Version imprimable

Ressource documentaire

Lars Andersson - Symmetry operators and energies (en Anglais)


URL d'accès : http://www.canal-u.tv/?redirectVideo=22353...

Droits : CC BY-NC-ND 4.0

Auteur(s) : Andersson Lars
02-07-2014

Description : Black holes play a central role in general relativity and astrophysics. The problem of proving the dynamical stability of the Kerr black hole spacetime, which is describes a rotating black hole in vacuum, is one of the most important open problems in general relativity. Following a brief introduction to the evolution problem for the Einstein equations, I will give some background on geometry of the Kerr spacetime. The analysis of fields on the exterior of the Kerr black hole serve as important model problems for the black hole stability problem. I will discuss some of the difficulties one encounters in analyzing waves in the Kerr exterior and how they can be overcome. A fundamentally important as pect of geometry and analysis in the Kerr spacetime is the fact that it is algebraically special, of Petrov type D, and therefore admits a Killing spinor of valence 2. I will introduce the 2 spinor and related formalisms which can be used to see how this structure leads to the Carter constant and the Teukolsky system. If there is time, I will discuss in this context some new conservation laws for fields of non zero spin.
Mots-clés libres : mathématiques,Grenoble,école d'été,General Relativity,institut fourier,summer school,asymptotic analysis
TECHNIQUE

Type : image en mouvement
Format : video/x-flv


Source(s) : 
rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/lars.andersson.symmetry.operators.and.energies_22353/andersson5_ecoleete_02072014_sd.mp4


Entrepôt d'origine : Canal-u.fr
Identifiant : oai:canal-u.fr:22353
Type de ressource : Ressource documentaire
Exporter au format XML

Ressource pédagogique

Lars Andersson - Symmetry operators and energies (en Anglais)


URL d'accès : http://www.canal-u.tv/video/institut_fourier/lars_...
rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/la...

Identifiant de la fiche : 22353
Schéma de la métadonnée : LOMv1.0, LOMFRv1.0

Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0

Auteur(s) : ANDERSSON LARS
02-07-2014

Description : Black holes play a central role in general relativity and astrophysics. The problem of proving the dynamical stability of the Kerr black hole spacetime, which is describes a rotating black hole in vacuum, is one of the most important open problems in general relativity. Following a brief introduction to the evolution problem for the Einstein equations, I will give some background on geometry of the Kerr spacetime. The analysis of fields on the exterior of the Kerr black hole serve as important model problems for the black hole stability problem. I will discuss some of the difficulties one encounters in analyzing waves in the Kerr exterior and how they can be overcome. A fundamentally important as pect of geometry and analysis in the Kerr spacetime is the fact that it is algebraically special, of Petrov type D, and therefore admits a Killing spinor of valence 2. I will introduce the 2 spinor and related formalisms which can be used to see how this structure leads to the Carter constant and the Teukolsky system. If there is time, I will discuss in this context some new conservation laws for fields of non zero spin.
Mots-clés libres : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis

Classification UNIT : Mathématiques > Fondamentaux
Classification : Mathématiques et Sciences de la nature et de la matière > Mathématiques
Indice(s) Dewey: Mathématiques (510)


PEDAGOGIQUE

Type pédagogique : cours / présentation

Niveau : doctorat



TECHNIQUE


Type de contenu : image en mouvement
Format : video/x-flv
Taille : 2.17 Go
Durée d'exécution : 59 minutes 58 secondes



RELATIONS


Cette ressource fait partie de :
  • Ecoles d'été
  • 2014



Entrepôt d'origine : Canal-u.fr
Identifiant : oai:canal-u.fr:22353
Type de ressource : Ressource pédagogique
Exporter au format XML