Version imprimable |
Ressource documentaire
Rod Gover - An introduction to conformal geometry and tractor calculus (Part 2) (en Anglais) | |||
Droits : CC BY-NC-ND 4.0 Auteur(s) : Gover Rod, Bastien Fanny 24-06-2014 Description : After recalling some features (and the value of) the invariant ``Ricci calculus'' of pseudo-‐Riemannian geometry, we look at conformal rescaling from an elementary perspective. The idea of conformal covariance is visited and some covariant/invariant equations from physics are recovered in this framework. Motivated by the need to develop a more effective approach to such problems we are led into the idea of conformal geometry and a conformally invariant calculus, this``tractor calculus'' is then developed explicitly. We will discuss how to calculate using this, and touch on applications to the construction of conformal invariants and conformally invariant differential operators. The second part of the course is concerned with the application of conformal geometry and tractor calculus for the treatment of conformal compactification and the geometry of conformal infinity. The link with Friedrich’s conformal field equations will be made. As part of this part we also dedicate some time to the general problem of treating hypersurfaces in a conformal manifold, and in particular arrive at a conformal Gauss equation. Finally we show how these tools maybe applied to treat aspects of the asymptotic analysis of boundary problems on conformally compact manifolds. Mots-clés libres : mathématiques,Grenoble,école d'été,General Relativity,institut fourier,summer school,asymptotic analysis | TECHNIQUE Type : image en mouvement Format : video/x-flv Source(s) : rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/rod.gover.an.introduction.to.conformal.geometry.and.tractor.calculus.part.2._22431/gover_ecoleete_24062014_sd.mp4 | ||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22431 Type de ressource : Ressource documentaire |
Exporter au format XML |
Ressource pédagogique
Rod Gover - An introduction to conformal geometry and tractor calculus (Part 2) (en Anglais) | |||||||||
Identifiant de la fiche : 22431 Schéma de la métadonnée : LOMv1.0, LOMFRv1.0 Droits : libre de droits, gratuit Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 Auteur(s) : GOVER ROD Éditeur(s) : Fanny Bastien 24-06-2014 Description : After recalling some features (and the value of) the invariant ``Ricci calculus'' of pseudo-‐Riemannian geometry, we look at conformal rescaling from an elementary perspective. The idea of conformal covariance is visited and some covariant/invariant equations from physics are recovered in this framework. Motivated by the need to develop a more effective approach to such problems we are led into the idea of conformal geometry and a conformally invariant calculus; this``tractor calculus'' is then developed explicitly. We will discuss how to calculate using this, and touch on applications to the construction of conformal invariants and conformally invariant differential operators. The second part of the course is concerned with the application of conformal geometry and tractor calculus for the treatment of conformal compactification and the geometry of conformal infinity. The link with Friedrich’s conformal field equations will be made. As part of this part we also dedicate some time to the general problem of treating hypersurfaces in a conformal manifold, and in particular arrive at a conformal Gauss equation. Finally we show how these tools maybe applied to treat aspects of the asymptotic analysis of boundary problems on conformally compact manifolds. Mots-clés libres : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
| PEDAGOGIQUE Type pédagogique : cours / présentation Niveau : doctorat TECHNIQUE Type de contenu : image en mouvement Format : video/x-flv Taille : 4.53 Go Durée d'exécution : 2 heures 4 minutes 58 secondes RELATIONS Cette ressource fait partie de : | ||||||||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22431 Type de ressource : Ressource pédagogique |
Exporter au format XML |