|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Comment les révolutions de l'information et des communications ont-elles été possibles ?
/ Mission 2000 en France
/ 12-08-2000
/ Canal-U - OAI Archive
WEISBUCH Claude
Voir le résumé
Voir le résumé
Les révolutions de l'information et des communications vont continuer à bouleverser tous les domaines de l'activité humaine. Ces révolutions sont nées du codage de l'information sous forme de paquets d'électrons ou de photons et de la capacité de manipuler et transmettre ces paquets d'électrons ou de photons de manière de plus en plus efficace et économique. À la base de cette capacité se trouvent les matériaux semi-conducteurs. Rien ne prédisposait ces matériaux à un tel destin : ils ont des propriétés " classiques " médiocres qui les rendent " commandables " : par exemple, leur comportement électrique a longtemps semblé erratique, car très sensible aux " impuretés ". Cette capacité à changer de conductivité électrique, devenue " contrôlée " par la compréhension physique des phénomènes et l'insertion locale d'impuretés chimiques, permet de commander le passage de courant par des électrodes. On a alors l'effet d'amplification du transistor, à la base de la manipulation électronique de l'information. La sensibilité des semi-conducteurs aux flux lumineux en fait aussi les détecteurs de photons dans les communications optiques, et le phénomène inverse d'émission lumineuse les rend incontournables comme sources de photons pour les télécommunications, et bientôt pour l'éclairage. Les progrès des composants et systèmes sont liés aux deux démarches simultanées d'intégration des éléments actifs sur un même support, la " puce ", et de miniaturisation. Une des immenses surprises a été le caractère " vertueux " de la miniaturisation : plus les composants sont petits, meilleur est leur fonctionnement ! On a pu ainsi gagner en trente-cinq ans simultanément plusieurs facteurs de 100 millions à 1 milliard, en termes de complexité des circuits, réduction de coût, fiabilité, rendement de fabrication. Le problème des limites physiques est cependant aujourd'hui posé : jusqu'où la miniaturisation peut-elle continuer ? Combien d'atomes faut-il pour faire un transistor qui fonctionne encore ? Y-a t'il d'autres matériaux que les semi-conducteurs qui permettraient d'aller au delà des limites physiques, ou encore d'autres moyens de coder l'information plus efficaces que les électrons ou les photons ? Ce sont les questions que se pose aujourd'hui le physicien, cherchant à mettre en difficulté un domaine d'activité immense qu'il a contribué à créer. Mot(s) clés libre(s) : circuit intégré, codage de l'information, conductivité électrique, matériau semi-conducteur, microélectronique, miniaturisation, physique quantique des solides, silicium, transistor
|
Accéder à la ressource
|
|
Les matériaux moléculaires
/ UTLS - la suite, Mission 2000 en France
/ 27-08-2000
/ Canal-U - OAI Archive
VERDAGUER Michel
Voir le résumé
Voir le résumé
L' histoire de l'humanité est scandée par la nature des matériaux que l'homme est capable d'élaborer et d'utiliser pour répondre à ses besoins. Notre époque est marquée par une explosion de la création de nouveaux matériaux, de plus en plus conçus pour répondre à un besoin très précis. Dans ce contexte, les matériaux réalisés à partir de molécules peuvent faire valoir de nombreux avantages : ils sont le plus souvent de faible densité, transparents ou colorés à la demande, solubles, biocompatibles, faciles à mettre en forme, etc. La flexibilité de la chimie moléculaire permet de produire pratiquement " à la carte " de nouvelles molécules et de nouveaux édifices moléculaires en variant de manière de plus en plus subtile structures, structures électroniques et propriétés. Les synthèses sont guidées par les besoins en nouveaux matériaux de structure ou en matériaux fonctionnels. Notre vie quotidienne est ainsi entourée de matériaux moléculaires familiers qu'ils soient d'origine naturelle ou industrielle, créations de l'homme. L'exposé les identifie, illustre et commente quelques unes de leurs propriétés et leurs multiples domaines d'application. Dans le même temps, une recherche pluridisciplinaire se poursuit pour obtenir des matériaux présentant des propriétés inédites, voire des propriétés multiples au niveau macroscopique (grands ensembles de molécules) ou au niveau d'une seule molécule (électronique moléculaire, machines moléculaires
). Quelques aspects de ces recherches sont présentés, en mettant en évidence les principes fondamentaux sur lesquels repose la synthèse des molécules et des édifices moléculaires présentant des propriétés données, les techniques récentes qui permettent un progrès plus rapide en matière de matériaux moléculaires, les contraintes qui s'exercent sur la production de ces matériaux et les perspectives qui s'ouvrent dans un domaine où la riche complexité des matériaux biologiques constitue une matière première et un exemple, une source de réflexion et d'espoir permanents. Mot(s) clés libre(s) : biomatériau, chimie moléculaire, conductivité, électronique moléculaire, interaction intermoléculaire, liaison chimique covalente, ligand, magnétisme, matériau composite, matériau moléculaire, science des matériaux, spin, structure moléculaire
|
Accéder à la ressource
|
|
La pile au citron
/ SEMM Lille1, UNISCIEL
/ 05-11-2010
/ Canal-U - OAI Archive
BLONDEAU Jean-Marie, BONNEL Bernard, MIKOLAJCZYK Bernard, DESTRUN Gérard
Voir le résumé
Voir le résumé
On peut construire une pile électrique très simple, à l'aide d'un citron et de deux plaques métalliques de nature différentes. En associant plusieurs éléments, on peut atteindre des différences de potentiel de plusieurs volts. Mot(s) clés libre(s) : conductivité électrique, demi-pile, électrolyte, physique à main levée, potentiel d'oxydoréduction, tpe
|
Accéder à la ressource
|
|
La flamme suspendue
/ SEMM Lille1, UNISCIEL
/ 16-11-2010
/ Canal-U - OAI Archive
BLONDEAU Jean-Marie, BONNEL Bernard, DESTRUN Gérard, MIKOLAJCZYK Bernard
Voir le résumé
Voir le résumé
La flamme d'un bec de gaz ne traverse pas la grille métallique placée au-dessus ; mais si on allume le gaz au-dessus de la grille, la flamme semble flotter au-dessus de celle-ci, sans contact avec le bec ! Ce phénomène est une conséquence de la bonne conductivité thermique des métaux. Mot(s) clés libre(s) : conduction thermique, conductivité thermique, physique à main levée, température d'inflammation, tpe
|
Accéder à la ressource
|
|
La caléfaction
/ SEMM Lille1, UNISCIEL
/ 15-10-2010
/ Canal-U - OAI Archive
BLONDEAU Jean-Marie, BONNEL Bernard, DESTRUN Gérard, MIKOLAJCZYK Bernard
Voir le résumé
Voir le résumé
Si on verse quelques gouttes d'eau au-dessus d'une plaque chauffante, l'eau va-t-elle se vaporiser et disparaître ? Pas sûr… Mot(s) clés libre(s) : conductivité thermique, physique à main levée, tpe, vapeur d'eau, vaporisation
|
Accéder à la ressource
|
|
La superfluidité
/ Mission 2000 en France
/ 10-08-2000
/ Canal-U - OAI Archive
BALIBAR Sébastien
Voir le résumé
Voir le résumé
"Peut-on voir au moins une propriété quantique de la matière à l'oeil nu ? Oui, il suffit de regarder de l'hélium liquide à suffisamment basse température. Je montrerai un liquide qui cesse de bouillir, jaillit en fontaine lorsqu'on le chauffe, s'écoule sans viscosité hors des récipients où l'on tente de l'enfermer (d'où son nom de " superfluide ")... J'expliquerai ensuite comment ces propriétés surprenantes ont été associées au comportement collectif quantique des atomes, un phénomène connu sous le nom de " Condensation de Bose-Einstein ". Les différents états de la matière correspondent à différents degrés d'ordre ou de désordre. Lorsqu'un liquide cristallise, par exemple, c'est la position des atomes dans l'espace qui s'ordonne. Lorsqu'un fluide devient superfluide c'est leurs mouvements qui deviennent collectifs. De même qu'un superfluide coule sans viscosité, un supraconducteur conduit l'électricité sans résistance. La superfluidité est semblable à la supraconductivité des métaux. Connue depuis 1937 dans l'hélium, la superfluidité a été découverte en 1999 dans différentes vapeurs alcalines. Nous verrons que la rotation d'un superfluide est très particulière, parce que quantifiée. Dans l'hélium comme dans le rubidium, nous montrerons des images de tourbillons quantiques où la vitesse du fluide est reliée à la constante de Planck. Pour conclure, nous décrirons comment la superfluidité peut servir à mesurer la rotation de la terre, et pourquoi l'on pense que l'intérieur des étoiles à neutrons est superfluide." Mot(s) clés libre(s) : basse température, condensation de Bose-Einstein, conductivité thermique, écoulement d'un liquide, état de la matière, fluide, hélium, mécanique des fluides, mécanique quantique, supraconductivité, tourbillon, viscosité
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|