Voir le résumé
La physique et les mathématiques sont étroitement mêlées depuis toujours. Tantôt c'est la première qui conduit à développer les mathématiques impliquées par les lois de la nature, tantôt des structures mathématiques élaborées sans référence au monde extérieur se trouvent être précisément adaptées à la description de phénomènes découverts pourtant postérieurement. C'est là l'efficacité déraisonnable des mathématiques dans les sciences de la nature dont parlait Eugène Wigner. Jamais les interactions entre physique et mathématiques n'ont été plus intenses qu'à notre époque, jamais la description des phénomènes naturels n'a requis des mathématiques aussi savantes qu'aujourd'hui. Pourtant il est important de comprendre la différence de nature entre ces deux disciplines. La physique n'établit pas de théorèmes ; jusqu'à présent elle se contente de modèles dont les capacités à prédire, et la comparaison avec l'expérience établissent la validité, avec une économie dans la description et une précision parfois confondantes. Néanmoins nous savons que tous les modèles dont nous disposons actuellement, toutes les lois, ne sont que des descriptions "effectives" comme l'on dit aujourd'hui, c'est-à-dire adaptées aux échelles de temps, de distance, d'énergie avec lesquelles nous observons, mais dont nous savons de manière interne, avant même que des phénomènes nouveaux les aient invalidées, qu'elles sont inaptes à aller beaucoup plus loin. Y aura t-il une description définitive qui, tel un théorème, s'appliquerait sans limitations? Ce rêve d'une théorie ultime, où la physique rejoindrait les mathématiques, caressé par certains, laisse beaucoup d'autres sceptiques ; quoiqu'il en soit la question ne sera certainement pas tranchée rapidement.
Mot(s) clés libre(s) : chaos, électromagnétisme, force nucléaire, gravitation, histoire des sciences, mécanique quantique, modèle d'Ising, physique statistique, physique théorique, relativité générale, représentation du réel, système dynamique, théorie des cordes