, ae,

by the majorized convergence theorem, (1) holds in H , norm.

This finishes the proof.



Lemma 1.2.7 If f = (f,)n>0 1S in Qp, 0 < p < 00, then there exist a sequence
(a*)rez of (2,p, 00)-atoms with respect to w and a sequence p = (ux)rez € I, such

that for every n € N
Z MkEnak = fn

keZ
and

D1l < Gyl fllgy.

keZ
where the series is convergent in Q).

Lemma 1.2.8 If f = (f,)n>0 is in P, 0 < p < 00, then there exist a sequence
(a*)rez of (3,p, 00)-atoms with respect to w and a sequence p = (ux)rez € I, such

that for every n € N
Z ,U/kEnak = fn

and

Q) < Gyl f e,

keZ
where the series is convergent in P,.,.

Now we introduce operator-valued martingale transform.

Burkholder’s martingale transforms (see[10] and [11]) are defined by using
scalar-valued multiplying sequences. One main tool in our proofs will be martingale
transforms with operator-valued multiplying sequences, defined and studied in [69]
and [68].

Definition 1.2.9 Let X; and X, be two Banach spaces. Let L(Xj, X5) denote
the space of all bounded linear operators from X; to Xs. Let v = {v,}n>1 be a
predictable sequence such that v, € Loo(L(X1, X2)) and sup,,s; ||V || e (nix1,x2)) <

1. Then the martingale transform 7" associated to v is defined as follows. For any

Xi-valued martingale f = {f,}n>1

(Tf)n = Z defk .
k=1

We refer to [69] and [68] for some basic results.

§1.3 Real interpolation spaces

In this section we introduce some properties and results of real interpolation. We

refer to [5] and [57] for more details .



Suppose that Ay and A; are two quasi-normed spaces embedded continuously
in a topological space A. The interpolation spaces between Ay and A; are defined

by means of an interpolating function K (¢, f, Ay, A1),

Kt £ A0 A) = inf {lfollag + il

For 0 < 6 < 1,0 < ¢ < oo, the interpolation spaces (Ag, A1)y, is defined as the
space of all functions f € Ay + Ay such that

0 dt\ e
||f||(AO,A1)0,q = </ (t_GK(t7 fa A0> Al))q 7) < 00, q < o0
0

1 £1l(A0,41)0.00 = iglg tOK(t, f, Ao, A1), g =00
Lemma 1.3.1 Let a quasilinear operator T' defined on Ay + Ay, if
T: Ay — By, T:A — By,
is bounded, then for 0 <0 <1, 0 < g < 00,
T: (Ao, A1)oq — (Bo, Bi)ag

is also bounded.
Lemma 1.3.2 (Reiteration theorem) Let 0 < 6y < 0; < 1,0 < qo,n <
00, (Ag, A1) be an interpolation couple. If X; = (Ao, A1)g, 4,7 = 0, 1. then for
0<n<l1l,0<q< o0,

(X0, X1)nq = (Ao, A1)o,q5

where 6 = (1 — )0y + nb;.
The following is the Hardy inequality.
Lemma 1.3.3 Let 0 < ¢ < 00, 0 < 7 < ¢» g = min(1l,q), then for any

nonnegative function f on [0, c0),

(G oy gt ([ omes)




Chapter 2 Interpolation on Lorentz martingale

spaces

§2.1 Introduction

Since its invention in the late 1950’s, interpolation theory has been a tremendous
development and applied to different fields of mathematics, for example partial dif-
ferential equations, numerical analysis, approximation theory and so on. Moreover,
it has also attracted considerable interest in itself. In particular, as well known, in
1958 Stein and Weiss [95] proved an interpolation theorem on L, spaces which allows
one to change measures simultaneously with changing exponents; in 1966 Calderén
[16] and Hunt [41] proved an interpolation theorem on Lorentz spaces L, ,. But in
1997 Ferreyra [34] gave an example to show that Weiss’ result is not true in L, ,
spaces. Thus it is worth to seek a such interpolation theorem for L, , spaces. In re-
cent years, real interpolation and weighted inequality theorem have been developed
by [29], [21] and [98]. At the same time, weighted Lorentz spaces have been studied
in [17], [18], [19] and other papers. We also mention the following interpolation the-
orem on weighted Lorentz spaces, which is proved by Moritoh, Niwa and Sobukawa

[74] in 2006 (for the notations see section 2):

Theorem 2.1.1 Let : = 0,1 and 1 < py < p1 < 00, 1 < r; < oo with 79 # 7,
0<g¢q,s; <oo. Put1/p=(1—-0)/po+0/p1, 1/r =(1—0)/ro+68/r for 0 <6 < 1.
If v, w; are two nonnegative measurable functions and T is a nonnegative sublinear

operator from Ly, .., to Ly, s...,, then there exists a constant C such that

||Tf||7’,00;w < CHpr,l;w

where W/ (1—9)/T0wf/71.

In this section, we prove several similar versions of this theorem on martingale
Lorentz spaces over weighted measure spaces. Our proofs are different from those

in [74], and the atomic decomposition method plays an important role.

9



§ 2.2 Interpolation on weighted Lorentz martingale spaces

Theorem 2.2.1 Let i =0,1,0 < p; < ¢; < 00,1 <7r; < oo and v,w; be nonnegative

r.v. Put
Ir=0-0)/ro+0/r,1/p=(1-0)/po+0/p1,0 <8 <1

If T is a bounded linear operator from H; .. to H; then 7" is bounded from

T»L',OO;W,L'?
H? to H?

oav » o 1-€., there exists a constant C such that

1T f]

H o < CIS]

S
Hp 00

where ¢ < p <1 and wi/m = wél_e)/rowf/ﬁ.

Proof Assume that f € H; ., C H,

o from Lemma 1.2.6, there is a sequence (a*)rez

7q;v

of (1,p,00)-atoms with respect to v and a sequence p = (ug)rez € I, such that

(1), (2) are true for HS ,, and the series Y, ., pxa®™ converges to f in H5 . Without

p?u’

loss of generality, we suppose py < p < pi, then H? CH,, CH, .Thus as

Pp1,915v Po,qo0;v
K — oo
1> e = fllag, o <0 mwa* = f g, — 0.
P0-90;v — piv
k<K Ik[<F
: s s k : s
T is bounded from H ., to Hy ., 80 37y <x puT'a” converges to T'f in Hy .,

norm. Consequently

Tf= Z wTa® a.e.

keZ

Of course for every n € N,

(Tf)n = Z pwe(Ta"),  ae.

keZ
Thus
1T f e, = N8(TF)llrooro < (Tl 000
< D Ll s(Ta") oo
keZ
r
< S s e (2)
keZ
Now it is only to estimate ||s(Ta")||; 00 Since T is a bounded operator from
H;iﬂ]i?“ to HﬁmOO;wi’ then

pigisv 2t = 0,1.

£/ (s(Ta"))5, (1) < Clls(a”)
10



By taking t = A gk, (y), we have

y()‘s(Tak)wi(y))l/m < CHS(ak)Hpi,th;U’i =0, 1'(2'2)

wél—@)/rowf/rl

Using Hélder inequality and w'/" , we obtain

yOhrars )Y =y / w(x)dP)V"
{z:5(Ta*)>y}

y( / wol)dP) =00 / w1 (2)dP)m
{z:5(Ta*)>y} {z:5(Ta*)>y}

= [y(As(Tak),wo (y))l/ro] =0 [y(As(Tak),un (y>>1/r1]9' (23)

VAN

From (2.2) and (2.3) ,

YOsrary o @) < Clls(@) e goolls(@), g (24)

Thus we get

Is(Ta*)lro0 < Clis(a

< Moo aoro 5@y 1100

Hpo = / [s(a®)[Pov(a)dp) /7.

X{Tk>n}En 1|A a | n I[X{Tk>n}|A a | ]

(2.5)

Notice that py < g, we have

k
o Sl

k
™| Sopor

0,490}

From the definition of (1, p, co)-atom,

thus s(a®) = 0 on set {7, = oo}, where 7 is a stopping time with respect to the

atom a*. Consequently,
[s@po@ir = [ js@pro@ap
{me<oo}
< ls(a®)Bsv({m < o0}).

In other words |,

I5(a*) g g < Is(@®) 155 0 ({me < c0})=/m0.(2.6)

It is the same for |[s(a")]|,, 4100, i-€.
Is(a*) 15, quiw < Is(@®)llSv{me < 00})?Pr. (2.7)
Since a* is (1,1, 0o)-atom with respect to v,

15(a")]loc < v({7 < 00}) V7.
11



Then from (2.5), (2.6), (2.7), we get
Is(Ta")llroow < Clls(a")llocv({me < 00})=P/roto/mr < €.
Thus from (2.1), we get

Cr
1T fllms... < 1 >l < CO L)

kezZ keZ
< Clfllag, < Clfllus,,-

This finishes the proof of the theorem.
Theorem 2.2.2 Let 1 =0,1,0 <p; < ¢q; < 00,1 < r; < oo and v, w; are nonnegative
r.v. Put

r=@0=0)/ro+0/r,1/p=(1—0)/po+6/p1,0 <0 <1.

If T is a bounded operator from @, 4..o t0 Qr, 00w, then 1" is bounded from @, 4.,

to @7 . 1.€., there exists a constant C such that

||Tf||Q'r,oo;w S CHfHQp,q;v?

where qg<p< 1 and ! (1 0)/ro 9/7"1

Proof We also assume f € Qp 4.0 C @p:v, from Lemma 1.2.7, there exist a sequence
(a*)kez of (2,p, 00)-atoms with respect to v and a sequence p = (pug)rez € I, such
that (1) and (2) hold for Q,,,, and the series Y, _, ppa® converges to f in Q3 ,

Similarly to Theorem 3.1, we have

= Z pe(Ta"),  ae.

Kez
Thus
SuTf) = O |1AnTHP)? = Z|ZMA (Ta*)|*)'?2
m=0 m=0 keZ
< 3 |l Su(Tdb). (2.8)
Kez
We set pF = (pF),>o is the optimal control of T'a*, ie., p* = (pF),>0 is an r.v.

sequence of non-decreasing, non-negative and adapted such that

SulTa") < gy, [Tabllq,, . = ol (29)

From (2.8),
Sa(Tf) < Z |Mk‘Pﬁ—1-

keZ
12



Thus by the definition of Q) c.w,

1T fllgro < 1D Irloholinooso < IY - Ikl obll ooy

kez kezZ

;
< = Y il (2:10)

keZ
To estimate ||p%||;.00., in this time since T is bounded from @, 4, t0 Qy, coww;, and
by (2.9)
1P5 I ooir = 1T Ny, e, < Clla®lly,
In other words,

y(Apgo,wi(y))l/ri S CHakHQpi,qi;u’ (211>

By the Holder inequality, we get

A L)Y = w(z)dP)"
YO () ( /{ww} (2)dP)

o[ w@ary ([ @y
{z:pk >y} {z:pk >y}

[y()‘p’go wo (y))l/ro]l—G [y()‘plgo,w1 (y))l/rl]e

< CllatI5?. llatls, . (2.12)

IA

And then

1%l oo < Clla®llgsy NI, 4. (2:13)

We set &8 = x(r.<n}[1S(a")]| 0, and it is easy to see that &¥ is non-decreasing, non-

negative, and adapted. By the definition of atom, we have

Z X{TkZ”}|Ana'k|2 =

n=0
Then N
= () [Auf )2 < wa@}mna 2172
n=0 n=0
< Xgre<n—13115(a") loo = &1 5.
Consequently,

I 150 < D€t < ERIIES < ( / 1S(@) 220 (a)dp) /. (2.14)

Now S(a*) = 0 on the set {7, = oo}, where 73 is a stopping time with respect to

the atom a*. Consequently,

AIIS(ak)||€2v($)dp = /{< }||5(a'“)||§2v($)dp
= [[S(a")[5v({m < 00}). (2.15)
13



(2.14) and (2.15) show,

la" 15, < I1S(@") |0 ({m < ooh)=0/m,

Similarly

la*5, . < IS@@)]%0({m < 0o}).

From the definition of (2, p, c0)—atom we have
e < ClIS(a) foov(mi < o017 < C.

From (2.10)

Cr
1T fllgroe < 12 el < CO lml?)'”

7"‘ J—
keZz kezZ

< Clifllape < Cllifllapan-

This finishes the proof of the theorem.
Theorem 2.2.3 Let p;,q;,r; and p,r,v,w; as in theorem 2.2.2, if T is a bounded
operator from P, ,.., t0 P, s, , then T"is bounded from P, ., to P’ i.e., there

7,00;W)

exists a constant C such that

||Tf||Pr,oo;w S C||fHPp,q;'u7

where ¢ < p <1 and w'/" = wél—G)/rowf/rl‘

Proof We suppose f € P, 4, C P,,. From the Lemma 1.2.8, there exist a sequence
(a*)kez of (3,p,00) atoms with respect to v(z) and a sequence p = (up)rez € I
such that (1) and (2) hold for P,,,, and the series Y, puxa®™ converges to f in Ps .

Similarly to Theorem 2.2.1, we have

(Tf)n=> p(Ta"),, ae. (2.16)

keZ

Let p* = (p¥),>0 is the optimal control of T'a*, i.e., p* = (p¥),>0 is a sequence

of non-decreasing, non-negative and adapted functions such that

‘(Tak)n| S pr—l ) HTakHPri,oo;wi = ||pl;0

risoe (217)

From (2.16),
(TFal <D lalonr-

keZ
14



Thus by the definition of P, o, and Lemma 1.2.1

ITfllpee < |l Z |Nk|plgo||7’,00;w

keZ
< I 1wl o ooy
keZz
< 7,00;W*
keZ

Similarly to Theorem 2.2.2, we get

1P e < Cllat 157 a1,

We set &8 = X (r,5n1]|@" [|oo. It is easy to see that ¥ is non-decreasing, non-negative,

adapted and from the atomic definition

@y < Xgrezn-1 |0 oo + Xmezmld oo < &1
Similarly to Theorem 2.2.2 we have

1_9U({Tk < oo})(l_e)/po.

[e.e]

la* 5 < o

and

FlSv({me < 00})P.

I 8, <
The rest of the proof is similar to the one in Theorem 2.2.2.
First we introduce a new space. Let 0 < p < oo, denote all of the scalar adapted
process
== n)nz1 2 Il = [ supfvalll, < oo}

With v € V, as a multiplier, we define T}, : f = (f)n>1 — 1, f, where

Tof)n =Y vhaalif . n>1.
1

According to the theorems above, here we give some inequalities of martingale trans-
form operator T, .

Theorem 2.2.4 Suppose that 0 <p;, < ¢ < o0, 1 <r; <o0,i=0,1. Put

I/p=01-6)/po+6/p1,1/r=(1—-0)/ro+60/r;,0 <8 <1.

If v is strict positive weight function and v € V_rw: ., then T, is bounded from

H . to H? ie., 4C > 0 s.t.

D,q;V 7,000

17 1

H o = CIIVIIV% i

15

Hs o 4 <P < 1.



Proof From v € Vy;—r, , we know that 7, is bounded from H; , to H; . In fact,

S(Tof) = Q_va [Anf1?)? < sup |va(2)]s(f)-
1 n
By the relation 1/r; = 1/p; + % and Holder inequality , we get

1T fl g, < CIIVIIV%;UHfIIH;W-
Now we assume that w; = v, p; = ¢;, then T, satisfies the conditions of Theorem

2.2.1. Consequently;,

1Tl < O o [l

The theorem is proved.

Under the conditions of Theorem 2.2.4 with p = ¢, we get
Corollary 2.2.5 T, is of (H,,, wH;.,)-type , i.e. the inequality

p;v?

)\s(Tl,f);U(y) < C(y_1||f|

Hg;v)ra Yy > 0

holds.
The following lemma can be found in [22].
Lemma 2.2.6 Let 0 <p <o00,0<q¢g<oo,veV,and 1/r=1/p+1/q. Then T,
is of (P, P,) and (Qq, @,)-types with || T, [ < C||v||v,.
Theorem 2.2.7 Suppose that 0 <p;, < ¢ < o0, 1 <r; <oo,7=0,1. Put

1/p=1-0)/po+0/p1,1/r=(1=0)/ro+8/r1,0 <0 <1

If v is strict positive weight function and v € V r»; ., then T), is bounded from @, 4.,

=Ty’
to Qr oo, 1.€., IC" > 0 s.t.

||TVf||Q'r,oo;v S CHVHVM:UH]CHQP#I;U?(] S p S 1
Pi—Ti’
Proof By 1/r; =1/p;+ 2= and Lemma 2.2.6, we have

1T fll@re < ClVY w1 @0

Pi—7q’

Thus T, satisfies the conditions of Theorem 2.2.2.
Theorem 2.2.8 Suppose that < p; < ¢, <o0o,1 <7; < o00,i=0,1. Put

1/p=01-0)/po+6/p1,1/r=(1—0)/ro+6/r,0 <8 <1
16



If v is strict positive weight function and v € V ri»; ., then T, is bounded from P, ,.,,

Pi—r;’
to Py oo, 1.€., 3C > 0 s.t.

1T 1B < ClIY IV o M llBy g0 g <2 <1

Pi—T

Proof By the relation 1/r; =1/p; + £ and Lemma 4.3, we get
1T fllEr < ClV 2w, N llpy = 0,1,
Pi—Ty’

Thus T, satisfies the conditions of Theorem 2.2.3.

§2.3 Real interpolation spaces between H, and H,

In harmonic analysis it is well known if 1/p = (1 —7)/po + 1n/p1,0 < n < 1, then
(WLpos Lpy)op = Ly

In this section we give similar version in the martingale setting; and the weak atomic
decomposition is the main tool (see [39] and [101]).

Theorem 2.3.1 (wH , H3 )op, = Hy, 1/p=(1—-10)/py,0 <0 < 1.

Proof Suppose that f € wH,; . For any fixed y = (sf)*(t?°), choose j € Z such that
29 <y < 271 From Lemma 1.2.4 there exist a sequence (a*)cz of w-1-atoms and

the corresponding stopping times (7x)rez such that

j—1 00
fom b= S Y k=gt
keZ k=—o00 k=j

and s(a*) < A2* for some constant A > 0. Then

s(g) < Z_: s(a)* < Z_: A2F = A2 < A(sf)*(tP0)

From the definition of w-1-atom,
Xrezn} Bn1|8na"* = Ep_1[X(r2n} | Ana"[?] = 0,
thus s(a*) = 0 on set {7, = oo}. Recall that the stopping times
7 = inf{n € N : s,.1(f) > 2"} (inf ¢ = 00),

and 73, T oo(k — 00). Then {7, < oo} = {s(f) > 2*}.
17



So we have

P(s(h) > y) < )>0) <Y P
k:
= ZPTk<OO 2_jp022kp0P(Tk<OO)
k=j k=j
< ey ™Y 20P(s(f) > 2Y)
k=3
< cy_p‘)/ s(f)PdP
{s(f)=27}
< cy_p(’/ s(f)redpP
{s())=y}
Thus
A / prap < [ s(fydP
>y} {s(f)=(sf)*(tro)}
tPO
S / podl‘
By Hardy inequality and 1 = —9 , we obtain
! dt ! o dt
[ bz Y < e [ e[ sy @i
0 t 0 0 t
! dt
= c/ (1= 9)p/po(t / (sf)*(z );nodx):v/po7
0

! dt
— +(1=0)p/po (P2
| () (@5

< o[ Gorwpa

On the other hand,
b dt ! dt
[ @ laliz G < e [y
0 0

1
< C/O (sf)7(1)7dt < c|| 1%

Hy

By the definition of the functional K,

K(t, fiwH3y, H) < [hlus, + g

H, -

Henceforth,

1 d
171y 000, = / (UK fwH HOPS < cll L

18



To prove the converse consider the sublinear operator T": f — s(f). By the defini-
tion T': H}, — Ly and T : wH, — wlL,, are bounded. Therefore, by the Lemma
2.4 and Lemma 2.5

T: (st Hgo)t‘),p - (U)Lpov LOO)G,;D =L,

po’

is bounded, too, that is to say f € (wH} , H3, g, implies

/]

us = 1T fllL, < C||fH;€ngO,H§o)

0.

Theorem 2.3.2 (wH, ,H, )y, = Hy, 1/p=(1—n)/po+n/p1,0 <n <1
Proof Choose 0 and 6, satisfying

1/p=(1-0)/po,0 =nb,1/pr = (1 —01)/po.
Then by Theorem 2.3.1 and the Reiteration Theorem, we obtain

(wH;

po?

H;l)mp = (wH;

po’?

(wH;

po?

Hgo)ﬁhp)n,p = (wH, , H; )97p =H,

po? 7700 p

Theorem 2.3.3 (wQp,, Qo )op = Qp, 1/p=(1—0)/po,0 <6 < 1.

Proof Suppose that f € @, C w@,,. Let 5 = (8,)n>0 is the optimal control of
Sn(f), ie, B € A, Su(f) < Ba1, [ fllo, = ||Bsllp- From Lemma 1.2.4 there exist a
sequence (a¥)pez of w-2-atoms and the corresponding stopping times (7;)rez such

that

—1 e’
o= = S S =g,
keZ k=—o0 k=j

and S(a*) < A2F for some constant A > 0. Remember that the stopping times
7 = inf{n € N : g" > 2F}(inf ¢ = 00),

and 7 T oo(k — 00).
Define
A =D X IS(@)]leo (n € N).
kez
For any fixed t € [0,1], y = B*(t"°), choose j € Z such that 2/ <y < 277! . Then

i1 o0
A= Y Xinzml19(@) oo + D X 15(0) oo =1 A + AP

k=—o00 k=j
19



It is obvious that (AS))@O and (AS?’),LZO are non-negative, nondecreasing and adapted

sequences. From the definition of w-2-atoms, S,,(a*) = 0 on the set {7, > n}.

Hence
j—1 j—1
Snt1(g) < Z Sni1(a") = Z X{mgn}SnJrl(ak)
k=—o00 k=—00
j—1
< D XmemllSnaa (@)oo = AL,
k=—o00
and
Sni1(h) < Y Snia(@®) =D Xjry<nySnsa (@)
k=j k=j
< Y Xz ISns (@)oo = AP
k=j
Thus
7j—1 7j—1
Igllow < IMPllee < D7 1S(@) | < > A2 < Ay = A (#7).
k=—00 k=—o00

Now we shall estimate [|h|.q,,-From the definition of w-2-atom,
X(rzn) B Ana*[* = Blx(rzny| Ana®[*] =

thus S(a*) = 0 on set {7, = oo}, and noting that {7, < oo} = {3 > 2*}, we have

P()\g)>y) < >0§ P(1, < o0)
k=j

< 97w szmP(Tk < 00)
k=j

< cy P Z2kp°P(ﬁoo > 2F)
—

< cy‘pO/ prodpP

{Boc=27}
<

cy o / predP
{Boc >y}

Hence

| ]wQ < c/ BRdP < c/ pRodP
" {Boo>y} {Boo> 5 (£70)}

tPO
< cf Bla)dr
0
20



1-6

By Hardy inequality and 1 = . we obtain

! dt dt
-0 <« —910 po p/po "
[ iz, % < / ([ syt

dt
_ t(l—(’)p/po _/ * PO )P/ PO

1
— c/ $(1-9) p/po/g* (x)p@

t
< /6 o)t

= cllflig,

On the other hand,

1 1
[ < e [ e eyt
0

0

@5

1
< o[ outera <
0
By the definition of the functional K,
K(t, f;wQpy; Qo) < hllwq,, + tl9llow-

Henceforth,

! d
a0, = [ (PR Si0@, QP < el 1y,

To prove the converse consider the sublinear operator 7' : f — S(f).

By the

definition 7' : Qoo — Lo and T : wQ,, — wL,, are bounded. Therefore, by the

interpolation property and Lemma 1.3.1

T: (proa Qoo)&p - ('LULPO, LOO)G,p - Lp

is bounded, too, that is to say f € (wQ,,, @w)s,p Implies

1flle, = 1T fllz, < ellfifug,,.0m0,

Theorem 2.3.4 (wQ,, WQp, )np = Qps 1/p = (1 —=n)/po +1n/p1,0 <1 < 1.

Proof Choose 0 and 6, satisfying

1/p=(1-0)/po,0 =nb,1/p1 = (1 —01)/po.
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Then by Theorem 2.3.3 and the Reiteration Theorem, we obtain

(prov Qm)n,p = (wQ;Dov (wQ;Dov Qw)el,p>?7,p = (wQIDo’ QOO)GJ? = QP

Theorem 2.3.5 (wD,,, Doo)op = D,, 1/p=(1—-0)/py,0 <6 < 1.
Proof Suppose that f € D, C wD,,. Let 8 = (5,)n>0 is the optimal control of
fn,ie, BeA, fr < B, | fllp, = ||Bsollp- From Lemma 1.2.4 there exist a sequence

(a*)rez of w-3-atoms and the corresponding stopping times (73)rcz such that

7j—1 0
= ap = an+ Q,, =: gn+hn
keZz k=—o00 k=j

and M (a*) < A2* for some constant A > 0. Remember that the stopping times
=inf{n € N : " > 2"}(inf ¢ = 0),

and 75, T oo(k — 00).

Define

A=) XM (@)oo (n€N).
keZ

For any fixed ¢t € [0,1], y = B*(t%), similarly to the proof of Theorem 2.3.3, we
obtain

_ dt
[ i, % < e
0

By the definition of the functional K,

! —0 Po pdt p
D3 (gl 5. )"~ = el fli,
0
K(t, f;wDpy, Dec) < [[Bllup, + tlg ...

Henceforth,

1
_ dt
by = [ (K FwDp DY < el

The rest proof is similar to one of Theorem 2.3.3.

Theorem 2.3.6 (wD,,,wD,,),, = Dy, 1/p=(1—-n)/po+n/p1,0 <n <1
Proof Choose 6 and 6, satisfying

1/p=(1-0)/po,0 =n01,1/p1 = (1 —61)/po.

Then by Theorem 2.3.4 and the Reiteration Theorem, we obtain

(wD;Dov Dpl)mp = (prm (prov D00>91,p>?7,p = (prm D00>9,p = DID‘
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Chapter 3 Bounded operators on Lorentz

martingale spaces

§3.1 Atomic decompositions of Lorentz martingale spaces

Now we can present the atomic decompositions for Lorenz martingale spaces.

Theorem 3.1.1 If the martingale f € H, ,,0 < p < 00,0 < g < oo then there exist

7q’

a sequence a® of (1, p,00) atoms and a positive real number sequence (uy,) € I, such
that
fu=_ mmay, ¥n € N
keZ

and

G )wezlle, =11 fllrz; -

Conversely, if 0 < ¢ < 1,q < p < oo, and the martingale f has the above decompo-
sition, then f € H , and

/]

Hs, < cinf H(Nk)keZquu

where the inf is taken over all the preceding decompositions of f.
Proof Assume that f € Hj ,q # co. Now considering the following stopping time
forall k € 7 :

7 = inf{n € N : s,41(f) > 2"} (inf ¢ = 00).

The sequence of these stopping times is obviously non-decreasing. It easy to see

that

STUm =) = 3O Xmena) DS = Y Xgmer} A f)
m=0

keZ keZ m=0

- Z(Z X{Tk<m§7k+1}Amf> = fu.

keZ m=0

Let

D=

Wi = Qk?)P(Tk < OO) s

and

23



7—k+1 Tk
ab = I I
HE
If i, = 0 then let a® = 0. Then for a fixed k, (a*) is a martingale. Since s(f7*) <

Qk’ S(f;;k+1) S 2k+1’

s(fa"") + s(f")
Mk

< P(m, < oo)_%,Vn €N,

s(ay) <

k

) is a Lo-bounded martingale, so there exists a® € L, such that

which implies (a

E,a* = aF. If n < 7 then a* = 0, so we get a” is really a (1, p, 00) atom. And

Ol = 3032 P(r, < 00)7)0)7 = 3(3_(2°P(s(f) > 2)7)9)7

keZ keZ keZ
2k
< o [ yrape(n > 299}
kez /21
< Z/ Yy P(s(f) > y)rdy)
kez 42
q 1
< C(/ Yy P(s(f) > y)rdy)s
0
< cf|fllms,

If ¢ = 00, it only needs to make a standard rectification.

Conversely, if f has the above decomposition, then from ||s(a*)||e < P(1 <

oo)_% and

P(s(a") > y) < P(s(a*) # 0) < P(m, < 00),

we get

) . P(1,<00) v .
= q/ Yy P(s(a") > y)rdy = q/ Y P(s(a®) > y)rdy
0 0

P(Tk<oo) % 1
/ y"ldy < -
0 q

hSASY

< P(1 < 00)

For 0 <¢<1,¢<p<o0,|"|pgis equivalent to a g-norm,
|f|Hs <||Z,Uk3 pq_ZMkH Z,qSCZMZ,
keZ keZ keZ

which gives the desired result.
Theorem 3.1.2 If the martingale f € ), 4,0 < p < 00,0 < ¢ < 00, then there exist
a sequence a” of (2,p, 00) atoms and a real number sequence ji; € I, such that

= Z,ukaﬁ,Vn ecN

kez
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and

O Ll < ellf gy,

keZ
Conversely, if 0 < ¢ < 1,q < p < oo, and the martingale f has the above decompo-

sition, then f € @, , and

1f @y, < cinf(Y ul?)e,

keZ
where the inf is taken all the above decompositions.
Proof Suppose that f € Q,,. Let 8 = (0,)n>0 is the optimal control of S, (f), i.e.,
B e N S(f) < Bu-1sllfllay, = l|Bcllp,g- The stopping times 75, are defined in this
case by

7 = inf{n € N : g" > 2F}(inf ¢ = 00).

Let a* and pi(k € Z) be define as in the proof of Theorem 3.1.1. Then for a fixed
k, (a¥) is also a martingale. Since S(f7*) =S, (f) < B, <28 S(fa"™") < 2k+1

S + S(fF)

< P, < oo)_%,‘v’n € N.
Mk

S(ak) <

Similarly to Theorem 3.1.1, we can show a” is really a (2, p, c0) atom. And

Ol =33 (2" P(mi < 00)7)7)1 = 3D (2" P(Boe > 297))7 < cl|Bocllpg = 1]l

keZz keZ keZ

Conversely, if the a* is (2, p, 0o0)-atom, one can show |[la*||? ., < %. The rest can be
p,q

proved similarly to Theorem 3.1.1.

Theorem 3.1.3 If the martingale f € D, ,,0 < p < 00,0 < ¢ < 00, then there exist

a sequence a® of (3,p,00) atoms and a real number sequence i, € I, such that

o= may,¥n e N

keZ

and

O )7 < el fllp,-

keZ

Conversely, if if 0 < ¢ < 1,9 < p < o0, and the martingale f has the above
decomposition, then f € D, , and
. 1
1£l1D,., < cinf (D [uil?)e,
keZ
where the inf is taken all the above decomposition.

The proof of Theorem 3.1.3 is similar to one of Theorem 3.1.2, so here omit it.
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§ 3.2 Boundedness on sublinear operator

As one of applications of the atomic decompositions, we shall obtain a sufficient
condition for a sublinear operator to be bounded from Lorentz martingale spaces to
function Lorentz spaces. Applying the condition to M f, Sf and sf, we deduce a
series of inequalities on Lorentz martingale spaces.

An operator T : X — Y is called a sublinear operator if it satisfies
T(f + )| < |Tf[+ [Tgl,|T(af)| < |[Tf],

where X is a martingale space, Y is a measurable function space.

Theorem 3.2.1 Let T' : H — L, be a bounded sublinear operator for some

1<r<oo.If

P(|Ta| > 0) < cP(1 < )

for all (1,p, c0)-atoms a, where 7 is the stopping time associate with a, then for

0<p<r0<qg< oo, we have

1T Fllpg < cllf]

S
Hp.q¢ fe Hp7q‘

Proof Assume that f € Hj . By Theorem 2.1, f can be decomposed into the sum
of a sequence of (1,p,o0)—atoms. For any fixed y > 0 choose j € Z such that
2 <y < 27t and let

J—1 e’}
[= Z,ukak = Z Mkak+z,ukak =:g+h.
k=j

keZ k=—o00

Recall that py;, = 2¥3P'V?(7;, < 00) and s(a¥) = 0 on the set {7, = co}. we have

g

wo< (LS mot@yary < 3l [tayary

IN

Z ,ukP_%(Tk < OO)P%(Tk < 0)



It follows from the boundedness of T" that

P(|Tgl >y) < y"E|Tg|]" <cy "llgllu:

(3 2PH(s(f) > 24y

k=—o00

IN

< ey (Y Pr(s(f) > 28) Z k(=Y
< cP(s(f) > y)

On the other hand, since |Th| <27 ; pr|Tak|, we get

P(ITh| >y) < P(ITh|>0) <) P(Ta"| > 0)

k=j

Z P(7, < 00) = Z 27kPORP P (s f > 9F)
k=j

k=j

A

< cyP(sf > y)iT’“’
< cP(s(f) >y) )
Since T is subliear, (|T'f|)*(t) < (|T'g| + |Th])*(t) < |Tg|*(5) + |Th[*(5), thus
1T fllp.g < NTGllpg + 1 TAllpg < 1 f1mg,-

Similarly to the proof of Theorem 3.1, we can prove the following Theorems 3.2
and 3.3 by using Theorems 2.2 and 2.3, respectively. Here we only give the theorems
and omit the proofs.

Theorem 3.2.2 Let T : (), — L, be a bounded sublinear operator for some 1 <
r<oo. If

P(|Ta| > 0) < cP(1 < )
for all (2,p, oo)—atoms a, where 7 is the stopping time associate with a, then for

0<p<r0<qg< oo, we have

ITFllpg 2 W fll@pe: € @pa

Theorem 3.2.3 Let T': D, — L, be a bounded sublinear operator for some 1 <
r<oo. If
P(|Tal > 0) < cP(1 < o0)
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for all (3,p,c0)-atoms a, where 7 is the stopping time associate with a, then for

O<p<r0<qg<oo,

||Tf||p,q < CHfHDp,q’ [ € Dyy.

Theorem 3.2.4 For all martingale f = (f,)n>0 the following inequalities hold:
DIf0<p<2,0<qg<o0,

s * s S
prq - H prq - H

p,q’ p,q’

ifp>20<q< o0,
* s S s
Hp,q%H Hp,q%H

p,q’ p,q’

2)If0<p<o0,0<qg< oo,
* S

Qpg — Hp,q’ Qpg — Hp,q7 Qpq — H;,q

% S

Dp7q - Hpvq’ Dp’q - Hp7q7

Proof 1) The maximal operator T'f = M f is sublinear, and ||M f|l2 < ||sf]l2. If a

S
Dpg— Hpy,

is any (1, p, co)—atom and 7 is the corresponding stopping time, then {|Ta| > 0} =
{|Ma| > 0} C {7 < oo} and hence P(|Ta|] > 0) < ¢P(t < o0). It follows from
Theorem 3.1 that

||Mf||p7q < c|lf]

Similarly, consider the operator T'f = Sf we get ||[Sf|lp.q = I f]

Hs s (0<p<2).

s - Conversely, we
use interpolation by considering the following operator to obtain the case p > 2,0 <
g < oo. In fact, consider operator @ : L,(lo) — L, by Q(f) = s(f), then @ is
bounded for all p > 2. So by interpolation, () is bounded from L, ,(l«) to L, , for
p>20<q< 0.

2) Forall 0 <r < oo, [Mfl, ISl Isfllr = fllo, and [ M fllo, [[Sfllr, Isfllr =
| fIlp,- Note that a® = 0 on the set {n < 7}, thus

X(n < 1) Enca|Avd™? = E,_ix(n < 1) | Anad®? = 0.

Hence s(a*) = 0 on the set {7, = oco}. By Theorem 3.2.2 and 3.2.3, we can complete
the proofs.

Remark If put p = ¢ in the above embedding, Theorem 2.11 in [97] can be deduced;
if put ¢ = 0o, Theorem 7 and Theorem 8 in [39] can be concluded.

Remark We conjecture that for 1 < p < 00,0 < ¢ < o0, H;:q = Hj ,, however our

method doesn’t show these.
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§ 3.3 Restricted weak interpolation

We say that a sublinear operator T is of restricted weak-type (p,q) if T" maps
Hj to Lpe. Then we have the next interpolation from one restricted weak-type
estimate to another.

Theorem 3.3.1 Let T is of restricted weak-type (p;, ¢;) for i = 0,1, and 1 < p;, ¢; <
0o. Put

1:1—9 91 1—6’+£ VO <0 <1,

)

p Po P q do q1
Then T is also of restricted weak-type (p, q).

Proof Suppose that f € 3, from Theorem 2.1, f =%, ura®, a* is (1, p, co)-

pl7

atoms with respect to stopping time 7, and ZkeZ H Now we can

estimate ||Ta"||;00 < c. In fact

ITa"lgoe = supts (Ta") () = sup(ts (Ta") ()~ (¢ (Ta")" (1))’
t>0 t>0
< | Ta g ol Ta"(1g, o
< cllsa*[poallsa®llp, .
< CHsakHzpogpoHX{rk<oo}||2po,z||3ak||2p1,2p1||X{rk<oo}H2p1,
< cP(mp < OO)_%(P(’Tk < oo)zpo P(r, < OO)%)Q
< ¢
where [ = 2550 and m = 2§1i1. Consequently,

1T F oo < D a7 oo < €3 Ll = [l

keZz keZ

The proof is finished.

Now we show how restricted weak-type estimate can be transferred to strong
type. It is also the version of the classical Marcinkiewicz interpolation theorem in
the martingale setting(see Theorem 4.13 in [5]).

Theorem 3.3.2 Let T is of restricted weak-type (p;,¢;) fori = 0,1, and 1 < p; <
00,1 < g < 00,q0 # qi- Put

1o 1_9+£ 1:1—9+£’ VO <0 <1.

p Po b1 q do @1
Then T is of type (H,,, Lyy), for 0 <r <1andr <gq.
Proof For 0 < r < 1 and r < ¢, we know || - ||, is equivalent to a r—norm, so
it is enough to prove ||Ta||,, < ¢, for all (1,p, co)-atoms. Once it is proved, from
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Theorem 3.2.1,
ITHIE, < S wlTalr, <37 < el
keZ keZ
Now we shall show ||T'al|,, < c¢. Consider the case ¢1,¢2» < co. From the previous

proof, it is easy to know

Thus, say qo < q¢ < q1, we get

1 > .
“ITall, = / Y P(|Tal > y)idy
0

) 00
wr 1
< / —IIaI )@ dy+/ y (= lal
0 5 )

< e(8al” qO)P(T < oo)rqo(__l

s
le

) + 5§(Q—Q1)P(T <o0) H—%))

Taking 0 = P(7 < 00)®, with « satisfying

1 _ 1-60 0 1 __ 1-6 (4 _ (1 1 1 1
]:IlfaCt,fromg—p—o‘i‘p—l,a—q_()"—q—lWeC&IlknOWQOé—(p—O—p—l)/(q—l—q—o),aﬂd

r 1 1 r 1 1

—la(¢—q) + qp(——=)|=-lalg—q) + @a(——=)| =0

q[( 0) o(p0 p)] q[( 1) 1(p1 p)]

Then [|Talll, = c
When one of ¢; is 0o, say ¢ = oo, the proof is unchanged. More precisely, we

have

Jun

ITalle < clalls | < eP(r < 00) 1.

Thus, from + =1=¢ 4 6 1 _1-0
P po

1 ITaloe .
Tl / YV P(|Ta| > y)idy

BRI w
=/ y' (§||G|H;01) ¢ ay

< Pt <) qo(%_%)P(T < 00)1 3(1=00)Gr =)
< ¢

We complete the proof.
Remark From Theorems 3.2.2 and 3.2.3, we can conclude that the familiar results

hold for @,1 and D, ;. We shall not state these explicitly. O
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Chapter 4 Embeddings on vector-valued Lorentz

martingale spaces

§4.1 Introductions and Notations

As we all know that Lorentz spaces are the extensions of Lebesgue spaces, and
some important facts in Lebesgue spaces have been found to have their satisfactory
counterparts in Lorentz spaces. Many papers have tried to reveal these results. It is
also well known the validity of a classical (scalar-valued) result in the vector-valued
setting, i.e., for functions or martingale with values in a Banach space, depends on
the geometric properties of the underlying Banach space; the relevant properties are
often the uniform convexity and smoothness. Let us recall Pisier’s celebrated work
[80Jon martingale inequalities in uniformly convex spaces. Let 1 < ¢ < oo. Then a
Banach space X has an equivalent g-uniformly convex norm iff for one 1 < p < oo

(or equivalently, for every 1 < p < 0o) there exists a positive constant C' such that
q ‘ 1/q
| (1A 320t = fal) ™| < ©sup il (4.1)
n>2 p n>1

for all L,-martingales f with values in X. The validity of the converse inequality
amounts to saying that X has an equivalent g-uniformly smooth norm. Then the
main goal of the present paper is to extend (4.1) to the Lorentz spaces case. More
precisely, we obtain the following results. Let 1 < ¢ < co. Then a Banach space X
has an equivalent g-uniformly convex norm iff for some 1 < r < 00,1 < s < 0o (or
equivalently, for every 1 < r < 00,1 < s < 00) there exists a positive constant C'

such that
1/q
| (Ul 4 D205 = £ucal) 7| < e sup il (4:2)
n>2 * nz

for all L, ;-martingales f with values in X. Again, the validity of the converse

inequality amounts to saying that X has an equivalent g-uniformly smooth norm.

In the preceding papers, the main methods to deal with martingale theory are the

stopping time, atomic decomposition, scalar-valued martingale transform, interpola-

tion and so on, see for instance [35] [54] [59] [97]. It should be mentioned that in this
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chapter we employ operator-valued martingale transforms, which were introduced
by Martinez and Torrea [68] in 2000. Replacing the scalar-valued multiplying se-
quences by operator-valued multiplying sequences, they generalized the Burkholder
martingale transforms [10]. The key fact in order to get our desired results is to
identify the p-variant operator S®)(f) of a Banach-valued martingale f with the
maximal operator of a fP-valued martingale transform. As we can see, under this
point of view, it is so short and transparent to obtain our desired martingale in-
equalities. Finally we give a equivalent characterization of UMD Banach lattices in
the Lorentz spaces setting.

Let X be a Banach space. For 1 < p < oo the usual L,-space of strongly
p-integrable X-valued functions on (€2, F, P) will be denoted by L,(£2; X) or simply
by L,(X). Let {F,},>1 be an increasing sequence of sub-o-fields of F such that
F =\ F,. By an X-valued martingale relative to {F,},>1 we mean a sequence
f=Afn}n>1in L1 (X) such that E(f,, 11 ‘]—"n) = fpforeveryn > 1. Let df,, = fr—frn-1
with the convention that fo = 0. {df,}n>1 is the martingale difference sequence of
f. We will use the following standard notations from martingale theory

Ma(P)= swp Ifill, M(F) =swplIfl;

1<k<n

59 = (Slarln)”, 590 = (3 lanle)
Forl<r<oo,1<s< ::,1 we define the following martkirzllgale spaces:
Hy g ={f = (fu)nz1 : [M(f)llrs < o0}
i ={f = (fanz1  [SD(f)rs < 00}

We refer to [35] [59] and [97]for more facts on scalar martingale theory, and [27] and
[56] for vector-valued case.

Given a X-valued martingale f = (f,,)n>1, we define

1£llp.a = sup [l fallp.g-
n

§4.2 Operator-valued martingale transform

Lemma 4.2.1 Let X; and X5 be two Banach space, T" a martingale transform op-
erator as above. Then the following statements are equivalent:

32



(1) There exists a positive constant C' such that
P(M(Tf)> ) <CIM(f)lL ¥A>0
(2) For any 1 < p < 00,1 < ¢ < 00, there exists C' = C,, > 0 such that
IM(Tf)llpg < CIM [fllpq
(3) For some 1 < py < 00,1 < g < 00, there exists C' = C,, 4, > 0 such that

IM(T f)llpo.g0 < CHM fllpo a0

Lemma 4.2.2  Let (4,),>1 be a nonnegative, increasing and adapted sequence, Y >

0. f E(As — A.—1|F;) < E(Y|F;) for any stopping time 7, then we have
[Ascllpg < CIY [lp,q - I <p<oo,1<qg< oo

Proof For any fixed A > 0, setting stopping time 7 = inf{n : A, > A}, then
A1 <\ and {Ax > A} = {7 < o0} € F,, by the condition, we get

{Acx>A} {Acc>A}

For t € [0, 1], setting A = A% (t), the inequality above implies

/0 "4 (s)ds < /0 Y (s)ds 4 HAS (1),

Observe that, for any ¢t € [0,1] and fixed ¢y € (0,1) we have

/t A% (s)ds > /tOt A% (s)ds + (1 —t)tAL (t) = to /t A% (tos)ds + (1 —to)t AL ()

The preceding inequalities yield

t 1 t t 1
/ AZ (tgs)ds < t—/ Y*(s)ds +tA%(t) g/ (A% (s) + t—y*(s))ds,
0 0Jo 0

0
which leads to

AL (1ot) < AS(0) + Y™ (1),
0

A change of variable gives

(t0) " 1Al ) < IlAcolla) + (1) Y [l pg)-
Noting ¢y € (0,1), we finally have
[Asollpg < ClIY [lp.q-

O
Remark In Lemma 2.3 it is sufficient to verify E(A., — A,—1|F;) < E(Y|F;) for
stopping times taking constant values n, see for example [59].
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Lemma 4.2.3 Let 1 < p < 00,1 < g < oco. Then for any X-valued martingale
f = (fa)nz1 € H}, we have f = g+ h, where g and h are martingales satisfying the
following conditions:

(Dlldgall < 4Mua(df); ()] 202, Ndhall]],, < CIM(Af)p

Proof Setting Fi = dfi]l{||dfi||<2Mi,1(df )} and GZ = dfi1{|ldfi||>2Mi,1 df)}- Now we let
dg; = F, — B(F}| Fi_1) ng“ dh; = G; — E(Gy| Fi_1) Zdh

It is obvious that ¢ = (gn)n>1 and h = (h,),>1 are martingales, and ||dg,| <
AM,,_1(df). Note that ||G;|| = 2||G;|| — [|G:|| < 2M;(df) — 2M;_1(df), we get

o ldhll < 237 (Mildf) = Mioa(df)) +2 Y E(Md) — Mica(df)|Ficr)

< 2M(df) +2 ) E(Mi(df) = Mioa(df)|Fia)
< 2M(df) + 29

where 7o = > o) E(Ml(df) — Mi_l(df)‘ﬂ_l). Then by Corollary 2 in [?],

Yool < CIY - Mildf) = Mi—a(df)lpg < ClIM(AS)llp.g-

i=1
Thus -
E( " [ldhill| Fizt) < E(2M(df) + 2700| Fic1).-

1=n

It follows from Lemma 2.4 that

{ Z ldhall]],, < CIM(Af) + Voollpg < CUM(Af)llpg + Cllocllpg < CIHM () p-

(Il
Now we can give the proof of Lemma 2.3.

Proof of Lemma 4.2.1 (1) = (2) Considering a martingale f € H_, by Lemma

pQ’

2.6 we can decompose f as f = g+ h, then
M (T f)llpq < ClIM(Tg)llpq + CIIM(Th)|pq (4.3)

Since the boundedness of the sequence (vy) we get

Ty = [sp S wedhelln], < Hsupz||vk||||dhk||xlupq

"kl

H S‘:Lp 2_: | dh x, Hp,q - H 2_: Pl x, Hp,q

< ClIM(Hlpag

IA
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Setting W,, = 4M,,_1(df), then W, is nondecreasing and F,_j-measurable. Fix
A > 0. For 8> 0,0 > 0 satisfying § > § 4+ 1, define the stopping times:

p=int{n: [(Tg)allx, > Ay, v=nf{n:|[(Tg)ullx, > A}, o =int{n: gallx, \/ War1 > 8A}.

Now we denote u, = Ljicn<ypo}. Since {u < n < v Ao} is F,_j-measurable,
we can consider the martingale a, = Y ,_, uxdgy and its martingale transform
(Ta), =Y ,_, vxurdgg. Note that ||dg,| < W,, by the definition of stopping time
o, we have M(a) < 20\ in the set {u < oo} and M(a) =0 in {u = co}. Then

IM(a)]ly < 26AP (i < 00) = 20AP(M(Tg) > A).

By the condition (1), we get

ClM(@)], _ 205
B-0-—1N " B-0-1

P(M(Ta) > (8 — 06— 1)) < P(M(Tg) > )).

Ifwe{p<n<vAoc} then (Ta), = (Tg),; it is easy to see
P(M(Tg) > BA\,M(W) < 6\) < P(M(Ta) > (-0 —1)A).
Thus

P(M(Tg) > BA) < P(M(Tg)> A M(W) < 8X) + P(M(W) > 6))

< %P(M(Tg) > A\) + P(M(W) > 6A)

20
B—o—1"

Denote p = By the equivalent definition of L, ,-norm, we get

BHMT)pg < PPIM(TG) g+ 0 M W) pg
PP M(Tg) g + 07 |4M(df)llp.q
< P PIM(Tg)llpg + 80 M (f)llpg

IN

Now we take § to satisfy 1 — Bp*? > 0, then ||M(Tg)|lp.q < CIM(f)|lp.q- Finally it
follows from (6.10),

IM(T F)llp.q < CIUMS)lpa-
(2) = (3) It is obvious.
(3) = (1) We shall use Gundy’s decomposition, see [59]. Fix A > 0 we can decom-

pose f = a+ b+ e with a, b, c being martingales and satisfying respectively:

AP (sup [|day|| # 0) < C||f]l1; /Z ldbg||[dP < C|[fll1;  sup|len]| < CA and e[y < Cf]]x.
k=1 "
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Then
P(M(Tf)>X) < P(M(Ta) > X\/3) + P(M(Tb) > \/3) + P(M(Te) > \/3).
Moreover, we have

P(M(Ta) > \/3) < P(sup|/da,| #0) < %

C
171 < I

and

3 3 .
P(M(Tb) > \/3) < X /sup |(Tb),||dP = X /sup | kadkadP

3 - C C
< 3 [ IS dnfap < Sisl < Sl
k=1

It is clear that L,,1 — Lpyq = Lpgoo for 1 < py < 00,1 < go < 00. Using the
hypothesis and noting sup,, ||e,|| < CA, we get

IM(Te)|lpoco < CIM(TE)po00 < ClIM(E)llpo.go < Cllellpoao < Cllellpo
CA

SUP/ P(H6"||>t)1/podt§C'sup/ (t eal) " dt
0 n 0

n

O \L=1/po ||6|H/po
which leads to

P(M(Te) > X\/3) < %

C C
lell < S ILf I < S IM A

§4.3 Embeddings

Regarding the the maximal operator and p-variant operator as two martingale trans-
form operators respectively and applying Lemma 4.2.1, by handling the two con-
crete martingale transform operators, we easily obtain some embeddings between
vector-valued Lorentz martingale spaces. As usual, the geometric properties of the

underlying Banach space are important. The following two lemmas are due to Liu
[56].

Lemma 4.3.1 Let X be a Banach space. For 2 < ¢ < oo, the following statements
are equivalent:
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(1) X is isomorphic to a g-uniformly convex space

(2) For any X-valued martingale f there exists a constant C' > 0 such that
AP(SW(f) > X) < CIM(H)l, YA >0.

Lemma 4.3.2 Let X be a Banach space. For 1 < ¢ < 2, the following statements
are equivalent:
(1) is isomorphic to a g-uniformly smooth space

(2) For any X-valued martingale f there exists a constant C' > 0 such that
AP(M(f) > A) < CISD(f)lr, ¥A>0.

Theorem 4.3.1 Let X be a Banach space. For 2 < ¢ < oo, the following statements
are equivalent:
(1) X is isomorphic to a g-uniformly convex space

(2) For any 1 <r < 00,1 < s < 0o (or equivalently, for some)

H:,s — QHS \V/f S H:,s

.8

Proof Considering the martingale transform operator 7' from the family of X-
valued martingales to that of ¢7(X)-valued martingales. Let v, € L(X,¢?(X)) be
the operator defined by vz = {z;}52, for ¥ € X, where z; = v if j = k and 7; = 0
otherwise. T is the martingale transform associated to the multiplying sequence
(vk) : §

(Tf)=>_ vrdfs = (dfs, df, ... df, 0, ..)

k=1
Then

M(Tf) = sup |(Tf)allesix) = SO(f)

Since X is isomorphic to a g-uniformly convex space, by Lemma 4.3.1, the martingale
transform operator T satisfies (1) in Lemma 4.2.1. Thus the equivalence is obtained

immediately. O

Theorem 4.3.2  Let X be a Banach space. For 1 < ¢ < 2, the following statements
are equivalent:
(1) X is isomorphic to a g-uniformly smooth space

(2) For any 1 < r < 00,1 < s < oo (or equivalently, for some)

qus — H* Vf e qu;S

r,s )
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Proof Let (9(X)-valued martingale F = (F,)n>1, Fp = S.p_y D, Di = (D]);>1.
Define the martingale transform operator R from the family of ¢7(X)-valued mar-
tingales to that of X-valued martingales. Let v, € L(Eq(X),X) be the operator
defined by vgr = 2* for all z = {27},5; € £4(X). R is the martingale transform

associated to the multiplying sequence (vy) :

k=1 k=1

Now for any X-valued martingale f with f, = > _, dfy, we can choose the (4(X)-
valued martingale F' = (F,),>1 with D] = dfy if j = k and D] = 0 if j # k.
Then . .
(RF), =Y Df=> dfi=f., M(RF)=DM(f)
k=1 k=1

and

| Fulleaxy = 1(dfy, dfay ooy dfn, 0, ) leaixy = SO(F),  M(F) = S@(f).

Since X is isomorphic to a g-uniformly smooth space, by Lemma 4.2.1, the mar-
tingale transform operator R satisfies (1) in Lemma 4.3.2. Thus the equivalence is

obvious. O

Corollary 4.3.1  Let X be a Banach space.The following statements are equivalent:
(1) X is isomorphic to a Hilbert space
(2) For any 1 <7 < 00,1 < s < oo (or equivalently, for some)

S _ *
2Hr,s - Hr,s

Proof It is well known that a space which is 2-uniformly smooth and 2-uniformly
convex is isomorphic a Hilbert space. O
Now we can summarize martingale inequalities on Lorentz martingale spaces.

Theorem 4.3.3 The following inequalities are true

1y, < el g, [ fllag, < cllfllm, (0<p<2,0<g<o0)

I, < ellfllmg,, WAllag, < clfllug, (2<p<00,0<q<o00)
1l = [ fllg, (1 <p<o0,1<g<00)

Iz, <cllfllppe  [fllas, < clfllq,, (0<p<o0,0<q<oo)
1z, < ellifll@pes 1 llag, < clfllp,, (0<p<o0,0<g<oo)
I, < cllfllppes [fllag, <clfllQ,, (0<p<o0,0<q<o0)

38



Chapter 5 Carleson measures and vector-valued

BMO martingales

§5.1 Introductions and Preliminaries

This paper deals with vector-valued martingale inequalities. It is well known that
the validity of a classical (scalar-valued) result in the vector-valued setting, i.e.
for functions or martingales with values in a Banach space X, depends on the
geometrical or topological properties of X. For instance, the a.s. convergence of
bounded L,-martingales (1 < p < oco) with values in X amounts to saying that X
has the Radon-Nikodym property (see [27]). On the other hand, the validity of a
one-sided Burkholder-Gundy inequalities for X-valued martingales is equivalent to
the uniform convexity (smoothness) of X (see [80]).

It is also well known that martingale theory is intimately related to harmonic anal-
ysis. It was exactly with this in mind that Xu [104] developed the vector-valued
Littlewood-Paley theory, which was inspired by Pisier’s celebrated work [80] on mar-
tingale inequalities in uniformly convex spaces. Very recently, Ouyang and Xu [76]
studied the endpoint case of the main results of [70] and [104] by means of the clas-
sical relationship between BMO functions and Carleson measures. Let us recall the
main results of [76]. For a cube I C R let I denote the tent over I. Let 1 < ¢ < oo
and X be a Banach space. Then X has an equivalent norm which is g-uniformly

convex iff there exists a positive ¢ such that

dxdt .
b 1] /tva DI’ < N Bmomnxy V[ €BMOMR"X), (51)

I cube

where f also denotes the Poisson integral of f on Rﬁ“ , and where

0 "0
IV £, 0l =[5 @ 0 + Z Ha—%f(%t)H-

The validity of the converse inequality is equivalent to the existence of an equiva-

lent g-uniformly smooth norm. Inequality (5.1) means that ([|V f(z,t)||)?%% is a

Carleson measure on Rt for every f € BMO(R™; X).
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The main goal of the present paper is to give the martingale version of Ouyang-Xu'’s
results. This can be considered as the endpoint case of Pisier’s theorem quoted
previously, which we now recall as follows. Let 1 < ¢ < co. Then a Banach space X
has an equivalent g-uniformly convex norm iff for one 1 < p < oo (or equivalently,

for every 1 < p < 00) there exists a positive constant ¢ such that

HOLAN+ 3 = Facall) ], < € sup £l (52)

n>2
for all finite L,-martingales f with values in X. Again, the validity of the converse
inequality amounts to saying that X has an equivalent g-uniformly smooth norm.

Ouyang-Xu’s arguments heavily rely on Calderon-Zygmund singular integral theory.
In fact, the Lusin function S, in [70] and [76] can be represented as a singular integral
operator with a regular operator-valued kernel. Similarly, Our proofs depend on
martingale transform theory. More precisely, we will use operator-valued martingale

transform theory as developed by T. Martinez and J.L. Torrea in [68] and [69].

In the remainder of this section we give some preliminaries necessary to the

whole paper. The main object of this paper is the BMO space given in the following

Definition 5.1.1 Let 1 < p < oo and X be a Banach space. The space BMO,(X)
consists of all functions f € Li(€; X) such that

| lsa10,060 = sup [BALS = fuca 71 52) 7]l < oo

Remark The following facts are well known in the scalar-valued case (see [35], [59]
and [102]). Their proofs go straightforward over the Banach-valued setting.

(1) The spaces BMO,(X) are independent of p and all corresponding norms
are equivalent. This allows us to denote any of them by BMO(X).

(2) Lo(X) C BMO(X) C Ly(X) for 1 <p < 0.

(3) We have

Il Barox) = sup P(r < 00) P\ f — friilln,x), 1< p<oo, (5.3)

where the supremum is taken over all stopping times 7. On the other hand a function
feL,(X),1<p < oo, belongs to BMO(X) iff there exists an adapted process
(0n)n>0 such that 6y = 0 and

Cy = sup ||[E(| f — O |7 F) 7|, < 00

In this case, || f||smox) = infg Cp.
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Lemma 5.1.1  With the assumptions above the following statements are equivalent:

(1) There exists a positive constant ¢ such that

|TfllBmocxs) < cllfllBmoxyy, V¥V f € BMO(Xh).

(2) There exists a positive constant ¢ such that

(T f)*l|Brmoxz) < cllfllBroxyy, VY f € BMO(Xy).

(3) For some 1 < p < oo (or equivalently, for every 1 < p < o0) there exists a

positive constant ¢ such that
ITfllp < cllfllp, YV FE LX)

The classical notion of Carleson measures in harmonic analysis has the following

martingale analogue.

Definition 5.1.2  Let x4 be a nonnegative measure on ) x N, where N is equipped
with the counting measure dm. p is called a Carleson measure if

w(T)

—_— <
P(1 < 0) >

il =: sup

where the supremum runs over all stopping times 7 and where 7 denotes the “tent” over
T

7={(w,k) € QAxN: 7(w) <k, 7(w) < 0}.

Throughout the paper we will use A ~ B to abbreviate ¢ !B < A < ¢B for
some positive constant c. The letter ¢ will denote a positive constant, which may
depend on p but never on the martingales in consideration, and which may change

from line to line.

§ 5.2 Main results

The following theorem is the main result of this section. Recall that T denotes

the tent over a stopping time 7.

Theorem 5.2.1 Let X be a Banach space and 2 < ¢ < oo. Then the following
statements are equivalent:

(1) There exists a positive constant ¢ such that for any finite X-valued martingale

1
sup e [ 1P @ dom < i (5.4

(2) X has an equivalent norm which is g—uniformly convex.
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Inequality (5.4) means that ||dfy|?dP @ dm is a Carleson measure on €2 x N for
every f € BMO(X).

Lemma 5.2.1 Let 1 < p < oco. Then
1FllBarocx) & nfsup P(7 < 00) " MP|| f — 61,

where the supremum runs over all stopping times 7 and the infimum over all adapted

processes 6 such that 6., = f.

Proof Assume that f € BMO(X). Let 7 be a stopping time. Then by Remark (3)

1f =0y = E[f—0—1]"X{r<oc}
= E(E(If = 01117 )X (<ot
< CYP(1 < 00).

This implies
) _1 )
ugfsup P(r < o00) 7| f — 0,4, < I%f Co < || fll Bmox)-

Conversely, assume 3 = infy sup, P(1 < 00)™V/?||f — 0,_1||, < 0o, T is any stopping
time, VE' € F,, F C {1 < oo}. By defining 7 = 7, if w € F'; otherwise 7 = 0o, we
get

1
- — p — -1 _ p

= P(rr < 00) If = bl
which leads to
sup [|E([lf — Or 1 [P1F0) P lloo < P(re < 00) 2| f = bl
Thus
Iflsarocx) < cinf Co < cinfsup P(r < 00) 2| f = Ol
Proof of Theorem 2.1 (1)==-(2). Assume that (1) holds. We first claim that

ISO(Hllsrmo < ellfllzmoc),  Vf € BMO(X).
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Indeed, by Lemma 5.2.1

ISO(Nllsmo < esup P(r < 00)"a[|SO(f) — S ()],

< csup P(r < 00) (B Zdekll Yoot
= csup P(T < 00)” /dek |‘1dP®dm)
< el fllsmoc.

We now consider a martingale transform operator ¢ from the family of X —valued
martingales to that of [,(X)—valued martingales. Let vy € L(X,[,(X)) be the
operator defined by vyz = {z;}52, for x € X, where v; = v if j = k and x; = 0

otherwise. @ is the martingale transform associated to the sequence (vy) :

Pln=>_vrdfe = (df1,dfs, ... df, 0, ..).
k=1

Then

Q)" = sup (@ Fnllinix) = S(f).

It is clear that by the claim above ) satisfies the statement (2) in Lemma 5.1.1.
Therefore, () is LY—bounded. Namely

1Sz, = Q) Nz, < el fllrax

Thus by Pisier’ theorem X has an equivalent ¢g—uniformly convex norm.

(2)==(1). Suppose that X has an equivalent g—uniformly convex norm. By

Pisier’ theorem, we find for any 1 <n <m

EQ il F) < Bl fm = famalllFn) < B = famal1F2) < ell flmo

This implies

ledlel 1Fn) < ellf 5o
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Now let 7 be a stopping time. We then have
P(r < o0) /||dfk]|qu ® dm)

— Plr<oo) (Ezndm X))

P(r < o0) ™} (E( ZdekH Fxire))”

CP(T < OO)_E <E||f“qBMO(X)X{T<OO}> !

< c|lfllBmocx)-

IA

Taking the supremum over all stopping times 7, we get the desired inequality.

Theorem 5.2.2 Let X be a Banach space and 1 < p < 2. Then the following
statements are equivalent:

(1) There exists a positive constant ¢ such that for any X —valued martingale
‘fHBMO < cPsup P(1 < o0)7! / | dfx||PdP @ dm. (5.5)

(2) X has an equivalent p—uniformly smooth norm.

Inequality (5.5) means f € BMO(X), if ||dfx||[PdP @ dm is a Carleson measure on
Q x N.

Proof (1) = (2). Suppose that (1) holds, then for any X —valued martingale we

have

(28) || lssow) < esup P(r < o) (EZdekH X{,<Oo}) .

Let X* be the dual space of X. It suffice to prove X* has an equivalent g—uniformly
smooth norm, where ¢ is the conjugate index of p.

To this end, we intend to claim for any X*—valued martingale g,

1S ()lx < ellg*[l = ellgllmx-

Since (Ll (lq(X*))>* = Loo(1,(X)), for any martingale g € Hy(X*),

IS = sup {137 < dgwax > |- @), _(, ) <1}

— sup {\ > < dgi Elar) — Eia(ar) > |- ()], () < 1}.
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Setting dfy = Ex(ag) — Ex_1(ax), f = >_ dfy; then f is a X —valued martingale. We

have

\Z <dgg,ar > | = |Z <dg,dfpy > | =|<g,f > < |gllz, x| fll Brroc

Now we shall estimate E Y~ ||dfy||” X {r<oo} under the condition of ||(ay,) HL (1) <
1. Indeed,

B Nl re) < 27 (B D IB @)X ey + B D [ (04) P et
k=1

k=1 k=1
— (I I])

We shall estimate I and 11 respectively.

e e}

I < EZEkHakH X{r<oc} < EE- (ZEk llax|” X{T<k}))
- E(Znakn Xirsiy) = (Zuaku Xir<ooh)
E(HZH%H”

P7'<oo)

IN

X{T<OO})

IN

Similarly to I, we get

T = IEHET—la‘F||10X{'r<oo}_‘_IE Z ||Ek—1(ak)||pX{T<oo}
k=1—-1

< 2P(1 < 00).
From (2.3) we then have || f|zyo(x) < ¢. Therefore, we finally obtain
1SD(9)Il < ellgllmexy, Vg€ Hi(XT).

By Piser’s theorem, we get X* has an equivalent g—uniformly norm. Thus we
complete the proof of (1) = (2).
(2) = (1). By the Remark 1.2, we have

_1
| fllBraroxy = sup P(1 < 00) 7 || f — froillL,x), VY1<p<2

Now we consider the new nondecreasing o—field sequence {Fjy }x>1 and the corre-
sponding martingale f generated by f— f.. Then by Doob’s stopping time theorem,
we have
fi = B(f = frlFive) = B(f|Fivr) = fr = fivr = fr.
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From the condition (2), we have ||f|, < ¢|[S®(f)]|,. Thus
E|f = fol” = EIfI” < B dfll” = B I fwsvr = frvrll”
k=1 k=1

= B N forr = full? = B NdfellPXgrao

k=1 k=T

Therefore,

Elf = feal” 2 (BIf = £ +Bllfr = frall?) S 277D il Xr<oo)-

k=1

Then we obtain
1 > -
Hf||BMO(X) < csup P(1 < 00)"? (EZ ||dkapX{T<oo}) "
T k=1

So the theorem is proved.

Corollary 5.2.1  Let X be a Banach space. Then the following statements are equiv-
alent:

(1) There exists a positive constant ¢ such that for any finite X —valued martingale
¢ %sup P(1 < 00) ™! / |dfe||PdP@dm < || f||%m0 < ¢2sup P(T < oo)™! / \|dfe||*dP@dm.
(2) X is isomorphic to a Hilbert space.

Proof It is well known that a space which is both 2-uniformly smooth and 2-

uniformly convex is isomorphic to a Hilbert space.

§5.3 UMD Banach lattice

Definition 5.3.1 A Banach space X is said to satisfy UMD property if there exists

a positive constant ¢ such that for 1 < p < oo,
lerdfi + ... + endfnll, < clldfi + ... + dfnllp, VR >1

for all X —valued martingale difference sequences (dfy, dfs, ...) and all g, = £1.
This definition is due to Burkholder [11]. It is known that the existence of
one pq satisfying the inequality is enough to assure the existence of the rest of p,
1<p<oo.
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X will denote a Banach lattice in this section. Without loss of generality we
assume that X is a Banach lattice of measurable functions on some measure space
(32, dp). The reader is referred to [58] for informations about Banach lattices. In the
Banach lattice case, it is nature to consider the following variant of square function
SE(f).

Definition 5.3.2 Let X be a Banach lattice and f = {f,,},>1 a X —valued martin-
gale, f, = >_,_, dfy. We define the operators

Suf(w) = ldfe(w))2, §f(w) = sup S, f (w).

On the one hand for every fixed w € Q, Sf (w) can be regard as a function defined
%); on the another hand || Sf|| can be seen as the norm of the element (dfy, dfs, ...)

in the Banach space
X () = {(ar,az,-) : [| (3 lan(w)P)?]| < oo}

X (I?) is also a Banach lattice when X is a Banach lattice. The following lemma is

well known; see [89].

Lemma 5.3.3 Given a Banach lattice X, the following statements are equivalent :
(1) X satisfies the UMD property.

(2) There exists p, 1 < p < oo, and a constant ¢ such that

Ml < NISFlnc0 < el fllnxo,

for any X —valued martingale.
Now we can prove the following characterization of UMD Banach lattices.
Theorem 5.3.4 Given a Banach lattice X, the following statements are equivalent:
(1) X satisfies the UMD property.

(2) There exists a positive constant ¢ such that for any X —value martingale,
o0 1
_ _1 1 3
M fllmror) < sup P(r < 00) 4 (B i) Pxireser ) < ell llmroc
T k=1

Proof (2) = (1). Assume that (2) holds. By

o0

I dfillmaocn = sup P(r < 00) 3 (EI(Y dfil®) [Px ey )
k} T

k=1
we get
l Zé?kdkaBMO(X) < c[|fllBmocx), Ver = £L.
k
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For any fixed €4 and any X-valued martingale f, (Qf), = > ,_, exdfy is a martingale

transform operator from X to itself. By Lemma 1.4, we get

1Qfllz,x) <cllflle,cx), Vp> 1.

By the definition of UMD space, we get X satisfies UMD property.
(1) = (2). We now consider the X-valued martingale f defined in the proof of
Theorem 2.3. By X satisfying UMD property, we have

Hf||L2(X) ~ ||gf||L2(X)‘

Then

ENf = £ = EIFI® < BIQ 1dfl) 1P = BRI [fosnvr — fir )P

k=1 k=1
= B[O 1dfil) X (r<oc)
k=1

It is obvious that E||f, — fr_1[> <E[(XChe, |dfel*)2)*X{r<o0}. Then

EIf — St < e(BIF — £2 4 Bl — fralP) < BI(S ) Py

k=1

Conversely,

EIQldfel)?IPx <y < CEISIP =ElSf — £
k=1

IN

c(EIlf = foalP +EIlf = £l
< CEHf - fT—1H2

Thus -
Ellf = fooal> = BIO dfil*) 2 [1PX r oo
k=1

Recalling || f|| spo(x) = sup, P(1 < 00) "2 || f—fra || Lo (x), we obtain the desired

inequality. Thus the theorem is proved.
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Chapter 6 Noncommutative Lorentz martingale

spaces

§6.1 Introductions and Preliminaries

Martingale inequalities and sums of independent random variables are important
tools in classical harmonic analysis. A fundamental result duo to Burkholder [9]
and [12]can be stated as follows. Given a probability space (£2,.%#, P), let {%, }n>1
be a nondecreasing sequence of o-fields of .# such that % = V.%, and E, the
conditional expectation operator relative to .%,. Given 2 < p < oo and an LP-

bounded martingale f = (f,),>1, we have

e~ (St ] | ()
k=1 1

The first term on the right is called the conditioned square function of f, while the

N (6.1)

second is called the p-variation of f. Rosenthal’s inequalities [88] can be regarded as
the particular case while the sequence df = (dfy,dfs, ...) is a family of independent
mean-zero random variables df, = aj. In this case it is easy to reduce Rosenthal’s

inequalities to

00 0o 1/2 00 1/p
I3 el (3 llaal) ™+ (D lanliz) ™ (6:2)
k=1 k=1 k=1

The noncommutative analogues of the above inequalities were successfully obtained
by Junge and Xu in [50] and [51]. They replaced conditioned expectations onto
the o-subfields by the conditioned expectations onto an increasing sequence of von
Neumann subalgebras of a given von Neumann algebra. More precisely, for 2 < p <
oo, and any finite noncommutative L?(M)-martingale z = (z,),>1, (1.1) has the

following noncommutative version,

1/p
[ r an) = maX{H (Z ‘dmk‘p> (s
k

where s.(z) and s,(x) denote column and row versions of conditioned square func-

5e(2)|| 1o oy ST(CE)HU’(M)}’ (6.3)

tion. Moreover, they obtained a simpler inequality for 1 < p < 2 by duality.
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Recently, Randrianantoanina [84] proved a weak-type inequality for conditioned
square functions, which implies Junge-Xu’s noncommutative Burkholder’ inequali-
ties by interpolation. This alternate approach yields better constants some of which
are optimal.

Our original motivation comes from the classical extension for Lorentz spaces
of Rosenthal’s inequalities (6.2) by Carothers and Dilworth [20], i.e., for 2 < p <

00,0 < g < 0o and any independent mean zero random variables fi, fo, ..., fn,

|| Z kaLP"I(Q) ~ maX{H Z kaHLQ(Q)H? } Z @kaLP»q(O,oo)}’ (64)
k=1 k=1 k=1

where "7, @ fi denotes the disjoint sum of fi, fo,..., fn, which is a function on

(07 OO) with df(t> = ZZ:I dfk (t>
Inspired by (6.3) and (6.4), in this paper we consider Burkholder’ inequalities

in noncommutative Lorentz spaces LP9(M),1 < p < 00,1 < ¢ < 0o. And one of our
main results can be stated as follows (see Theorem 3.1 for the detailed statement):

for 2 < p < 00,1 < ¢ < oo, and any finite LP?(M)-martingale =, we have

ST(m)HLP,q(M)}'
(6.5)
Note that if p = ¢, we come back the inequalities (6.3). We also extend this in-

||| Lr.airn) = max{H Zd:ck ® ekHLP’q(MWO@), sc(:c)HLp’q(M),
p

equalities to the case 1 < p < 2,1 < ¢ < oo. Our main results are contained in
section 3. Note that the proofs of these inequalities for LP-spaces in [81] and [51]
use an iteration argument; however this iteration seems inefficient (or more compli-
cated) for the case of Lorentz spaces. We will adopt a different approach based on
Randrianatoanina’ weak type (1,1) inequality.

Now we introduce the noncommutative Lorentz spaces. Let (M, 7) be a tracial
noncommutative probability space. Namely M is a von Neumann algebra with a
normal faithful normalized trace 7. We refer to [13] for noncommutative integration
and more historical references. We only briefly recall some elementary facts on
noncommutative Lorentz spaces. Let Ly(M) denote the topological x-algebra of all
measurable operators with respect to (M, 7). For x € Ly(M), define its generalized

singular number by
pe(x) =inf{A > 0: 7(1peo)(|z])) <t}, t>0.
Then for 0 < p < o0,

LP(M) ={z € Ly(M) : 7(|z]P) < o0}
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and
el = 7aP) = [ Gutt))"ar
Of special interest in this paper is the noncommutative Lorentz spaces LP9(M)

associated with (M, 7) :
LPIM) = {z € Lo(M) : [|2][Lrairry < 00},

where
> dt\ /4
fellano = ([ @) )
0

for 0 < ¢ < oo and with the usual modification for ¢ = co.
The noncommutative Lorentz spaces behave well with respect to the real inter-

polation. Let 0 < 6 < 1,0 < pg, qx < 00,k =0,1 and py # p;. Then
LPI(M) = [P (M), L (M)

where 1/p=(1—10)/po+0/p1,0 < g < 0.

The usual Holder inequality also extends to the noncommutative setting. Let
0 <pr,qp < oo,k =0,1and 1/p=1/po+ 1/p1,1/q = 1/qo + 1/q:. Then for any
r € LPor(M), y € LPr (M),

lzylleay < Cllal|Lroao () lyl| Lovar a1y (6.6)
In particular, if p =q¢ =1,
[T(@y)| < [yl < lellzeow [yl era i, Vo € LPR(M), y € LPHIH(M).
For 1 < p < 00,1 < ¢ < 00, this defines a natural duality:
(o)) =1/ ()

where p', ¢’ denote the conjugate index of p, ¢ respectively, and (z,y) = 7(xy).

Let (M,,)n>1 be an increasing sequence of von Neumann subalgebra of M such
that the union of M/s is weak*-dense in M. For each n > 1, it is well known
that there is unique normal faithful conditional expectation &, from M onto M,,.
Moreover, &, extends to a bounded projection from LP%(M) onto LP9(M,) for
1 <p<oo,1<q< oo which we still denote by &,.

For 1 <p < 00,1 < ¢ < o0, and a finite sequence a = (a,),>1 in M, we define

1/2 1/2
||a||Lp,q<M;gg>:H(;w) Lovoiner ||a||Lp,q<M;zg>=H(;mmz) |

o1

Lpa(M)



and

1/2 1/2
lallLram, g2y = H(Z@@n—l‘anP) ‘ o lallzeam g2y = H (Zéan—ﬂamz) ‘
n n

Now, any finite sequence a = (a,) in LP%(M) can be regarded as an element in

Lra(M)

Lpa(M)

LP9(M ® B(€?)). Therefore, || - ||rra(m,2) defines a quasi-norm on the family of all
finite sequences in L»7(M). The corresponding completion is a quasi-Banach space,
denoted by LP9(M, ¢?)(if ¢ = oo the competition should be taken in a certain weak
topology). It is shown in [47] that || - ||zp(a1,4,_12) s @ quasi-norm. Similarly, we
can show || - || zr.a(m 4, 152) defines a quasi-norm on the family of all finite sequences
in LP9(M). The corresponding completion is a quasi-Banach space, denoted by
LPY(M, &, 1;0?). There are same arguments for LP4(M, ¢2) and LP9(M, &, _1; (?).

Recalled that a noncommutative martingale with respect to the filtration (M,,),>1

is a sequence T = (z,),>1 in L'(M, 7) such that
En(Tpy1) = xp, VYn > 1.

If additionally, x € LP9(M) for some 1 < p < 00,0 < ¢ < o0, then z is called

an LP9(M)-martingale. In this case, we set
lllzraeay = sup [l2alzracn.

If ||| pra(rm) < 00, then x is called a bounded LP9(M)-martingale. The difference
sequence dr = (dx,)p>1 is defined by dz,, = z, — z,—1 with the usual convention
that (o = 0. For concrete natural examples of noncommutative martingale, we refer
to [105].

We describe the square functions and conditional square functions of noncom-
mutative martingales. Following [81] and [47] , we will consider the following column
and row versions of square function and conditional quare function: for a finite mar-
tingale © = (z,,), set (recalling that & = &)

1/2

si) = (Clawl?) ", 1) = (X laai?) "

n n

sle) = (Xl P) " sw) = (X Gumaldzsf?)

Observe that

1Se(@)Lrany = lldzllraieys  [1se(@)l|Lramy = llde]lLraes, ).
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Now we define Hardy spaces H,(M). For 1 < p < 2,
Hp(M) = H (M) + H (M),
with the norm
[z[l7, = inf{{|ylls + [[2ll3 : 2 =y + 2,y € HL(M), z € H(M)}

For 2 < p < o0,
My (M) = HE (M) (Y Hp(M)

with the norm

[, = max{|[z[|2g, ]|}

§6.2 The Burkholder-Gundy inequality

We now extend the noncommutative Burkholder-Gundy’s inequalities in the Lorentz
spaces setting. One should note we cant directly obtain the Burkholder-Gundy
inequalities from the results in [13]. We employ the recent results in [73], which

play an important role in our proof. First we give a lemma.

Lemma 6.2.1 Let1 <p < 00,0< g < o0, and (g,) be Redermacher sequence. Then

there is a positive constant C' such that for all finite martingale x € LP9(M), we have

I Z dry, @ ep||Lramere ) = ||7||Lram)-

Proof Consider the operator
T:L°P(M) — LP(IM® L*(Q))

by
Tx = den ®éen, VrelP(M) and z, =E&,(x).

By Theorem 2.1 in [81], it is easy to know
2|l evy = ||Zd$n||LP ~ ||den®5n||LP(M®L°°(Q))-
Then T is bounded in LP(M) for all 1 < p < co. Thus by interpolation we obtain

| Z Az, ® el pramer=@) < Cllz||zram
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In order to prove the inverse inequality, we consider the operator
S:PM® L*(Q)) — LP(M)

by
SO a,®e,) = Z@@ (an) — Euilan), Y(an) € LP(M)

Note that (&,(a,) — &,-1(a,)) is a martingale difference sequence, we have
| Zéa (an) — En1(an)llLoiry < C Z En-1(an)) @ enll r(mysr=@)
< | Z En(an) @ enll Lr(MyzLe (@)

+ 1D Enalan) ® enllrmere o)
By Khintchine inequality and Stein inequality, for p > 2,
||Zéa (an) ® enllLrmer=@ < CIl( Zéa (an)* Enlan) |l Locrny V I( Zéa (an)Enlan) )| oy

< CII(ZaZan)1/2||Lp Vllzan 1/zllm(m

< (] Z an @ EnllLr(MeL= ()
If1 <p<2leta, =b,+c¢, with b, and ¢, in LP(M), then &, (a,) = &,(b,)+&,(cp)

IIZ@@ tn) ® nllr(mer=@) < CI|( Z@@ )2 lzrn + 11 Z@@ cn)En(€a)) [l Lo(mny

< C!I(Zbiibn)mﬂm )+ IIC ch /Hmw

Taking the infimum over all decompositions a,, = b,, + ¢, with b,, and ¢, in LP(M),

then
| Z Enlan) ® 5n||LP(M)®L°°(Q) <C| Z ap @ 5n||LP(M®L°o(Q))

Similarly, || Zn éan_l(an) ® €n||Lp(M)®Loo(Q) < CH Zn a, @ €n||Lp(M®Loo(Q)). Thus for
all 1 < p < oo, S is bounded from LP(M ® L*(Q2)) to LP(M). By interpolation

again, we have
||Z@@ (an) = En-r(an)llzragny < CIIY - an © enllraque s @)-

Taking (a,) = (dz,), we obtain the desired inequality. This complete the proof.
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Theorem 6.2.1 Let x = (z,),>1 be any finite LP?(M)-martingale. Then z is
bounded LPI(M) iff x € HP?(M); moreover, if this is the case, there is a positive

constant C),

2| Loy 2 (|]l2ra -

Proof By the recent results, Corollary 4.2 in [73], we have

I den®€n’|Lp,q(M®Loo(Q)) ~ max{||Sc(z)| Lraomys |9 (@) || oarny ), 2 < p < 00,0 < g < o0,
and

| Zdi’fn@gnHan(M@Loo(Q)) ~ inf{[|Sc(y)l|zrary S (2) | zraan ), 1 <p<2,0<q< o0
Then by Lemma 3.1, we immediately obtain the desired equivalence.

Identifying bounded LP*?(M)-martingales with their limits, we may reformulate

Theorem 3.2 as follows.

Corollary 6.2.1 Let 1 <p <oo,p#2,0<q < oo. Then LPI(M) = HPI(M) with

equivalent norms.

§6.3 The Burkholder inequality

We now investigate the Burkholder inequality for noncommutative Lorentz spaces.

The principal result of this section is the following

Theorem 6.3.1 Let 1 <p <o0,1 <¢<ooandz=(x,),> be a finite LPI(M)-
martingale. Then

(1) for 2 <p< o0

Jllznaan = max { | 37 dn © eall augopmys D5l avatnny, - @)oo b5 (67)

n

(2)forl<p<2

lallracng = _int {7 dun @ eall paguiore, + sel2)lmagan + lss(w)llnagan },
(6.8)

where the infimum runs over all decompositions dx,, = dy, + dz, + dw, with dy,,dz,
and dw, being martingale difference sequences.
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We will employ the discrete version of the J-method. For 0 < 6 < 1 and

1 < q < 0o, we denote by A% the space of all sequences (a,,,)%____ for which
o 1/q
lam)lhes = (D@ lanl)?) " < oo
meZ

Let (Ey, E1) be a compatible couple and suppose that 0 < § < 1 and 1 < ¢ < 0.
The interpolation space (Ey, E1)gq.s consists of elements x € Ey + E; which admit

a representation

x = Z Uy (convergence in  Ey+ Ey) (6.9)

with wu,, € Ey() E; and such that

I2llos = inf {17 (ims 2} |0, } < o0,
where the infimum is taken over all representation of = as in (6.9) .

The following lemma from [84] is the key ingredient of our proof.

Lemma 6.3.1  Let z = (2,)1<n<n be a finite L? martingale. Then there exist three
adapted sequences a = (a,)1<n<n,b = (bp)i1<n<y and ¢ = (¢,)1<n<ny in L*(M, 7) such
that:

(1) for every 1 <n < N, we have the decomposition

dIn = an_l'bn_l'cn;

(2) the L?*-norms satisfy

lallL2aezy + 110 22y + llell 2oy < K|zl p2om;

(3) the conditional square functions satisfy the weak-type (1,1) inequality:

H Z an @ enHLl’o"(M@éo") + H(Z éan—l|bn|2)l/2||L1’°°(M)
+ 10O il ey < Kzl

where (e,,) denotes the canonical unit of /*° and K is an absolute constant.

Proof of Theorem 6.3.1

Step 1. We first combine Lemma 6.3.1 and the J-method to prove the low
estimate of (6.8). Let © = (x,)1<n<ny be any finite LP%-martingale. For 1 < p < 2,
we choose 0 satisfying 1/p = (1 — 0) + 0/2. Fix (u;,)__., in L*(M) such that

m=—oQ
IN = E U,

meZ
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and

H{J(umv Qm)}HAe,q < 2||xNH9,q;J7

where the J-functional and the interpolation are relative to the couple (L'(M), L*(M)).
By Lemma 6.3.1 , for each fixed m € 7Z, we can find three finite adapted se-
quences a™,b™ and ¢™ in L*(M), and an absolute constant K > 0 such that:
(1) &) — Enq(uy) =al + b7+ 1 <n<N;
( ) J(3 oy 1 @ eyt LMO(M @ 0°), LAM @ £°)) < K J (s, 1), t > 0;

3) 9 (s Gl 2)" 2.5 LI (0M), M) ) € KT u,0,1), 1> 0

( ) ((Zn21£n_1|c;”*| )2t LLOO(M),B(M)) < KJ(um,t), t > 0, Then
we deduce that

(e ea2n)j],

n>1

< 2K (Jlanllog.s). (6.10)

(S a2 e}, < 28wl (6.11)

n>1

{7 (Z@@n )2 < 2K el (6.12)

From (6.10) and the definition of || - ||9,4.s, We get that for any finite subset S C Z

and

PRILEL

meS n>1

<H{( ar®en2) || < 2Kl
L1°°(M®é°°),L2(M®l°°)] ‘ Z g — [EaNalTP;

n>1

For fixed m € S, a™ =}, -, a;' ®e, is an element of the Banach space (LY (M ®
(), L*}(M ® KOO)}M_J. Then

< 4K||$N||9,q;J'

0,q;J

|3 |
— (L1 (Mee), L2 (M) ]

This means (since the constant C is independent of the finite subset of Z) that the
formal series ), _, a™ is weak unconditionally Cauchy (see for instance Diestel [27]
P.44 Theorem 6); but since the Banach space [L'*°(M @ ), L*(M & 600)}67%]
contains no copy of ¢y (in fact it is reflexive), this implies that the series >, a™

is (unconditionally) convergent. Hence if we set

a = g a™
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then the sequence a = (a,),>; satisfies

[Seon

n>1

< 2Kz n|lo.q.0- (6.13)

(L1 (M), L2(mee=)]

Now we consider the space L?(M, &,_1;(?) as the column subspace of L*(M ®

B(f*(N?))), and view the sequence b™ = (b™),>; as a column vector with entries

from L*(M ® B((*(N?))) (see [47]for more details). Then for any fixed m € Z,

mi2\1/2 om\ _ mi2\1/2 m mi2y 1/2
J((Zéan_1|bn|2) ,2) = max{H(nZ:léan_ﬂbnp) ’LLOO(M),Q H(;é&n—ﬂbﬂ?)

7 _ J(bm, om. [1%(M @ B((2(N?)), [3(M ® B(Ez(Nz)))

Lz(M)}

Then (6.11) becomes
{7 2 e BEE), 2o BEO) | < 2K llox g
Similarly, if we set b:= 3" _, 0™, then b = (b, )n>1 as a column vector, satisfies

< 2K 2o (6.14)

HbH [Ll’oo(M®B(52(N2)),L2(M®B(ZZ(N2))] 607

Again, if setting c:= ) _, c™, we have

< 2K ||z n|lo,g- (6.15)

HCH [Ll,oo(M@B(Z2(N2))7L2(M®B(ZZ(N2)):| )as
Note that a, b and ¢ are adapted sequences. Moreover, it is clear from the construc-
tion that for 1 <n < N,

dz, = a, + b, + c,.

Now we use the following well-known equalities, for 1/p = (1—0)+60/2,1 < ¢ < o0

and any semifinite von Neumann algebra N,

[LY°(N), L*(N)] = LPY(N) and [L'(N),L*(N)] = LPUN).

0,q;J 0,q;J

Combining the previous inequalities, we conclude that there is positive constant

C > 0 such that

1/2
| anse I gmlbr)
=1 LP:a(M®LE>®) 1

To complete the proof, it is enough to set for n > 1,

1/2
Saleil?) |, < Cllllznacsor
LP’Q(M)_‘_“(; ilel Loa(m) || eoa ()

dyn = Qp — n—l(an)u dzn = bn - gn—l(bn)v dwn =Cp — n—l(cn)-
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Then (dy,)>1, (dzn)>1 and (dw,)>; are martingale difference sequences with dz,, =
dy,, + dz, + dw,. Note that &,_; is bounded in LP(M), by interpolation we have for
l<p<oo,1<qg< o0

1> En1(an) @ enl| pargy < ClI D an @ enll aay
So
122 dun @ enll aquiorsy < Cll 2o an @ enllpaayy < Clleliracm:
Noting thatn En_1(bp) a1 (bn) < Eu_1(b:by), we have
En1|dzn)? = En1(b5by) — En1(by) Ep1(byp) < Epr(bEby)

Then we finally deduce

1D dyn ® enll pnagagme) + 15e( lrairn + lsr (@)l racry < Cllllzraca.

Step 2. Applying the inequality established in step 1, by duality, we now
prove the upper estimate of (6.7). Let x = (x,),>1 be any finite martingale, say,
x, = xy for all n > N. We first consider the case 2 < p < oo and 1 < ¢ < o0.
Let by € LY (M), 1 < p' < 2,1 < ¢ < oco. Then by defines a finite martingale
b= (bn)n>1,

b, = &,(bn), n > 1.

Let b, = y, + w, + 2, be any decomposition of b satisfying the conditions in 2.2.

We then obtain by Holder’s inequality and Proposition 2.2,
Ir(@xby)l = |7 da}db,)|
< |r(> - dajdy,)| + 17> dajdw,)| + 7Y dadz,)]

= [retr(d_de), ®endy, @ en)| + 7Y Enrdaldw,)| + 7D & rdadz,))|

IA

1D dz, @ eallzramees) || Y dyn @ eall oo e

+ lse@)lzraom lse(w)ll oo gy + 180 (@) [ racrn sr (2] oo gy
<

C'max { H Z dwy ® 6"HLp,q(M®goo)’ ||30(x) HL”"I(M)a ||ST’($)||LW1(M) } HbNHLp’,q’(M)
Taking the supremum over all by such that [|by|| 7. (n) < 1, we deduce

2| Lrary < CmaX{H Zda:n ® enHLp,q(M@m), |sc(@)|| Lra(m) s ||sr(:c)||Lp,q(M)}.
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If 2 < p < 00,q = 00, considering the duality LP*°(M) = (L”lvl(./\/l))*, we similarly

obtain the desired result.

Step 3. Now we prove the low estimate of (6.7). First, we observe

I de" ® 6"HL2(M®ZOO) < llellzzns |l de" ® 6"HLOO(/\/I@MOO) < ]| oo )

Then by interpolation , we get for 2 < p < 00, 0 < g < 00
H Z dr, ® 6nHLp,q(M®goo) < C||z||Lp’q(M)-

Thus it remains to majorize ||s.(z)|rrar) and ||s.(z)| rarr). Again, we view
LP(M; &,_1,0?) as a closed subspace of LP(M @ B((¢*(N?)))). Then there exists

a linear operator 1" such that

[sc(@) |l = I(dzn) | Levis, 1e2) = 1T(dwn) || Lo (o2 v2))))-

From Theorem 6.1 in [10], we know for any 2 < r < oo

T (dzn) | rme s ez < Cllellor -

By interpolation,

|17 (dn) | LraomeBemzy) < Cllzlliramy.

Thus we obtain

[sc(2)||Lpa < CHIITHLP,q(M).

The same argument can also be applied to ||s,(z)||zr.a, we obtain the desired in-

equality:.

Step 4. The low estimate of (6.8) is similar to step 2 by using the result in
step 3, therefore omit it. Thus the proof of Theorem 3.1 is complete. O
As the commutative case, the noncommutative Rosenthal inequalities can be
deduced from the Buekholder inequalities established in section 3. To state the non-
commutative Rosenthal inequalities, we need to introduce a notion of independence

in the noncommutative setting. The following definition is introduced in [51].

Definition 6.3.1  Let (M, 7) be a noncommutative probability space and N and A,
von Neumann subalgebras of M such that N' C A for every k. The sequence A;, may
be finite.
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(1) We say that A, are independent over A/ or with respect to Ey if for every k
and for all x € Aj and y in the von Neumann subalgebra generated by (A;) 2,

En(wy) = En(2)En ().

(2) A sequence (zx) C LP9(M) is said to independent with respect to &y if there
exist Ay such that z € LP9(Ay) and (Ay) is independent with respect to &j.

If ' = C then &y = 7(-)1, we say these notions are independent with respect to
the state 7.

We refer to [51] and [105] for natural examples of independent sequences.

Now we investigate the Rosenthal inequalities in noncommutative LP9(M). In
this section we always assume that A" and (.A,,) are von Neumann subalgebras of M
such that (A,,) is independent with respect to the conditional expectation & = &).

Let (A,) be an independent sequence of von Neumann subalgebras such that
(x,) C LPYM) with &y (z,) = 0. Let M,, be the von Neumann algebra generated
by (Aj, ..., A,). Then M,, is an increasing filtration of subalgebras of M. Let &, be
the associated conditional expectations. The independence assumption implies that

for every b € M,,_1,
EN(En_1(xn)b) = En(xpb) = En(x,)EN (D) = 0.
Therefor,
(bﬁn_l(.]fn) =0.

Thus (z,) is a martingale difference with respect to (M,). Now we form a non-
commutative martingale y = (y,) by setting dy, = x,. Applying once more the

independence assumption, we get
En1(xpx)) = En(Tp)).

Thus we can directly deduce the following Rosenthal inequalities from the noncom-

mutative Burkholder inequalities.

Theorem 6.3.2 Given2 < p < oo and 1 < ¢ < oo. Let (M, 7) be a noncommutative
probability space, and (x,,) C LP9(M) be any finite sequence independently with respect
to & such that &(x,) = 0. Then

I3 wallzvaan = max { | 3 20 @ el aguiormy | @)l marisys | @) lmairnsn |-

n n
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In the case N'= C, the theorem above takes a simpler form. We can explicitly

state as follows.

Corollary 6.3.1 Given2 < p < oo and 1 < ¢ < oo. Let (M, 7) be a noncommutative
probability space, and (z,) C LP? be any finite sequence independently with respect to
7 such that 7(z,,) = 0. Then

1/2
1> @l = max {[| 3 0 @ enllpagagermy: (2 I7ulann) * }-

Now we can extend Theorem 6.3.2 to the case 1 < p < 2,1 < ¢ < o0o. We
start by considering the subspace IP%(M ® (>°) of LP9(M @ (*°) consisting of all
sequences (x,) such that z,, € LP4(A,) with &(z,) = 0,1 < p < 00,1 < ¢ < 0.
Alternately, I"7(M ® £>°) can be defined as the closure in LP?(M ® £°°). Similarly,
we define the corresponding subspaces of LP9(M, &;1?) and LP9(M, &; (%), which
are denoted respectively by IP9(M,&; (?) and IP9(M, &; (2).

Lemma 6.3.2 Let 1 < p < o0,1 <g < oco. Then I"(M & () is complemented in
LP9(M ® £). The similar statements hold for I79(M, &; ¢?) and P9 M, &; (?).

Proof Define the map 1" : LP(M @) — LPUM @) by T ((x1,)) = (Ea, (zx)).
Then

IT (@) ey = 1 E @) nuaemy = D 164 (@) arg

< D lllZogun = 1@ 1o msee-

So T'is a contraction on LP(M®/(>). By interpolation, T" is bounded on LP?(M®&{>)
for 1 < p < 00,1 < ¢ < oo. The same argument show F((z)) = (&(zx)) is
also bounded on LPY(M ® (). Then (id — F)T is the desired projection from
LPI(M @ ) onto IP9(M @ £*°). Similar arguments are true for I74(M, &; (%) and
IP(M, &; (%), we omit the details.

we complete the proof of this Lemma. O

Theorem 6.3.3 Given 1 < p < 2,1 < ¢ < o0. Let (M, 7) be a noncommutative

probability space, and (x,) C L™? be any finite sequence independently with respect to
& such that &(x,) = 0. Then

H ;l’n Lp:a(M) ~ lllf{H ;yn@en

patstarey I e siy N acaasen }-
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where y,,z, and w, are respectively independent with respect to & satisfying
&(yn) = E(2n) = &(wn) = 0.
Proof Let z,, = y, +w, + 2z, be any decomposition satisfying the conditions above.

Then
i)

[ ] =

For 1 <p <2,

2 1/2 1/p
p
[0, =B w0 = Itlinn) ™

where (g4) denote the Rademacher sequence. Noting Lemma 6.3.2 and by interpo-

I tnllran < C|| Yo

Denoting z = ) z,, we have

1/2
12 narey = 12" 2lornamany < 162 pmrmarian = | (30 ECGE20) ||

[
LPa(M)

Lra(M +HZZ"

lation,

LP:a(M®LE®) '

Passing to adjoint, we get the same argument,

b

<(C o) e 42).
Loa(M) = ||(w )||L (M, E:02)

To prove the converse inequality we use Theorem 6.3.2 and the duality again. Let

q # oo. Note that the infimum above is the norm of (x,) in sum space I"9(M ®

0°) + 1P M, E; 0%) + [P M, &; £%). By the duality between sums and intersections

and Lemma 6.3.2, we have

(17 (M=) (M, EC)NI (M, 83 ) = IPIMEE™)+IPIM, 83 C)+ 1M, 65 )
Now let (27) € I""7 (M @ (=) N [P (M, &; 02) N 177 (M, &; £2) such that

||( )HIP "(M®e)NIP ' (M,E542)NTP 4 (M, E342) <1

Then by Theorem 6.3.2,

|32

Thus by independence assumption and the Holder inequality
(S| =[r () () < o] Eoon

If ¢ = oo, we can use I»*(M) = (IP"}(M))". We also deduce the desired inequality.
We complete the proof. O

<C.
174 (M)

e (M)
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