Nouveautés
Recherche simple :
Accueil
Documents
Pédagogie
Thèses
Publications Scientifiques
Multi-formats
Pédagogie > Recherche par mots-clefs en fr
  • Nouveautés
  • Recherche avancée
  • Recherche thématique UNIT
  • Recherche thématique
  • Recherche par établissements
  • Recherche par auteurs
  • Recherche par mots-clefs
Mots-clefs > H > holomorphic foliations
Niveau supérieur
  • 4 ressources ont été trouvées. Voici les résultats 1 à 4
  |< << Page précédente 1 Page suivante >> >| documents par page
Tri :   Date Editeur Auteur Titre

Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 4)

/ Fanny Bastien / Canal-u.fr
Voir le résumé
Voir le résumé
A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also exist plenty of global foliations of this form, so long as there are no topological obstructions. More precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no more than the integer part of . More generally, if is a complex vector subbundle of the tangent bundle such that is a flat bundle, then is homotopic (through complex vector subbundles of ) to an integrable subbundle, i.e., to the tangent bundle of a nonsingular holomorphic foliation on . I will prove these results and discuss open problems, the most interesting one of them being related to a conjecture of Bogomolov.
Mot(s) clés libre(s) : Grenoble, école d'été, mathématiques, institut fourier, summer school, holomorphic foliations
 |  Accéder à la ressource

Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 2)

/ Fanny Bastien / Canal-u.fr
Voir le résumé
Voir le résumé
A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also exist plenty of global foliations of this form, so long as there are no topological obstructions. More precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no more than the integer part of . More generally, if is a complex vector subbundle of the tangent bundle such that is a flat bundle, then is homotopic (through complex vector subbundles of ) to an integrable subbundle, i.e., to the tangent bundle of a nonsingular holomorphic foliation on . I will prove these results and discuss open problems, the most interesting one of them being related to a conjecture of Bogomolov.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, courbes, institut fourier, summer school, holomorphic foliations, COURBES PSEUDOHOLOMORPHES
 |  Accéder à la ressource

Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 1)

/ Fanny Bastien / 19-06-2012 / Canal-u.fr
Forstnerič Franc
Voir le résumé
Voir le résumé
A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also exist plenty of global foliations of this form, so long as there are no topological obstructions. More precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no more than the integer part of . More generally, if is a complex vector subbundle of the tangent bundle such that is a flat bundle, then is homotopic (through complex vector subbundles of ) to an integrable subbundle, i.e., to the tangent bundle of a nonsingular holomorphic foliation on . I will prove these results and discuss open problems, the most interesting one of them being related to a conjecture of Bogomolov.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, courbes, institut fourier, summer school, feuilletages, holomorphic foliations
 |  Accéder à la ressource

Dominique Cerveau - Holomorphic foliations of codimension one, elementary theory (Part 1)

/ Fanny Bastien / 18-06-2012 / Canal-u.fr
Cerveau Dominique
Voir le résumé
Voir le résumé
In this introductory course I will present the basic notions, both local and global, using classical examples. I will explain statements in connection with the resolution of singularities with for instance the singular Frobenius Theorem or the Liouvilian integration. I will also present some open questions which I will motivate by examples. Dans ce cours introductif je m’attacherai à présenter les notions de base tant locales que globales au travers d’exemples classiques. J’aborderai des énoncés liés à la résolution des singularités avec par exemple le théorème de Frobenius singulier ou l’intégration Liouvillienne. Je présenterai aussi quelques problèmes ouverts que je motiverai encore au travers d’exemples.  
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, courbes, institut fourier, summer school, feuilletages, holomorphic foliations
 |  Accéder à la ressource

rss |< << Page précédente 1 Page suivante >> >| documents par page
© 2006-2010 ORI-OAI