Ressource documentaire
Christian Gérard - Introduction to field theory on curved spacetimes (Part 2) (en Anglais) | |||
Droits : CC BY-NC-ND 4.0 Auteur(s) : Bastien Fanny 20-06-2014 Description : The aim of these lectures is to give an introduction to quantum field theory on curved spacetimes, from the point of view of partial differential equations and microlocal analysis. I will concentrate on free fields and quasi-free states, and say very little on interacting fields or perturbative renormalization. I will start by describing the necessary algebraic background, namely CCR and CAR algebras, and the notion of quasi-free states, with their basic properties and characterizations. I will then introduce the notion of globally hyperbolic spacetimes, and its importance for classical field theory (advanced and retarded fundamental solutions, unique solvability of the Cauchy problem). Using these results I will explain the algebraic quantization of the two main examples of quantum fields ona manifold, namely the Klein-Gordon (bosonic) and Dirac (fermionic) fields.In the second part of the lectures I will discuss the important notion of Hadamardstates , which are substitutes in curved spacetimes for the vacuum state in Minkowskispacetime. I will explain its original motivation, related to the definition of therenormalized stress-energy tensor in a quantum field theory. I will then describethe modern characterization of Hadamard states, by the wavefront set of their twopointfunctions, and prove the famous Radzikowski theorem , using the Duistermaat-Hörmander notion of distinguished parametrices . If time allows, I will also describe the quantization of gauge fields, using as example the Maxwell field. Mots-clés libres : mathématiques,Grenoble,école d'été,General Relativity,institut fourier,summer school,asymptotic analysis | TECHNIQUE Type : image en mouvement Format : video/x-flv Source(s) : rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/christian.gerard.introduction.to.field.theory.on.curved.spacetimes.part.2._22393/gerard2_ecoleete_20062014_sd.mp4 | ||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22393 Type de ressource : Ressource documentaire |
Exporter au format XML |
Ressource pédagogique
Christian Gérard - Introduction to field theory on curved spacetimes (Part 2) (en Anglais) | |||||||||
Identifiant de la fiche : 22393 Schéma de la métadonnée : LOMv1.0, LOMFRv1.0 Droits : libre de droits, gratuit Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 Éditeur(s) : Fanny Bastien Description : The aim of these lectures is to give an introduction to quantum field theory on curved spacetimes, from the point of view of partial differential equations and microlocal analysis. I will concentrate on free fields and quasi-free states, and say very little on interacting fields or perturbative renormalization. I will start by describing the necessary algebraic background, namely CCR and CAR algebras, and the notion of quasi-free states, with their basic properties and characterizations. I will then introduce the notion of globally hyperbolic spacetimes, and its importance for classical field theory (advanced and retarded fundamental solutions, unique solvability of the Cauchy problem). Using these results I will explain the algebraic quantization of the two main examples of quantum fields ona manifold, namely the Klein-Gordon (bosonic) and Dirac (fermionic) fields.In the second part of the lectures I will discuss the important notion of Hadamardstates , which are substitutes in curved spacetimes for the vacuum state in Minkowskispacetime. I will explain its original motivation, related to the definition of therenormalized stress-energy tensor in a quantum field theory. I will then describethe modern characterization of Hadamard states, by the wavefront set of their twopointfunctions, and prove the famous Radzikowski theorem , using the Duistermaat-Hörmander notion of distinguished parametrices . If time allows, I will also describe the quantization of gauge fields, using as example the Maxwell field. Mots-clés libres : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
| PEDAGOGIQUE Type pédagogique : cours / présentation Niveau : doctorat TECHNIQUE Type de contenu : image en mouvement Format : video/x-flv Taille : 4.210 Go Durée d'exécution : 1 heure 58 minutes 32 secondes RELATIONS Cette ressource fait partie de : | ||||||||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22393 Type de ressource : Ressource pédagogique |
Exporter au format XML |