Version imprimable |
Ressource documentaire
Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 3) (en Anglais) | |||
Droits : CC BY-NC-ND 4.0 Auteur(s) : Bastien Fanny 21-06-2012 Description : A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also exist plenty of global foliations of this form, so long as there are no topological obstructions. More precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no more than the integer part of . More generally, if is a complex vector subbundle of the tangent bundle such that is a flat bundle, then is homotopic (through complex vector subbundles of ) to an integrable subbundle, i.e., to the tangent bundle of a nonsingular holomorphic foliation on . I will prove these results and discuss open problems, the most interesting one of them being related to a conjecture of Bogomolov. Mots-clés libres : mathématiques,Grenoble,école d'été,applications,institut fourier,summer school,feuilletages,COURBES PSEUDOHOLOMORPHES | TECHNIQUE Type : image en mouvement Format : video/x-flv Source(s) : rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/franc.forstneri.non.singular.holomorphic.foliations.on.stein.manifolds.part.3._23042/forstneric_ecoleete_21062012_sd.mp4 | ||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:23042 Type de ressource : Ressource documentaire |
Exporter au format XML |
Ressource pédagogique
Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 3) (en Anglais) | |||||||||
Identifiant de la fiche : 23042 Schéma de la métadonnée : LOMv1.0, LOMFRv1.0 Droits : libre de droits, gratuit Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 Éditeur(s) : Fanny Bastien Description : A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also exist plenty of global foliations of this form, so long as there are no topological obstructions. More precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no more than the integer part of . More generally, if is a complex vector subbundle of the tangent bundle such that is a flat bundle, then is homotopic (through complex vector subbundles of ) to an integrable subbundle, i.e., to the tangent bundle of a nonsingular holomorphic foliation on . I will prove these results and discuss open problems, the most interesting one of them being related to a conjecture of Bogomolov. Mots-clés libres : mathématiques, Grenoble, école d'été, applications, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
| PEDAGOGIQUE Type pédagogique : cours / présentation Niveau : doctorat TECHNIQUE Type de contenu : image en mouvement Format : video/x-flv Taille : 2.810 Go Durée d'exécution : 1 heure 19 minutes 52 secondes RELATIONS Cette ressource fait partie de : | ||||||||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:23042 Type de ressource : Ressource pédagogique |
Exporter au format XML |