|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Anisotropie
/ Université Lyon-I, Unisciel
/ 2008
/ Unisciel
Perries Stéphane
Voir le résumé
Voir le résumé
Anisotropie du Fond cosmologique diffus à 3°K : il s'agit d’une animation avec la terre se déplaçant par rapport à un ensemble de photons isotropes. On ajoute la visualisation de la température du rayonnement 3K en fonction de l'angle de visée depuis la terre. L'idée de l'animation est de connecter un calcul d'application avec des distributions de températures du rayonnement 3K telles qu'on peut les voir dans des revues scientifiques. Une relique du Big Bang à l'origine de l'univers est le fond cosmologique micro-onde. Il s'agit d'un rayonnement électromagnétique fossile qui aujourd'hui rayonne dans le domaine des micro-ondes. Ce rayonnement est de type 'corps noir' et à ce titre, il a une température. Dans son référentiel, ce rayonnement est à température uniforme. Comme la Terre se déplace par rapport à ce rayonnement, il est ressenti plus chaud dans le sens du déplacement et plus froid dans l'arrière du déplacement. L'animation permet de régler la vitesse de la Terre par rapport au rayonnement fossile et de représenter par des surfaces de niveau en couleur la température du rayonnement vu de la Terre. Cette représentation est faite en coordonnées galactiques et peut se comparer à une image de référence réalisée par la NASA à partir des données du satellite COBE. Cette image de référence est montrée dans l'animation. Ainsi l'animation permet par comparaison du résultat de l'animation avec l'image de référence d'estimer grossièrement la vitesse de la Terre (en direction et en kilomètre/heure) par rapport au rayonnement micro-onde et donc par rapport au référentiel du Big Bang. Mot(s) clés libre(s) : anisotropie, calcul d'application, fond cosmologique micro-onde, rayonnement électromagnétique, rayonnement fossile, corps noir
|
Accéder à la ressource
|
|
Comment décoder les ondes (série Unithé ou café)
/ Elena Carvajal, INRIA (Institut national de recherche en informatique et automatique)
/ 17-01-2014
/ Canal-u.fr
Haddar Houssem
Voir le résumé
Voir le résumé
Vague de pollution sur Paris. On parle de microparticules dans l’air… mais peut-on savoir ce qu’il y a à un niveau de taille encore inférieur, comme les nanoparticules ? Oui, grâce aux ondes électromagnétiques. Nous verrons que les ondes réagissent d’une manière particulière quand elles rencontrent un objet, comme les particules dans l’air. Analyser ces réactions permet de jouer les enquêteurs en remontant la piste à l’envers jusqu’à deviner quel objet a été rencontré ! Ceci devient plus complexe quand l’objet est de la même taille que la longueur d’onde. Mais cela peut avoir des applications dans des domaines très différents comme par exemple la détection de cellules cancéreuses, de fissures dans des pylônes, ou des mines enterrées dans le désert d’Atacama au Chili. Mot(s) clés libre(s) : rayon X, onde électromagnétique, problème inverse, optimisation topologique de forme, micro-onde, SAXS, algorithme numérique
|
Accéder à la ressource
|
|
Spintronique : le spin des électrons s'invite en électronique et dans
nos ordinateurs
/ Les Grandes Conférences de Lyon 2009, ENS Lyon CultureSciences-Physique, Catherine Simand
/ 19-05-2009
/ Unisciel
Fert Albert
Voir le résumé
Voir le résumé
Un lien vers le podcast d'une conférence du cycle 2009 des Grandes
Conférences de Lyon, organisées par l'Université de Lyon. Une conférence du prix Nobel de
physique 2007 Albert Fert, consacrée au phénomène de magnétorésistance géante. La découverte
de ce phénomène, il y a 20 ans, a donné le coup d'envoi de la spintronique qui s'est ensuite
développée rapidement en utilisant tous les outils amenés par les nanotechnologies. Les
applications sont aujourd'hui multiples, en particulier pour la lecture des disques
d'ordinateur dont elle a permis d'augmenter fortement la capacité. Mot(s) clés libre(s) : spintronique, électron, spin, magnétorésistance, magnétorésistance géante, magnétorésistance tunnel, tête de lecture, tête de lecture magnétique, mémoire magnétique, MRAM, effet vanne de spin, oscillateur RF, émetteur micro-onde
|
Accéder à la ressource
|
|
Localiser et identifier une molécule
/ UTLS - la suite, Mission 2000 en France
/ 22-08-2000
/ Canal-U - OAI Archive
CHAQUIN Patrick
Voir le résumé
Voir le résumé
Au début du siècle, la caractérisation des molécules consistait essentiellement en tests chimiques donnant naissance à des précipités, des couleurs, voire des odeurs. Ces techniques ont été supplantées par des méthodes physiques, dans lesquelles les molécules, soumises à certaines stimulations fournissent, sous forme de diagramme, une réponse ou spectre. Plusieurs méthodes spectroscopiques étudient l'interaction avec la matière des ondes électromagnétiques dans divers domaines de longueur d'onde. Le domaine de l'infrarouge (IR) permet de reconnaître la présence de certaines liaisons ou groupements d'atomes et fournit une " empreinte digitale " caractéristique. Dans le domaine des ondes radio, la résonance magnétique nucléaire (RMN) s'applique en premier lieu au carbone et à l'hydrogène mais également à de nombreux autres éléments. Cette méthode a connu depuis 1960 d'extraordinaires développements. L'un des plus récents, la RMN à deux dimensions, met en évidence des connexions entre atomes d'où une véritable cartographie moléculaire. Dans le domaine de la lumière visible ou ultaviolette, les renseignements obtenus sont d'une moindre richesse, mais cette spectroscopie, avec d'ailleurs l'IR, permet l'étude de molécules hors de notre atteinte comme celles des atmosphères planétaires ou de l'espace interstellaire. Enfin la spectrométrie de masse (SM) étudie les fragmentations des molécules sous l'effet, par exemple, d'un bombardement d'électrons. Des masses de ces fragments on peut déduire leur formule chimique qui permet de reconstituer la molécule originelle. Par ailleurs, ces spectres fournissent une signature qui, traitée numériquement, permet une identification automatique si la molécule a déjà été répertoriée dans une bibliothèque. Cette technique, couplée avec une méthode de séparation telle que la chromatographie en phase gazeuse est d'une puissance inégalée pour l'analyse de mélanges complexes. Mot(s) clés libre(s) : chimie moléculaire, chromatographie, conformation, infra-rouge, IRM, micro-onde, modélisation, molécule, résonance magnétique nucléaire, spectrométrie de masse, spectroscopie, ultra-violet
|
Accéder à la ressource
|
|
KEZAKO : Comment fonctionne un micro-onde ?
/ Perrine Lefrileux
/ 01-01-2013
/ Canal-u.fr
BEAUGEOIS Maxime, Hennequin Daniel, Deltombe Damien
Voir le résumé
Voir le résumé
Kezako est la série documentaire qui répond à vos questions de science. Dans cet épisode, on explique le principe de fonctionnement d'un micro-onde et la différence par rapport à un four traditionnel. Mot(s) clés libre(s) : micro-onde, four, agitationthermique, eau
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|