|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Institut du Thermalisme de Dax : Journées d'Automne 2009 - 1/4
/ DCAM - Département Conception et Assistance Multimédia - Université Bordeaux Segalen, Université Bordeaux Segalen - DCAM
/ 27-11-2009
/ Canal-U - OAI Archive
ROQUES-LATRILLE Christian-François, TABONE Wainer, ROBERT Carole, DUBOIS Olivier, VITALE Marco
Voir le résumé
Voir le résumé
Journées d'Automne 20092e Symposium Européen de Recherche ThermaleOrganisées dans le cadre du 2e Symposium Européen de Recherche Thermale et des 3e Rencontres Internationales de l'Institut du Thermalisme, les Journées d'Automne 2009 ont rassemblé divers spécialistes autour du thermalisme et de ses effets cliniques sur les curistes. Elles ont été l'occasion d'exposer les résultats de différentes enquêtes et études sur les bénéfices d'une cure thermale chez les patients atteints de problèmes dermatologiques, rhumatologiques, cardio-vasculaires...et de présenter outre le projet de coopération européen TERMARED, quelques travaux originaux de l'Institut du Thermalisme. Les conférences :C.-F. Roques-Latrille : Enquête 112 000 questionnairesLe but de ce travail était d’identifier l’opinion des curistes fréquentant les établissements thermaux de France. W. Tabone, Coût du thermalisme social - Approche macroéconomiqueLe résultat de cette approche montre que le thermalisme compense quasiment par sa contribution spécifique aux budgets sociaux et fiscaux ce que la solidarité nationale consacre à son financement.C. Robert, Fibromyalgie et cures thermalesAu cours de l’année 2009 l’association de patients Fibromyalgie France UFAF a proposé un questionnaire en ligne sur son site Internet en partenariat avec le C.N.E.T.H. L’objectif visait à recueillir les avis et attentes des patients par rapport à la cure thermale.O. Dubois, Thermalisme et sevrage de psychotropes á propos d'une enquête auprès de médecins généralistesCette étude visait à estimer la proportion de patients traités par des benzodiazépines pouvant relever d’une indication de sevrage et à recueillir l’avis des médecins généralistes libéraux contactés sur différentes prises en charge en particulier la cure thermale dans l'indication de la réalisation d'un sevrage thérapeutique.M. Vitale, Ion H2S et fonctionnement cellulaireOne specific interest of the effects of sulfurs on keratinocytes derives from the potential applications of the results, as sulfur is able to penetrate the skin and a sulfur-rich balneotherapy has been known for long to be effective in the treatment of psoriasis. Mot(s) clés libre(s) : cellules sanguines, cures thermales (aspect économique), dépendance (physiologie), fibromyalgie (thérapeutique), hydrogène sulfuré, hydrothérapie, psychotropes, sang (analyse), sources thermales, thérapeutique, thermalisme
|
Accéder à la ressource
|
|
L’odyssée de la matière (par Jacques Livage)
/ Pascal CECCALDI, Lycée d’Etat Jean Zay - Internat de Paris
/ 04-03-2014
/ Canal-u.fr
LIVAGE Jacques
Voir le résumé
Voir le résumé
L’ODYSSÉE DE LA MATIÈREpar Jacques LIVAGEComment la matière divisée, puis condensée et organiséeest devenue vivante puis pensante ? L’aventure de la matière a commencé il y a près de 14 milliards d’années lorsque, quelques minutes après le big-bang, les premières particules élémentaires, les quarks, sont apparues. Au sein d’un univers en expansion, elle a conduit à la formation des atomes, des molécules, de la poussière interstellaire, puis des astres et des galaxies. Au cours de ce périple, la matière divisée des origines s’est progressivement condensée et complexifiée pour conduire à l’univers tel que nous le connaissons aujourd’hui. Certains processus ont été particulièrement rapides, les noyaux atomiques par exemple, se sont formés au cours des premières minutes, tandis que d’autres sont issus d’une longue maturation. Il a fallu attendre plus de 300.000 ans pour que se forment les premiers atomes et neuf milliards d’années pour que naisse la Terre. La longue histoire de la matière a conduit à la formation des roches minérales et des molécules organiques. Sur notre planète, elle a donné naissance à la matière vivante et même à la matière pensante. Comment la chimie, science de la matière, permet de décrire cette aventure ? C’est ce que nous allons tenter de montrer au cours de cet exposé. Pendant des siècles, on a pensé que la matière était constituée des quatre éléments d’Aristote, la terre, l’eau, l’air et le feu. Ce n’est qu’au XVIIIe siècle que l’on a montré que, comme le prédisait Démocrite, elle était formée d’atomes. Pendant plus d’un siècle, les chimistes se sont attachés à découvrir de nouveaux éléments. C’est ainsi qu’au cours de ses travaux sur la combustion, Lavoisier mit en évidence l’existence de l’oxygène mettant ainsi fin à la théorie du ‘phlogistique’ [1]. À la fin du XIXe siècle, avec l’établissement du tableau périodique des éléments, le chimiste disposait enfin des briques nécessaires pour transformer la matière. Deux éléments, le silicium et le carbone, vont nous permettre de comprendre comment s’est formée la matière. Le premier, le silicium, a conduit à la formation des roches. La silice et les silicates représentent 90% des minéraux de la croûte terrestre. Le second, le carbone a conduit aux molécules organiques qui ont donné naissance au vivant. Le secret de cette évolution réside dans l’auto-organisation. Les atomes ne sont pas indépendants les uns des autres. Ils s’attirent mutuellement via la liaison chimique et se lient dans l’espace selon des règles bien définies. Ainsi, selon Niels Bohr, les électrons gravitent autour du noyau en se répartissant sur des couches successives. Les électrons qui occupent la dernière couche, dite ‘couche de valence’, jouent un rôle privilégié car ils sont susceptibles d’interagir avec les atomes voisins pour former une liaison chimique. Le silicium, comme le carbone possèdent quatre électrons de valence ce qui les conduit à former quatre liaisons chimiques, d’où la tétravalence caractéristique de ces deux éléments. C’est ainsi que, dans les silicates, l’atome de silicium se lie à quatre atomes d’oxygène. Selon l’enchainement des tétraèdres [SiO4] on obtient des fibres d’amiante, des feuillets d’argile ou des cristaux de quartz. Dans tous les cas, l’enchainement peut se poursuivre à l’infini donnant des solides qui constituent l’essentiel des matériaux que nous utilisons pour élaborer des verres ou des céramiques. Le carbone a un comportement légèrement différent. Il est capable de former des doubles liaisons carbone-carbone. Cela limite le nombre de voisins auxquels il se lie. On passe ainsi du cristal de diamant dans lequel chaque atome de carbone est lié à quatre voisins aux feuillets de graphite dans lesquels il n’en a plus que trois. De nouvelles formes du carbone ont été mises en évidence au cours des dernières décennies ; graphène, nanotubes, fullerène... Toute la richesse de la chimie organique est liée à l’aptitude du carbone à former des doubles ou triples liaisons conduisant ainsi à la formation de molécules plutôt que de solides. C’est toute la richesse de la synthèse organique initiée par Marcelin Berthelot dans son ouvrage La chimie organique fondée sur la synthèse paru en 1860. L’homme enfin avait vaincu la ‘force vitale’ et devenait capable de transformer la matière et même d’en créer de nouvelles formes. Sera-t-il capable de recréer la vie ? C’est là le pari de la ‘biologie de synthèse’ qui a pour objet de synthétiser les molécules du vivant et de les associer pour former une protocellule, première forme de vie sur terre ![1] Terme savant forgé sur le grec phlogiston « inflammable » et phlox « flamme », pour désigner une hypothétique substance fluide qu’on croyait être constitutive de la chaleur et qui aurait expliqué le phénomène de la combustion. Terme savant forgé sur le grec phlogiston « inflammable » et phlox « flamme », pour désigner une hypothétique substance fluide qu’on croyait être constitutive de la chaleur et qui aurait expliqué le phénomène de la combustion. Mot(s) clés libre(s) : fullerène, tableau périodique des éléments, Mendeleïev, Marcelin Berthelot, carbone, oxygène, hydrogène, chimie douce, silicium, histoire de la matière
|
Accéder à la ressource
|
|
Epoxydation de l'éthène par le peroxyde d'hydrogène catalysée par un alcool fluoré
/ Région Champagne-Ardenne, Université de Reims Champagne-Ardenne, Unisciel
/ 06-07-2010
/ Unisciel
Henon Eric, Collard Cyrille
Voir le résumé
Voir le résumé
Epoxydation de l'éthène par le peroxyde d'hydrogène catalysée par un alcool fluoré Mot(s) clés libre(s) : époxydation, éthène, peroxyde, hydrogène, alcool, fluoré, catalyse, réaction, chimie organique, chemin, profil, énergétique, état, transition, mécanismes réactionnels
|
Accéder à la ressource
|
|
Epoxydation de l'éthène par le peroxyde d'hydrogène
/ Région Champagne-Ardenne, Université de Reims Champagne-Ardenne, Unisciel
/ 06-07-2010
/ Unisciel
Henon Eric, Collard Cyrille
Voir le résumé
Voir le résumé
Epoxydation de l'éthène par le peroxyde d'hydrogène Mot(s) clés libre(s) : éthène, peroxyde, hydrogène, époxydation, réaction, chimie organique, chemin, profil, énergétique, état, transition, mécanismes réactionnels
|
Accéder à la ressource
|
|
Quelles sources d'énergie d'ici à 2050 ?
/ UTLS - la suite
/ 16-07-2005
/ Canal-U - OAI Archive
DAVID Sylvain
Voir le résumé
Voir le résumé
La production d'énergie mondiale atteint 10 milliards de tonnes équivalent pétrole (tep) chaque année. Elle est assurée essentiellement par du pétrole, du gaz et du charbon, de façon très inégalitaire au niveau de la planète. Si les pays riches gaspillent, de nombreux pays en voie de développement et très peuplés tendent légitimement à augmenter massivement leur consommation dans les décennies à venir. Les scénarios énergétiques prévoient une augmentation de 50 à 300% de la production mondiale d'énergie d'ici 2050. Il est d'ores et déjà évident qu'une telle augmentation ne pourra se faire sur le modèle actuel, basé sur les énergies fossiles, dont les réserves sont limitées, et dont l'utilisation conduit à des émissions massives de CO2 responsable d'un changement climatique de grande ampleur. Le développement de nouvelles sources d'énergie est aujourd'hui incontournable, quelques soient les efforts que nous pourrons faire dans la maîtrise de la demande. Ces sources alternatives sont bien connues et relativement bien quantifiées. Le nucléaire apparaît comme la seule source disponible rapidement à grande échelle, mais nécessite une mobilisation importante de capitaux et une acceptation publique. L'énergie solaire est un gisement important, mais sa mise en oeuvre reste extrêmement chère et complexe. Elle est cependant déjà compétitive dans des zones dépourvues de réseaux électriques. L'énergie éolienne représente un gisement limité et ne pourra sans doute dépasser 10% de la production électrique, et toujours de façon intermittente et aléatoire. La biomasse est une voie intéressante, mais difficile de développer à grande échelle. Les autres sources (géothermie, vagues, marées,
) semblent incapables de répondre à une demande forte. Le stockage de l'énergie (hydrogène notamment) est loin d'être maîtrisé. Il représente un défi technologique important, et pourrait rendre les énergies intermittentes plus intéressantes dans l'avenir. Enfin, la fusion thermonucléaire représente une source massive, mais risque de ne pas être disponible avant la fin du siècle. Si le développement de l'électro-nucléaire au niveau mondial est sans doute la façon la plus rapide pour lutter contre l'effet de serre, cela ne sera en aucun cas suffisant. Le défi énergétique et climatique auquel nous sommes confrontés, nécessite la mise en place de la capture du CO2 émis par les centrales utilisant des combustibles fossiles et un développement soutenu des énergies renouvelables. Les alternatives aux énergies fossiles présentent leurs propres inconvénients, mais il n'est pas certain que nous ayons encore le choix. Mot(s) clés libre(s) : biomasse, combustible fossile, consommation énergétique, effet de serre, éolien, fission nucléaire, fusion thermonucléaire, géothermie, hydraulique, hydrogène, radioactivité, solaire, source d'énergie
|
Accéder à la ressource
|
|
De la chimie de synthèse à la biologie de synthèse (2)
/ groupe ouest audiovisuel, CERIMES, COLLEGE DE FRANCE
/ 05-05-2009
/ Canal-U - OAI Archive
COLLEGE DE FRANCE, FONTECAVE Marc
Voir le résumé
Voir le résumé
De la chimie de synthèse à la biologie de synthèseFrom Synthetic Chemistry to Synthetic BiologyConférence internationalemardi 5 mai 2009amphithéâtre Maurice HalbwachsCollège de France11 place Marcelin-Berthelot - 75005 Paris9h40 Marc FONTECAVE (Collège de France)Entre biologie et chimie: catalyse et synthèsebio-inspirées Mot(s) clés libre(s) : bio-technologies, biologie synthétique, catalyse, chimie bio-inspirée, chimie de synthèse, chimie verte, économie hydrogène, enzyme
|
Accéder à la ressource
|
|
5. Production d'hydrogène par voie biologique
/ Université Perpignan Via Domitia, UVED
/ 09-06-2015
/ Canal-u.fr
CHATELLARD Lucile
Voir le résumé
Voir le résumé
Dans cette vidéo, Lucile Chatellard explique les moyens qui permettent de produire de l'hydrogène par voie biologique, par l'intermédiaire de différents microorganismes et de différentes réactions comme la fermentation sombre, la photo-fermentation, et la biophotolyse. Mot(s) clés libre(s) : énergie, biomasse, hydrogène
|
Accéder à la ressource
|
|
L'eau : un liquide ordinaire ou extraordinaire
/ UTLS - la suite
/ 15-07-2005
/ Canal-U - OAI Archive
CABANE Bernard
Voir le résumé
Voir le résumé
L'eau est un liquide dont les propriétés sont tout à fait surprenantes, à la fois comme liquide pur et comme solvant. C'est un liquide très cohésif : ses températures de cristallisation et d'ébullition sont très élevées pour un liquide qui n'est ni ionique, ni métallique, et dont la masse molaire est faible. Cette cohésion est assurée par les liaisons hydrogène entre molécules d'eau ; l'eau fait ainsi partie d'un petit groupe de liquides qu'on appelle liquides associés. Cependant, parmi ces liquides, la cohésion de l'eau est remarquable, et elle se traduit par une chaleur spécifique énorme. Cette résistance aux variations de température a des conséquences climatiques importantes, puisque la capacité calorifique des océans leur fait jouer le rôle de régulateurs thermiques du climat. L'eau est aussi un liquide très cohésif d'un point de vue diélectrique : sa constante diélectrique est bien plus élevée que celle qu'on attendrait sur la base de la valeur du moment dipolaire de la molécule isolée. C'est aussi, dans les conditions usuelles de température et de pression, un liquide peu dense : les atomes y occupent moins de la moitié du volume total ; une grande partie du volume de l'eau liquide est donc formée de cavités. Le volume occupé par ces cavités varie de manière tout à fait anormale à basse température. D'abord, l'eau se dilate quand on la refroidit en dessous d'une température appelée température du maximum de densité. Ensuite, l'eau se dilate encore de 9 % en cristallisant, contrairement à la plupart des liquides, qui se contractent d'environ 10 % en cristallisant. Cette augmentation de volume, qui fait flotter la glace sur l'eau, a des conséquences environnementales considérables : si la glace était plus dense que l'eau liquide, toute la glace formée dans les régions arctiques coulerait au fond des océans au lieu de former une banquise qui les isole thermiquement des températures extérieures, et la production de glace continuerait jusqu'à congélation complète de ces océans Pour presque tous les liquides, l'application d'une pression réduit la fluidité et favorise le solide par rapport au liquide. Au contraire, pour l'eau à basse température, l'application d'une pression accroît la fluidité et favorise le liquide par rapport à la glace. Cet effet anormal de la pression permet à l'eau de rester fluide lorqu'elle est confinée dans des pores ou des films nanométriques, contrairement aux autres liquides qui se solidifient sous l'effet des pressions de confinement. Cette persistance de l'état fluide est capitale pour le fonctionnement des cellules biologiques : en effet, de nombreux processus requièrent le déplacement de couches d'hydratation avant le contact entre macromolécules, ou avant le passage d'un ligand vers son récepteur. De même le passage des ions à travers les canaux qui traversent les membranes des cellules n'est possible que grâce à l'état fluide de l'eau confinée dans ces canaux. Les théories anciennes attribuaient toutes ces anomalies au fait que les molécules d'eau sont liées par des liaisons H. En ce sens, l'eau devrait avoir des propriétés « en ligne » avec celles d'autres liquides associés (éthanol, glycols, amides). Pour les propriétés de cohésion, c'est une bonne hypothèse de départ bien que les propriétés de l'eau (densité d'énergie cohésive, constante diélectrique) soient supérieures à celles des liquides comparables. Pour les autres propriétés, cette hypothèse n'est pas suffisante : les autres liquides associés ne partagent pas les propriétés volumiques anormales de l'eau, ni son polymorphisme, ni son comportement comme solvant. Certains liquides ont un comportement qui ressemble à celui de l'eau pour une de ses propriétés : par exemple, on connaît quelques liquides qui se dilatent à basse température, ou en cristallisant. Nous découvrirons peut-être un jour que chacune des propriétés anormales de l'eau existe aussi dans un autre liquide. Cependant il est remarquable qu'un seul liquide rassemble autant d'anomalies. Il y a donc un besoin d'explication, auquel ne répondent pas les théories développées pour les liquides simples. Mot(s) clés libre(s) : cohésion, constante diélectrique, dissolution, eau, écoulement, fluidité, liaison hydrogène, permittivité, physique des liquides, solvant
|
Accéder à la ressource
|
|
L'eau : un liquide ordinaire ou extraordinaire
/ UTLS - la suite
/ 15-07-2005
/ Canal-u.fr
CABANE Bernard
Voir le résumé
Voir le résumé
L'eau est un liquide dont les propriétés sont tout à fait surprenantes, à la fois comme liquide pur et comme solvant. C'est un liquide très cohésif : ses températures de cristallisation et d'ébullition sont très élevées pour un liquide qui n'est ni ionique, ni métallique, et dont la masse molaire est faible. Cette cohésion est assurée par les liaisons hydrogène entre molécules d'eau ; l'eau fait ainsi partie d'un petit groupe de liquides qu'on appelle liquides associés. Cependant, parmi ces liquides, la cohésion de l'eau est remarquable, et elle se traduit par une chaleur spécifique énorme. Cette résistance aux variations de température a des conséquences climatiques importantes, puisque la capacité calorifique des océans leur fait jouer le rôle de régulateurs thermiques du climat. L'eau est aussi un liquide très cohésif d'un point de vue diélectrique : sa constante diélectrique est bien plus élevée que celle qu'on attendrait sur la base de la valeur du moment dipolaire de la molécule isolée. C'est aussi, dans les conditions usuelles de température et de pression, un liquide peu dense : les atomes y occupent moins de la moitié du volume total ; une grande partie du volume de l'eau liquide est donc formée de cavités. Le volume occupé par ces cavités varie de manière tout à fait anormale à basse température. D'abord, l'eau se dilate quand on la refroidit en dessous d'une température appelée température du maximum de densité. Ensuite, l'eau se dilate encore de 9 % en cristallisant, contrairement à la plupart des liquides, qui se contractent d'environ 10 % en cristallisant. Cette augmentation de volume, qui fait flotter la glace sur l'eau, a des conséquences environnementales considérables : si la glace était plus dense que l'eau liquide, toute la glace formée dans les régions arctiques coulerait au fond des océans au lieu de former une banquise qui les isole thermiquement des températures extérieures, et la production de glace continuerait jusqu'à congélation complète de ces océans Pour presque tous les liquides, l'application d'une pression réduit la fluidité et favorise le solide par rapport au liquide. Au contraire, pour l'eau à basse température, l'application d'une pression accroît la fluidité et favorise le liquide par rapport à la glace. Cet effet anormal de la pression permet à l'eau de rester fluide lorqu'elle est confinée dans des pores ou des films nanométriques, contrairement aux autres liquides qui se solidifient sous l'effet des pressions de confinement. Cette persistance de l'état fluide est capitale pour le fonctionnement des cellules biologiques : en effet, de nombreux processus requièrent le déplacement de couches d'hydratation avant le contact entre macromolécules, ou avant le passage d'un ligand vers son récepteur. De même le passage des ions à travers les canaux qui traversent les membranes des cellules n'est possible que grâce à l'état fluide de l'eau confinée dans ces canaux. Les théories anciennes attribuaient toutes ces anomalies au fait que les molécules d'eau sont liées par des liaisons H. En ce sens, l'eau devrait avoir des propriétés « en ligne » avec celles d'autres liquides associés (éthanol, glycols, amides). Pour les propriétés de cohésion, c'est une bonne hypothèse de départ bien que les propriétés de l'eau (densité d'énergie cohésive, constante diélectrique) soient supérieures à celles des liquides comparables. Pour les autres propriétés, cette hypothèse n'est pas suffisante : les autres liquides associés ne partagent pas les propriétés volumiques anormales de l'eau, ni son polymorphisme, ni son comportement comme solvant. Certains liquides ont un comportement qui ressemble à celui de l'eau pour une de ses propriétés : par exemple, on connaît quelques liquides qui se dilatent à basse température, ou en cristallisant. Nous découvrirons peut-être un jour que chacune des propriétés anormales de l'eau existe aussi dans un autre liquide. Cependant il est remarquable qu'un seul liquide rassemble autant d'anomalies. Il y a donc un besoin d'explication, auquel ne répondent pas les théories développées pour les liquides simples. Mot(s) clés libre(s) : écoulement, physique des liquides, permittivité, liaison hydrogène, fluidité, dissolution, constante diélectrique, cohésion, eau, solvant
|
Accéder à la ressource
|
|
Une trace spectrale du deutérium cosmologique
/ ENS Lyon CultureSciences-Physique, Catherine Simand
/ 18-12-2009
/ Unisciel
Artru Marie-Christine
Voir le résumé
Voir le résumé
Un article du dossier « La spectroscopie en astronomie ». Observation récente du deutérium
du milieu interstellaire grâce aux missions spatiales Hubble et FUSE.
Effets de saturation des raies de la série de Lyman dans l'ultra-violet lointain. Mot(s) clés libre(s) : spectroscopie, spectre, étoile, abondance, deutérium, hydrogène, milieu interstellaire, Hubble, FUSE, naine blanche
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|