Tri :
Date
Editeur
Auteur
Titre
|
|
Journées Giordano Bruno : allocutions d'ouverture
/ Université Toulouse II-Le Mirail SCPAM, Franck DELPECH, Nathalie MICHAUD, Université Toulouse Jean-Jaurès-campus Mirail
/ Canal-u.fr
Voir le résumé
Voir le résumé
Journées Giordano Bruno : allocutions d'ouverture par Anne Maumont, Catherine Gadon, Philippe Solal, in "Journées Giordano Bruno" organisées par l'Université de Toulouse, le Muséum de Toulouse, de Il Laboratorio de l'Université Toulouse Jean-Jaurès-campus Mirail, sous l'égide du Consulat Général d'Italie et avec le soutien de l'Institut culturel italien de Marseille, Muséum de Toulouse, 9-11 octobre 2014.Giordano Bruno naît en
janvier 1548, à San Giovanni del Cesco, près de Naples. Le 15 Juin 1565, il entre chez les Frères prêcheurs de San Domenico Maggiore, et il est ordonné prêtre en 1573.Trois ans plus tard, il est accusé d’hérésie et doit quitter l’environnement menaçant de Naples pour entamer une
longue période d’errance qui l’amena à parcourir l’Europe quinze ans durant. Il fréquenta les villes universitaires, et dut souvent changer de lieu pour éviter une arrestation. Il se rend ainsi à Genève, Paris, Toulouse, Londres, Prague, en Allemagne. Au carrefour de la religion, de la
philosophie et de la science, son œuvre, mais aussi sa vie, illustrent le caractère subversif de toute recherche libre, exempte des préjugés qui peuvent brider la construction du savoir. Il paya pourtant de sa vie cette liberté, puisqu’il fut brûlé vif sur le « Campo dei Fiori » de Rome, le 17 février 1600. À travers l’hommage rendu à la vie et à l’œuvre de Giordano Bruno, ces Journées ont pour objectif de présenter la façon dont se
construisent aujourd’hui les connaissances, par comparaison avec celle
de l’humanisme de la Renaissance. Cet humanisme, qui s’est développé dès
le XVe siècle, a placé en son centre le souci de la dignité de l’homme
et de la communication entre les savoirs. Des chercheurs d’horizons
différents, cosmologistes, biologistes, artistes, philosophes,
historiens, psychologues, spécialistes en littérature, tenteront eux
aussi de renouer les liens qui étaient ceux de la science humaniste pour
mieux interroger notre présent. Mot(s) clés libre(s) : cosmologie, philosophie des sciences, humanisme de la Renaissance, philosophie de la Renaissance, philosophie et religion, Bruno Giordano (1548-1600), infini (philosophie)
|
Accéder à la ressource
|
|
Astrophysique, physique des particules et astroparticules
/ Mission 2000 en France
/ 03-07-2000
/ Canal-U - OAI Archive
VANNUCI François
Voir le résumé
Voir le résumé
Conférence du 3 juillet 2000 par François Vannuci. L'astrophysique étudie l'infiniment grand de l'univers, la physique des particules étudie l'infiniment petit de la structure de la matière. De plus en plus les physiciens s'intéressent à la connexion entre ces deux frontières. Une nouvelle discipline émerge, on l'appelle l'astroparticule. C'est le domaine où les physiciens des particules, d'abord cantonnés auprès des accélérateurs, apportent leurs méthodes pour sonder l'univers. Cette recherche concerne tant les propriétés de particules d'énergies inaccessibles sur terre, que les centres d'accélérations encore énigmatiques qui leur donnent naissance. Parmi ces "astroparticules" on discutera plus en détail le rôle spécial des neutrinos. Mot(s) clés libre(s) : astroparticule, astrophysique, infiniment grand, matière noire, neutrino, oscillation, photon, physique des particules, rayonnement cosmique, Super-Kamiokande, univers
|
Accéder à la ressource
|
|
Diffraction à l'infini
/ ENS Lyon CultureSciences-Physique, Catherine Simand
/ 01-09-2007
/ Unisciel
Simand Catherine, Artru Marie-Christine
Voir le résumé
Voir le résumé
Associer des figures de diffraction et des ouvertures
diffractantes Mot(s) clés libre(s) : diffraction, écran diffractant, lumière, onde, diffraction de Fraunhofer, diffraction à l'infini, diffraction à grande distance, figure de diffraction, transformée de Fourier, transformée de Fourier à deux dimensions, transformée de Fourier 2D, transformée de Fourier spatiale, ouverture diffractante, diffraction par une fente, diffraction par un trou, interférence, interférences
|
Accéder à la ressource
|
|
Microscopies en champ proche
/ Mission 2000 en France
/ 14-08-2000
/ Canal-U - OAI Archive
RODITCHEV Dimitri
Voir le résumé
Voir le résumé
L'homme a toujours cherché à observer le monde de l'infiniment petit qui l'entoure, le monde invisible à l'oeil nu. Pour cela, il invente la loupe (XVe siècle), puis le microscope optique (XVIIe siècle) pour observer des cellules sanguines ou des bactéries, mais il semble impossible d'observer les éléments ultimes dont est faite la matière : les atomes. Il faut attendre la découverte de la mécanique ondulatoire pour que l'espoir renaisse. Les particules qui constituent la matière peuvent se comporter comme des ondes de longueur d'onde très petite : 0,1 nm (10-10 mètre), c'est-à-dire de la taille d'un atome. De cette dualité onde-corpuscule va naître le microscope électronique - où l'éclairage par une source lumineuse utilisé dans le microscope optique est remplacé par une source d'électrons. L'observation d'atomes reste encore indirecte et s'appuie sur des phénomènes de diffraction. Mais voici, qu'en 1982, un nouveau type de microscope - le microscope à effet tunnel, est inventé par Gerd Binnig et Heinrich Rohrer, ouvrant un champ très vaste d'investigations scientifiques et des nouveaux horizons technologiques. Cette nouvelle technique utilisant une sonde très locale permet l'observation directe et aisée d'atomes et de structures atomiques de surfaces conductrices dans une large variété d'environnements (air, eau, huile, vide). Depuis l'invention du microscope tunnel, d'autres microscopies à sonde locale ont été développées, et notamment le microscope à effet de force atomique (1986) qui permet d'imager non seulement des surfaces conductrices mais aussi des surfaces isolantes. En plus, les progrès les plus récents ont montré la possibilité de manipuler les atomes à l'aide de ces microscopes - ainsi les premières structures artificielles à l'échelle atomique ont été élaborées. Ces inventions préfigurent peut-être l'aube d'une révolution " nano " industrielle. Mot(s) clés libre(s) : effet tunnel, infiniment petit, longueur d'onde, microscope à force atomique, microscope électronique, microscopie optique en champ proche, nanotechnologie, spectroscopie
|
Accéder à la ressource
|
|
Casseurs d'atomes : un pas de plus vers le Big Bang
/ UTLS - la suite, Université Pierre et Marie Curie-Paris 6
/ 16-06-2004
/ Canal-U - OAI Archive
PRZYSIEZNIAK Helenka
Voir le résumé
Voir le résumé
Les Casseurs d'atomes, plus communément appelés Accélérateurs, sont les outils de tous les jours de nombreux physiciens des particules qui sondent la matière infiniment petite. Il y a de ça un peu plus d'un siècle, en 1894, Albert Michelson - qui étudia le comportement de la lumière - n'aurait jamais imaginé se retrouver devant un monde incroyablement plus complexe qu'il l'aurait cru lorsqu'il déclara que tout ce qu'il restait à faire en physique était de déterminer jusqu'à la sixième décimale les valeurs connues en ce temps là. Il ne se doutait pas que la structure entière de la physique serait complètement révolutionnée dans les 20 années qui allaient suivre. Les premiers accélérateurs sont apparus au début du 20e siècle et ce qui fut dévoilé au fil des années a permis de construire un modèle théorique cohérent, le Modèle Standard (MS). Les particules prédites par ce modèle furent presque toutes observées, les prédictions sur leur comportement furent testées, mais effectivement le plus important manquait et manque toujours. Le boson de Higgs, auquel est associé le champs de Higgs qui permet à toutes les particules d'acquérir une masse, reste encore aujourd'hui inobservé. Les expériences du futur nous permettront de vérifier si cette particule existe vraiment, et si d'autres modèles théoriques au-delà du MS sont viables i.e. la Super Symétrie, l'existence de dimensions supplémentaires. Il faut toutefois garder les pieds sur terre, ou peut-être pas, car la physique des particules aux accélérateurs, résumé sur l'échelle universelle du temps depuis le Big Bang jusqu' aujourd'hui, ne correspond qu'à un tout petit pas. Le terrain à défricher reste encore énorme, et les Casseurs d'atomes joueront un rôle clef dans la compréhension de cet Univers de l'infiniment petit. Je tenterai donc, dans cette présentation, de faire un survol historique de la théorie, des accélérateurs, des découvertes et de parler du futur de la physique aux accélérateurs. Mot(s) clés libre(s) : accélérateur de particules, boson de Higgs, collisionneur, infiniment petit, matière, modèle standard, particule élémentaire, quark
|
Accéder à la ressource
|
|
Voyage au centre des protéines
/ UTLS - la suite
/ 20-07-2005
/ Canal-U - OAI Archive
PéBAY-PEYROULA
Voir le résumé
Voir le résumé
Les protéines sont les principaux acteurs du vivant, non seulement par leur quantité, mais surtout par la diversité des fonctions qu'elles exercent, allant de la catalyse de réactions chimiques jusqu'à la structuration de la matière vivante. Elles sont formées de longues chaînes d'acides aminés, qui se replient dans l'espace ; et cette structure tri-dimensionnelle est à la base de la fonction assurée par la protéine. Connaître la structure aux détails atomiques près, comprendre ses propriétés dynamiques, suivre les changements de conformation d'une protéine en action, intégrer ces connaissances aux données biochimiques et fonctionnelles constituent le coeur de la biologie structurale et permet d'avancer considérablement dans la compréhension de la fonction des protéines. Au cours de cet exposé, après avoir introduit quelques notions de base sur la composition des protéines, nous montrerons l'apport de la physique aux méthodes expérimentales permettant de sonder la structure des protéines et illustreront ensuite l'intérêt de ces études par quelques exemples. Mot(s) clés libre(s) : acide aminé, adénosine triphosphate, ADP, ATP, biologie structurale, cristallographie, infiniment petit, macromolécule biologique, protéine, protéine membranaire, rayonnement synchrotron, repliement des protéines
|
Accéder à la ressource
|
|
Qu'est-ce qu'une particule ? (les interactions des particules)
/ UTLS - la suite, Mission 2000 en France
/ 27-07-2000
/ Canal-U - OAI Archive
NEVEUX André
Voir le résumé
Voir le résumé
En principe, une particule élémentaire est un constituant de la matière (électron par exemple) ou du rayonnement (photon) qui n'est composé d'aucun autre constituant plus élémentaire. Une particule que l'on croit élémentaire peut par la suite se révéler composée, le premier exemple rencontrée ayant été l'atome, qui a fait mentir son nom dès le début du XXe siècle. Nous décrirons d'abord l'état présent des connaissances, résultat des quarante dernières années de poursuite de l'ultime dans la structure intime de la matière, de l'espace et du temps, qui ont bouleverse notre vision de l'infiniment petit. Puis, nous essaierons de conduire l'auditeur dans un paysage conceptuel d'une richesse extraordinaire qui nous a permis d'entrevoir un peuple d'êtres mathématiques - déconcertants outils permettant d'appréhender des réalités inattendues - et dans lequel de nombreuses régions restent inexplorées, où se cachent sans doute des explications sur la naissance même de notre univers. Mot(s) clés libre(s) : boson, gravitation, infiniment petit, interactions fondamentales, lepton, modèle standard, neutrino, particule élémentaire, physique des particules, quark, supersymétrie, symétrie brisée, théorie des cordes, théorie quantique des champs
|
Accéder à la ressource
|
|
« Paysages de sciences », 100 images de l'infiniment grand à l'infiniment petit
/ ENS Lyon CultureSciences-Physique, Catherine Simand
/ 27-09-2008
/ Unisciel
Musée des Confluences, Centre national de la recherche scientifique
Voir le résumé
Voir le résumé
Un diaporama issu de la très belle exposition « Paysages de sciences »
constituée de 100 images scientifiques de l'infiniment grand à l'infiniment petit. Mot(s) clés libre(s) : infiniment grand, infiniment petit, exploration de l'espace, échelle des longueurs, année de lumière, échelle des distances, microscopique, macroscopique, échelle humaine
|
Accéder à la ressource
|
|
Un regard sur le futur
/ UTLS - la suite, Université Pierre et Marie Curie-Paris 6
/ 20-06-2004
/ Canal-U - OAI Archive
MAIANI Luciano
Voir le résumé
Voir le résumé
Un regard sur le futur : pouvons-nous comprendre l'infiniment grand à partir de l'infiniment petit ? Les dernières décennies du siècle ont été témoin de progrès extraordinaires dans notre compréhension des constituants ultimes de la matière et des forces qui agissent sur eux. Grâce à l'effort de nombreux scientifiques, nous sommes parvenus à élaborer une « théorie standard » qui décrit et explique tous les phénomènes ainsi observés au coeur du monde des particules élémentaires. Avec la théorie standard, nous pouvons retracer l'histoire de l'Univers en remontant dans le temps, jusqu'à quelques fractions de milliards de secondes après le Big Bang, à un moment où la température de l'Univers s'élevait à un million de milliards de degrés centigrade. A cette époque le plasma primordial qui constituait l'Univers était peuplé de particules que nous ne pouvons produire aujourd'hui seulement dans les accélérateurs de particules les plus puissants en Europe et aux USA. L'évolution de l'Univers a été profondément affectée par les phénomènes qui se déroulèrent alors, et même avant. Ainsi la compréhension des constituants fondamentaux et de leurs interactions est cruciale pour saisir la distribution sur une grande échelle des galaxies, la matière et l'énergie qui le composent, et sa destinée finale. Malgré les progrès, des éléments importants de la microphysique sont encore à l'Etat d'hypothèse. L'existence et les propriétés du « boson de Higgs » ou la nature de la « matière noire » qui constitue l'essentiel de la masse de l'Univers devront être éclaircis par le LHC (Large Hadron Collider), une machine révolutionnaire qui mènera l'Europe à la frontière des hautes énergies. Le LHC est actuellement en construction au CERN (conseil Européen pour la Recherche Nucléaire) à Genève, dans le cadre d'une collaboration internationale, et devrait entrer en activité en 2007. Le LHC et les machines qui succèderont éclaireront plusieurs aspects fondamentaux de notre monde, comme l'existence de dimensions additionnelles à l'espace et aux temps et permettront la synthèse de la Mécanique Quantique et de la Relativité Générale, le problème théorique le plus profond de notre époque. Mot(s) clés libre(s) : astrophysique, Big Bang, boson de Higgs, collisionneur, cosmologie, courbure spatiale, gravité quantique, infiniment petit, interaction fondamentale, matière noire, modèle standard, particule élémentaire, physique des particules, quark, structure atomique
|
Accéder à la ressource
|
|
L'univers a-t-il une forme ?
/ ENS Lyon Groupe Séminaires, ENS Lyon CultureSciences-Physique, Catherine Simand
/ 25-04-2007
/ Unisciel
Lehoucq Roland
Voir le résumé
Voir le résumé
Une conférence de Roland Lehoucq, astrophysicien au service
d'astrophysique du CEA de Saclay. Un voyage aux frontières de la cosmologie, de la
géométrie, de la topologie, de l'astrophysique... En route pour la topologie
cosmique ! Mot(s) clés libre(s) : cosmologie, topologie, topologie cosmique, astrophysique, forme de l'univers, infini, géométrie, géométrie sphérique, géométrie euclidienne, géométrie hyperbolique, espace de Poincaré, dodécaèdre, fond diffus cosmologique, modèle de concordance, courbure de l'univers, rayonnement cosmologique, expansion, univers en expansion, satellite COBE, WMAP, cercles corrélés, isotropie de l'univers, rayonnement infra-rouge, espaces multiconnexes
|
Accéder à la ressource
|
|