Ressource documentaire

Vers des virus artificiels (en Français)


URL d'accès : http://www.canal-u.tv/canalu/producteurs/universit...

Droits : Droits réservés à l'éditeur et aux auteurs

Auteur(s) : BEHR Jean Paul
Éditeur(s) : UTLS - la suite
05-11-2002

Description : Le potentiel thérapeutique des oligonucléotides et des gènes a été amplement démontré sur des systèmes modèles. Malheureusement, les développements cliniques se heurtent encore à des problèmes de biodisponibilité, de réactions immunitaires à l'encontre des vecteurs viraux ou de trafic intracellulaire pour les vecteurs artificiels. Cette dernière classe de vecteurs est attractive, car elle ne se limite ni aux molécules ni aux solutions trouvées par l'Evolution pour ‘transfecter' des cellules. Il est donc envisageable de contourner le système immunitaire. De plus, les avancées récentes dans la compréhension du mécanisme de transfert de gènes fournissent aux chimistes de nouveaux éléments de réflexion pour le développement de vecteurs modulaires, capables de franchir les multiples barrières extra- et intracellulaires. Ainsi la condensation de l'ADN par un vecteur polycationique classique conduit à des particules polymorphes de 50 à 500 nm, contenant chacune des centaines de copies du gène. La diffusion de ces particules dans un tissu est freinée par leur taille. Nous avons montré qu'il est possible de former des particules de 25 nm ne contenant qu'une molécule d'ADN, à condition de procéder en deux étapes: le gène est d'abord condensé de manière réversible à l'aide d'un détergent cationique soluble, l'entropie dirigeant spontanément le système vers le plus grand nombre de particules (donc la plus petite taille). Après équilibration, le détergent est dimérisé en lipide insoluble, réaction qui est favorisée par la matrice d'acide nucléique. Pour l'étape suivante, c'est-à-dire l'entrée dans la cellule, nous avons choisi comme cible les hépatocytes ou encore les cellules vasculaires des tumeurs. Ces deux types cellulaires sont physiquement accessibles par la voie systémique. Des résultats préliminaires in vitro montrent que des complexes neutres ADNn- / polymèren+ sur lesquels sont greffés des résidus galactose ou des peptides RGD sont capables de transfecter ces cellules par endocytose médiée respectivement par le récepteur des asialoglycoprotéines ou par les intégrines avb3,5. Après pénétration des complexes d'ADN dans la cellule, leur sortie des endosomes peut être favorisée par l'effet "éponge à protons". En effet, des vecteurs cationiques comme la polyéthylenimine (PEI), qui possède un grand pouvoir tampon dans le domaine de pH 7-5, sont capables d'induire le gonflement osmotique puis la rupture des endosomes. Mais le principal obstacle au transfert de gènes reste la membrane nucléaire. Il est possible de la franchir en détournant la machinerie d'import de protéines endogènes. En effet, la conjugaison chimique d'un peptide de localisation nucléaire (NLS) à l'une des extrémités du gène augmente son expression jusqu'à mille fois. Notre hypothèse est que l'ADN-NLS, présent initialement dans le cytoplasme, est enfilé à travers un pore nucléaire par les importines. Puis le reste de la molécule filiforme est tiré dans le noyau au fur et à mesure que l'ADN est condensé en chromatine. La chimie génétique permet donc de développer des systèmes supramoléculaires capables de franchir séparément les principales barrières extra et intracellulaires. Certaines de ces solutions, comme l'endocytose des particules après fixation aux intégrines, ou encore l'utilisation de la machinerie d'import nucléaire, sont calquées sur les virus. D'autres, comme l'encapsidation d'un génôme en dimérisant un détergent, ou la rupture d'endosomes par des éponges à protons, n'ont pas leur équivalent naturel. Reste à fondre ces solutions ponctuelles dans une particule unique, un virus artificiel : ceci est une autre histoire !
Mots-clés libres : ADN, génétique, virus
TECHNIQUE

Type : image en mouvement
Format : video/x-flv


Source(s) : 
rtmp://streamer2.cerimes.fr/vod/canalu/videos/utls/831412075


Entrepôt d'origine : Canal-U - OAI Archive
Identifiant : oai:canal-u.fr:104504
Type de ressource : Ressource documentaire
Exporter au format XML

Ressource pédagogique

Vers des virus artificiels (en Français)


URL d'accès : http://www.canal-u.tv/canalu/producteurs/universit...
rtmp://streamer2.cerimes.fr/vod/canalu/videos/utls...

Identifiant de la fiche : 104504
Schéma de la métadonnée : LOMv1.0, LOMFRv1.0

Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs

Auteur(s) : BEHR JEAN PAUL
Éditeur(s) : UTLS - la suite
05-11-2002

Description :  Le potentiel thérapeutique des oligonucléotides et des gènes a été amplement démontré sur des systèmes modèles. Malheureusement, les développements cliniques se heurtent encore à des problèmes de biodisponibilité, de réactions immunitaires à l'encontre des vecteurs viraux ou de trafic intracellulaire pour les vecteurs artificiels. Cette dernière classe de vecteurs est attractive, car elle ne se limite ni aux molécules ni aux solutions trouvées par l'Evolution pour ‘transfecter' des cellules. Il est donc envisageable de contourner le système immunitaire. De plus, les avancées récentes dans la compréhension du mécanisme de transfert de gènes fournissent aux chimistes de nouveaux éléments de réflexion pour le développement de vecteurs modulaires, capables de franchir les multiples barrières extra- et intracellulaires. Ainsi la condensation de l'ADN par un vecteur polycationique classique conduit à des particules polymorphes de 50 à 500 nm, contenant chacune des centaines de copies du gène. La diffusion de ces particules dans un tissu est freinée par leur taille. Nous avons montré qu'il est possible de former des particules de 25 nm ne contenant qu'une molécule d'ADN, à condition de procéder en deux étapes: le gène est d'abord condensé de manière réversible à l'aide d'un détergent cationique soluble, l'entropie dirigeant spontanément le système vers le plus grand nombre de particules (donc la plus petite taille). Après équilibration, le détergent est dimérisé en lipide insoluble, réaction qui est favorisée par la matrice d'acide nucléique. Pour l'étape suivante, c'est-à-dire l'entrée dans la cellule, nous avons choisi comme cible les hépatocytes ou encore les cellules vasculaires des tumeurs. Ces deux types cellulaires sont physiquement accessibles par la voie systémique. Des résultats préliminaires in vitro montrent que des complexes neutres ADNn- / polymèren+ sur lesquels sont greffés des résidus galactose ou des peptides RGD sont capables de transfecter ces cellules par endocytose médiée respectivement par le récepteur des asialoglycoprotéines ou par les intégrines avb3,5. Après pénétration des complexes d'ADN dans la cellule, leur sortie des endosomes peut être favorisée par l'effet "éponge à protons". En effet, des vecteurs cationiques comme la polyéthylenimine (PEI), qui possède un grand pouvoir tampon dans le domaine de pH 7-5, sont capables d'induire le gonflement osmotique puis la rupture des endosomes. Mais le principal obstacle au transfert de gènes reste la membrane nucléaire. Il est possible de la franchir en détournant la machinerie d'import de protéines endogènes. En effet, la conjugaison chimique d'un peptide de localisation nucléaire (NLS) à l'une des extrémités du gène augmente son expression jusqu'à mille fois. Notre hypothèse est que l'ADN-NLS, présent initialement dans le cytoplasme, est enfilé à travers un pore nucléaire par les importines. Puis le reste de la molécule filiforme est tiré dans le noyau au fur et à mesure que l'ADN est condensé en chromatine. La chimie génétique permet donc de développer des systèmes supramoléculaires capables de franchir séparément les principales barrières extra et intracellulaires. Certaines de ces solutions, comme l'endocytose des particules après fixation aux intégrines, ou encore l'utilisation de la machinerie d'import nucléaire, sont calquées sur les virus. D'autres, comme l'encapsidation d'un génôme en dimérisant un détergent, ou la rupture d'endosomes par des éponges à protons, n'ont pas leur équivalent naturel. Reste à fondre ces solutions ponctuelles dans une particule unique, un virus artificiel : ceci est une autre histoire !
Mots-clés libres : adn, génétique, virus

Classification UNIT : Matériaux > Autres
Sciences du vivant > Santé et médical
Classification : Technologie (Sciences appliquées) > Sciences médicales, Médecine
Indice(s) Dewey: Sciences médicales. Médecine (610)


PEDAGOGIQUE

Type pédagogique : cours / présentation

Niveau : enseignement supérieur, autres



TECHNIQUE


Type de contenu : image en mouvement
Format : video/x-flv
Taille : 165.410 Mo
Durée d'exécution : 2 heures 8 minutes 54 secondes



RELATIONS


Cette ressource fait partie de :
  • Les interfaces



Entrepôt d'origine : Canal-U - OAI Archive
Identifiant : oai:canal-u.fr:104504
Type de ressource : Ressource pédagogique
Exporter au format XML