Version imprimable

Ressource documentaire

Christian Gérard - Introduction to field theory on curved spacetimes (Part 1) (en Anglais)


URL d'accès : http://www.canal-u.tv/?redirectVideo=22355...

Droits : CC BY-NC-ND 4.0

Auteur(s) : Gérard Christian, Bastien Fanny
20-06-2014

Description : The aim of these lectures is to give an introduction to quantum field theory on curved spacetimes, from the point of view of partial differential equations and microlocal analysis. I will concentrate on free fields and quasi-free states, and say very little on interacting fields or perturbative renormalization. I will start by describing the necessary algebraic background, namely CCR and CAR algebras, and the notion of quasi-free states, with their basic properties and characterizations. I will then introduce the notion of globally hyperbolic spacetimes, and its importance for classical field theory (advanced and retarded fundamental solutions, unique solvability of the Cauchy problem). Using these results I will explain the algebraic quantization of the two main examples of quantum fields ona manifold, namely the Klein-Gordon (bosonic) and Dirac (fermionic) fields.In the second part of the lectures I will discuss the important notion of Hadamardstates , which are substitutes in curved spacetimes for the vacuum state  in Minkowskispacetime. I will explain its original motivation, related to the definition of therenormalized stress-energy tensor in a quantum field theory. I will then describethe modern characterization of Hadamard states, by the wavefront set of their twopointfunctions, and prove the famous Radzikowski theorem , using the Duistermaat-Hörmander notion of distinguished parametrices . If time allows, I will also describe the quantization of gauge fields, using as example the Maxwell field.
Mots-clés libres : mathématiques,Grenoble,école d'été,General Relativity,institut fourier,summer school,asymptotic analysis
TECHNIQUE

Type : image en mouvement
Format : video/x-flv


Source(s) : 
rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/christian.gerard.introduction.to.field.theory.on.curved.spacetimes.part.1._22355/gerard1_ecoleete_20062014_sd.mp4


Entrepôt d'origine : Canal-u.fr
Identifiant : oai:canal-u.fr:22355
Type de ressource : Ressource documentaire
Exporter au format XML

Ressource pédagogique

Christian Gérard - Introduction to field theory on curved spacetimes (Part 1) (en Anglais)


URL d'accès : http://www.canal-u.tv/video/institut_fourier/chris...
rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/ch...

Identifiant de la fiche : 22355
Schéma de la métadonnée : LOMv1.0, LOMFRv1.0

Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0

Auteur(s) : GÉRARD CHRISTIAN
Éditeur(s) : Fanny Bastien
20-06-2014

Description : The aim of these lectures is to give an introduction to quantum field theory on curved spacetimes, from the point of view of partial differential equations and microlocal analysis. I will concentrate on free fields and quasi-free states, and say very little on interacting fields or perturbative renormalization. I will start by describing the necessary algebraic background, namely CCR and CAR algebras, and the notion of quasi-free states, with their basic properties and characterizations. I will then introduce the notion of globally hyperbolic spacetimes, and its importance for classical field theory (advanced and retarded fundamental solutions, unique solvability of the Cauchy problem). Using these results I will explain the algebraic quantization of the two main examples of quantum fields ona manifold, namely the Klein-Gordon (bosonic) and Dirac (fermionic) fields.In the second part of the lectures I will discuss the important notion of Hadamardstates , which are substitutes in curved spacetimes for the vacuum state  in Minkowskispacetime. I will explain its original motivation, related to the definition of therenormalized stress-energy tensor in a quantum field theory. I will then describethe modern characterization of Hadamard states, by the wavefront set of their twopointfunctions, and prove the famous Radzikowski theorem , using the Duistermaat-Hörmander notion of distinguished parametrices . If time allows, I will also describe the quantization of gauge fields, using as example the Maxwell field.
Mots-clés libres : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis

Classification UNIT : Mathématiques > Fondamentaux
Classification : Mathématiques et Sciences de la nature et de la matière > Mathématiques
Indice(s) Dewey: Mathématiques (510)


PEDAGOGIQUE

Type pédagogique : cours / présentation

Niveau : doctorat



TECHNIQUE


Type de contenu : image en mouvement
Format : video/x-flv
Taille : 4.32 Go
Durée d'exécution : 1 heure 59 minutes 16 secondes



RELATIONS


Cette ressource fait partie de :
  • Ecoles d'été
  • 2014



Entrepôt d'origine : Canal-u.fr
Identifiant : oai:canal-u.fr:22355
Type de ressource : Ressource pédagogique
Exporter au format XML