Tri :
Date
Editeur
Auteur
Titre
|
|
La cosmologie moderne : les nouveaux outils d'observation de l'univers
/ Mission 2000 en France
/ 02-07-2000
/ Canal-U - OAI Archive
VIGROUX Laurent
Voir le résumé
Voir le résumé
La nuit semble être noire. Il n'en est rien. L'univers baigne dans un rayonnement aux multiples origines. Dès le 17e siècle, le physicien Olberg montre tout le parti pouvant être tiré de la brillance du ciel. Si l'univers était uniforme et infini, la brillance du ciel due à la superposition de l'émission de toutes les sources qui le composent, devrait être infinie. Le fait qu'elle ne le soit pas, montre que l'univers n'est ni uniforme, ni infini. Il faut attendre le début du XXe siècle pour comprendre les implications profondes du paradoxe de Olberg. Grâce aux observatoires spatiaux, les astrophysiciens modernes élargissent leur champ d'investigation à tout le domaine du rayonnement électromagnétique. Les satellites américains permettent d'achever la mesure complète du spectre du rayonnement présent dans l'univers. Ces observatoires permettent également d'identifier les origines de ce rayonnement. Le recensement de l'univers est en passe d'être achevé. C'est en soi un résultat spectaculaire, qui marque la fin d'une recherche qui a commencé il y a plus de deux mille ans. Les résultats obtenus montrent que comme l'a supposé Olberg, l'univers n'est ni uniforme, ni infini, mais qu'en plus lui et ses constituants ont évolué très fortement depuis leur origine. La prochaine génération de télescopes, au sol, et dans l'espace va s'attaquer à la compréhension de cette évolution. Mais l'univers n'est pas fait que de rayonnement. Il contient aussi des particules. Depuis les années 1930 on sait que plus de 90% de cette matière échappe à la détection. Des recherches sont activement poursuivies par les astrophysiciens et les physiciens des particules pour élucider ce problème. Par contre des progrès spectaculaires ont été très récemment obtenus sur la répartition de cette matière dans l'univers, en utilisant la propriété de déflexion de la lumière par une masse gravitationnelle prédite par la relativité générale d'Einstein. L'univers lointain nous apparaît déformé car la lumière émise par les galaxies lointaines ne se propage pas en ligne droite. Son parcours s'infléchit en passant à proximité de masses importantes. Les astrophysiciens ont mis au point des techniques permettant de calculer ces déformations, et donc de calculer la distribution de la matière noire responsable de ces déformations. C'est un domaine en plein développement. Mot(s) clés libre(s) : astronomie extragalactique, astrophysique, Big Bang, cosmologie, fond diffus cosmologique, galaxie, infrarouge, observation du ciel, radioastronomie, rayon cosmique, rayonnement électromagnétique, rayonnement fossile, télescope, univers
|
Accéder à la ressource
|
|
Les neutrinos dans l'Univers
/ UTLS - la suite
/ 24-06-2005
/ Canal-U - OAI Archive
VIGNAUD Daniel
Voir le résumé
Voir le résumé
Notre corps humain contient environ 20 millions de neutrinos issus du big bang, émet quelques milliers de neutrinos liés à sa radioactivité naturelle. Traversé en permanence par 65 milliards de neutrinos par cm2 par seconde venus du Soleil, il a été irradié le 23 février 1987 par quelques milliards de neutrinos émis il y a 150000 ans par l'explosion d'une supernova dans le Grand Nuage de Magellan. Les neutrinos sont également produits dans l'interaction des rayons cosmiques dans l'atmosphère ou dans les noyaux actifs de galaxies
Quelle est donc cette particule présente en abondance dans tout l'Univers où elle joue un rôle-clé ? Inventé par W.Pauli en 1930 pour résoudre le problème du spectre en énergie des électrons dans la désintégration b, le neutrino fut découvert par F.Reines et C.Cowan en 1956, auprès du réacteur nucléaire de Savannah River (Caroline du Sud). Il n'a plus depuis quitté le devant de la scène, que ce soit chez les physiciens des particules, les astrophysiciens ou les cosmologistes. Cette particule élémentaire, sans charge électrique, n'est soumise qu'à l'interaction faible, ce qui lui permet de traverser des quantités de matière importantes sans interagir. En 1938, H.Bethe imaginait que des réactions nucléaires de fusion étaient au coeur de la production d'énergie des étoiles, en premier lieu le Soleil. Dans les années 60, les astrophysiciens se lancent dans la construction de modèles solaires et des expérimentateurs dans la construction de détecteurs pour les piéger. Il a fallu attendre 2002 pour comprendre que le déficit de neutrinos solaires observé (le célèbre "problème des neutrinos solaires") était dû à un phénomène lié à la mécanique quantique, appelé l'oscillation des neutrinos. La mise en évidence de cette oscillation a apporté la preuve décisive que les neutrinos avaient une masse non nulle. Nous ferons le point sur cette particule fascinante après les découvertes récentes. Mot(s) clés libre(s) : astrophysique, Big Bang, cosmologie, fermion, interaction électromagnétique, lepton, mécanique quantique, modèle standard, neutrino, oscillation, particule élémentaire, Pauli, physique des particules, univers
|
Accéder à la ressource
|
|
Phénomène d'hysteresis
/ Ecole Centrale de Paris, Supélec
/ 01-05-2009
/ Canal-U - OAI Archive
VIDAL Pierre, PROTAT François
Voir le résumé
Voir le résumé
Manipulation très courte mettant en évidence le cycle d'hystérésis d'un matériau à l'oscilloscope.Vidéo issue du projet VideoManip dont l'objectif est la réalisation de courtes séquences filmées, montrant des expériences réelles, qui seraient à la fois trop complexes pour être montées et montrées en amphi, et pas assez riches d'enseignement pour justifier un TP de plusieurs heures. Les sciences de l'ingénieur consistent à utiliser un phénomène physique pour construire un objet répondant à un besoin donné. Cela suppose de la part des scientifiques, des (futurs) ingénieurs et des (futurs) enseignants qui les forme(ro)nt une connaissance assez intime des phénomènes physiques exploitables. Dans le processus d'acquisition de cette connaissance, rien ne remplace la confrontation directe au phénomène étudié au travers de l'expérimentation. La "manip de cours" ou "manip d'amphi" (expérimentation par le professeur pendant le cours magistral) permet de confronter immédiatement les étudiants au phénomène étudié sans avoir à attendre qu'ils aient acquis suffisamment de compétence pour pouvoir manipuler eux-mêmes. Ce genre d'illustration représente un investissement important, tant pour la mise en place de l'expérimentation elle-même que pour celle des dispositifs annexes permettant de la faire visualiser par un grand auditoire. Mot(s) clés libre(s) : cycle d'hystérésis, électromagnétisme, hystérèse, matériau, oscilloscope
|
Accéder à la ressource
|
|
Les champs électro-magnétiques
/ DCAM - Département Conception et Assistance Multimédia - Université Bordeaux Segalen, Université Bordeaux Segalen - DCAM
/ 18-11-2010
/ Canal-U - OAI Archive
VEYRET Bernard
Voir le résumé
Voir le résumé
Journée Santé Environnement Quelques grandes questions environnementales des débuts du XXIe siècle ISPED, Université Victor Segalen Bordeaux 2 Les craintes que suscitent depuis plusieurs années les champs électro-magnétiques et en particulier les risques liés aux ondes des téléphones portables, des bornes wifi ou des lignes à haute tension ont permis l’accroissement des financements dévolus à ce thème et la mise en place de projets de recherche. Directeur de recherche au Laboratoire de l’Intégration du Matériau au Système (IMS) de Bordeaux, Bernard Veyret présente les résultats de ces études sur les champs électromagnétiques et sur leurs effets biologiques et sanitaires. Mot(s) clés libre(s) : champs électromagnétiques, environnement, évaluation du risque, ondes électromagnétiques, principe de précaution, risques pour la santé, santé, sociologie de la santé, veille sanitaire
|
Accéder à la ressource
|
|
Electromagnétisme (2003)
/ Samia SERRI
/ 01-01-2003
/ Canal-U - OAI Archive
Université Denis Diderot - Paris VII, Université Pierre et Marie Curie-Paris 6
Voir le résumé
Voir le résumé
Quelques expériences d'électromagnétisme.GénériqueRéalisation : Michèle Bredimas et Samia Serri Image : Jean-paul Flourat et François de la Patelliere Montage : Samia Serri et André Brydges Musique : Candra Kanta Enregistrement : Jacques Brunet Production : Université Pierre et Marie Curie / Université Paris 7 Denis Diderot Copyright Université Pierre et Marie Curie / Université Paris 7 Denis Diderot 2003 Mot(s) clés libre(s) : électromagnétisme
|
Accéder à la ressource
|
|
Quelques expériences d'initiation à la microscopie électronique
/ Samia SERRI, Palais de la Découverte
/ 01-06-2007
/ Canal-U - OAI Archive
Université Denis Diderot - Paris VII
Voir le résumé
Voir le résumé
Quatre expériences du palais de la découverte illustrent- d’une part le comportement corpusculaire de la lumière et celui ondulatoire d’électrons en mouvement- d’autre part l’influence d’un aimant sur la trajectoire d’un faisceau d’électrons. La notion de lentille électrostatique est introduite.Pour en savoir plus, des exposés sur ces thèmes sont proposés aux visiteurs du palais de la découverte.Générique :Réalisation : Samia SerriImage et son : David BentoMontage et animation : Thierry MaillotMoyens techniques : Université Paris Diderot / Palais de la découverteDirectrice de production : Michèle Brédimas Mot(s) clés libre(s) : Broglie, diffraction des électrons, effet photoélectrique, fentes de Young, force de Laplace, force électromagnétique, lentille électrostatique, lumière, microscope électronique, nature ondulatoire des électrons, photon, théorie corpusculaire newtonienne
|
Accéder à la ressource
|
|
La radiographie II. Qu'est-ce qu'un rayon X ? Comment en produire ? Quel mécanisme permet d'obtenir une radiographie ?
/ ENS Lyon CultureSciences-Physique, Catherine Simand
/ 01-11-2007
/ Unisciel
Simand Catherine, Demirdjian Hagop
Voir le résumé
Voir le résumé
Deuxième partie d'un dossier sur la radiographie. Caractéristiques
et production des rayons X. Principe de la radiographie. Mot(s) clés libre(s) : imagerie médicale, radiographie, rayons X, image médicale, tube de Coolidge, tube à rayons X, rayonnement électromagnétique, spectre, onde électromagnétique
|
Accéder à la ressource
|
|
Des électrons vraiment libres ?
/ ENS Lyon CultureSciences-Physique, Catherine Simand
/ 15-06-2007
/ Unisciel
Simand Catherine
Voir le résumé
Voir le résumé
Quel est l'effet de la pesanteur sur les électrons libres dans un
métal ? Mot(s) clés libre(s) : électrons, électrons libres, électrons de conduction, conduction électrique, couches électroniques, métal, liaison métallique, gaz d'électrons libres, réseau ionique, cristal, bande de valence, bande de conduction, pesanteur, conduction, interaction gravitationnelle, interaction électromagnétique, gravité
|
Accéder à la ressource
|
|
VIRGO au LAPP
/ Serge GUYON, Georges ROUSSI, Laboratoire d'Annecy-le-vieux de Physique des Particules, Université Paris XI-SCAVO
/ 01-01-1999
/ Canal-U - OAI Archive
ROUSSI Georges, MOURS Benoît
Voir le résumé
Voir le résumé
Le projet VIRGO, auquel participent 11 laboratoires français et italiens, est une expérience de physique fondamentale qui a pour objectif la détection, l'étude et l'observation des ondes gravitationnelles. Ces ondes, prévues par la théorie de la relativité générale d'Einstein, constituent l'aspect dynamique de la force de gravitation. Elles se propagent en déformant l'espace-temps et modifient les distances, mais si faiblement qu'il n'a pas été possible de les observer jusqu'à ce jour. VIRGO se propose de relever ce défi en construisant un interféromètre géant de 3 km de longueur. Un faisceau laser est séparé en deux parties identiques disposées perpendiculairement et réfléchies par des miroirs. Le passage d'une onde gravitationnelle modifie la distance entre les miroirs et donc le temps de trajet des faisceaux. Les chercheurs pensent pouvoir mesurer cet écart, mais l'effet étant extrêmement petit, les contraintes de conception et de fabrication sont extrêmes. L'ensemble des miroirs et des faisceaux laser est placé sous ultra-vide et protégé de la moindre vibration par des suspensions qui doivent donner au système une immobilité absolue. Le LAPP (Laboratoire d'Annecy-le-Vieux de physique des particules) a participé de façon déterminante à cette expérience réalisée dans le cadre d'une collaboration franco-italienne. Il a pris en charge la conception et la fabrication des enceintes à vide qui abritent les miroirs ainsi que l'ensemble du système de détection du signal provenant de l'interféromètre. Il a contribué d'autre part de façon importante à l'électronique et l'informatique de l'acquisition des données ainsi qu'au programme de simulation de l'expérience. Des images de synthèse expliquent le fonctionnement de l'interféromètre qui est installé en Italie, dans la plaine de l'Arno, près de Pise. La détection des ondes gravitationnelles, nouvelle fenêtre pour observer l'Univers, permettra l'observation d'objets très massifs ou de phénomènes très violents.GénériqueAuteur : Georges ROUSSI Réalisateurs : Serge GUYON et Georges ROUSSI Auteur scientifique : Benoit MOURS (LAPP, UMR CNRS, Annecy-le-Vieux) Production : LAPP et Université Paris XI-SCAVO Diffuseur : CNRS Images. www.cnrs.fr/cnrs-images/ Mot(s) clés libre(s) : astrophysique, cosmologie, espace-temps, gravitation, graviton, interféromètre, laser, onde électromagnétique, onde gravitationelle, physique des particules, physique fondamentale, rayonnement cosmique, relativité générale, système de détection, univers
|
Accéder à la ressource
|
|
La palette des grands équipements d'observations en astrophysique
/ UTLS - la suite
/ 18-07-2001
/ Canal-U - OAI Archive
ROUAN Daniel
Voir le résumé
Voir le résumé
Les regards neufs de l'astrophysicien : grands équipements et moyens nouveaux de l'astronomie Cantonné au seul domaine de la lumière visible pendant des siècles, le regard que l'astronome a posé sur l'Univers s'est aiguisé essentiellement en augmentant la taille des télescopes pour voir toujours plus loin. Puis arrive au vingtième siècle le spectrographe qui permet d'analyser cette lumière en la décomposant pour en déduire la teneur et les propriétés physiques des astres qui l'émettent. Jusqu'au milieu de ce siècle, c'est cette combinaison d'outils relativement simples qui permet d'avancer dans notre connaissance de l'Univers, à grands pas cependant, tant la lumière est porteuse d'une information riche. Aujourd'hui la palette des moyens d'investigation de l'astrophysicien s'est considérablement enrichie et permet de percevoir la musique des sphères sur une gamme devenue immense. Cette gamme, c'est en fait celle du rayonnement électromagnétique qui comprend, outre le modeste octave de la lumière visible, des dizaines d'octaves de rayonnements d'autre nature : ceux des domaines de la radio, des micro-ondes, de l'infrarouge, de l'ultraviolet, des rayonnements X et gamma. Avec l'entrée dans l'ère spatiale et l'évasion hors de l'atmosphère - le plus souvent un écran opaque à ces émissions -, d'immenses fenêtres se sont ainsi ouvertes au chercheur pour appréhender l'Univers autrement : des voiles sombres de poussières deviennent transparents, l'émission ténue de gigantesques bulles de gaz dilué est captée, des densités inouïes d'énergie ou de matière se divulguent, des températures glaciales ou infernales sont mesurées, des masses colossales de matière invisible sont traquées. Toujours habité par le désir de voir mieux et plus loin, l'astrophysicien demande aux ingénieurs de le doter d'yeux toujours plus grands, plus sensibles, plus perçants. Ces nouvelles machines, parfois coûteuses mais aux performances remarquables, remplissent effectivement leurs promesses comme le témoigne le rythme des découvertes dont les journaux nous informent presque quotidiennement. C'est ce panorama des moyens les plus récents dont s'est dotée l'astronomie moderne qui sera balayé, en évoquant les nouveaux télescopes géants et leur instrumentation, ainsi que les récepteurs et les télescopes propres à tous ces autres domaines du spectre électromagnétique qui ont commencé à être explorés, depuis la radio jusqu'aux rayons gamma. On essaiera de montrer l'apport unique de ces domaines nouveaux dans la compréhension des astres. On montrera aussi que l'Astronomie, gourmande de performances extrêmes pour ses instruments, est également un moteur du progrès technique en exigeant toujours plus : les caméras infrarouges, l'optique adaptative sont des exemples où s'est fait cet échange avec la recherche plus appliquée, pour le profit de tous. Mot(s) clés libre(s) : astre, astronomie, astrophysique, infrarouge, objet céleste, observation, optique adaptative, rayonnement électromagnétique, rayons X, télescope, univers
|
Accéder à la ressource
|
|