Version imprimable |
Ressource documentaire
Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 2) (en Anglais) | |||
Droits : CC BY-NC-ND 4.0 Auteur(s) : Tonegawa Yoshihiro, Bastien Fanny 16-06-2015 Description : The course covers two separate but closely related topics. The first topic is the mean curvature flow in the framework of GMT due to Brakke. It is a flow of varifold moving by the generalized mean curvature. Starting from a quick review on the necessary tools and facts from GMT and the definition of the Brakke mean curvature flow, I will give an overview on the proof of the local regularity theorem. The second topic is the reaction-diffusion approximation of phase boundaries with key words such as the Modica-Mortola functional and the Allen-Cahn equation. Their singular perturbation problems are related to objects such as minimal surfaces and mean curvature flows in the framework of GMT. Mots-clés libres : mathématiques,Grenoble,école d'été,institut fourier,summer school,geometric measure theory,calculus of variation | TECHNIQUE Type : image en mouvement Format : video/x-flv Source(s) : rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/yoshihiro.tonegawa.analysis.on.the.mean.curvature.flow.and.the.reaction.diffusion.approximation.part.2._22185/tonegawa_ecoleete_16062015_sd.mp4 | ||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22185 Type de ressource : Ressource documentaire |
Exporter au format XML |
Ressource pédagogique
Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 2) (en Anglais) | |||||||||
Identifiant de la fiche : 22185 Schéma de la métadonnée : LOMv1.0, LOMFRv1.0 Droits : libre de droits, gratuit Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 Auteur(s) : TONEGAWA YOSHIHIRO Éditeur(s) : Fanny Bastien 16-06-2015 Description : The course covers two separate but closely related topics. The first topic is the mean curvature flow in the framework of GMT due to Brakke. It is a flow of varifold moving by the generalized mean curvature. Starting from a quick review on the necessary tools and facts from GMT and the definition of the Brakke mean curvature flow, I will give an overview on the proof of the local regularity theorem. The second topic is the reaction-diffusion approximation of phase boundaries with key words such as the Modica-Mortola functional and the Allen-Cahn equation. Their singular perturbation problems are related to objects such as minimal surfaces and mean curvature flows in the framework of GMT. Mots-clés libres : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
| PEDAGOGIQUE Type pédagogique : cours / présentation Niveau : doctorat TECHNIQUE Type de contenu : image en mouvement Format : video/x-flv Taille : 3.27 Go Durée d'exécution : 1 heure 30 minutes 6 secondes RELATIONS Cette ressource fait partie de : | ||||||||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22185 Type de ressource : Ressource pédagogique |
Exporter au format XML |