|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Microscopies en champ proche
/ Mission 2000 en France
/ 14-08-2000
/ Canal-U - OAI Archive
RODITCHEV Dimitri
Voir le résumé
Voir le résumé
L'homme a toujours cherché à observer le monde de l'infiniment petit qui l'entoure, le monde invisible à l'oeil nu. Pour cela, il invente la loupe (XVe siècle), puis le microscope optique (XVIIe siècle) pour observer des cellules sanguines ou des bactéries, mais il semble impossible d'observer les éléments ultimes dont est faite la matière : les atomes. Il faut attendre la découverte de la mécanique ondulatoire pour que l'espoir renaisse. Les particules qui constituent la matière peuvent se comporter comme des ondes de longueur d'onde très petite : 0,1 nm (10-10 mètre), c'est-à-dire de la taille d'un atome. De cette dualité onde-corpuscule va naître le microscope électronique - où l'éclairage par une source lumineuse utilisé dans le microscope optique est remplacé par une source d'électrons. L'observation d'atomes reste encore indirecte et s'appuie sur des phénomènes de diffraction. Mais voici, qu'en 1982, un nouveau type de microscope - le microscope à effet tunnel, est inventé par Gerd Binnig et Heinrich Rohrer, ouvrant un champ très vaste d'investigations scientifiques et des nouveaux horizons technologiques. Cette nouvelle technique utilisant une sonde très locale permet l'observation directe et aisée d'atomes et de structures atomiques de surfaces conductrices dans une large variété d'environnements (air, eau, huile, vide). Depuis l'invention du microscope tunnel, d'autres microscopies à sonde locale ont été développées, et notamment le microscope à effet de force atomique (1986) qui permet d'imager non seulement des surfaces conductrices mais aussi des surfaces isolantes. En plus, les progrès les plus récents ont montré la possibilité de manipuler les atomes à l'aide de ces microscopes - ainsi les premières structures artificielles à l'échelle atomique ont été élaborées. Ces inventions préfigurent peut-être l'aube d'une révolution " nano " industrielle. Mot(s) clés libre(s) : effet tunnel, infiniment petit, longueur d'onde, microscope à force atomique, microscope électronique, microscopie optique en champ proche, nanotechnologie, spectroscopie
|
Accéder à la ressource
|
|
Casseurs d'atomes : un pas de plus vers le Big Bang
/ UTLS - la suite, Université Pierre et Marie Curie-Paris 6
/ 16-06-2004
/ Canal-U - OAI Archive
PRZYSIEZNIAK Helenka
Voir le résumé
Voir le résumé
Les Casseurs d'atomes, plus communément appelés Accélérateurs, sont les outils de tous les jours de nombreux physiciens des particules qui sondent la matière infiniment petite. Il y a de ça un peu plus d'un siècle, en 1894, Albert Michelson - qui étudia le comportement de la lumière - n'aurait jamais imaginé se retrouver devant un monde incroyablement plus complexe qu'il l'aurait cru lorsqu'il déclara que tout ce qu'il restait à faire en physique était de déterminer jusqu'à la sixième décimale les valeurs connues en ce temps là. Il ne se doutait pas que la structure entière de la physique serait complètement révolutionnée dans les 20 années qui allaient suivre. Les premiers accélérateurs sont apparus au début du 20e siècle et ce qui fut dévoilé au fil des années a permis de construire un modèle théorique cohérent, le Modèle Standard (MS). Les particules prédites par ce modèle furent presque toutes observées, les prédictions sur leur comportement furent testées, mais effectivement le plus important manquait et manque toujours. Le boson de Higgs, auquel est associé le champs de Higgs qui permet à toutes les particules d'acquérir une masse, reste encore aujourd'hui inobservé. Les expériences du futur nous permettront de vérifier si cette particule existe vraiment, et si d'autres modèles théoriques au-delà du MS sont viables i.e. la Super Symétrie, l'existence de dimensions supplémentaires. Il faut toutefois garder les pieds sur terre, ou peut-être pas, car la physique des particules aux accélérateurs, résumé sur l'échelle universelle du temps depuis le Big Bang jusqu' aujourd'hui, ne correspond qu'à un tout petit pas. Le terrain à défricher reste encore énorme, et les Casseurs d'atomes joueront un rôle clef dans la compréhension de cet Univers de l'infiniment petit. Je tenterai donc, dans cette présentation, de faire un survol historique de la théorie, des accélérateurs, des découvertes et de parler du futur de la physique aux accélérateurs. Mot(s) clés libre(s) : accélérateur de particules, boson de Higgs, collisionneur, infiniment petit, matière, modèle standard, particule élémentaire, quark
|
Accéder à la ressource
|
|
Voyage au centre des protéines
/ UTLS - la suite
/ 20-07-2005
/ Canal-U - OAI Archive
PéBAY-PEYROULA
Voir le résumé
Voir le résumé
Les protéines sont les principaux acteurs du vivant, non seulement par leur quantité, mais surtout par la diversité des fonctions qu'elles exercent, allant de la catalyse de réactions chimiques jusqu'à la structuration de la matière vivante. Elles sont formées de longues chaînes d'acides aminés, qui se replient dans l'espace ; et cette structure tri-dimensionnelle est à la base de la fonction assurée par la protéine. Connaître la structure aux détails atomiques près, comprendre ses propriétés dynamiques, suivre les changements de conformation d'une protéine en action, intégrer ces connaissances aux données biochimiques et fonctionnelles constituent le coeur de la biologie structurale et permet d'avancer considérablement dans la compréhension de la fonction des protéines. Au cours de cet exposé, après avoir introduit quelques notions de base sur la composition des protéines, nous montrerons l'apport de la physique aux méthodes expérimentales permettant de sonder la structure des protéines et illustreront ensuite l'intérêt de ces études par quelques exemples. Mot(s) clés libre(s) : acide aminé, adénosine triphosphate, ADP, ATP, biologie structurale, cristallographie, infiniment petit, macromolécule biologique, protéine, protéine membranaire, rayonnement synchrotron, repliement des protéines
|
Accéder à la ressource
|
|
Qu'est-ce qu'une particule ? (les interactions des particules)
/ UTLS - la suite, Mission 2000 en France
/ 27-07-2000
/ Canal-U - OAI Archive
NEVEUX André
Voir le résumé
Voir le résumé
En principe, une particule élémentaire est un constituant de la matière (électron par exemple) ou du rayonnement (photon) qui n'est composé d'aucun autre constituant plus élémentaire. Une particule que l'on croit élémentaire peut par la suite se révéler composée, le premier exemple rencontrée ayant été l'atome, qui a fait mentir son nom dès le début du XXe siècle. Nous décrirons d'abord l'état présent des connaissances, résultat des quarante dernières années de poursuite de l'ultime dans la structure intime de la matière, de l'espace et du temps, qui ont bouleverse notre vision de l'infiniment petit. Puis, nous essaierons de conduire l'auditeur dans un paysage conceptuel d'une richesse extraordinaire qui nous a permis d'entrevoir un peuple d'êtres mathématiques - déconcertants outils permettant d'appréhender des réalités inattendues - et dans lequel de nombreuses régions restent inexplorées, où se cachent sans doute des explications sur la naissance même de notre univers. Mot(s) clés libre(s) : boson, gravitation, infiniment petit, interactions fondamentales, lepton, modèle standard, neutrino, particule élémentaire, physique des particules, quark, supersymétrie, symétrie brisée, théorie des cordes, théorie quantique des champs
|
Accéder à la ressource
|
|
« Paysages de sciences », 100 images de l'infiniment grand à l'infiniment petit
/ ENS Lyon CultureSciences-Physique, Catherine Simand
/ 27-09-2008
/ Unisciel
Musée des Confluences, Centre national de la recherche scientifique
Voir le résumé
Voir le résumé
Un diaporama issu de la très belle exposition « Paysages de sciences »
constituée de 100 images scientifiques de l'infiniment grand à l'infiniment petit. Mot(s) clés libre(s) : infiniment grand, infiniment petit, exploration de l'espace, échelle des longueurs, année de lumière, échelle des distances, microscopique, macroscopique, échelle humaine
|
Accéder à la ressource
|
|
Un regard sur le futur
/ UTLS - la suite, Université Pierre et Marie Curie-Paris 6
/ 20-06-2004
/ Canal-U - OAI Archive
MAIANI Luciano
Voir le résumé
Voir le résumé
Un regard sur le futur : pouvons-nous comprendre l'infiniment grand à partir de l'infiniment petit ? Les dernières décennies du siècle ont été témoin de progrès extraordinaires dans notre compréhension des constituants ultimes de la matière et des forces qui agissent sur eux. Grâce à l'effort de nombreux scientifiques, nous sommes parvenus à élaborer une « théorie standard » qui décrit et explique tous les phénomènes ainsi observés au coeur du monde des particules élémentaires. Avec la théorie standard, nous pouvons retracer l'histoire de l'Univers en remontant dans le temps, jusqu'à quelques fractions de milliards de secondes après le Big Bang, à un moment où la température de l'Univers s'élevait à un million de milliards de degrés centigrade. A cette époque le plasma primordial qui constituait l'Univers était peuplé de particules que nous ne pouvons produire aujourd'hui seulement dans les accélérateurs de particules les plus puissants en Europe et aux USA. L'évolution de l'Univers a été profondément affectée par les phénomènes qui se déroulèrent alors, et même avant. Ainsi la compréhension des constituants fondamentaux et de leurs interactions est cruciale pour saisir la distribution sur une grande échelle des galaxies, la matière et l'énergie qui le composent, et sa destinée finale. Malgré les progrès, des éléments importants de la microphysique sont encore à l'Etat d'hypothèse. L'existence et les propriétés du « boson de Higgs » ou la nature de la « matière noire » qui constitue l'essentiel de la masse de l'Univers devront être éclaircis par le LHC (Large Hadron Collider), une machine révolutionnaire qui mènera l'Europe à la frontière des hautes énergies. Le LHC est actuellement en construction au CERN (conseil Européen pour la Recherche Nucléaire) à Genève, dans le cadre d'une collaboration internationale, et devrait entrer en activité en 2007. Le LHC et les machines qui succèderont éclaireront plusieurs aspects fondamentaux de notre monde, comme l'existence de dimensions additionnelles à l'espace et aux temps et permettront la synthèse de la Mécanique Quantique et de la Relativité Générale, le problème théorique le plus profond de notre époque. Mot(s) clés libre(s) : astrophysique, Big Bang, boson de Higgs, collisionneur, cosmologie, courbure spatiale, gravité quantique, infiniment petit, interaction fondamentale, matière noire, modèle standard, particule élémentaire, physique des particules, quark, structure atomique
|
Accéder à la ressource
|
|
Du microscope électronique à la microscopie à champ proche
/ UTLS - la suite
/ 06-07-2001
/ Canal-U - OAI Archive
KLEIN Jean
Voir le résumé
Voir le résumé
A travers les siècles, l'homme a toujours cherché à observer le monde de l'infiniment petit qui l'entoure, le monde invisible à l'oeil nu. Pour cela, il invente la loupe (XVe siècle), puis le microscope optique (XVIIe siècle) pour observer des cellules sanguines ou des bactéries ..., mais il semble impossible d'observer les éléments ultimes dont est faite la matière : les atomes. Il faut attendre la découverte de la mécanique ondulatoire de Louis de Broglie(1923) pour que l'espoir renaisse. Les particules qui constituent la matière peuvent se comporter comme des ondes de longueur d'onde très petite : 0,1 nm (10-10 mètre), c'est-à-dire de la taille d'un atome. De cette dualité onde-corpuscule va naître le microscope électronique en 1933 (E.Ruska) - où l'éclairage par une source lumineuse utilisé dans le microscope optique est remplacé par une source d'électrons. L'observation d'atomes reste encore indirecte et s'appuie sur des phénomènes de diffraction. Les applications de la microscopie électronique sont nombreuses et le développement instrumental est aujourd'hui très sophistiqué que ce soit au niveau des appareillages ou au niveau du traitement informatique des données. Les domaines explorés sont très divers,la biologie moléculaire et cellulaire ,la cristallographie, la métallurgie, et les sciences des matériaux.La résolution des microscopes électroniques permet d'atteindre l'échelle atomique mais il faut noter un point fondamental,on n'observe pas le relief des surfaces observées mais une vue projetée.Les ondes associées aux électrons qui permettent l'obtention d'images sont des ondes progressives et l'on se trouve dans le cadre du champ lointoin.Cet inconvénient est entièrement levée dans le cas des microscopies en champ proche. En 1982, un nouveau type de microscope - le microscope à effet tunnel, est inventé par Gerd Binnig et Heinrich Rohrer, ouvrant un champ très vaste d'investigations scientifiques et des nouveaux horizons technologiques. Cette nouvelle technique utilisant une pointe très fine terminée par un atome permet l'observation directe et aisée d'atomes et de structures atomiques de surfaces conductrices dans une large variété d'environnements (air, eau, huile, vide). Depuis l'invention du microscope tunnel, d'autres microscopies à sonde locale ont été développées, et notamment le microscope à effet de force atomique (1986) qui permet d'imager non seulement des surfaces conductrices mais aussi des surfaces isolantes.Enfin une autre microscopie en champ proche optique donne des images pour lesquelles les critères de Rayleigh. En plus, les progrès les plus récents ont montré la possibilité de manipuler les atomes à l'aide de ces microscopes - ainsi les premières structures artificielles à l'échelle atomique ont été élaborées.Toutes ces techniques d'observation et d'élaboration de nanostructures ont données naissance à une nouvelle physique,la nanophysique et aussi à de nouvelles nanotechnologies qui préfigure l'aube d'une révolution "nano" industrielle. Au cours de cette exposé nous présenterons les différents types de microscopes électroniques et les résultats les plus spectaculaires obtenus dans le domaine des sciences puis les trois familles de microscopies en champ proche et les applications surlesquelles elles débouchent naturellement. Mot(s) clés libre(s) : effet tunnel, infiniment petit, longueur d'onde, microscope électronique, microscopie à force atomique, microscopie en champ proche, résolution d'image, sonde électronique, spectroscopie
|
Accéder à la ressource
|
|
La physique quantique (Serge Haroche)
/ Mission 2000 en France
/ 31-07-2000
/ Canal-U - OAI Archive
HAROCHE Serge
Voir le résumé
Voir le résumé
"La théorie quantique, centrale à notre compréhension de la nature, introduit en physique microscopique les notions essentielles de superpositions d'états et d'intrication quantique, qui nous apparaissent comme "" étranges "" et contre-intuitives. Les interférences quantiques et la non-localité - conséquences directes du principe de superposition et de l'intrication - ne sont en effet pas observables sur les objets macroscopiques de notre expérience quotidienne. Le couplage inévitable de ces objets avec leur environnement détruit très vite les relations de phase entre les états quantiques. C'est le phénomène de la décohérence qui explique pourquoi autour de nous l'étrangeté quantique est généralement voilée. Pendant longtemps, superpositions, intrication et décohérence sont restés des concepts analysés à l'aide d'" expériences de pensée " virtuelles, dont celle du chat de Schrödinger à la fois mort et vivant est la plus connue. À la fin du XXe siècle, les progrès de la technologie ont rendu réalisables des versions de laboratoire simples de ces expériences. On peut maintenant piéger et manipuler des atomes et des photons un par un et construire des systèmes de particules suspendus entre deux états quantiques distincts qui apparaissent ainsi comme des modèles réduits de chats de Schrödinger. Au delà de la curiosité scientifique et du défi que constitue l'observation de l'étrangeté quantique pour ainsi dire in vivo, ces expériences éclairent la frontière entre les mondes classique et quantique et ouvrent des perspectives fascinantes d'applications. " Mot(s) clés libre(s) : constante de Planck, décohérence, dualité onde-particule, infiniment petit, interférence quantique, intrication, non-localité, physique quantique, quantification, Schrödinger, superposition d'états
|
Accéder à la ressource
|
|
La physique quantique (Philippe Grangier)
/ UTLS - la suite
/ 17-06-2005
/ Canal-U - OAI Archive
GRANGIER Philippe
Voir le résumé
Voir le résumé
Nous décrirons des expériences permettant de mettre en évidence des propriétés simples et fondamentales de la physique quantique, comme l'existence de superpositions linéaires d'états, ou celle d'états "enchevêtrés" ou "intriqués". Nous montrerons ensuite comment de tels états peuvent être utilisés dans le domaine très actif de "l'information quantique", pour réaliser des dispositifs de cryptographie parfaitement sûrs, ou pour effectuer certains calculs de manière potentiellement beaucoup plus efficace qu'avec des ordinateurs usuels. Mot(s) clés libre(s) : calcul quantique, cryptographie, équations de Maxwell, infiniment petit, interférence quantique, lumière ondulatoire, mécanique quantique, non-localité, optique quantique, photon, quantification de la lumière, superposition d'états
|
Accéder à la ressource
|
|
Les accélérateurs de particules : du microcosme au macrocosme
/ UTLS - la suite
/ 07-07-2001
/ Canal-U - OAI Archive
DE RUJULA Alvaro
Voir le résumé
Voir le résumé
En étudiant "comment fonctionnent les choses" au niveau microscopique on découvre combien elles sont simples, combien la gigantesque variété de tout ce qui existe est gouvernée par des lois qui sont aussi simples, peu nombreuses et "unifiées". L'univers dans sa jeunesse etait une "soupe" de particules, de plus en plus énergétiques ou "chaudes" à mesure qu'on avance vers le passe'. C'est ainsi que les expériences "de haute énergie" dans les accélérateurs de particules nous permettent, entre autre, de mieux comprendre l'univers quand il etait beaucoup plus jeune. La compréhension du micro et de macrocosme sont aussi une science unique ou, de façon surprenante, l'objet le moins bien compris est le vide, qui semble ne pas l'être du tout. Mot(s) clés libre(s) : accélérateur de particules, collision d'atomes, constante cosmologique, cosmologie, infiniment grand, infiniment petit, particule élémentaire, physique des hautes énergies, physique des particules, univers
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|