|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Casseurs d'atomes : un pas de plus vers le Big Bang
/ UTLS - la suite, Université Pierre et Marie Curie-Paris 6
/ 16-06-2004
/ Canal-U - OAI Archive
PRZYSIEZNIAK Helenka
Voir le résumé
Voir le résumé
Les Casseurs d'atomes, plus communément appelés Accélérateurs, sont les outils de tous les jours de nombreux physiciens des particules qui sondent la matière infiniment petite. Il y a de ça un peu plus d'un siècle, en 1894, Albert Michelson - qui étudia le comportement de la lumière - n'aurait jamais imaginé se retrouver devant un monde incroyablement plus complexe qu'il l'aurait cru lorsqu'il déclara que tout ce qu'il restait à faire en physique était de déterminer jusqu'à la sixième décimale les valeurs connues en ce temps là. Il ne se doutait pas que la structure entière de la physique serait complètement révolutionnée dans les 20 années qui allaient suivre. Les premiers accélérateurs sont apparus au début du 20e siècle et ce qui fut dévoilé au fil des années a permis de construire un modèle théorique cohérent, le Modèle Standard (MS). Les particules prédites par ce modèle furent presque toutes observées, les prédictions sur leur comportement furent testées, mais effectivement le plus important manquait et manque toujours. Le boson de Higgs, auquel est associé le champs de Higgs qui permet à toutes les particules d'acquérir une masse, reste encore aujourd'hui inobservé. Les expériences du futur nous permettront de vérifier si cette particule existe vraiment, et si d'autres modèles théoriques au-delà du MS sont viables i.e. la Super Symétrie, l'existence de dimensions supplémentaires. Il faut toutefois garder les pieds sur terre, ou peut-être pas, car la physique des particules aux accélérateurs, résumé sur l'échelle universelle du temps depuis le Big Bang jusqu' aujourd'hui, ne correspond qu'à un tout petit pas. Le terrain à défricher reste encore énorme, et les Casseurs d'atomes joueront un rôle clef dans la compréhension de cet Univers de l'infiniment petit. Je tenterai donc, dans cette présentation, de faire un survol historique de la théorie, des accélérateurs, des découvertes et de parler du futur de la physique aux accélérateurs. Mot(s) clés libre(s) : accélérateur de particules, boson de Higgs, collisionneur, infiniment petit, matière, modèle standard, particule élémentaire, quark
|
Accéder à la ressource
|
|
Un regard sur le futur
/ UTLS - la suite, Université Pierre et Marie Curie-Paris 6
/ 20-06-2004
/ Canal-U - OAI Archive
MAIANI Luciano
Voir le résumé
Voir le résumé
Un regard sur le futur : pouvons-nous comprendre l'infiniment grand à partir de l'infiniment petit ? Les dernières décennies du siècle ont été témoin de progrès extraordinaires dans notre compréhension des constituants ultimes de la matière et des forces qui agissent sur eux. Grâce à l'effort de nombreux scientifiques, nous sommes parvenus à élaborer une « théorie standard » qui décrit et explique tous les phénomènes ainsi observés au coeur du monde des particules élémentaires. Avec la théorie standard, nous pouvons retracer l'histoire de l'Univers en remontant dans le temps, jusqu'à quelques fractions de milliards de secondes après le Big Bang, à un moment où la température de l'Univers s'élevait à un million de milliards de degrés centigrade. A cette époque le plasma primordial qui constituait l'Univers était peuplé de particules que nous ne pouvons produire aujourd'hui seulement dans les accélérateurs de particules les plus puissants en Europe et aux USA. L'évolution de l'Univers a été profondément affectée par les phénomènes qui se déroulèrent alors, et même avant. Ainsi la compréhension des constituants fondamentaux et de leurs interactions est cruciale pour saisir la distribution sur une grande échelle des galaxies, la matière et l'énergie qui le composent, et sa destinée finale. Malgré les progrès, des éléments importants de la microphysique sont encore à l'Etat d'hypothèse. L'existence et les propriétés du « boson de Higgs » ou la nature de la « matière noire » qui constitue l'essentiel de la masse de l'Univers devront être éclaircis par le LHC (Large Hadron Collider), une machine révolutionnaire qui mènera l'Europe à la frontière des hautes énergies. Le LHC est actuellement en construction au CERN (conseil Européen pour la Recherche Nucléaire) à Genève, dans le cadre d'une collaboration internationale, et devrait entrer en activité en 2007. Le LHC et les machines qui succèderont éclaireront plusieurs aspects fondamentaux de notre monde, comme l'existence de dimensions additionnelles à l'espace et aux temps et permettront la synthèse de la Mécanique Quantique et de la Relativité Générale, le problème théorique le plus profond de notre époque. Mot(s) clés libre(s) : astrophysique, Big Bang, boson de Higgs, collisionneur, cosmologie, courbure spatiale, gravité quantique, infiniment petit, interaction fondamentale, matière noire, modèle standard, particule élémentaire, physique des particules, quark, structure atomique
|
Accéder à la ressource
|
|
Le collisionneur hadronique du CERN (LHC) : une approche de l' « attomonde »
/ Département de Physique, ENS Lyon CultureSciences-Physique, Catherine Simand
/ 14-03-2007
/ Unisciel
Ille Bernard
Voir le résumé
Voir le résumé
Une conférence de Bernard Ille, directeur de l'Institut de
Physique Nucléaire de Lyon. Le plus puissant accélérateur du monde, le LHC (Large
Hadron Collider), est en cours de finition au CERN, le laboratoire mondial de la
physique des particules, situé près de Genève à cheval sur la frontière
francosuisse. Le LHC devrait commencer sa mission pour la physique en 2008, mission qui durera une
quinzaine d'années environ. Mot(s) clés libre(s) : LHC, Large Hadron Collider, collisionneur, accélérateur de particules, boson, boson de Higgs, modèle standard, CMS, Atlas, détecteur, calorimètre électromagnétique, Compact Muon Solenoid
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|