Tri :
Date
Editeur
Auteur
Titre
|
|
Hydraulique pour le génie des procédés
/ CNAM, UNIT
/ 20-12-2015
/
Debacq Marie, Buvat Jean-Christophe, Lacour Corine, Bonnin Johanne, Cosson Xavier, Desmorieux Hélène
Voir le résumé
Voir le résumé
Le module d'auto-formation "HYDRAULIQUE pour le génie des procédés" vous permettra d'apprendre à calculer des pertes de charge, choisir et dimensionner une pompe pour circuit hydraulique dans un atelier de production. La première partie vous permettra de revoir ou d'aborder les notions de pression, débits, masse volumique et viscosité, l'analyse dimensionnelle, le nombre de Reynolds, la notion de couche limite, le principe fondamental de l'hydrostatique et l'équation de Bernoulli. La deuxième partie concerne le calcul des pertes de charge, qu'elles soient régulières ou singulières. Vous y aborderez la question du calcul des conduites et des réseaux. Ce sera également l'occasion de donner quelques éléments sur les différents types de vannes. La troisième et dernière partie est consacrée aux pompes, avec un volet sur la technologie et les critères de choix, puis la problématique du dimensionnement des pompes centrifuges et enfin le cas des pompes à vide. Ce module comporte des quiz et des exercices ; il est illustré par différents schémas, dessins, animations et vidéos. Vous disposez d'une nomenclature interactive, d'un glossaire, d'une liste des abréviations et des références bibliographiques majeures. Mot(s) clés libre(s) : hydraulique, mécanique des fluides, hydrostatique, équation de Bernoulli, viscosité, nombre de Reynolds, profil de vitesse, couche limite, pertes de charge, pompe, dimensionnement, vanne, conduite
|
Accéder à la ressource
|
|
Fluides et tourbillons
/ Mission 2000 en France
/ 08-08-2000
/ Canal-U - OAI Archive
LESIEUR Marcel
Voir le résumé
Voir le résumé
"Les récents ouragans sur la France nous ont brutalement rappelé l'importance des fluides tels que l'air et l'eau. Ces fluides obéissent aux lois de la mécanique classique de Newton. Ils sont très instables: dans le sillage d'un obstacle (sur une automobile, un TGV, un avion ou un navire), les différences de vitesse engendrent de magnifiques tourbillons en spirale, qui, tels des vagues sur l'océan, déferlent en turbulence. Cette turbulence est bien décrite à petite échelle par la fameuse "" cascade de Kolmogorov "", où les différences de vitesse entre deux points sont proportionnelles à la puissance un tiers de leur distance. La turbulence est en fait considérée comme un des derniers grands problèmes non résolus de la physique moderne. A l'heure où les biologistes élucident la structure du génome humain, des progrès décisifs sur la structure de la turbulence et des tourbillons qui la composent ont pu être faits par la résolution numérique sur super-calculateur scientifique des équations du mouvement. Un traitement d'image performant permet de visualiser les tourbillons et de suivre leur évolution. Une avancée considérable a en particulier été faite grâce au concept de "" simulation des grandes échelles "", où les fluctuations à petite échelle sont éliminées et modélisées par une viscosité turbulente intelligente. On montre des exemples de ces simulations réalisées à Grenoble (par "" viscosités spectrale ""), avec les anneaux-vortex (responsables des ronds de fumée) dans un jet, et les tourbillons en arche au voisinage d'une paroi et sur une cavité. La simulation numérique est un outil très précieux pour le contrôle de la turbulence en aérodynamique, acoustique, combustion et pollution." Mot(s) clés libre(s) : écoulement, mécanique des fluides, simulation numérique, tempête, théorème de Bernoulli, thermodynamique, tourbillon, turbulence, viscosité, vorticité
|
Accéder à la ressource
|
|
Fluides et tourbillons
/ Mission 2000 en France
/ 08-08-2000
/ Canal-u.fr
LESIEUR Marcel
Voir le résumé
Voir le résumé
"Les récents ouragans sur la France nous ont brutalement rappelé l'importance des fluides tels que l'air et l'eau. Ces fluides obéissent aux lois de la mécanique classique de Newton. Ils sont très instables: dans le sillage d'un obstacle (sur une automobile, un TGV, un avion ou un navire), les différences de vitesse engendrent de magnifiques tourbillons en spirale, qui, tels des vagues sur l'océan, déferlent en turbulence. Cette turbulence est bien décrite à petite échelle par la fameuse "" cascade de Kolmogorov "", où les différences de vitesse entre deux points sont proportionnelles à la puissance un tiers de leur distance. La turbulence est en fait considérée comme un des derniers grands problèmes non résolus de la physique moderne. A l'heure où les biologistes élucident la structure du génome humain, des progrès décisifs sur la structure de la turbulence et des tourbillons qui la composent ont pu être faits par la résolution numérique sur super-calculateur scientifique des équations du mouvement. Un traitement d'image performant permet de visualiser les tourbillons et de suivre leur évolution. Une avancée considérable a en particulier été faite grâce au concept de "" simulation des grandes échelles "", où les fluctuations à petite échelle sont éliminées et modélisées par une viscosité turbulente intelligente. On montre des exemples de ces simulations réalisées à Grenoble (par "" viscosités spectrale ""), avec les anneaux-vortex (responsables des ronds de fumée) dans un jet, et les tourbillons en arche au voisinage d'une paroi et sur une cavité. La simulation numérique est un outil très précieux pour le contrôle de la turbulence en aérodynamique, acoustique, combustion et pollution." Mot(s) clés libre(s) : thermodynamique, viscosité, théorème de Bernoulli, mécanique des fluides, tempête, tourbillon, turbulence, écoulement, simulation numérique, vorticité
|
Accéder à la ressource
|
|
Questionnaires sur les probabilités et statistiques
/ Pascale Boudière, Frédéric Raymond, Cédric Tondeur, Jacques Queyrut, Geneviève Bretenoux, Université Bordeaux-I, Unisciel
/ 2009
/ Unisciel
Felloneau Claude, Sorbe Xavier, Bordas Mirentxu, Dauriac Chantal, Delahaye Xavier, Dubos Jean-Pierre, Gagné Myriam, Lachapèle Antoine, Perrin Ghyslaine
Voir le résumé
Voir le résumé
Cette ressource propose sept questionnaires. Le premier a pour but de tester les connaissances de 1ère S avant d'aborder le cours de terminale. Les autres permettent de vérifier les connaissances de terminale et les savoir-faire. Le questionnaire 5 (Conditionnement, indépendance, dénombrements) permet d'aborder des questions un peu plus complexes. Mot(s) clés libre(s) : RAMSES, probabilités, statistiques, conditionnement, indépendance, probabilités totales, loi binomiale, schéma de Bernoulli, lois continues
|
Accéder à la ressource
|
|
Écoulement stationnaire d'un fluide parfait incompressible, théorème de Bernoulli
/ École Normale Supérieure de Lyon, UNISCIEL, Culture Sciences Physique
/ 01-07-2015
/ Canal-u.fr
Chareyron Delphine, GRANIER Olivier, TABERLET Nicolas
Voir le résumé
Voir le résumé
Une vidéo de 13 min 24 qui permet de retrouver expérimentalement et
analytiquement le théorème de Bernoulli et ses applications : Effet
Venturi, formule de Torricelli, portance, tube de Pitot. Mot(s) clés libre(s) : écoulement, mécanique des fluides, fluide, onde stationnaire, bernoulli
|
Accéder à la ressource
|
|
Le vaporisateur à parfum
/ SEMM Lille1, UNISCIEL
/ 21-10-2010
/ Canal-U - OAI Archive
BLONDEAU Jean-Marie, BONNEL Bernard, MIKOLAJCZYK Bernard, DESTRUN Gérard
Voir le résumé
Voir le résumé
Le fonctionnement d'un vaporisateur à parfum s'explique facilement grâce à cette expérience, à l'aide d'un verre d'eau et de deux pailles. Cette expérience est une illustration du principe de Venturi. Mot(s) clés libre(s) : écoulement, effet Venturi, physique à main levée, pression, pression atmosphérique, pression dans un liquide, théorème de Bernoulli, tpe, vitesse d'écoulement
|
Accéder à la ressource
|
|
Une balle de ping-pong récalcitrante
/ SEMM Lille1, UNISCIEL
/ 01-09-2009
/ Canal-U - OAI Archive
BLONDEAU Jean-Marie, BONNEL Bernard, DESTRUN Gérard, MIKOLAJCZYK Bernard
Voir le résumé
Voir le résumé
On montre le paradoxe aérodynamique sur l’exemple d’une balle de ping-pong qui reste dans un entonnoir alors qu’on tente de la faire sortir en soufflant. Mot(s) clés libre(s) : conservation du débit, écoulement, effet Venturi, physique à main levée, pression, théorème de Bernoulli, tpe, vitesse d’écoulement
|
Accéder à la ressource
|
|
Un entonnoir soufflant pour aspirer
/ SEMM Lille1, UNISCIEL
/ 01-09-2009
/ Canal-U - OAI Archive
BLONDEAU Jean-Marie, BONNEL Bernard, DESTRUN Gérard, MIKOLAJCZYK Bernard
Voir le résumé
Voir le résumé
On montre, en soufflant dans un entonnoir, que la pression dans un courant d’air est plus faible si sa vitesse d’écoulement est plus grande. Mot(s) clés libre(s) : conservation du débit, écoulement, physique à main levée, pression, théorème de Bernoulli, tpe
|
Accéder à la ressource
|
|
Le paradoxe aérodynamique
/ SEMM Lille1, UNISCIEL
/ 01-09-2009
/ Canal-U - OAI Archive
BLONDEAU Jean-Marie, BONNEL Bernard, DESTRUN Gérard, MIKOLAJCZYK Bernard
Voir le résumé
Voir le résumé
Lorsqu’on souffle dans l’espace situé entre deux objets mobiles proches l’un de l’autre, ces deux objets se rapprochent, contrairement aux prévisions intuitives. Mot(s) clés libre(s) : écoulement, écoulement laminaire, effet Venturi, physique à main levée, pression, théorème de Bernoulli, tpe, vitesse d’écoulement
|
Accéder à la ressource
|
|
La pièce qui vole
/ SEMM Lille1, UNISCIEL
/ 01-09-2009
/ Canal-U - OAI Archive
BLONDEAU Jean-Marie, BONNEL Bernard, DESTRUN Gérard, MIKOLAJCZYK Bernard
Voir le résumé
Voir le résumé
Une pièce est soulevée par la dépression qui règne dans un courant d’air à grande vitesse. Mot(s) clés libre(s) : effet Venturi, force, gradient de pression, physique à main levée, pression, théorème de Bernoulli, tpe
|
Accéder à la ressource
|
|