Tri :
Date
Editeur
Auteur
Titre
|
|
Vivant et information
/ UTLS - la suite
/ 05-07-2002
/ Canal-U - OAI Archive
WEISSENBACH Jean
Voir le résumé
Voir le résumé
pas de résumé Mot(s) clés libre(s) : ADN, ARN, catalyseur, enzyme, évolution, génétique, génome, histoire des sciences de la vie, information biologique, mutation, protéine, vie, vivant
|
Accéder à la ressource
|
|
Machines et moteurs moléculaires : de la biologie au molécules de synthèse
/ UTLS - la suite
/ 20-06-2006
/ Canal-U - OAI Archive
SAUVAGE Jean-Pierre
Voir le résumé
Voir le résumé
De nombreux processus biologiques essentiels font intervenir des moteurs moléculaires (naturels). Ces moteurs sont constitués de protéines dont la mise en mouvement, le plus souvent déclenchée par l'hydrolyse d'ATP (le "fioul" biologique), correspond à une fonction précise et importante. Parmi les exemples les plus spectaculaires, nous pouvons citer l'ATPsynthase, véritable moteur rotatif responsable de la fabrication de l'ATP. Pour le chimiste de synthèse, l'élaboration de molécules totalement artificielles, dont le comportement rappelle celui des systèmes biologiques, est un défi formidable. L'élaboration de "machines" et "moteurs" moléculaires de synthèse représente un domaine particulièrement actif, qui a vu le jour il y a environ une douzaine d'années. Ces machines sont des objets nanométriques pour lesquels il est possible de mettre en mouvement une partie du composé ou de l'assemblée moléculaire considérée, par l'intervention d'un signal envoyé de l'extérieur, alors que d'autres parties sont immobiles. Si une source d'énergie alimente le système de manière continue, et qu'un mouvement périodique en résulte, l'assemblée moléculaire en mouvement pourra être considérée comme un "moteur". D'ores et déjà, certaines équipes de chimiste ont pu fabriquer des moteurs rotatifs minuscules, des moteurs linéaires mis en mouvement par un signal électronique ou des "muscles" moléculaires de synthèse, capables de se contracter ou de s'allonger sous l'action d'un stimulus externe. Quelques exemples représentatifs seront discutés lors de l'exposé. Un certain nombre de questions ayant trait aux applications potentielles du domaine de "nanomécanique moléculaire" seront abordées : - "ordinateurs moléculaires", pour lesquels certains chercheurs fondent de grands espoirs, stockage et traitement de l'information au niveau moléculaire, - robots microscopiques, capables de remplir une grande variété de fonctions allant de la médecine à la vie de tous les jours, - transport sélectif de molécules ou d'ions à travers des membranes. Mot(s) clés libre(s) : adénosine triphosphate, ATPsynthase, caténane, chimie de synthèse, enzyme, machine moléculaire, molécule artificielle, moteur moléculaire, nanomécanique moléculaire, ordinateur moléculaire, rotaxane, signal énergétique
|
Accéder à la ressource
|
|
Enzymologie élémentaire
/ Alain Raisonnier
/ 20-06-2006
/ Unisciel
Raisonnier Alain
Voir le résumé
Voir le résumé
Les enzymes. Cinétique. Effet des constantes physiques. Mot(s) clés libre(s) : protéines, enzymes, Biochimie, biologie
|
Accéder à la ressource
|
|
Etude en temps réel des interactions biospécifiques
/ Université Montpellier 1
/ 01-01-2001
/ Canal-U - OAI Archive
PUGNIERE Martine, MANI Jean-Claude
Voir le résumé
Voir le résumé
L'analyse des interactions biospécifiques était jusqu'alors fastidieuse, longue et difficile. Depuis la découverte du phénomène de résonance plasmonique de surface, l'analyse de ces interactions s'est formidablement améliorée et automatisée. De plus l'étude en série de nombreuses combinaisons moléculaires est possible. Cette méthode permet l'analyse cinétique et thermodynamique des interactions, la caractérisation des protéines...
Générique
Prise de vue Jean-Pierre GANDIN Jean-Marc BALOIS Prise de son Alain PETIT Eclairage Jean-Pierre GANDIN Coordination plateau Daniel GALL Régie Jean-Marc TALENTON Montage Aude REVALOR Moyens techniques IEC-ASV Montpellier Création musicale Jean-Luc GRANIER Infographie David JEAN Jean-Christophe MANI Boris BOUQUET Jean-claude MANi Martine PUGNIERE Collaboration technique Françoise ROQUET Imagerie scientifique Institut de Biotechnologie et de Pharmacologie (UMR CNRS 5094) Société Biacore (Saint-Quentine en Yvelines) Protein Data Bank AMIT et Al Supervision scientifique Françoise CASTEX Lynn SALHI Réalisation Jacqueline GUIBAL Remerciements Françoise ROQUET Cédric BES Gaëlle FERRIERE Daniel LAUNE Thierry CHARDES Avec le soutien du Ministère de l'Education nationale et du Ministère de la Recherche Copyright Université Montpellier 1 - 2001 Mot(s) clés libre(s) : biocapteur, cinétique, enzyme, interaction, résonance, SPR, thermodynamique
|
Accéder à la ressource
|
|
L'étude de la matière à toutes les échelles
/ UTLS - la suite, Mission 2000 en France
/ 25-08-2000
/ Canal-U - OAI Archive
PILENI Marie
Voir le résumé
Voir le résumé
L' étude de la matière à toutes les échelles est un sujet très vaste qui nécessiterait plusieurs cours. Aussi, nous limiterons notre propos en tentant de répondre à la question : " Un même assemblage d'éléments organiques ou inorganiques peut-il exister à différentes échelles et qu'elles sont leurs propriétés spécifiques ? " Dans ce dessein, nous choisirons une même entité différant par le nombre d'atomes qui la constitue et nous chercherons à montrer que ses propriétés physiques ou catalytiques changent en fonction de leur dimension. Dans un second temps, nous associerons cette entité à elle-même afin de faire croître cet assemblage de quelques Angstrom au millimètre. Nous montrerons que, dans certains cas, l'organisation de ces entités induit l'apparition des propriétés spécifiques différant de l'élément isolé. Nous traiterons tout d'abord les matériaux inorganiques puis organiques. Mot(s) clés libre(s) : adsorption, auto-organisation des particules, catalyse, enzyme, fluorescence, liaison chimique, matériau, matière organique, nanochimie, nanomatériaux, superparamagnétisme
|
Accéder à la ressource
|
|
Protéines recombinantes et applications
/ BioTV
/ 20-10-2002
/ Canal-U - OAI Archive
PETRES Stéphane, BARA JAcques, GODEAU François
Voir le résumé
Voir le résumé
La construction des protéines recombinantes (PR) se fait en intégrant des fragments d'ADN (ADNc) dans le génome d'organismes vivants. On obtient ainsi en quantité suffisante des protéines clefs autrement impossibles à purifier du fait de leur rareté. L'ADNc est choisi pour coder des molécules utiles à la compréhension, à la détection et au traitement des maladies. Les manipulations de l'ADNc, telle la mutagenèse dirigée, permettent d'établir les relations de leur fonction avec leur structure tridimensionnelle (3D). Les concepts et le savoir-faire nécessaires à la sélection et à leur construction du recombinant sont désormais incontournables pour les programmes de recherche de "l'après génome" comme pour les programmes de types industriels. Dans son émission 1, François Godeau nous explique le principe d'obtention des PR et nous donne des exemples de leur applications. Dans son émission 2, il nous expose comment on élabore un projet d'utilisation des protéines recombinantes pour la détection précoce des cancers. Mot(s) clés libre(s) : ADN, ARN, canc, cellules dendritiques, Code génétique, enzymes de restriction, génétique moléculaire, hépatite, insectes, northern blot, réaction de polymérisation en chaîne (PCR), sondes d1hybridation, transcriptase inverse, vecteurs, virus, western blot
|
Accéder à la ressource
|
|
La catalyse
/ UTLS - la suite, Mission 2000 en France
/ 23-08-2000
/ Canal-U - OAI Archive
MINOT Christian
Voir le résumé
Voir le résumé
La plupart des réactions biologiques qui forment le corps humain sont des réactions catalytiques. La catalyse joue un rôle également déterminant dans des processus industriels majeurs comme la synthèse de l'ammoniac, le raffinage du pétrole ou la réduction des oxydes d'azote dans les pots catalytiques. Un catalyseur est un composé qui rend possible une réaction chimique mais qui sort indemne de la transformation. Un catalyseur peut agir sur un acte élémentaire ou sur le bilan d'une réaction complexe ; enfin il peut orienter vers une réaction plutôt qu'une autre. La catalyse concerne tous les domaines de la chimie. La catalyse acido-basique concerne le domaine de la chimie organique. Les catalyseurs dans le domaine de la biochimie sont les enzymes qui doivent épouser une forme complémentaire du substrat pour s'adapter à lui, puis présenter un site actif où la réactivité est modifiée. La catalyse homogène est le domaine de la chimie organométallique ; elle concerne un centre métallique dont l'environnement électronique et géométrique est bien défini, ce qui permet de bien contrôler la réaction. La catalyse hétérogène concerne la science des surfaces et des interfaces. Du point de vue industriel, ces catalyseurs sont les plus employés car ils présentent de nombreux sites actifs qui sont utilisés de nombreuses fois de façon consécutive. Comprendre un processus catalytique, c'est aller au delà d'un simple bilan, cela nécessite de décrire les étapes du voyage partant des réactifs et allant vers les produits. Comprendre la catalyse, c'est décrire la réaction dans son environnement. Cela devrait être de plus en plus le cas durant le prochain siècle et cela devrait permettre d'améliorer les performances des catalyseurs déjà connus. Mot(s) clés libre(s) : adsorption, biochimie, catalyse, chimie industrielle, chimie organique, cinétique, enzyme, enzymologie, inhibiteur, réaction chimique, thermodynamique, turn-over
|
Accéder à la ressource
|
|
La modélisation des molécules de la vie
/ UTLS - la suite
/ 21-06-2006
/ Canal-U - OAI Archive
LAVERY Richard
Voir le résumé
Voir le résumé
Il y a plus de cent ans, les chimistes ont commencé à exploiter des modèles pour visualiser les molécules qu'ils manipulaient dans leurs tubes à essais. Les modèles physiques permettent de mieux comprendre la forme et la flexibilité des molécules, mais ils sont longs à construire, souvent chers, et ils ne donnent qu'une vue très approximative des molécules. De surcroît, ils sont peu adaptés à la représentation des grandes molécules qui caractérisent la vie et qui contiennent des milliers, voire des centaines de milliers, d'atomes. Depuis environ quarante ans, les ordinateurs offrent une alternative aux modèles physiques. Ils permettent de décrire les molécules (et les macromolécules) d'une façon beaucoup plus réaliste en tenant compte de l'ensemble des interactions qui peuvent avoir lieu entre ces espèces. Ils permettent non seulement de visualiser les molécules, mais aussi d'étudier leur dynamique et leurs interactions. La modélisation ne remplace pas l'expérimentation, mais elle aide à analyser des résultats et surtout à formuler de nouvelles hypothèses. J'illustrerai ces développements avec des exemples portant sur les acides nucléiques, et, en particulier, la double hélice d'ADN, sur les protéines et sur les complexes formés entre ces macromolécules. Je montrerai comment on peut approcher les molécules avec l'oeil de l'ingénieur civil, et comment les molécules sondent leurs propres propriétés mécaniques pour se reconnaître. Je parlerai aussi de la modélisation au service des physiciens qui ont appris à manipuler les molécules une à une, ou au service du biologiste "seigneur des anneaux". Je terminerai en parlant de l'avenir de la modélisation: est-ce que nous pouvons commencer déjà à simuler non seulement une ou deux molécules, mais plutôt les systèmes moléculaires organisés qui animent nos cellules ? Mot(s) clés libre(s) : ADN, enzyme, macromolécule biologique, modèle moléculaire, modélisation, protéine, simulation informatique, structure chimique, système vivant
|
Accéder à la ressource
|
|
Les enzymes : biocatalyseurs spécifiques
/ BioMedia-UPMC
/ 05-05-2010
/ Unisciel
Lamoure Elisabeth
Voir le résumé
Voir le résumé
Ce TP propose l'étude des enzymes en tant que catalyseur, par comparaison avec une catalyse chimique. Mot(s) clés libre(s) : enzyme, Biochimie
|
Accéder à la ressource
|
|
10ème CBP determinants of arterial stiffness-extracellular matrix and adhesion molecules
/ SPI-EAO
/ 17-03-2006
/ Canal-U - OAI Archive
LACOLLEY Patrick
Voir le résumé
Voir le résumé
Le Docteur Patrick Lacolley intervient sur le thème suivant : la rigidité artérielle, un facteur de risque cardiovasculaire. Il y a différentes façons de mesurer la rigidité artérielle et deux facteurs déterminants : l'âge, et la pression artérielle. Le premier paramètre à analyser est le rapport élastine collagène. L'intégrine est primordiale dans le remodelage de la paroi artérielle.
Origine
10ème colloque de biologie prospective InterReg III A. Canal-U Médecine - 2006
Générique
Réalisation : CERIMES - SPI-EAO SCD medecine Mot(s) clés libre(s) : arterial stiffness-extracellular, biologie prospective, enzyme, intégrines, paroi artérielle, rigidité artérielle, risque cardiovasculaire
|
Accéder à la ressource
|
|