|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
La physique à l'échelle de la cellule
/ UTLS - la suite
/ 10-07-2005
/ Canal-U - OAI Archive
SYKES Cécile
Voir le résumé
Voir le résumé
L'étude physique de phénomènes cellulaires a commencé à voir le jour il y a une quinzaine d'années grâce à l'essor considérable de la biologie cellulaire et grâce aux développements spectaculaires de la biologie moléculaire (l'ADN) et de la biochimie (les protéines). Les molécules que renferment nos cellules sont de mieux en mieux connues, et ont des propriétés d'auto-organisation qui sont impliquées dans deux mécanismes très importants de la vie d'une cellule : sa division et son mouvement. C'est à une échelle intermédiaire, située entre celle de la molécule, et celle de la cellule entière qu'on s'intéresse ici. Nos cellules se déplacent grâce à une mécanique interne sophistiquée : en poussant leur membrane par l'intérieur à certains endroits, elles se déforment, et se mettent en mouvement en adhérant sur les parois extérieures. L'énergie chimique qui assemble et organise les molécules lors de ce processus est ainsi transformée en énergie mécanique. Certaines bactéries se déplacent à l'intérieur de la cellule en utilisant le même type de machinerie. Je montrerai qu'on est capable de copier en laboratoire leur mouvement, et d'extraire des expériences les lois physiques qui régissent leur déplacement. Je montrerai également que ces systèmes expérimentaux épurés sont utilisés pour l'étude biochimique de l'assemblage des molécules impliquées. Mot(s) clés libre(s) : biologie cellulaire, division cellulaire, dynamique des fluides, filament d'actine, inertie, microtubule, motilité, mouvement Brownien, mouvement cellulaire, nombre de Reynolds, physique de la cellule, polymère, système biomimétique, viscosité
|
Accéder à la ressource
|
|
Les animats
/ UTLS - la suite
/ 02-11-2002
/ Canal-U - OAI Archive
MEYER Jean-Arcady
Voir le résumé
Voir le résumé
Contrairement aux ambitions affichées aux origines de la discipline, en 1956, les recherches en intelligence artificielle ont à ce jour largement échoué à reproduire l'intelligence de l'homme, même si un programme d'ordinateur a réussi à battre le champion du monde aux échecs. Quant aux robots modernes, ils ne brillent pas non plus par leur intelligence, même si certaines machines caniformes ou humanoïdes sont de véritables merveilles de technologie. De nombreux chercheurs estiment qu'il est largement prématuré d'espérer reproduire directement l'intelligence de l'homme tant qu'on n'aura pas compris comment elle s'est mise en place au cours de l'évolution. Aussi, dans le but de rechercher en quoi l'intelligence humaine s'explique à partir des processus adaptatifs les plus simples hérités des animaux - et plutôt que de viser directement à comprendre et à reproduire les performances les plus élaborées dont est capable le cerveau - ces chercheurs visent d'abord à synthétiser des animats, c'est-à-dire des animaux artificiels ou des robots réels dont les lois de fonctionnement sont aussi inspirées de la biologie que possible. L'objectif est d'attribuer à ces animats certaines des capacités d'autonomie et d'adaptation basiques qui caractérisent les animaux réels, de façon à leur permettre de "survivre" ou d'assurer leur mission dans des environnements plus ou moins imprévisibles et dangereux. Cette conférence évoquera quelques automates célèbres - du pigeon d'Archytas de Tarente au canard de Vaucanson, en passant par l'androïde de Léonard de Vinci - pour rappeler que la conception de machines inspirées du vivant a été de tout temps une préoccupation humaine. La structure générale d'un animat et son mode de fonctionnement seront ensuite décrits. Ils se caractérisent par le fait que l'animat acquiert des comportements efficaces par interaction étroite avec son environnement, grâce à son architecture de contrôle - équivalent du système nerveux d'un animal - reliant ses capteurs - équivalents des récepteurs sensoriels- à ses actionneurs - équivalents des organes moteurs. Puis divers exemples illustreront la façon dont les animats peuvent eux-mêmes améliorer ou se constituer une architecture de contrôle ou une morphologie adaptées, par des processus inspirés de la biologie comme le développement, l'apprentissage ou l'évolution des espèces. Enfin, à partir notamment de l'évocation des "biobots" - robots hybrides constitués à la fois d'éléments artificiels et d'éléments vivants - les avantages et les risques liés à ces recherches seront discutés. Mot(s) clés libre(s) : animal artificiel, apprentissage des robots, biobot, ethologie, intelligence artificielle, processus biomimétique, réseaux de neurones, robotique, sciences cognitives
|
Accéder à la ressource
|
|
Les matériaux biomimétiques : de la nacre aux muscles artificiels
/ Mission 2000 en France
/ 29-09-2000
/ Canal-U - OAI Archive
DE GENNES Pierre-Gilles
Voir le résumé
Voir le résumé
Les êtres vivants réalisent une pléiade de structures mécaniques extraordinaires, robustes, versatiles, adaptatives. On en présentera quelques exemples classiques, avant d'aller vers les nouveaux systèmes qui s'efforcent, de près ou de loin, à réaliser des choses analogues. En particulier on décrira quelques possibilités de muscles artificiels, encore loin des applications pratiques, mais potentiellement intéressantes. Mot(s) clés libre(s) : actionneur, chimie biomimétique, matériau naturel, muscle artificiel, science des matériaux, structure mécanique, synthèse chimique
|
Accéder à la ressource
|
|
La vectorisation d'acides nucléiques (2)
/ BioTV
/ 10-09-2002
/ Canal-U - OAI Archive
COUVREUR Patrick
Voir le résumé
Voir le résumé
Vectorisation d'acides nucléiques, cibler la cellule malade et la pénétrer pour la traiter. Mot(s) clés libre(s) : acide nucléique, ADN antisens, molécule biomimétique, nanoparticule, nanotechnologies, oligonucléotide, pharmacologie, thérapeutique, thérapie génique, traitement anti-cancer, vectorisation des médicaments
|
Accéder à la ressource
|
|
La vectorisation d'acides nucléiques
/ BioTV
/ 10-09-2002
/ Canal-U - OAI Archive
COUVREUR Patrick
Voir le résumé
Voir le résumé
Du concept à la réalisation de vecteurs efficaces et inoffensifs. Que sont les nanoparticules, ces perles invisibles qui disparaissent une fois déchargées à demeure les bonnes molécules qu'elles transportent? Mot(s) clés libre(s) : acide nucléique, ADN antisens, molécule biomimétique, nanoparticule, nanotechnologies, pharmacologie, thérapeutique, thérapie génique, traitement anti-cancer, vectorisation des médicaments
|
Accéder à la ressource
|
|
Les matériaux biomimétiques
/ UTLS - la suite
/ 22-06-2006
/ Canal-U - OAI Archive
ARRIBART Hervé
Voir le résumé
Voir le résumé
La démarche biomimétique ne date pas d'hier. Que l'on pense à la Chauve-Souris, premier prototype de Clément Ader ! Pour être fructueuse, elle doit passer par une compréhension complète - et critique - du fonctionnement de la structure dont on souhaite s'inspirer. Pourquoi la nature a-t-elle privilégié cette solution là pour résoudre ce problème ci, compte tenu des moyens à sa disposition : matières premières, conditions de température et de pression dans l'environnement,
? Dans le domaine des matériaux, répondre à cette question requiert une caractérisation en profondeur de la structure du matériau considéré. Cette caractérisation doit en général se faire à de nombreuses échelles, du macroscopique au nanométrique. En effet, les matériaux du monde vivant proposent de magnifiques exemples de structures hiérarchiques et sont souvent des nanomatériaux représentatifs. On peut décomposer la démarche biomimétique en trois étapes : 1) l'identification : repérage d'un matériau du vivant présentant une propriété intéressante, 2) la compréhension : sur la base de la connaissance de la structure, comment la propriété en question s'exprime t-elle ? 3) le contretypage, en utilisant des moyens qui sont en général différents des moyens naturels. En effet, les chimistes possèdent des recettes bien plus variées, souvent plus efficientes, que les voies de synthèse naturelles. A titre d'exemple, on verra pourquoi les feuilles de nénuphar servent de modèle à des nouveaux vitrages qui préservent la vision sous la pluie, comment la structure des ailes de papillons inspirent les concepteurs de matériaux aux couleurs chatoyantes, et en quoi les coquilles de mollusques ou de noix fournissent des pistes pour la recherche de matériaux composites très résistants sur le plan mécanique. Mot(s) clés libre(s) : biomimétisme, matériau composite, matériau naturel, monde vivant, nanomatériaux, science des matériaux, structure chimique, synthèse
|
Accéder à la ressource
|
|
Les ruses de la nature - C. Grison, CNRS
/ Canal-u.fr
Voir le résumé
Voir le résumé
Organisées au sein du Pavillon de la France, ces conférences TAG, courtes et dynamiques, permettent de comprendre les grands enjeux de l’innovation et de la recherche dans les domaines de l’agriculture et de l’alimentation, dans une perspective de développement durable.
Les conférenciers sont issus des grandes institutions de recherche et de formation françaises dans le domaine : universités, établissements publics de recherche, écoles et fondations.
Les thématiques abordées donnent une photographie de la contribution de la France à l’alimentation mondiale, de la gestion et la préservation des ressources naturelles, des nouveaux modèles de l’agriculture, de la sécurité alimentaire... réparties en cinq thèmes : Alimentation, Agriculture, Changement climatique, Environnement, Santé. Mot(s) clés libre(s) : écologie, chimie verte, biomimétisme, écologie industrielle, recyclage des déchets
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|