Version imprimable

Ressource documentaire

Rod Gover - An introduction to conformal geometry and tractor calculus (Part 2) (en Anglais)


URL d'accès : http://www.canal-u.tv/?redirectVideo=22431...

Droits : CC BY-NC-ND 4.0

Auteur(s) : Gover Rod, Bastien Fanny
24-06-2014

Description : After recalling some features (and the value of) the invariant ``Ricci calculus'' of pseudo-­‐Riemannian geometry, we look at conformal rescaling from an elementary perspective. The idea of conformal covariance is visited and some covariant/invariant equations from physics are recovered in this framework. Motivated by the need to develop a more effective approach to such problems we are led into the idea of conformal geometry and a conformally invariant calculus, this``tractor calculus'' is then developed explicitly. We will discuss how to calculate using this, and touch on applications to the construction of conformal invariants and conformally invariant differential operators. The second part of the course is concerned with the application of conformal geometry and tractor calculus for the treatment of conformal compactification and the geometry of conformal infinity. The link with Friedrich’s conformal field equations will be made. As part of this part we also dedicate some time to the general problem of treating hypersurfaces in a conformal manifold, and in particular arrive at a conformal Gauss equation. Finally we show how these tools maybe applied to treat aspects of the asymptotic analysis of boundary problems on conformally compact manifolds.
Mots-clés libres : mathématiques,Grenoble,école d'été,General Relativity,institut fourier,summer school,asymptotic analysis
TECHNIQUE

Type : image en mouvement
Format : video/x-flv


Source(s) : 
rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/rod.gover.an.introduction.to.conformal.geometry.and.tractor.calculus.part.2._22431/gover_ecoleete_24062014_sd.mp4


Entrepôt d'origine : Canal-u.fr
Identifiant : oai:canal-u.fr:22431
Type de ressource : Ressource documentaire
Exporter au format XML

Ressource pédagogique

Rod Gover - An introduction to conformal geometry and tractor calculus (Part 2) (en Anglais)


URL d'accès : http://www.canal-u.tv/video/institut_fourier/rod_g...
rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/ro...

Identifiant de la fiche : 22431
Schéma de la métadonnée : LOMv1.0, LOMFRv1.0

Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0

Auteur(s) : GOVER ROD
Éditeur(s) : Fanny Bastien
24-06-2014

Description : After recalling some features (and the value of) the invariant ``Ricci calculus'' of pseudo-­‐Riemannian geometry, we look at conformal rescaling from an elementary perspective. The idea of conformal covariance is visited and some covariant/invariant equations from physics are recovered in this framework. Motivated by the need to develop a more effective approach to such problems we are led into the idea of conformal geometry and a conformally invariant calculus; this``tractor calculus'' is then developed explicitly. We will discuss how to calculate using this, and touch on applications to the construction of conformal invariants and conformally invariant differential operators. The second part of the course is concerned with the application of conformal geometry and tractor calculus for the treatment of conformal compactification and the geometry of conformal infinity. The link with Friedrich’s conformal field equations will be made. As part of this part we also dedicate some time to the general problem of treating hypersurfaces in a conformal manifold, and in particular arrive at a conformal Gauss equation. Finally we show how these tools maybe applied to treat aspects of the asymptotic analysis of boundary problems on conformally compact manifolds.
Mots-clés libres : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis

Classification UNIT : Mathématiques > Fondamentaux
Classification : Mathématiques et Sciences de la nature et de la matière > Mathématiques
Indice(s) Dewey: Mathématiques (510)


PEDAGOGIQUE

Type pédagogique : cours / présentation

Niveau : doctorat



TECHNIQUE


Type de contenu : image en mouvement
Format : video/x-flv
Taille : 4.53 Go
Durée d'exécution : 2 heures 4 minutes 58 secondes



RELATIONS


Cette ressource fait partie de :
  • Ecoles d'été
  • 2014



Entrepôt d'origine : Canal-u.fr
Identifiant : oai:canal-u.fr:22431
Type de ressource : Ressource pédagogique
Exporter au format XML