Version imprimable

Ressource documentaire

Andras Vasy - The Feynman propagator and its positivity properties (en Anglais)


URL d'accès : http://www.canal-u.tv/?redirectVideo=21956...

Droits : CC BY-NC-ND 4.0

Auteur(s) : Vasy Andràs, Bastien Fanny
12-05-2016

Description : One usually considers wave equations as evolution equations, i.e. imposes initial data and solves them. Equivalently, one can consider the forward and backward solution operators for the wave equation, these solve an equation Lu=f" style="position: relative, " tabindex="0" id="MathJax-Element-1-Frame">Lu=f, for say f" style="position: relative, " tabindex="0" id="MathJax-Element-2-Frame">f compactly supported, by demanding that u" style="position: relative, " tabindex="0" id="MathJax-Element-3-Frame">u is supported at points which are reachable by forward, respectively backward, time-like or light-like curves. This property corresponds to causality. But it has been known for a long time that in certain settings, such as Minkowski space, there are other ways of solving wave equations, namely the Feynman and anti-Feynman solution operators (propagators). I will explain a general setup in which all of these propagators are inverses of the wave operator on appropriate function spaces, and also mention positivity properties, and the connection to spectral and scattering theory in Riemannian settings, as well as to the classical parametrix construction of Duistermaat and Hörmander.
Mots-clés libres : Feynman ,Grenoble (Isère),institut fourier,colloquium mathalp,Propagator
TECHNIQUE

Type : image en mouvement
Format : video/x-flv


Source(s) : 
rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/andras.vasy.the.feynman.propagator.and.its.positivity.properties_21956/vasy_colloquium_12052016_hd.mp4


Entrepôt d'origine : Canal-u.fr
Identifiant : oai:canal-u.fr:21956
Type de ressource : Ressource documentaire
Exporter au format XML

Ressource pédagogique

Andras Vasy - The Feynman propagator and its positivity properties (en Anglais)


URL d'accès : http://www.canal-u.tv/video/institut_fourier/andra...
rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/an...

Identifiant de la fiche : 21956
Schéma de la métadonnée : LOMv1.0, LOMFRv1.0

Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0

Auteur(s) : VASY ANDRÀS
Éditeur(s) : Fanny Bastien
12-05-2016

Description : One usually considers wave equations as evolution equations, i.e. imposes initial data and solves them. Equivalently, one can consider the forward and backward solution operators for the wave equation; these solve an equation Lu=f" style="position: relative;" tabindex="0" id="MathJax-Element-1-Frame">Lu=f, for say f" style="position: relative;" tabindex="0" id="MathJax-Element-2-Frame">f compactly supported, by demanding that u" style="position: relative;" tabindex="0" id="MathJax-Element-3-Frame">u is supported at points which are reachable by forward, respectively backward, time-like or light-like curves. This property corresponds to causality. But it has been known for a long time that in certain settings, such as Minkowski space, there are other ways of solving wave equations, namely the Feynman and anti-Feynman solution operators (propagators). I will explain a general setup in which all of these propagators are inverses of the wave operator on appropriate function spaces, and also mention positivity properties, and the connection to spectral and scattering theory in Riemannian settings, as well as to the classical parametrix construction of Duistermaat and Hörmander.
Mots-clés libres : Feynman, Grenoble (Isère), institut fourier, colloquium mathalp, Propagator

Classification UNIT : Mathématiques > Fondamentaux
Classification : Mathématiques et Sciences de la nature et de la matière > Mathématiques
Indice(s) Dewey: Mathématiques (510)


PEDAGOGIQUE

Type pédagogique : cours / présentation

Niveau : doctorat



TECHNIQUE


Type de contenu : image en mouvement
Format : video/x-flv
Taille : 3.72 Go
Durée d'exécution : 1 heure 5 minutes 4 secondes



RELATIONS


Cette ressource fait partie de :
  • Colloquium MathAlp



Entrepôt d'origine : Canal-u.fr
Identifiant : oai:canal-u.fr:21956
Type de ressource : Ressource pédagogique
Exporter au format XML