Version imprimable |
Ressource documentaire
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 1) (en Anglais) | |||
Droits : CC BY-NC-ND 4.0 Auteur(s) : Lalonde François, Bastien Fanny 03-07-2012 Description : The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian submanifolds, characterization of Hamiltonian fibrations over any CW-complex. The third course will give the application of quantum homology to the splitting of the rational cohomology ring of any Hamiltonian fibration over S2, a generalization of a result of Deligne in the algebraic case and of Kirwan in the toric case. The fourth course will give the application of the quantum homology of a Lagrangian submanifold to the proof of the triviality of the monodromy of a weakly exact Lagrangian submanifold in any symplectic manifold. Mots-clés libres : mathématiques,Grenoble,école d'été,institut fourier,summer school,feuilletages,COURBES PSEUDOHOLOMORPHES | TECHNIQUE Type : image en mouvement Format : video/x-flv Source(s) : rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/francois.lalonde.applications.of.quantum.homology.to.symplectic.topology.part.1._23492/lalonde_ecoleete_03072012_sd.mp4 | ||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:23492 Type de ressource : Ressource documentaire |
Exporter au format XML |
Ressource pédagogique
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 1) (en Anglais) | |||||||||
Identifiant de la fiche : 23492 Schéma de la métadonnée : LOMv1.0, LOMFRv1.0 Droits : libre de droits, gratuit Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 Auteur(s) : LALONDE FRANÇOIS Éditeur(s) : Fanny Bastien 03-07-2012 Description : The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian submanifolds, characterization of Hamiltonian fibrations over any CW-complex. The third course will give the application of quantum homology to the splitting of the rational cohomology ring of any Hamiltonian fibration over S2, a generalization of a result of Deligne in the algebraic case and of Kirwan in the toric case. The fourth course will give the application of the quantum homology of a Lagrangian submanifold to the proof of the triviality of the monodromy of a weakly exact Lagrangian submanifold in any symplectic manifold. Mots-clés libres : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
| PEDAGOGIQUE Type pédagogique : cours / présentation Niveau : doctorat TECHNIQUE Type de contenu : image en mouvement Format : video/x-flv Taille : 3.53 Go Durée d'exécution : 1 heure 37 minutes 28 secondes RELATIONS Cette ressource fait partie de : | ||||||||
Entrepôt d'origine : Canal-u.fr Identifiant : oai:canal-u.fr:23492 Type de ressource : Ressource pédagogique |
Exporter au format XML |