Voir le résumé
Nous avons été habitués aux matériaux traditionnels (bois cuir, laine...) et connu la révolution des matières plastiques et des composites. Voici celle des matériaux intelligents capables de changer de forme, de couleur ou de conductivité en fonction de leur environnement. Les alliages à mémoire de forme, les matériaux piézo-électriques, magnétoscrictifs ou électrorhéologiques connaissent déjà de nombreuses applications. Des exemples en sont donnés dans le domaine de l'aérospatiale, de l'automobile, de la médecine, de la robotique ou du bâtiment. Mais déjà, de nouveaux matériaux intelligents sortent des laboratoires, s'inspirant de plus en plus des propriétés des systèmes biologiques. Grâce aux nanotechnologies, à des outils comme le microscope à effet tunnel ou le microscope à force atomique, il devient possible de les produire par un usinage à l'échelle de l'infiniment petit. On crée notamment des structures supramoléculaires, des polymères conducteurs et semiconducteurs, des textiles intelligents, des membranes sélectives ou des peaux artificielles. Avec de nombreuses applications dans le domaine militaire, dans celui de l'informatique et des microprocesseurs, dans la bioélectronique ou les biocapteurs. Le futur des matériaux intelligents passe par une intégration de plus en plus étroite entre supports physiques et biomatériaux. Le bio-ordinateur à ADN, les nanolabos, les MEMS, ou les biopuces implantables fascinent et inquiètent tout à la fois les scientifiques et le public. Un diaporama présente les avancées les plus récentes dans ces domaines. Les matériaux intelligents du futur ouvrent la voie à des interfaces plus étroites entre l'homme et les machines, conduisant progressivement à l'émergence de " l'homme symbiotique ".
Mot(s) clés libre(s) : alliage à mémoire de forme, biomatériaux, biotique, matériau électrostrictif, matériau magnétostrictif, matériau piézo-électrique, MEMS, microstructure, modèle biologique, nanotechnologies, polymère de synthèse, science des matériaux