Tri :
Date
Editeur
Auteur
Titre
|
|
Yuan-Pin Lee - Introduction to Gromov-Witten theory and the crepant transformation conjecture (Part 4)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In these lectures, Gromov{Witten theory will be introduced, assuming only basic
moduli theory covered in the rst week of the School. Then the Crepant Transformation Conjecture
will be explained. Some examples, with emphasis on the projective/global cases, will be given.
Note: The construction of virtual fundamental class, which forms the foundation of the GW theory,
will be given in Jun Li's concurrent lectures and will not be explained here. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, courbes, institut fourier, summer school, Gromov-Witten
|
Accéder à la ressource
|
|
Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 4)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
We
will first introduce the basic concepts pertaining to Kobayashi
pseudo-distances and hyperbolic complex spaces, including Brody’s
theorem and the Ahlfors-Schwarz lemma. One of the main goals of the
theory is to understand conditions under which a given algebraic variety
is Kobayashi hyperbolic. This leads to the introduction of jet spaces
and jet metrics, and provides a strong link between the existence of
entire curves and the existence of global algebraic differential
equations.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
We
will first introduce the basic concepts pertaining to Kobayashi
pseudo-distances and hyperbolic complex spaces, including Brody’s
theorem and the Ahlfors-Schwarz lemma. One of the main goals of the
theory is to understand conditions under which a given algebraic variety
is Kobayashi hyperbolic. This leads to the introduction of jet spaces
and jet metrics, and provides a strong link between the existence of
entire curves and the existence of global algebraic differential
equations.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
We
will first introduce the basic concepts pertaining to Kobayashi
pseudo-distances and hyperbolic complex spaces, including Brody’s
theorem and the Ahlfors-Schwarz lemma. One of the main goals of the
theory is to understand conditions under which a given algebraic variety
is Kobayashi hyperbolic. This leads to the introduction of jet spaces
and jet metrics, and provides a strong link between the existence of
entire curves and the existence of global algebraic differential
equations. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If
is a Stein manifold, there also exist plenty of global foliations of
this form, so long as there are no topological obstructions. More
precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no more than the integer part of . More generally, if is a complex vector subbundle of the tangent bundle such that is a flat bundle, then is homotopic (through complex vector subbundles of ) to an integrable subbundle, i.e., to the tangent bundle of a nonsingular holomorphic foliation on .
I will prove these results and discuss open problems, the most
interesting one of them being related to a conjecture of Bogomolov. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, applications, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If
is a Stein manifold, there also exist plenty of global foliations of
this form, so long as there are no topological obstructions. More
precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no more than the integer part of . More generally, if is a complex vector subbundle of the tangent bundle such that is a flat bundle, then is homotopic (through complex vector subbundles of ) to an integrable subbundle, i.e., to the tangent bundle of a nonsingular holomorphic foliation on .
I will prove these results and discuss open problems, the most
interesting one of them being related to a conjecture of Bogomolov. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, courbes, institut fourier, summer school, holomorphic foliations, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Dominique Cerveau - Holomorphic foliations of codimension one, elementary theory (Part 4)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In
this introductory course I will present the basic notions, both local
and global, using classical examples. I will explain statements in
connection with the resolution of singularities with for instance the
singular Frobenius Theorem or the Liouvilian integration. I will also
present some open questions which I will motivate by examples.
Dans
ce cours introductif je m’attacherai à présenter les notions de base
tant locales que globales au travers d’exemples classiques. J’aborderai
des énoncés liés à la résolution des singularités avec par exemple le
théorème de Frobenius singulier ou l’intégration Liouvillienne. Je
présenterai aussi quelques problèmes ouverts que je motiverai encore au
travers d’exemples.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Dominique Cerveau - Holomorphic foliations of codimension one, elementary theory (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In
this introductory course I will present the basic notions, both local
and global, using classical examples. I will explain statements in
connection with the resolution of singularities with for instance the
singular Frobenius Theorem or the Liouvilian integration. I will also
present some open questions which I will motivate by examples.
Dans
ce cours introductif je m’attacherai à présenter les notions de base
tant locales que globales au travers d’exemples classiques. J’aborderai
des énoncés liés à la résolution des singularités avec par exemple le
théorème de Frobenius singulier ou l’intégration Liouvillienne. Je
présenterai aussi quelques problèmes ouverts que je motiverai encore au
travers d’exemples.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Dominique Cerveau - Holomorphic foliations of codimension one, elementary theory (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In
this introductory course I will present the basic notions, both local
and global, using classical examples. I will explain statements in
connection with the resolution of singularities with for instance the
singular Frobenius Theorem or the Liouvilian integration. I will also
present some open questions which I will motivate by examples.
Dans
ce cours introductif je m’attacherai à présenter les notions de base
tant locales que globales au travers d’exemples classiques. J’aborderai
des énoncés liés à la résolution des singularités avec par exemple le
théorème de Frobenius singulier ou l’intégration Liouvillienne. Je
présenterai aussi quelques problèmes ouverts que je motiverai encore au
travers d’exemples.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
L’utilisation
de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été
dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou,
Kashiwara et Schapira. Nous essaierons d’en donner un aperçu à la fois
pour démontrer des résultats classiques, comme la conjecture d’Arnold,
et pour des résultats nouveaux.
The
use of methods from the Sheaf Theory (Kashiwara-Schapira) was
developped recently by Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara
and Schapira. We will try to give an insight of that, in order to prove
classical results, such as the Arnold conjecture, and to obtain new
results.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|