Voir le résumé
La dynamique des fluides est un sujet qui s'applique largement : en biologie, en géophysique et en astrophysique, en océanographie et en météorologie, ainsi qu'en génies chimique, nucléaire, aéronautique, hydraulique et en écologie. Dans tous ces contextes, le fluide, qui est soit en phase liquide, soit gazeuse, soit sous forme de plasma (gaz ionisé), est traité comme un milieu continu représenté par les champs de densité, de pression et de vitesse satisfaisant la fameuse équation de Navier-Stokes. Cette équation décrit des phénomènes se produisant sur une très grande gamme d'échelles de longueur, allant de l'échelle sub-micron' des phénomènes biologiques à un extrême, jusqu'à l'échelle super-parsec' des phénomènes cosmologiques et astrophysiques à l'autre. Nous présenterons un point de vue sur ces phénomènes et discuterons en particulier l'effet dynamo, qui correspond à l'auto-excitation du champ géomagnétique due aux mouvements se produisant dans le noyau liquide terrestre, problème classique pour lequel des progrès remarquables ont été réalisés depuis ces cinq dernières décennies. Deux aspects de ce problème peuvent être illustrés par des phénomènes analogues, mais plus simples, provenant de la dynamique des corps rigides. Tout d'abord, l'auto-excitation d'un champ magnétique dans un fluide conducteur est associée à la chiralité de l'écoulement turbulent, propriété que possède le rattleback', toupie asymétrique qui présente un curieux comportement quand on la fait tourner sur une table. Nous montrerons ensuite que l'instabilité dynamo est dissipatrice par nature, car il faut de la dissipation par effet Joule pour permettre l'intensification du champ magnétique, ceci sur l'échelle du temps de dissipation qui est de l'ordre de 10,000 ans dans le contexte terrestre. L'instabilité dissipatrice peut être illustrée par le phénomène familier de l'oeuf montant'. La conférence sera agrémentée par quelques démonstrations simples de ce genre d'instabilités.
Mot(s) clés libre(s) : dynamique des fluides, écoulement, effet dynamo, équation de Navier-Stokes, fluide en mouvement, hélicité, inertie, milieu continu, nombre de Reynolds, tourbillon, turbulence, viscosité, vorticité