|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Mathématiques et réalité
/ UTLS au lycée, Mission 2000 en France
/ 14-01-2000
/ Canal-U - OAI Archive
CARTIER Pierre
Voir le résumé
Voir le résumé
Conférence du 14 janvier 2000 par Pierre Cartier. Nous voulons insister sur le cycle de rétroaction des mathématiques et de la réalité, prise dans son sens social et technologique. Les caractéristiques principales des mathématiques nous semblent les suivantes : a) Dégager et organiser un savoir-faire de nature combinatoire : numérations de plus en plus performantes pour traiter de nombres de plus en plus grands, description de formes géométriques et d'agencements. b) Créer des formes nouvelles qui serviront à modeler le monde (architecture, paysages, instruments techniques). c) Inventer et imposer un ordre : les nombres dans l'ordre économique (ou monétaire), les règles d'organisation. d) Garantir le fonctionnement et l'efficacité des procédures mathématiques : démonstrations, algorithmes, non-contradictoires. Le monde régulé par les mathématiques veut minimiser la part des aléas. De larges pans des mathématiques (calcul des probabilités, fractales, ondelettes) sont consacrés à la découverte d'un ordre sous-jacent au désordre apparent. Dans cette perspective, le développement historique des mathématiques, leur validité théorique ou publique, le degré de certitude qu'elles procurent, leurs fondements et leur unité (plus organique que logique), tous ces problèmes se présentent sous un jour nouveau. Mot(s) clés libre(s) : combinatoire, formalisation, forme géométrique, histoire des sciences, intersubjectivité, langage mathématique, nombre, philosophie des mathématiques, représentation du réel, théorie mathématique
|
Accéder à la ressource
|
|
Mathématiques et réalité
/ UTLS au lycée, Mission 2000 en France
/ 14-01-2000
/ Canal-u.fr
CARTIER Pierre
Voir le résumé
Voir le résumé
Conférence du 14 janvier 2000 par Pierre Cartier. Nous voulons insister sur le cycle de rétroaction des mathématiques et de la réalité, prise dans son sens social et technologique. Les caractéristiques principales des mathématiques nous semblent les suivantes : a) Dégager et organiser un savoir-faire de nature combinatoire : numérations de plus en plus performantes pour traiter de nombres de plus en plus grands, description de formes géométriques et d'agencements. b) Créer des formes nouvelles qui serviront à modeler le monde (architecture, paysages, instruments techniques). c) Inventer et imposer un ordre : les nombres dans l'ordre économique (ou monétaire), les règles d'organisation. d) Garantir le fonctionnement et l'efficacité des procédures mathématiques : démonstrations, algorithmes, non-contradictoires. Le monde régulé par les mathématiques veut minimiser la part des aléas. De larges pans des mathématiques (calcul des probabilités, fractales, ondelettes) sont consacrés à la découverte d'un ordre sous-jacent au désordre apparent. Dans cette perspective, le développement historique des mathématiques, leur validité théorique ou publique, le degré de certitude qu'elles procurent, leurs fondements et leur unité (plus organique que logique), tous ces problèmes se présentent sous un jour nouveau. Mot(s) clés libre(s) : combinatoire, représentation du réel, philosophie des mathématiques, nombre, langage mathématique, intersubjectivité, histoire des sciences, forme géométrique, formalisation, théorie mathématique
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|