|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Espoir et théorie des catastrophes. L’intelligibilité : norme d’une science de l’acceptable ?
/ DCAM - Département Conception et Assistance Multimédia - Université Bordeaux Segalen, Service Culturel - Université Victor Segalen Bordeaux 2
/ 25-01-2006
/ Canal-U - OAI Archive
GOOTJES Luc
Voir le résumé
Voir le résumé
Fondée dans les années 70 par le mathématicien René Thom, la théorie des catastrophes devient rapidement, malgré l’engouement qu’elle suscite, sujet de controverse et de critique. Visant à décrire les phénomènes discontinus à l'aide de modèles mathématiques continus, elle se définit comme un langage mathématique, un outil d’intelligibilité du monde mais son manque de rigueur et sa nature qualitative laissent sceptique positivistes et mathématiciens purs. Bien que ces critiques n’aient que partiellement entamé son expansion puisque ses domaines d’application s’étendent au fil du temps de la biologie aux disciplines de sciences humaines telles que l’éthologie et la psychologie (théorie de Harry Blum), elles sont à l’origine du désintérêt des chercheurs pour ce langage mathématique apte selon Luc Gootjes à relever de nouveaux défis scientifiques.La conférence a été donnée à l'Université Victor Segalen Bordeaux 2 dans le cadre du cycle de conférences "L'invité du Mercredi" / Saison 2005-2006 sur le thème "L'espoir". Service culturel Université Victor Segalen de Bordeaux 2 / DCAM / Mot(s) clés libre(s) : caractéristique d'Euler-Poincaré, espace, espace multidimensionnel, langage mathématique, modèle dynamique continu, phénomènes discontinus, René Thom, théorie des catastrophes, topologie différentielle
|
Accéder à la ressource
|
|
Espaces courbes
/ Mission 2000 en France
/ 27-06-2000
/ Canal-U - OAI Archive
BOURGUIGNON Jean-Pierre
Voir le résumé
Voir le résumé
La notion d'espace (intrinsèquement) courbe a mis beaucoup de temps avant de s'imposer. Pour la définir il convient de dépasser le premier modèle de géométrie systématiquement développée qu'est la géométrie d'Euclide. De ce point de vue, l'émergence au début du XIXe siècle des géométries non-euclidiennes a joué un rôle déterminant, qui a été encore amplifié par l'oeuvre révolutionnaire de Bernhard Riemann en 1854. Ce contexte mathématiquement riche sera complété par la reconnaissance par Albert Einstein qu'il pouvait servir de cadre à sa théorie de la Relativité Générale, qui identifie les effets gravitationnels à la courbure de l'espace. Le sujet n'a cessé de se développer tout au long du XXe siècle, avec notamment la recherche de conséquences sur la topologie globale de l'espace d'hypothèses sur la courbure vérifiée en chaque point sur la topologie globale de l'espace. A partir des années 1970 la considération systématique d'espaces moins réguliers a été un important moteur de la recherche, ce qui a permis l'émergence de modèles plus généraux, utilisés tant en informatique que dans l'étude de l'espace des couleurs, un sujet classique chez les mathématiciens mais peu connu du grand public. Le concept d'espace courbe a aussi fasciné certains artistes dont certaines oeuvres proposent des promenades dans les espaces courbes. inertes. Mot(s) clés libre(s) : caractéristique d'Euler-Poincaré, courbure, espace courbe, espace multidimensionnel, Gauss, géométrie euclidienne, modèle géométrique, plan, tenseur de Riemann, théorie de la Relativité, topologie algébrique
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|