|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
2011 - Les Nanotechnologies
/ Icare Multimédia - Faculté de Médecine Lille 2
/ Canal-u.fr
Voir le résumé
Voir le résumé
"Nanotechnologies: Tapage ou future révolution industrielle ?"
Alain Cappy est né en 1954. Ancien élève de lÉcole Normale Supérieure de Cachan il est agrégé de Sciences physiques. Il soutient sa thèse de troisième cycle en Électronique en 1981 puis son doctorat d'État en 1986. Depuis 1991 il est Professeur à l'Université Lille1 ou il enseigne l'électronique, en particulier la physique des dispositifs à semi-conducteurs.
Ses activités de recherche concernent la conception, la fabrication et la caractérisation de micro et nano dispositifs ultras rapides. Il est auteur ou coauteur de 100 articles dans des revues internationales, de 115 communications dans des conférences, dont 25 invitées. Il a dirigé 24 thèses et il est membre du comité de lecture de revues internationales et du comité des programmes de conférences internationales. De 2002 à 2009, il a été directeur de l'Institut d'Électronique de Microélectronique et de Nanotechnologie (IEMN), un laboratoire de recherche de plus de 450 personnes
Résumé : Les nanosciences, qui s'intéressent aux nouveaux phénomènes apparaissant aux petites échelles, et les nanotechnologies, qui concernent les applications des objets de taille nanométrique, connaissent depuis une quinzaine d'années un formidable essor, grâce au développement de nouveaux outils d'élaboration, d'observation et d'analyse. Lorsque des objets artificiels ont la même taille que des molécules chimiques ou biologiques, leur étude bénéficie des apports complémentaires des diverses disciplines : les nanosciences et les nanotechnologies sont multidisciplinaires par nature.
Selon certaines études, le développement des nanotechnologies va générer une révolution égalant la révolution microélectronique, non seulement au niveau des dispositifs pour le traitement de l'information, mais plus encore dans les domaines des matériaux (nanomatéraux, matériaux nanostructurés) et de la santé (diagnostic, thérapie) ou l'interaction d'objets biologiques et non biologiques dans des systèmes permettra l'éclosion d'une nouvelle génération de capteurs.
Avant une utilisation à grande échelle de ces technologies, il est toutefois nécessaire d'améliorer rapidement l'analyse des risques liés à ces technologies afin d'éviter les écueils et les erreurs qui ont pu apparaître dans le développement d'autres technologies avancées. Mot(s) clés libre(s) : microélectronique, nanotechnologies, matériau semi-conducteur
|
Accéder à la ressource
|
|
Comment les révolutions de l'information et des communications ont-elles été possibles ?
/ Mission 2000 en France
/ 12-08-2000
/ Canal-U - OAI Archive
WEISBUCH Claude
Voir le résumé
Voir le résumé
Les révolutions de l'information et des communications vont continuer à bouleverser tous les domaines de l'activité humaine. Ces révolutions sont nées du codage de l'information sous forme de paquets d'électrons ou de photons et de la capacité de manipuler et transmettre ces paquets d'électrons ou de photons de manière de plus en plus efficace et économique. À la base de cette capacité se trouvent les matériaux semi-conducteurs. Rien ne prédisposait ces matériaux à un tel destin : ils ont des propriétés " classiques " médiocres qui les rendent " commandables " : par exemple, leur comportement électrique a longtemps semblé erratique, car très sensible aux " impuretés ". Cette capacité à changer de conductivité électrique, devenue " contrôlée " par la compréhension physique des phénomènes et l'insertion locale d'impuretés chimiques, permet de commander le passage de courant par des électrodes. On a alors l'effet d'amplification du transistor, à la base de la manipulation électronique de l'information. La sensibilité des semi-conducteurs aux flux lumineux en fait aussi les détecteurs de photons dans les communications optiques, et le phénomène inverse d'émission lumineuse les rend incontournables comme sources de photons pour les télécommunications, et bientôt pour l'éclairage. Les progrès des composants et systèmes sont liés aux deux démarches simultanées d'intégration des éléments actifs sur un même support, la " puce ", et de miniaturisation. Une des immenses surprises a été le caractère " vertueux " de la miniaturisation : plus les composants sont petits, meilleur est leur fonctionnement ! On a pu ainsi gagner en trente-cinq ans simultanément plusieurs facteurs de 100 millions à 1 milliard, en termes de complexité des circuits, réduction de coût, fiabilité, rendement de fabrication. Le problème des limites physiques est cependant aujourd'hui posé : jusqu'où la miniaturisation peut-elle continuer ? Combien d'atomes faut-il pour faire un transistor qui fonctionne encore ? Y-a t'il d'autres matériaux que les semi-conducteurs qui permettraient d'aller au delà des limites physiques, ou encore d'autres moyens de coder l'information plus efficaces que les électrons ou les photons ? Ce sont les questions que se pose aujourd'hui le physicien, cherchant à mettre en difficulté un domaine d'activité immense qu'il a contribué à créer. Mot(s) clés libre(s) : circuit intégré, codage de l'information, conductivité électrique, matériau semi-conducteur, microélectronique, miniaturisation, physique quantique des solides, silicium, transistor
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|