Ressource documentaire
Rod Gover - Geometric Compactification, Cartan holonomy, and asymptotics (en Anglais) | |||
Droits : CC BY-NC-ND 4.0 Auteur(s) : Bastien Fanny 01-07-2014 Description : Conformal compactification has long been recognised as an effective geometric framework for relating conformal geometry, and associated field theories ``at infinity'', to the asymptotic phenomena of an interior (pseudo-‐)-‐Riemannian geometry of one higher dimension. It provides an effective approach for analytic problems in GR, geometric scattering, conformal invariant theory, as well as the AdS/CFT correspondence of Physics. I will describe how the notion of conformal compactification can be linked to Cartan holonomy reduction. This leads to a conceptual way to define other notions of geometric compactification. The idea will be taken up, in particular, for the case of compactifying pseudo-‐ Riemannian manifolds using projective geometry. A new characterisation of projectively compact metrics will be given, and some results on their asymptotics near the conformal infinity. This is joint work with Andreas Cap. Mots-clés libres : mathématiques,Grenoble,école d'été,General Relativity,institut fourier,summer school,asymptotic analysis | TECHNIQUE Type : image en mouvement Format : video/x-flv Source(s) : rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/rod.gover.geometric.compactification.cartan.holonomy.and.asymptotics_22499/gover_ecoleete_01072014_sd.mp4 | ||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22499 Type de ressource : Ressource documentaire |
Exporter au format XML |
Ressource pédagogique
Rod Gover - Geometric Compactification, Cartan holonomy, and asymptotics (en Anglais) | |||||||||
Identifiant de la fiche : 22499 Schéma de la métadonnée : LOMv1.0, LOMFRv1.0 Droits : libre de droits, gratuit Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 Éditeur(s) : Fanny Bastien Description : Conformal compactification has long been recognised as an effective geometric framework for relating conformal geometry, and associated field theories ``at infinity'', to the asymptotic phenomena of an interior (pseudo-‐)-‐Riemannian geometry of one higher dimension. It provides an effective approach for analytic problems in GR, geometric scattering, conformal invariant theory, as well as the AdS/CFT correspondence of Physics. I will describe how the notion of conformal compactification can be linked to Cartan holonomy reduction. This leads to a conceptual way to define other notions of geometric compactification. The idea will be taken up, in particular, for the case of compactifying pseudo-‐ Riemannian manifolds using projective geometry. A new characterisation of projectively compact metrics will be given, and some results on their asymptotics near the conformal infinity. This is joint work with Andreas Cap. Mots-clés libres : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
| PEDAGOGIQUE Type pédagogique : cours / présentation Niveau : doctorat TECHNIQUE Type de contenu : image en mouvement Format : video/x-flv Taille : 2.25 Go Durée d'exécution : 1 heure 1 minute 56 secondes RELATIONS Cette ressource fait partie de : | ||||||||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22499 Type de ressource : Ressource pédagogique |
Exporter au format XML |