|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 1)
/ Fanny Bastien
/ 03-07-2012
/ Canal-u.fr
Lalonde François
Voir le résumé
Voir le résumé
The
first two lectures will present the fundamental results of symplectic
topology : basic definitions, Moser’s lemma, normal forms of the
symplectic structure near symplectic and Lagrangian submanifolds,
characterization of Hamiltonian fibrations over any CW-complex. The
third course will give the application of quantum homology to the
splitting of the rational cohomology ring of any Hamiltonian fibration
over S2, a generalization of a result of Deligne in the algebraic case
and of Kirwan in the toric case. The fourth course will give the
application of the quantum homology of a Lagrangian submanifold to the
proof of the triviality of the monodromy of a weakly exact Lagrangian
submanifold in any symplectic manifold. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|