Ressource documentaire
Mike Boyle - Nonnegative matrices : Perron Frobenius theory and related algebra (Part 3) (en Français) | |||
Droits : CC BY-NC-ND 4.0 Auteur(s) : Bastien Fanny 24-06-2013 Description : Lecture I. I’ll give a complete elementary presentation of the essential features of the Perron Frobenius theory of nonnegative matrices for the central case of primitive matrices (the "Perron" part). (The "Frobenius" part, for irreducible matrices, and finally the case for general nonnegative matrices, will be described, with proofs left to accompanying notes.) For integer matrices we’ll relate "Perron numbers" to this and Mahler measures. Lecture II. I’ll describe how the Perron-Frobenius theory generalizes (and fails to generalize) to 1,2,... x 1,2,... nonnegative matrices. Lecture III. We’ll see the simple, potent formalism by which a certain zeta function can be associated to a nonnegative matrix, and its relation to the nonzero spectrum of the matrix, and how polynomial matrices can be used in this setting for constructions and conciseness. Lecture IV. We’ll describe a natural algebraic equivalence relation on finite square matrices over a semiring (such as Z, Z_+, R, ... ) which refines the nonzero spectrum and is related to K-theory. Mots-clés libres : mathématiques,Grenoble,école d'été,dynamics,institut fourier,summer school,number theory | TECHNIQUE Type : image en mouvement Format : video/x-flv Source(s) : rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/mike.boyle.nonnegative.matrices.perron.frobenius.theory.and.related.algebra.part.3._22719/boyle_ecoleete_24062013_sd.mp4 | ||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22719 Type de ressource : Ressource documentaire |
Exporter au format XML |
Ressource pédagogique
Mike Boyle - Nonnegative matrices : Perron Frobenius theory and related algebra (Part 3) (en Français) | |||||||||
Identifiant de la fiche : 22719 Schéma de la métadonnée : LOMv1.0, LOMFRv1.0 Droits : libre de droits, gratuit Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 Éditeur(s) : Fanny Bastien Description : Lecture I. I’ll give a complete elementary presentation of the essential features of the Perron Frobenius theory of nonnegative matrices for the central case of primitive matrices (the "Perron" part). (The "Frobenius" part, for irreducible matrices, and finally the case for general nonnegative matrices, will be described, with proofs left to accompanying notes.) For integer matrices we’ll relate "Perron numbers" to this and Mahler measures. Lecture II. I’ll describe how the Perron-Frobenius theory generalizes (and fails to generalize) to 1,2,... x 1,2,... nonnegative matrices. Lecture III. We’ll see the simple, potent formalism by which a certain zeta function can be associated to a nonnegative matrix, and its relation to the nonzero spectrum of the matrix, and how polynomial matrices can be used in this setting for constructions and conciseness. Lecture IV. We’ll describe a natural algebraic equivalence relation on finite square matrices over a semiring (such as Z, Z_+, R, ... ) which refines the nonzero spectrum and is related to K-theory. Mots-clés libres : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
| PEDAGOGIQUE Type pédagogique : cours / présentation Niveau : doctorat TECHNIQUE Type de contenu : image en mouvement Format : video/x-flv Taille : 2.37 Go Durée d'exécution : 1 heure 5 minutes 18 secondes RELATIONS Cette ressource fait partie de : | ||||||||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22719 Type de ressource : Ressource pédagogique |
Exporter au format XML |