Ressource documentaire

Decision making at scale: Algorithms, Mechanisms, and Platforms (en Anglais)


URL d'accès : http://www.canal-u.tv/?redirectVideo=22851...

Droits : Droits réservés à l'éditeur et aux auteurs

Auteur(s) : Goel Ashish
Éditeur(s) : Région PACA ,INRIA (Institut national de recherche en informatique et automatique)
16-06-2016

Description : YouTube competes with Hollywood as an entertainment channel, and also supplements Hollywood by acting as a distribution mechanism. Twitter has a similar relationship to news media, and Coursera to Universities. But there are no online alternatives for making democratic decisions at large scale as a society. In this talk, we will describe two algorithmic approaches towards large scale decision making that we are exploring. a) Knapsack voting and participatory budgeting: All budget problems are knapsack problems at their heart, since the goal is to pack the largest amount of societal value into a budget. This naturally leads to « knapsack voting » where each voter solves a knapsack problem, or comparison-based voting where each voter compares pairs of projects in terms of benefit-per-dollar. We analyze natural aggregation algorithms for these mechanisms, and show that knapsack voting is strategy-proof. We will also describe our experience with helping implement participatory budgeting in close to two dozen cities and municipalities, and briefly comment on issues of fairness. b) Triadic consensus: Here, we divide individuals into small groups (say groups of three) and ask them to come to consensus, the results of the triadic deliberations in each round form the input to the next round. We show that this method is efficient and strategy-proof in fairly general settings, whereas no pair-wise deliberation process can have the same properties. This is joint work with Tanja Aitamurto, Brandon Fain, Anilesh Krishnaswamy, David Lee, Kamesh Munagala, and Sukolsak Sakshuwong. Bio:
Mots-clés libres : problème knapsack,triadic consensus
TECHNIQUE

Type : image en mouvement
Format : video/x-flv


Source(s) : 
rtmpt://fms2.cerimes.fr:80/vod/fuscia/decision.making.at.scale.algorithms.mechanisms.and.platforms_22851/ashish.goel.16.juin.2016.master.720.a.2500kbits.mp4


Entrepôt d'origine : Canal-u.fr
Identifiant : oai:canal-u.fr:22851
Type de ressource : Ressource documentaire
Exporter au format XML

Ressource pédagogique

Decision making at scale: Algorithms, Mechanisms, and Platforms (en Anglais)


URL d'accès : http://www.canal-u.tv/video/inria/decision_making_...
rtmpt://fms2.cerimes.fr:80/vod/fuscia/decision.mak...
http://www.canal-u.tv/video/inria/dl.1/decision_ma...

Identifiant de la fiche : 22851
Schéma de la métadonnée : LOMv1.0, LOMFRv1.0

Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs.

Auteur(s) : GOEL ASHISH
Éditeur(s) : Région PACA, INRIA (Institut national de recherche en informatique et automatique), INRIA (Institut national de recherche en informatique et automatique), CNRS - Centre National de la Recherche Scientifique, UNS
16-06-2016

Description : YouTube competes with Hollywood as an entertainment channel, and also supplements Hollywood by acting as a distribution mechanism. Twitter has a similar relationship to news media, and Coursera to Universities. But there are no online alternatives for making democratic decisions at large scale as a society. In this talk, we will describe two algorithmic approaches towards large scale decision making that we are exploring. a) Knapsack voting and participatory budgeting: All budget problems are knapsack problems at their heart, since the goal is to pack the largest amount of societal value into a budget. This naturally leads to « knapsack voting » where each voter solves a knapsack problem, or comparison-based voting where each voter compares pairs of projects in terms of benefit-per-dollar. We analyze natural aggregation algorithms for these mechanisms, and show that knapsack voting is strategy-proof. We will also describe our experience with helping implement participatory budgeting in close to two dozen cities and municipalities, and briefly comment on issues of fairness. b) Triadic consensus: Here, we divide individuals into small groups (say groups of three) and ask them to come to consensus; the results of the triadic deliberations in each round form the input to the next round. We show that this method is efficient and strategy-proof in fairly general settings, whereas no pair-wise deliberation process can have the same properties. This is joint work with Tanja Aitamurto, Brandon Fain, Anilesh Krishnaswamy, David Lee, Kamesh Munagala, and Sukolsak Sakshuwong. Bio:
Mots-clés libres : problème knapsack, triadic consensus

Classification UNIT : Systèmes d'information > Fondamentaux
Outils et méthodes de l'ingénieur > Techniques managériales
Classification : Technologie (Sciences appliquées) > Gestion de l’entreprise et de la production
Mathématiques et Sciences de la nature et de la matière > Mathématiques
Instruments du savoir : organisations et documents > Informatique
Indice(s) Dewey: Prise de décision et gestion de l'information (658.403)
Algorithmes (518.1)
Informatique - Traitement des données informatiques (004)


PEDAGOGIQUE

Type pédagogique : cours / présentation

Niveau : master, doctorat



TECHNIQUE


Type de contenu : image en mouvement
Format : video/x-flv
Taille : 1.23 Go
Durée d'exécution : 1 heure 2 minutes 59 secondes



RELATIONS


Cette ressource fait partie de :
  • Colloquium Jacques Morgenstern : recherches en STIC - nouveaux thèmes scientifiques, nouveaux domaines d’application, et enjeux



Entrepôt d'origine : Canal-u.fr
Identifiant : oai:canal-u.fr:22851
Type de ressource : Ressource pédagogique
Exporter au format XML