Ressource documentaire
Camillo De Lellis - Center manifolds and regularity of area-minimizing currents (Part 3) (en Anglais) | |||
Droits : CC BY-NC-ND 4.0 Auteur(s) : Bastien Fanny 24-06-2015 Description : A celebrated theorem of Almgren shows that every integer rectifiable current which minimizes (locally) the area is a smooth submanifold except for a singular set of codimension at most 2. Almgren’s theorem is sharp in codimension higher than 1, because holomorphic subvarieties of Cn are area-minimizing. In fact the typical singularity of a 2-dimensional area-minimizing current is modelled by branch points of holomorphic curves. These singularities are rather difficult to analyze because they might be very high order phenomena. Mots-clés libres : mathématiques,Grenoble,école d'été,institut fourier,summer school,geometric measure theory,calculus of variation | TECHNIQUE Type : image en mouvement Format : video/x-flv Source(s) : rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/_22145/delellis_ecoleete_24062015_hd.mp4 | ||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22145 Type de ressource : Ressource documentaire |
Exporter au format XML |
Ressource pédagogique
Camillo De Lellis - Center manifolds and regularity of area-minimizing currents (Part 3) (en Anglais) | |||||||||
Identifiant de la fiche : 22145 Schéma de la métadonnée : LOMv1.0, LOMFRv1.0 Droits : libre de droits, gratuit Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 Éditeur(s) : Fanny Bastien Description : A celebrated theorem of Almgren shows that every integer rectifiable current which minimizes (locally) the area is a smooth submanifold except for a singular set of codimension at most 2. Almgren’s theorem is sharp in codimension higher than 1, because holomorphic subvarieties of Cn are area-minimizing. In fact the typical singularity of a 2-dimensional area-minimizing current is modelled by branch points of holomorphic curves. These singularities are rather difficult to analyze because they might be very high order phenomena. Mots-clés libres : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
| PEDAGOGIQUE Type pédagogique : cours / présentation Niveau : doctorat TECHNIQUE Type de contenu : image en mouvement Format : video/x-flv Taille : 4.84 Go Durée d'exécution : 1 heure 24 minutes 59 secondes RELATIONS Cette ressource fait partie de : | ||||||||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22145 Type de ressource : Ressource pédagogique |
Exporter au format XML |