|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Masse
/ Observatoire de Paris
/ 02-09-2008
/ Unisciel
Mosser Benoît, Theureau Gilles, Gerbaldi Michèle
Voir le résumé
Voir le résumé
Deuxième chapitre du cours "Fenêtres sur l'Univers"
Comment peser l'Univers et ses différents constituants ? Plus exactement, comment mesurer une grandeur fondamentale de tout objet physique, sa masse ?
Ce chapitre répond (partiellement) à cette question. Il n'a pas pour ambition de montrer que, conformément aux mesures les plus récentes, l'essentiel de la masse de l'Univers est sous d'autres formes que la matière usuelle que nous côtoyons tous les jours... Il s'intéresse à l'étude dynamique des objets en interaction gravitationnelle, et montre comment cette analyse du mouvement des objets permet de mesurer leurs masses.
Une part belle est dévolue au système à 2 corps et à la 3ème loi de Kepler. Mot(s) clés libre(s) : gravitation, Kepler, Newton, dynamique, binarité, exoplanètes, lois de Kepler, systèmes binaires, marées, problème à N corps
|
Accéder à la ressource
|
|
Marée et problème à N corps
/ Observatoire de Paris
/ 03-09-2008
/ Unisciel
Mosser Benoît
Voir le résumé
Voir le résumé
sous-chapitre du cours "Fenêtres sur l'Univers"
Ce sous-chapitre présente différents cas où l'hypothèse d'un système à 2 corps ne peut plus s'appliquer. Il concerne :
- Les marées sur Terre
- L'effet de marée en général
- Les points de Lagrange Mot(s) clés libre(s) : gravitation, Lagrange, dynamique, marées, problème à N corps
|
Accéder à la ressource
|
|
Fenêtres sur l'Univers
/ Observatoire de Paris
/ 02-09-2008
/ Unisciel
Mosser Benoît, Theureau Gilles, Gerbaldi Michèle
Voir le résumé
Voir le résumé
Le cours en ligne "Fenêtres sur l'Univers" est conçu pour l'accompagnement et l'approfondissement de notions d'astronomie et d'astrophysique. Il reste très proche de la physique, en privilégiant l'outil physique pour comprendre comment fonctionnent les concepts et les objets astronomiques.
Le cours comporte 4 chapitres
- Distance et temps : Se repérer, dans le temps comme dans l'espace, est à la base de toute bonne astrophysique. Il suffit, pour s'en convaincre, de penser à l'étape première de l'analyse d'un problème mécanique : la nécessaire identification d'un référentiel, càd d'un solide sur lequel appuyer l'étude, muni d'une horloge fiable et précise. Ce référentiel s'accompagne d'un repère, qui doit permettre des mesures précises. Ce chapitre aborde ainsi les mesures de temps et d'espace qui serviront à définir le cadre de travail de toute l'astronomie.
- Masse : Comment "peser" l'Univers et ses objets ? Ce chapitre aborde les droits et devoirs de l'interaction gravitationnelle, qui régit l'Univers à toute échelle, et répond lorsque c'est possible à la question pesée... euh, posée.
- Température : Sous le terme de température sont rassemblés les phénomènes énergétiques responsables et constitutifs du rayonnement d'un objet de l'Univers. Le lien entre la thématique astrophysique et la microphysique apporte la lumière. Et la température est toujours en embuscade, via le gaz parfait, via le corps noir, pour régenter les lois physiques.
- Instrumentation : L'astrophysique d'aujourd'hui s'appuie sur des outils instrumentaux de pointe.
Le but de ce chapitre est de parcourir quelques-uns des grands principes instrumentaux, qui permettent de comprendre le fonctionnement d'une chaîne de collecte du signal, en décortiquant les informations spatiale, spectrale, temporelle... présentes dans les signaux ténus observés. Mot(s) clés libre(s) : astronomie, temps, distance, mesure, triangulation, échelle des distances, gravitation, Newton, dynamique, binarité, exoplanètes, lois de Kepler, systèmes binaires, marées, problème à N corps, température, étoile, luminosité, magnitude, évolution stellaire, effet Doppler, corps noir, classification spectrale, diagramme Hertzsprung-Russell, instrumentation, optique, diffraction, interférence, spectrométrie, miroir, télescope, monture, astrométrie, photométrie, imagerie, spectro-imagerie, détecteur, CCD, bruit, signal, Fourier, caméra, optique adaptative, chaîne de mesure, traitement du signal
|
Accéder à la ressource
|
|
Cours de Mécanique Céleste
/ 28-01-2008
/ Unisciel
Duriez Luc
Voir le résumé
Voir le résumé
Après quelques rappels des notions de base de mécanique générale et une introduction la mécanique lagrangienne et hamiltonienne, ce cours détaille de nombreuses propriétés du "mouvement képlérien" que décrit une masse ponctuelle lorsqu'elle est attire par une autre masse ponctuelle sous l'effet de la gravitation universelle (loi de Newton). On introduit ensuite les effets de la gravitation par une masse non ponctuelle, ou par d'autres forces subies par les satellites comme celles du frottement atmosphrique ou de la pression de radiation. Ces effets sont généralement considérés en mécanique céleste comme des "perturbations" de mouvements képlériens. On introduit donc les équations différentielles qui décrivent ces perturbations, et on montre comment, malgré la non intégrabilité des équations du problème des N corps, on peut arriver à les résoudre par approximations successives dans le cas des planètes du système solaire ou de leurs satellites. Mot(s) clés libre(s) : mécanique céleste, mécanique hamiltonienne, mouvement képlérien, perturbations, N-corps
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|