Version imprimable |
Ressource documentaire
Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 3) (en Anglais) | |||
Droits : CC BY-NC-ND 4.0 Auteur(s) : Bastien Fanny 27-06-2014 Description : In order to control locally a space-‐time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bounds of the curvature tensor on a given space-‐like hypersurface. This conjecture has its roots in the remarkable developments of the last twenty years centered around the issue of optimal well-‐posedness for nonlinear wave equations. In this context, a corresponding conjecture for nonlinear wave equations cannot hold, unless the nonlinearity has a very special nonlinear structure. I will present the proof of this conjecture, which sheds light on the specific null structure of the Einstein equations. This is joint work with Sergiu Klainerman and Igor Rodnianski. These lectures will start from scratch and require no specific background. Mots-clés libres : mathématiques,Grenoble,école d'été,General Relativity,institut fourier,summer school,asymptotic analysis | TECHNIQUE Type : image en mouvement Format : video/x-flv Source(s) : rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/jeremie.szeftel.the.resolution.of.the.bounded.l2.curvature.conjecture.in.general.relativity.part.3._22507/szeftel_ecoleete_27062014_sd.mp4 | ||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22507 Type de ressource : Ressource documentaire |
Exporter au format XML |
Ressource pédagogique
Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 3) (en Anglais) | |||||||||
Identifiant de la fiche : 22507 Schéma de la métadonnée : LOMv1.0, LOMFRv1.0 Droits : libre de droits, gratuit Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 Éditeur(s) : Fanny Bastien Description : In order to control locally a space-‐time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bounds of the curvature tensor on a given space-‐like hypersurface. This conjecture has its roots in the remarkable developments of the last twenty years centered around the issue of optimal well-‐posedness for nonlinear wave equations. In this context, a corresponding conjecture for nonlinear wave equations cannot hold, unless the nonlinearity has a very special nonlinear structure. I will present the proof of this conjecture, which sheds light on the specific null structure of the Einstein equations. This is joint work with Sergiu Klainerman and Igor Rodnianski. These lectures will start from scratch and require no specific background. Mots-clés libres : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
| PEDAGOGIQUE Type pédagogique : cours / présentation Niveau : doctorat TECHNIQUE Type de contenu : image en mouvement Format : video/x-flv Taille : 4.21 Go Durée d'exécution : 1 heure 56 minutes 15 secondes RELATIONS Cette ressource fait partie de : | ||||||||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:22507 Type de ressource : Ressource pédagogique |
Exporter au format XML |