|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Joseph Fu - Integral geometric regularity (Part 5)
/ Fanny Bastien
/ 24-06-2015
/ Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke
in the 1930s, the famous Principal Kinematic Formula expresses the Euler
characteristic of the intersection of two sufficiently regular objects
in euclidean space, integrated over the space of all possible relative
positions, in terms of geometric invariants associated to each of them
individually. It is natural to wonder about the precise regularity
needed for this to work. The question turns on the existence of the
normal cycle of such an object A, i.e. an integral current that stands
in for its manifolds of unit normals if A is too irregular for the
latter to exist in a literal sense. Despite significant recent progress,
a comprehensive understanding of this construction remains maddeningly
elusive. In these lectures we will discuss both of these aspects. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Joseph Fu - Integral geometric regularity (Part 4)
/ Fanny Bastien
/ 24-06-2015
/ Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke
in the 1930s, the famous Principal Kinematic Formula expresses the Euler
characteristic of the intersection of two sufficiently regular objects
in euclidean space, integrated over the space of all possible relative
positions, in terms of geometric invariants associated to each of them
individually. It is natural to wonder about the precise regularity
needed for this to work. The question turns on the existence of the
normal cycle of such an object A, i.e. an integral current that stands
in for its manifolds of unit normals if A is too irregular for the
latter to exist in a literal sense. Despite significant recent progress,
a comprehensive understanding of this construction remains maddeningly
elusive. In these lectures we will discuss both of these aspects. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Joseph Fu - Integral geometric regularity (Part 3)
/ Fanny Bastien
/ 24-06-2015
/ Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke
in the 1930s, the famous Principal Kinematic Formula expresses the Euler
characteristic of the intersection of two sufficiently regular objects
in euclidean space, integrated over the space of all possible relative
positions, in terms of geometric invariants associated to each of them
individually. It is natural to wonder about the precise regularity
needed for this to work. The question turns on the existence of the
normal cycle of such an object A, i.e. an integral current that stands
in for its manifolds of unit normals if A is too irregular for the
latter to exist in a literal sense. Despite significant recent progress,
a comprehensive understanding of this construction remains maddeningly
elusive. In these lectures we will discuss both of these aspects. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Joseph Fu - Integral geometric regularity (Part 2)
/ Fanny Bastien
/ 23-06-2015
/ Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke
in the 1930s, the famous Principal Kinematic Formula expresses the Euler
characteristic of the intersection of two sufficiently regular objects
in euclidean space, integrated over the space of all possible relative
positions, in terms of geometric invariants associated to each of them
individually. It is natural to wonder about the precise regularity
needed for this to work. The question turns on the existence of the
normal cycle of such an object A, i.e. an integral current that stands
in for its manifolds of unit normals if A is too irregular for the
latter to exist in a literal sense. Despite significant recent progress,
a comprehensive understanding of this construction remains maddeningly
elusive. In these lectures we will discuss both of these aspects. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Joseph Fu - Integral geometric regularity (Part 1)
/ Fanny Bastien
/ 22-06-2015
/ Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke
in the 1930s, the famous Principal Kinematic Formula expresses the Euler
characteristic of the intersection of two sufficiently regular objects
in euclidean space, integrated over the space of all possible relative
positions, in terms of geometric invariants associated to each of them
individually. It is natural to wonder about the precise regularity
needed for this to work. The question turns on the existence of the
normal cycle of such an object A, i.e. an integral current that stands
in for its manifolds of unit normals if A is too irregular for the
latter to exist in a literal sense. Despite significant recent progress,
a comprehensive understanding of this construction remains maddeningly
elusive. In these lectures we will discuss both of these aspects. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|