Version imprimable |
Ressource documentaire
Joseph Fu - Integral geometric regularity (Part 4) (en Anglais) | |||
Droits : CC BY-NC-ND 4.0 Auteur(s) : Fu Joseph, Bastien Fanny 24-06-2015 Description : In the original form given by Blaschke in the 1930s, the famous Principal Kinematic Formula expresses the Euler characteristic of the intersection of two sufficiently regular objects in euclidean space, integrated over the space of all possible relative positions, in terms of geometric invariants associated to each of them individually. It is natural to wonder about the precise regularity needed for this to work. The question turns on the existence of the normal cycle of such an object A, i.e. an integral current that stands in for its manifolds of unit normals if A is too irregular for the latter to exist in a literal sense. Despite significant recent progress, a comprehensive understanding of this construction remains maddeningly elusive. In these lectures we will discuss both of these aspects. Mots-clés libres : mathématiques,Grenoble,école d'été,institut fourier,summer school,geometric measure theory,calculus of variation | TECHNIQUE Type : image en mouvement Format : video/x-flv Source(s) : rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/joseph.fu.integral.geometric.regularity.part.4._22225/fu2_ecoleete_24062015_sd.mp4 | ||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22225 Type de ressource : Ressource documentaire |
Exporter au format XML |
Ressource pédagogique
Joseph Fu - Integral geometric regularity (Part 4) (en Anglais) | |||||||||
Identifiant de la fiche : 22225 Schéma de la métadonnée : LOMv1.0, LOMFRv1.0 Droits : libre de droits, gratuit Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 Auteur(s) : FU JOSEPH Éditeur(s) : Fanny Bastien 24-06-2015 Description : In the original form given by Blaschke in the 1930s, the famous Principal Kinematic Formula expresses the Euler characteristic of the intersection of two sufficiently regular objects in euclidean space, integrated over the space of all possible relative positions, in terms of geometric invariants associated to each of them individually. It is natural to wonder about the precise regularity needed for this to work. The question turns on the existence of the normal cycle of such an object A, i.e. an integral current that stands in for its manifolds of unit normals if A is too irregular for the latter to exist in a literal sense. Despite significant recent progress, a comprehensive understanding of this construction remains maddeningly elusive. In these lectures we will discuss both of these aspects. Mots-clés libres : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
| PEDAGOGIQUE Type pédagogique : cours / présentation Niveau : doctorat TECHNIQUE Type de contenu : image en mouvement Format : video/x-flv Taille : 3.06 Go Durée d'exécution : 1 heure 24 minutes 25 secondes RELATIONS Cette ressource fait partie de : | ||||||||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22225 Type de ressource : Ressource pédagogique |
Exporter au format XML |